# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VASR Loading Script """ import json import os import pandas as pd import datasets from huggingface_hub import hf_hub_url # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """ """ _DESCRIPTION = """\ VASR is a challenging dataset for evaluating computer vision commonsense reasoning abilities. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. Our experiments demonstrate that state-of-the-art models struggle with carefully chosen distractors (±53%, compared to 90% human accuracy). """ _HOMEPAGE = "https://vasr-dataset.github.io/" _LICENSE = "https://creativecommons.org/licenses/by/4.0/" _URL = "https://huggingface.co/datasets/nlphuji/vasr/blob/main" _URLS = { "train": os.path.join(_URL, "train_gold.csv"), "dev": os.path.join(_URL, "dev_gold.csv"), "test": os.path.join(_URL, "test_gold.csv"), } class Winogavil(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('vasr', 'test') BUILDER_CONFIGS = [ datasets.BuilderConfig(name="TEST", version=VERSION, description="vasr gold test dataset"), ] IMAGE_EXTENSION = "jpg" def _info(self): features = datasets.Features( { "A_img": datasets.Value("string"), "B_img": datasets.Value("string"), "C_img": datasets.Value("string"), "candidates": [datasets.Value("string")], "candidates_images": [datasets.Value("string")], "label": datasets.Value("int64"), "D_img": datasets.Value("string"), "A_verb": datasets.Value("string"), "B_verb": datasets.Value("string"), "C_verb": datasets.Value("string"), "D_verb": datasets.Value("string"), "diff_item_A": datasets.Value("string"), "diff_item_A_str_first": datasets.Value("string"), "diff_item_B": datasets.Value("string"), "diff_item_B_str_first": datasets.Value("string"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive # data_dir = dl_manager.download_and_extract({ # "examples_csv": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="test_gold.csv"), # "images_dir": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset',filename="vasr_images.zip") # }) # return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)] # downloaded_files = dl_manager.download_and_extract(_URLS) data_dir = dl_manager.download_and_extract({ "images_dir": hf_hub_url("datasets/nlphuji/vasr", filename="vasr_images.zip") }) train_gen = datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={**data_dir, **{"files": dl_manager.download_and_extract(_URLS['train'])}}) dev_gen = datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={**data_dir, **{"files": dl_manager.download_and_extract(_URLS['dev'])}}) test_gen = datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={**data_dir, **{"files": dl_manager.download_and_extract(_URLS['test'])}}) return [train_gen, dev_gen, test_gen] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, examples_csv, images_dir): # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. df = pd.read_csv(examples_csv) d_keys = ['A_img', 'B_img', 'C_img', 'candidates', 'label', 'D_img', 'A_verb', 'B_verb', 'C_verb', 'D_verb', 'diff_item_A', 'diff_item_A_str_first', 'diff_item_B', 'diff_item_B_str_first'] for r_idx, r in df.iterrows(): r_dict = r.to_dict() r_dict['candidates'] = json.loads(r_dict['candidates']) candidates_images = [os.path.join(images_dir, "vasr_images", x) for x in r_dict['candidates']] r_dict['candidates_images'] = candidates_images relevant_r_dict = {k:v for k,v in r_dict.items() if k in d_keys or k == 'candidates_images'} yield r_idx, relevant_r_dict