# coding=utf-8 # Copyright 2022 the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import datasets import json from huggingface_hub import hf_hub_url _INPUT_CSV = "test_set.csv" _INPUT_IMAGES = 'geode_test_images' _REPO_ID = "nlphuji/beyond_web_scraping" class Dataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="TEST", version=VERSION, description="test"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "file_path": datasets.Value('string'), "object": datasets.Value('string'), "region": datasets.Value('string'), "ip_country": datasets.Value('string'), "date": datasets.Value('string'), "make": datasets.Value('string'), "make": datasets.Value('string'), "model": datasets.Value('string'), "gps_position": datasets.Value('string'), "gps_altitude": datasets.Value('string'), "resolution": datasets.Value('string'), "licence_plate": datasets.Value('string'), "people_in_background": datasets.Value('string'), "tree_tag": datasets.Value('string'), "short_file_path": datasets.Value('string'), } ), task_templates=[], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" repo_id = _REPO_ID data_dir_125 = dl_manager.download_and_extract({ "examples_csv": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=_INPUT_CSV), "images_dir": hf_hub_url(repo_id=repo_id, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip") }) return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir_125)] def _generate_examples(self, examples_csv, images_dir): """Yields examples.""" df = pd.read_csv(examples_csv) for r_idx, r in df.iterrows(): r_dict = r.to_dict() image_path = os.path.join(images_dir, _INPUT_IMAGES, r_dict['file_path']) r_dict['image'] = image_path yield r_idx, r_dict