# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NKJP-NER""" from __future__ import absolute_import, division, print_function import csv import os import datasets _CITATION = """\ @book{przepiorkowski2012narodowy, title={Narodowy korpus jezyka polskiego}, author={Przepi{\'o}rkowski, Adam}, year={2012}, publisher={Naukowe PWN} } """ _DESCRIPTION = """\ The NKJP-NER is based on a human-annotated part of National Corpus of Polish (NKJP). We extracted sentences with named entities of exactly one type. The task is to predict the type of the named entity. """ _HOMEPAGE = "https://klejbenchmark.com/tasks/" _LICENSE = "GNU GPL v.3" _URLs = "https://klejbenchmark.com/static/data/klej_nkjp-ner.zip" class NkjpNer(datasets.GeneratorBasedBuilder): """NKJP-NER""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence": datasets.Value("string"), "target": datasets.ClassLabel( names=[ "geogName", "noEntity", "orgName", "persName", "placeName", "time", ] ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, "train.tsv"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, "dev.tsv"), "split": "dev", }, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for id_, row in enumerate(reader): yield id_, { "sentence": row["sentence"], "target": -1 if split == "test" else row["target"], }