|
""" |
|
Created 04-06-19 by Matt C. McCallum |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
import os |
|
|
|
|
|
DEFAULT_DATASET_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../dataset') |
|
|
|
|
|
class HarmonixDataset(object): |
|
""" |
|
An object for interfacing with the Harmonix dataset data. |
|
""" |
|
|
|
def __init__(self, dataset_dir=DEFAULT_DATASET_DIR): |
|
""" |
|
Constructor. |
|
|
|
Args: |
|
dataset_dir: str - An absolute path to the directory in which the dataset |
|
dat files exist. They are expected to be organized into subfolders therein, |
|
"beats_and_downbeats" and "segments". |
|
""" |
|
|
|
self._DATA_DIR = os.path.abspath(dataset_dir) |
|
self._BEAT_DIR = os.path.join(self._DATA_DIR, 'beats_and_downbeats') |
|
self._BEAT_MARKER_COLUMN = 'BeatMarker' |
|
self._BEAT_NUMBER_COLUMN = 'BeatNumber' |
|
self._BAR_NUMBER_COLUMN = 'BarNumber' |
|
self._BEATS_COLUMNS = [self._BEAT_MARKER_COLUMN, self._BEAT_NUMBER_COLUMN, self._BAR_NUMBER_COLUMN] |
|
self._SEGMENT_DIR = os.path.join(self._DATA_DIR, 'segments') |
|
self._SEG_BOUNDARY_COLUMN = 'SegmentStart' |
|
self._SEG_LABEL_COLUMN = 'SegmentLabel' |
|
self._SEGMENTS_COLUMNS = [self._SEG_BOUNDARY_COLUMN, self._SEG_LABEL_COLUMN] |
|
|
|
|
|
self._beat_files = [os.path.join(self._BEAT_DIR, fname) for fname in os.listdir(self._BEAT_DIR)] |
|
self._seg_files = [os.path.join(self._SEGMENT_DIR, fname) for fname in os.listdir(self._SEGMENT_DIR)] |
|
self._beat_data = {os.path.splitext(os.path.basename(fname))[0]:pd.read_csv(fname, names=self._BEATS_COLUMNS, delimiter='\t') for fname in self._beat_files} |
|
self._seg_data = {os.path.splitext(os.path.basename(fname))[0]:pd.read_csv(fname, names=self._SEGMENTS_COLUMNS, delimiter=' ') for fname in self._seg_files} |
|
|
|
@property |
|
def beat_dataframe(self): |
|
""" |
|
Get the beat data in the form of a dictionary of pandas dataframes. One for each track. |
|
|
|
Return: |
|
dict(str, pd.DataFrame) - The beat and downbeat times for every track in the dataset. |
|
The dataframes are composed of three columns. The first, beat times in seconds. The second, |
|
beat counts within each bar, e.g., 1, 2, 3, 4, 1, 2.... The third, bar counts, the bar number |
|
that each beat-row corresponds to. |
|
""" |
|
return self._beat_data |
|
|
|
@property |
|
def segment_dataframe(self): |
|
""" |
|
Get the segment data in the form of a dictionary of pandas dataframes. One for each track. |
|
|
|
Return: |
|
dict(str, pd.DataFrame) - The beat times in seconds for every track in the dataset. Each dataframe |
|
has two columns, the first specifying the start location of a segment in seconds, and the second |
|
column specifying the name / label of that segment. There is an additional 'end' label to specify |
|
the end of a track. |
|
""" |
|
return self._seg_data |
|
|
|
@property |
|
def beat_time_lists(self): |
|
""" |
|
Returns the annotated positions of beats in seconds for every track. |
|
|
|
Return: |
|
dict(str, list(float)) - A dictionary containing lists of beat times in second |
|
for each dictionary key, in turn specifying a track. |
|
""" |
|
return {fname: data[self._BEAT_MARKER_COLUMN].values for fname, data in self._beat_data.items()} |
|
|
|
def downbeat_time_lists(self, offset): |
|
""" |
|
Returns the annotated positions of downbeats in seconds for every track. |
|
|
|
Args: |
|
offset: int - The number of beats to offset the downbeat position by, for example |
|
0 = the downbeat, 1 = the second beat, etc.. |
|
|
|
Return: |
|
dict(str, list(float)) - A dictionary containing lists of downbeat + beat offset times |
|
in seconds for each dictionary key, in turn specifying a track. |
|
""" |
|
downbeats_each_track = {} |
|
for fname, df in self._beat_data.items(): |
|
bar_numbers = np.array(df[self._BAR_NUMBER_COLUMN]) |
|
bar_start_idxs = np.argwhere((bar_numbers[1:]-bar_numbers[:-1])>0) + offset |
|
if bar_numbers[0] == 1: |
|
bar_start_idxs = np.concatenate((np.array([0]), bar_start_idxs.flatten())) |
|
downbeats_each_track[os.path.splitext(fname)[0]] = df[self._BEAT_MARKER_COLUMN].values[bar_start_idxs].flatten() |
|
return downbeats_each_track |
|
|