# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """INSERT TITLE""" import logging import datasets _CITATION = """\ *REDO* @inproceedings{wang2019crossweigh, title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations}, author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei}, booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, pages={5157--5166}, year={2019} } """ _DESCRIPTION = """\ **REWRITE* EpiSet4NER is a dataset generated from 620 rare disease abstracts labeled using statistical and rule-base methods. The test set was then manually corrected by a rare disease expert. For more details see *INSERT PAPER* and https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard """ _URL = "https://github.com/NCATS/epi4GARD/tree/master/EpiExtract4GARD/datasets/EpiCustomV3" _TRAINING_FILE = "train.txt" _VAL_FILE = "val.txt" _TEST_FILE = "test.txt" class EpiSetConfig(datasets.BuilderConfig): """BuilderConfig for Conll2003""" def __init__(self, **kwargs): """BuilderConfig forConll2003. Args: **kwargs: keyword arguments forwarded to super. """ super(ConllppConfig, self).__init__(**kwargs) class EpiSet(datasets.GeneratorBasedBuilder): """EpiSet4NER by GARD.""" BUILDER_CONFIGS = [ EpiSetConfig(name="EpiSet4NER", version=datasets.Version("1.0.0"), description="EpiSet4NER by NIH NCATS GARD"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-EPI", "B-LOC", "B-STAT", "I-EPI", "I-LOC", "I-STAT", "O", ] ) ), } ), supervised_keys=None, homepage="https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "val": f"{_URL}{_VAL_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logging.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # EpiSet tokens are space separated splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[1].rstrip()) # last example if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }