import csv import numpy as np from pyVHR.datasets.dataset import Dataset from pyVHR.signals.bvp import BVPsignal class UBFC2(Dataset): """ UBFC dataset structure: ----------------- datasetDIR/ | |-- SubjDIR1/ | |-- vid.avi |... | |-- SubjDIRM/ | |-- vid.avi """ name = 'UBFC2' signalGT = 'BVP' # GT signal type numLevels = 2 # depth of the filesystem collecting video and BVP files numSubjects = 26 # number of subjects video_EXT = 'avi' # extension of the video files frameRate = 30 # vieo frame rate VIDEO_SUBSTRING = '' # substring contained in the filename SIG_EXT = 'txt' # extension of the BVP files SIG_SUBSTRING = '' # substring contained in the filename SIG_SampleRate = 30 # sample rate of the BVP files skinThresh = [40,60] # thresholds for skin detection def readSigfile(self, filename): """ Load BVP signal. Must return a 1-dim (row array) signal """ gtTrace = [] gtTime = [] gtHR = [] with open(filename, 'r') as f: x = f.readlines() s = x[0].split(' ') s = list(filter(lambda a: a != '', s)) gtTrace = np.array(s).astype(np.float64) t = x[2].split(' ') t = list(filter(lambda a: a != '', t)) gtTime = np.array(t).astype(np.float64) hr = x[1].split(' ') hr = list(filter(lambda a: a != '', hr)) gtHR = np.array(hr).astype(np.float64) data = np.array(gtTrace) time = np.array(gtTime) self.SIG_SampleRate = np.round(1/np.mean(np.diff(time))) return BVPsignal(data, self.SIG_SampleRate)