import numpy as np import cv2 #import scipy.fftpack as fftpack import scipy def gaussian_video(video, pyramid_levels): """Create a gaussian representation of a video""" vid_data = None for x in range(0, video.shape[0]): frame = video[x] gauss_copy = np.ndarray(shape=frame.shape, dtype="float") gauss_copy[:] = frame for i in range(pyramid_levels): gauss_copy = gausPyrDown(gauss_copy) if x == 0: vid_data = np.zeros((video.shape[0], gauss_copy.shape[0], gauss_copy.shape[1], 3)) vid_data[x] = gauss_copy return vid_data def gausPyrDown(frame,sz=5,sigma=1): height, width, channel = frame.shape convFrame = np.zeros(shape=(height, width,channel), dtype="float") kernel = gausKernel(sz=sz,sigma=sigma) for channel_i in range(channel): convFrame[:,:,channel_i] = scipy.ndimage.convolve(frame[:,:,channel_i],kernel) downFrame = convFrame[::2,::2,:] return downFrame def gausPyrUp(frame,sz=5,sigma=1): height, width, channel = frame.shape upFrame = np.zeros(shape=(2*height, 2*width,channel), dtype="float") kernel = gausKernel(sz=sz,sigma=sigma) for channel_i in range(channel): upFrame[::2,::2,channel_i] = frame[:,:,channel_i] upFrame[:,:,channel_i] = scipy.ndimage.convolve(upFrame[:,:,channel_i],kernel*4) return upFrame # Define the Gaussian kernel def gausKernel(sz = 5,sigma=1): kernel = np.zeros((sz,sz)) ### STUDENT: Implement the Gaussian kernel sz_1 = int(sz/2) for x in (np.arange(sz)-sz_1): for y in (np.arange(sz)-sz_1): ix,iy = x+sz_1,y+sz_1 kernel[ix,iy] = np.exp(-(x**2+y**2)/(2.0*sigma**2)) kernel = kernel / np.sum(kernel) ### STUDENT END return kernel # We will use your previously implemented temporal bandpass filter, so make sure it works! def temporal_bandpass_filter(data, fps, freq_min=0.833, freq_max=1, axis=0): # Inputs: # data: video data of shape #frames x height x width x #channel (3,RGB) # fps: frames per second (30) # freq_min, freq_max: cut-off frequencies for bandpass filter # axis: dimension along which to apply FFT (default:0, # time domain <->for a single pixel along all frames) # Output: # Band-passed video data, with only frequency components (absolute value) # between freq_min and freq_max preserved # of shape #frames x height x width x #channel (3,RGB) data_process = np.zeros(data.shape) sample_interval = 1.0/fps for x in range(data.shape[1]): for y in range(data.shape[2]): for z in range(data.shape[3]): # the bandpass_filter is YOUR implementation! data_process[:,x,y,z] = bandpass_filter(data[:,x,y,z], sample_interval, freq_min, freq_max) return data_process # Implement the temporal bandpass filter def bandpass_filter(x, sample_interval, freq_min, freq_max): # Inputs: # x: temporal signal of shape (N,) # sample_interval: the temporal sampling interval. # freq_min, freq_max: cut-off frequencies for bandpass filter # Output: # Band-passed signal, with only frequency components (absolute value) # between freq_min and freq_max preserved ### STUDENT: Implement the bandpass filter. ### Feel free to use numpy.fft.fft, numpy.fft.fftfreq, numpy.fft.ifft X = np.fft.fft(x) frequencies = np.fft.fftfreq(len(x), d=sample_interval) bound_low = (np.abs(frequencies - freq_min)).argmin() bound_high = (np.abs(frequencies - freq_max)).argmin() X[:bound_low] = 0 X[bound_high:-bound_high] = 0 X[-bound_low:] = 0 band_pass_signal = np.abs(np.fft.ifft(X, axis=0)) ### STUDENT END return band_pass_signal # Utility function: used to convert numpy array to comform with video format def convertScaleAbs(frame): outFrame = np.ndarray(shape=frame.shape, dtype="uint8") for channel_i in range(3): outFrame[:,:,channel_i] = np.clip(np.abs(frame[:,:,channel_i]),0,255).astype(np.uint8).copy() return outFrame def combine_pyramid_and_save(g_video, orig_video, enlarge_multiple, fps): """Combine a gaussian video representation with the original""" width, height = orig_video.shape[2], orig_video.shape[1] mag_data = np.zeros(orig_video.shape, dtype='uint8') for x in range(0, g_video.shape[0]): img = np.ndarray(shape=g_video[x].shape, dtype='float') img[:] = g_video[x] for i in range(enlarge_multiple): img = gausPyrUp(img) img[:height, :width] = img[:height, :width] + orig_video[x] res = convertScaleAbs(img[:height, :width]) mag_data[x] = res return mag_data