import sys sys.path.append("..") import pandas as pd import numpy as np import os import re import matplotlib.pyplot as plt import scipy.stats as ss import scikit_posthocs as sp import pandas as pd def sort_nicely(l): """ Sort the given list in the way that humans expect. """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] l.sort( key=alphanum_key ) return l DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI'] #DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI', 'Cohface', 'Mahnob'] #DATASETS = ['Cohface', 'Mahnob'] all_methods = ['CHROM','Green','ICA','LGI','PBV','PCA','POS','SSR'] metrics = ['CC', 'MAE'] avg_type = 'mean' #avg_type = 'median' data_CC = [] data_MAE = [] for r,DATASET in enumerate(DATASETS): #Experiment Path exp_path = '../results/' + DATASET + '/' files = sort_nicely(os.listdir(exp_path)) #---------------- Produce Box plots for each method on a given dataset ----------- win_to_use = 10 f_to_use = [i for i in files if 'winSize'+str(win_to_use) in i][0] path = exp_path + f_to_use res = pd.read_hdf(path) print('\n\n\t\t' + DATASET + '\n\n') if DATASET == 'UBFC1' or DATASET == 'UBFC2' or DATASET == 'Mahnob' or DATASET == 'UBFC_ALL': all_vals_CC = [] all_vals_MAE = [] curr_dataCC = np.zeros(len(all_methods)) curr_dataMAE = np.zeros(len(all_methods)) for metric in metrics: for method in all_methods: #print(method) mean_v = [] raw_values = res[res['method'] == method][metric] values = [] for v in raw_values: if metric == 'CC': values.append(v[np.argmax(v)]) else: values.append(v[np.argmin(v)]) if metric == 'CC': all_vals_CC.append(np.array(values)) if metric == 'MAE': all_vals_MAE.append(np.array(values)) for c in range(len(all_vals_CC)): #for each method if avg_type == 'median': curr_dataCC[c] = np.median(all_vals_CC[c]) curr_dataMAE[c] = np.median(all_vals_MAE[c]) else: curr_dataCC[c] = np.mean(all_vals_CC[c]) curr_dataMAE[c] = np.mean(all_vals_MAE[c]) data_CC.append(curr_dataCC) data_MAE.append(curr_dataMAE) elif DATASET == 'PURE': cases = {'01':'steady', '02':'talking', '03':'slow_trans', '04':'fast_trans', '05':'small_rot', '06':'fast_rot'} all_CC = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]} all_MAE = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]} CC_allcases = [] MAE_allcases = [] curr_dataCC = np.zeros(len(all_methods)) curr_dataMAE = np.zeros(len(all_methods)) for metric in metrics: for method in all_methods: #print(method) for curr_case in cases.keys(): curr_res = res[res['videoName'].str.split('/').str[5].str.split('-').str[1] == curr_case] raw_values = curr_res[curr_res['method'] == method][metric] values = [] for v in raw_values: if metric == 'CC': values.append(v[np.argmax(v)]) else: values.append(v[np.argmin(v)]) if metric == 'CC': all_CC[curr_case].append(np.array(values)) if metric == 'MAE': all_MAE[curr_case].append(np.array(values)) for curr_case in cases.keys(): all_vals_CC = all_CC[curr_case] all_vals_MAE = all_MAE[curr_case] for c in range(len(all_vals_CC)): #for each method if avg_type == 'median': curr_dataCC[c] = np.median(all_vals_CC[c]) curr_dataMAE[c] = np.median(all_vals_MAE[c]) else: curr_dataCC[c] = np.mean(all_vals_CC[c]) curr_dataMAE[c] = np.mean(all_vals_MAE[c]) data_CC.append(curr_dataCC.copy()) data_MAE.append(curr_dataMAE.copy()) elif DATASET == 'Cohface': CC_allcases = [] MAE_allcases = [] curr_dataCC = np.zeros(len(all_methods)) curr_dataMAE = np.zeros(len(all_methods)) for metric in metrics: for method in all_methods: raw_values = res[res['method'] == method][metric] values = [] for v in raw_values: if metric == 'CC': values.append(v[np.argmax(v)]) else: values.append(v[np.argmin(v)]) if metric == 'CC': CC_allcases.append(np.array(values)) if metric == 'MAE': MAE_allcases.append(np.array(values)) for c in range(len(CC_allcases)): #for each method if avg_type == 'median': curr_dataCC[c] = np.median(all_vals_CC[c]) curr_dataMAE[c] = np.median(all_vals_MAE[c]) else: curr_dataCC[c] = np.mean(CC_allcases[c]) curr_dataMAE[c] = np.mean(MAE_allcases[c]) data_CC.append(curr_dataCC) data_MAE.append(curr_dataMAE) elif DATASET == 'LGI-PPGI': cases = ['gym', 'resting', 'rotation', 'talk'] #cases = ['resting'] all_CC = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]} all_MAE = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]} CC_allcases = [] MAE_allcases = [] curr_dataCC = np.zeros(len(all_methods)) curr_dataMAE = np.zeros(len(all_methods)) for metric in metrics: for method in all_methods: #print(method) for curr_case in cases: curr_res = res[res['videoName'].str.split('/').str[6].str.split('_').str[1] == curr_case] raw_values = curr_res[curr_res['method'] == method][metric] values = [] for v in raw_values: if metric == 'CC': values.append(v[np.argmax(v)]) else: values.append(v[np.argmin(v)]) if metric == 'CC': all_CC[curr_case].append(np.array(values)) if metric == 'MAE': all_MAE[curr_case].append(np.array(values)) for curr_case in cases: all_vals_CC = all_CC[curr_case] all_vals_MAE = all_MAE[curr_case] for c in range(len(all_vals_CC)): #for each method if avg_type == 'median': curr_dataCC[c] = np.median(all_vals_CC[c]) curr_dataMAE[c] = np.median(all_vals_MAE[c]) else: curr_dataCC[c] = np.mean(all_vals_CC[c]) curr_dataMAE[c] = np.mean(all_vals_MAE[c]) data_CC.append(curr_dataCC.copy()) data_MAE.append(curr_dataMAE.copy()) data_CC = np.vstack(data_CC) data_MAE = np.vstack(data_MAE) n_datasets = data_CC.shape[0] alpha = '0.05' plt.figure() plt.subplot(1,2,1) plt.title('CC Multi Dataset') plt.boxplot(data_CC, showfliers=True) plt.xticks(np.arange(1,len(all_methods)+1), all_methods) plt.subplot(1,2,2) plt.title('MAE Multi Dataset') plt.boxplot(data_MAE, showfliers=True) plt.xticks(np.arange(1,len(all_methods)+1), all_methods) from nonparametric_tests import friedman_aligned_ranks_test as ft import Orange data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods) print('\nFriedman Test MAE:') #print(ss.friedmanchisquare(*data_MAE.T)) #print(' ') t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7]) avranksMAE = list(np.divide(ranks_mae, n_datasets)) print('statistic: ' + str(t)) print('pvalue: ' + str(p)) print(' ') pc = sp.posthoc_nemenyi_friedman(data_MAE_df) cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef'] heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]} plt.figure() sp.sign_plot(pc, **heatmap_args) plt.title('Nemenyi Test MAE') data_CC_df = pd.DataFrame(data_CC, columns=all_methods) print('\nFriedman Test CC:') #print(ss.friedmanchisquare(*data_CC.T)) #print(' ') t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7]) avranksCC = list(np.divide(ranks_cc, n_datasets)) print('statistic: ' + str(t)) print('pvalue: ' + str(p)) print(' ') pc = sp.posthoc_nemenyi_friedman(data_CC_df) cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef'] heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]} plt.figure() sp.sign_plot(pc, **heatmap_args) plt.title('Nemenyi Test CC') cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True) plt.title('CD Diagram MAE') cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5) plt.title('CD Diagram CC') print(data_MAE_df) print(' ') print(data_CC_df) plt.show()