#!/usr/bin/env python """ Eulerian Video Magnification (EVM) Demo """ import time import sys import cv2 import numpy as np import scipy import skimage def gaussian(image, numlevels): """Constructs gaussian pyramid Arguments: image : Input image (monochrome or color) numlevels : Number of levels to compute Return: List of progressively smaller (i.e. lower frequency) images """ pyramid = [ image ] for level in range(numlevels): image = cv2.pyrDown(image) pyramid.append(image) return pyramid def temporal_bandpass_filter(data, freq_min, freq_max, fps, axis=0): """Applies ideal band-pass filter to a given video Arguments: data : video to be filtered (as a 4-d numpy array (time, height, width, channels)) freq_min : lower cut-off frequency of band-pass filter freq_max : upper cut-off frequency of band-pass filter fps : Return: Temporally filtered video as 4-d array """ # perform FFT on each frame fft = scipy.fftpack.fft(data, axis=axis) # sampling frequencies, where the step d is 1/samplingRate frequencies = scipy.fftpack.fftfreq(data.shape[0], d=1.0 / fps) # find the indices of low cut-off frequency bound_low = (np.abs(frequencies - freq_min)).argmin() # find the indices of high cut-off frequency bound_high = (np.abs(frequencies - freq_max)).argmin() # band pass filtering fft[:bound_low] = 0 fft[-bound_low:] = 0 fft[bound_high:-bound_high] = 0 # perform inverse FFT return np.real(scipy.fftpack.ifft(fft, axis=0)) class EVM(): """Eulerian Video Magnification""" def __init__(self, frames, fps): """Constructor""" self.fps = fps self.frames = frames self.frameCount = len(frames) self.frameHeight = int(frames[0].shape[0]) self.frameWidth = int(frames[0].shape[1]) self.numChannels = 3 # allocate memory for input frames self.in_frames = frames self.out_frames = frames def process(self, numlevels=4, alpha=50., chromAttenuation=1., lowcut=0.5, highcut=1.5): """Process video Arguments: numlevels : Number of pyramid levels to compute """ # compute pyramid on first frame pyramid = gaussian(self.in_frames[0], numlevels) height, width, _ = pyramid[-1].shape # allocate memory for downsampled frames self.ds_frames = np.ndarray(shape=(self.frameCount, \ height, \ width, \ self.numChannels), \ dtype=np.float32) self.ds_frames[0] = pyramid[-1] for frameNumber in range(1, self.frameCount): # spatial decomposition (specify laplacian or gaussian) pyramid = gaussian(self.in_frames[frameNumber], numlevels) # store downsampled frame into memory self.ds_frames[frameNumber] = pyramid[-1] #print ('filtering...') output = temporal_bandpass_filter(self.ds_frames, lowcut, highcut, self.fps) #print ('amplifying...') output[:,:,:,0] *= alpha output[:,:,:,1] *= (alpha * chromAttenuation) output[:,:,:,2] *= (alpha * chromAttenuation) for i in range(self.frameCount): orig = self.in_frames[i] filt = output[i].astype(np.float32) # enlarge to match size of original frame (keep as 32-bit float) filt = cv2.resize(filt, (self.frameWidth, self.frameHeight), interpolation=cv2.INTER_CUBIC) filt = filt + orig filt = skimage.color.yiq2rgb(filt) #filt[filt > 1] = 1 #filt[filt < 0] = 0 self.out_frames[i] = filt return self.out_frames def main(frames, fps, alpha, numlevels): evm = EVM(frames, fps) filt = evm.process(alpha=alpha, numlevels=numlevels) return filt