import argparse import numpy as np import cv2 import scipy.signal as signal import scipy.fftpack as fftpack def build_gaussian_pyramid(src, levels=3): """ Function: build_gaussian_pyramid -------------------------------- Builds a gaussian pyramid Args: ----- src: the input image levels: the number levels in the gaussian pyramid Returns: -------- A gaussian pyramid """ s = src.copy() pyramid = [s] print(s.shape) for i in range(levels): s = cv2.pyrDown(s) pyramid.append(s) print(s.shape) return pyramid def gaussian_video(video, levels=3): """ Function: gaussian_video ------------------------ generates a gaussian pyramid for each frame in a video Args: ----- video: the input video array levels: the number of levels in the gaussian pyramid Returns: -------- the gaussian video """ n = video.shape[0] for i in range(0, n): pyr = build_gaussian_pyramid(video[i], levels=levels) gaussian_frame=pyr[-1] if i==0: vid_data = np.zeros((n, *gaussian_frame.shape)) vid_data[i] = gaussian_frame return vid_data def temporal_ideal_filter(arr, low, high, fps, axis=0): """ Function: temporal_ideal_filter ------------------------------- Applies a temporal ideal filter to a numpy array Args: ----- arr: a numpy array with shape (N, H, W, C) N: number of frames H: height W: width C: channels low: the low frequency bound high: the high frequency bound fps: the video frame rate axis: the axis of video, should always be 0 Returns: -------- the array with the filter applied """ fft = fftpack.fft(arr, axis=axis) frequencies = fftpack.fftfreq(arr.shape[0], d=1.0 / fps) bound_low = (np.abs(frequencies - low)).argmin() bound_high = (np.abs(frequencies - high)).argmin() fft[:bound_low] = 0 fft[bound_high:-bound_high] = 0 fft[-bound_low:] = 0 iff=fftpack.ifft(fft, axis=axis) return np.abs(iff) def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): """ Function: butter_bandpass_filter -------------------------------- applies a buttersworth bandpass filter Args: ----- data: the input data lowcut: the low cut value highcut: the high cut value fs: the frame rate in frames per second order: the order for butter Returns: -------- the result of the buttersworth bandpass filter """ omega = 0.5 * fs low = lowcut / omega high = highcut / omega b, a = signal.butter(order, [low, high], btype='band') y = signal.lfilter(b, a, data, axis=0) return y def reconstruct_video_g(amp_video, original_video, levels=3): """ Function: reconstruct_video_g ----------------------------- reconstructs a video from a gaussian pyramid and the original Args: ----- amp_video: the amplified gaussian video original_video: the original video levels: the levels in the gaussian video Returns: -------- the reconstructed video """ print(original_video.shape) final_video = np.zeros(original_video.shape) for i in range(0, amp_video.shape[0]): img = amp_video[i] print(img.shape) for x in range(levels): img = cv2.pyrUp(img) print(img.shape) img = img + original_video[i] final_video[i] = img return final_video