import numpy as np from scipy.signal import find_peaks, stft, lfilter, butter, welch from plotly.subplots import make_subplots from plotly.colors import n_colors import plotly.graph_objects as go from biosppy.signals import ecg class ECGsignal: """ Manage (multi-channel, row-wise) BVP signals """ verb = False # verbose (True) nFFT = 4*4096 # freq. resolution for STFTs step = 1 # step in seconds minHz = .75 # 39 BPM - min freq. maxHz = 4. # 240 BPM - max freq. def __init__(self, data, fs, startTime=0): #self.data = data if len(data.shape) == 1: self.data = data.reshape(1,-1) # 2D array raw-wise self.fs = fs # sample rate self.startTime = startTime def getBPM(self, winsize=5): """ Compute the ECG signal by biosppy library """ # TODO: to handle all channels data = self.data[0,:] out = ecg.ecg(signal=data, sampling_rate=self.fs, show=False) self.times = out['heart_rate_ts'] self.bpm = out['heart_rate'] self.peaksIdX = out['rpeaks'] return self.bpm, self.times def autocorr(self): from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # TODO: to handle all channels x = self.data[0,:] plot_acf(x) plt.show() plot_pacf(x) plt.show() def plot(self): """ Plot the the ECG signals (one channels) """ # TODO: to handle all channels data = self.data[0,:] N = len(data) times = np.linspace(self.startTime, N/self.fs, num=N, endpoint=False) # -- plot the channel fig = make_subplots(rows=1, cols=1) fig.add_trace(go.Scatter(x=times, y=data, name='ECG'), row=1, col=1) fig.add_trace(go.Scatter(x=self.peaksIdX/self.fs, y=data[self.peaksIdX], mode='markers', name='peaks'), row=1, col=1) fig.update_layout(height=600, width=800) fig.show()