import numpy as np from scipy.signal import find_peaks, stft, lfilter, butter, welch from plotly.subplots import make_subplots from plotly.colors import n_colors import plotly.graph_objects as go from scipy.interpolate import interp1d class BVPsignal: """ Manage (multi-channel, row-wise) BVP signals """ nFFT = 2048 # freq. resolution for STFTs step = 1 # step in seconds def __init__(self, data, fs, startTime=0, minHz=0.75, maxHz=4., verb=False): if len(data.shape) == 1: self.data = data.reshape(1,-1) # 2D array raw-wise else: self.data = data self.numChls = self.data.shape[0] # num channels self.fs = fs # sample rate self.startTime = startTime self.verb = verb self.minHz = minHz self.maxHz = maxHz def getChunk(startTime, winsize=None, numSample=None): assert startTime >= self.startTime, "Start time error!" N = self.data.shape[1] fs = self.fs Nstart = int(fs*startTime) # -- winsize > 0 if winsize: stopTime = startTime + winsize Nstop = np.min([int(fs*stopTime),N]) # -- numSample > 0 if numSample: Nstop = np.min([numSample,N]) return self.data[0,Nstart:Nstop] def hps(self, spect, d=3): if spect.ndim == 2: n_win = spect.shape[1] new_spect = np.zeros_like(spect) for w in range(n_win): curr_w = spect[:,w] w_down_z = np.zeros_like(curr_w) w_down = curr_w[::d] w_down_z[0:len(w_down)] = w_down w_hps = np.multiply(curr_w, w_down_z) new_spect[:, w] = w_hps return new_spect elif spect.ndim == 1: s_down_z = np.zeros_like(spect) s_down = spect[::d] s_down_z[0:len(s_down)] = s_down w_hps = np.multiply(spect, s_down_z) return w_hps else: raise ValueError("Wrong Dimensionality of the Spectrogram for the HPS") def spectrogram(self, winsize=5, use_hps=False): """ Compute the BVP signal spectrogram restricted to the band 42-240 BPM by using winsize (in sec) samples. """ # -- spect. Z is 3-dim: Z[#chnls, #freqs, #times] F, T, Z = stft(self.data, self.fs, nperseg=self.fs*winsize, noverlap=self.fs*(winsize-self.step), boundary='even', nfft=self.nFFT) Z = np.squeeze(Z, axis=0) # -- freq subband (0.75 Hz - 4.0 Hz) minHz = 0.75 maxHz = 4.0 band = np.argwhere((F > minHz) & (F < maxHz)).flatten() self.spect = np.abs(Z[band,:]) # spectrum magnitude self.freqs = 60*F[band] # spectrum freq in bpm self.times = T # spectrum times if use_hps: spect_hps = self.hps(self.spect) # -- BPM estimate by spectrum self.bpm = self.freqs[np.argmax(spect_hps,axis=0)] else: # -- BPM estimate by spectrum self.bpm = self.freqs[np.argmax(self.spect,axis=0)] def getBPM(self, winsize=5): self.spectrogram(winsize, use_hps=False) return self.bpm, self.times def PSD2BPM(self, chooseBest=True, use_hps=False): """ Compute power spectral density using Welch’s method and estimate BPMs from video frames """ # -- interpolation for less than 256 samples c,n = self.data.shape if n < 256: seglength = n overlap = int(0.8*n) # fixed overlapping else: seglength = 256 overlap = 200 # -- periodogram by Welch F, P = welch(self.data, nperseg=seglength, noverlap=overlap, window='hamming',fs=self.fs, nfft=self.nFFT) # -- freq subband (0.75 Hz - 4.0 Hz) band = np.argwhere((F > self.minHz) & (F < self.maxHz)).flatten() self.Pfreqs = 60*F[band] self.Power = P[:,band] # -- if c = 3 choose that with the best SNR if chooseBest: winner = 0 lobes = self.PDSrippleAnalysis(ch=0) SNR = lobes[-1]/lobes[-2] if c == 3: lobes = self.PDSrippleAnalysis(ch=1) SNR1 = lobes[-1]/lobes[-2] if SNR1 > SNR: SNR = SNR1 winner = 1 lobes = self.PDSrippleAnalysis(ch=2) SNR1 = lobes[-1]/lobes[-2] if SNR1 > SNR: SNR = SNR1 winner = 2 self.Power = self.Power[winner].reshape(1,-1) # TODO: eliminare? if use_hps: p = self.Power[0] phps = self.hps(p) '''import matplotlib.pyplot as plt plt.plot(p) plt.figure() plt.plot(phps) plt.show()''' Pmax = np.argmax(phps) # power max self.bpm = np.array([self.Pfreqs[Pmax]]) # freq max else: # -- BPM estimate by PSD Pmax = np.argmax(self.Power, axis=1) # power max self.bpm = self.Pfreqs[Pmax] # freq max if '3' in str(self.verb): lobes = self.PDSrippleAnalysis() self.displayPSD(lobe1=lobes[-1], lobe2=lobes[-2]) def autocorr(self): from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # TODO: to handle all channels x = self.data[0,:] plot_acf(x) plt.show() plot_pacf(x) plt.show() def displaySpectrum(self, display=False, dims=3): """Show the spectrogram of the BVP signal""" # -- check if bpm exists try: bpm = self.bpm except AttributeError: self.spectrogram() bpm = self.bpm t = self.times f = self.freqs S = self.spect fig = go.Figure() fig.add_trace(go.Heatmap(z=S, x=t, y=f, colorscale="viridis")) fig.add_trace(go.Scatter(x=t, y=bpm, name='Frequency Domain', line=dict(color='red', width=2))) fig.update_layout(autosize=False, height=420, showlegend=True, title='Spectrogram of the BVP signal', xaxis_title='Time (sec)', yaxis_title='BPM (60*Hz)', legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=12, color="black"), bgcolor="LightSteelBlue", bordercolor="Black", borderwidth=2) ) fig.show() def findPeaks(self, distance=None, height=None): # -- take the first channel x = self.data[0].flatten() if distance is None: distance = self.fs/2 if height is None: height = np.mean(x) # -- find peaks with the specified params self.peaks, _ = find_peaks(x, distance=distance, height=height) self.peaksTimes = self.peaks/self.fs self.bpmPEAKS = 60.0/np.diff(self.peaksTimes) def plotBPMPeaks(self, height=None, width=None): """ Plot the the BVP signal and peak marks """ # -- find peaks try: peaks = self.peaks except AttributeError: self.findPeaks() peaks = self.peaks #-- signals y = self.data[0] n = y.shape[0] startTime = self.startTime stopTime = startTime+n/self.fs x = np.linspace(startTime, stopTime, num=n, endpoint=False) fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y, name="BVP")) fig.add_trace(go.Scatter(x=x[peaks], y=y[peaks], mode='markers', name="Peaks")) if not height: height=400 if not width: width=800 fig.update_layout(height=height, width=width, title="BVP signal + peaks", font=dict( family="Courier New, monospace", size=14, color="#7f7f7f")) fig.show() def plot(self, title="BVP signal", height=400, width=800): """ Plot the the BVP signal (multiple channels) """ #-- signals y = self.data c,n = y.shape startTime = self.startTime stopTime = startTime+n/self.fs x = np.linspace(startTime, stopTime, num=n, endpoint=False) fig = go.Figure() for i in range(c): name = "BVP " + str(i) fig.add_trace(go.Scatter(x=x, y=y[i], name=name)) fig.update_layout(height=height, width=width, title=title, font=dict( family="Courier New, monospace", size=14, color="#7f7f7f")) fig.show() def displayPSD(self, ch=0, lobe1=None, lobe2=None, GT=None): """Show the periodogram(s) of the BVP signal for channel ch""" f = self.Pfreqs P = self.Power[ch] fig = go.Figure() fig.add_trace(go.Scatter(x=f, y=P, name='PSD')) fig.update_layout(autosize=False, width=500, height=400) if lobe1 is not None and lobe2 is not None: L1 = lobe1 L2 = lobe2 # Add horiz. lobe peack lines fig.add_shape(type="line",x0=f[0], y0=L1, x1=f[-1], y1=L1, line=dict(color="LightSeaGreen", width=2, dash="dashdot")) fig.add_shape(type="line",x0=f[0], y0=L2, x1=f[-1], y1=L2, line=dict(color="SeaGreen", width=2, dash="dashdot")) tit = 'SNR = ' + str(np.round(L1/L2,2)) fig.update_layout(title=tit) if GT is not None: # Add vertical GT line fig.add_shape(type="line",x0=GT, y0=0, x1=GT, y1=np.max(P), line=dict(color="DarkGray", width=2, dash="dash")) fig.show() def PDSrippleAnalysis(self, ch=0): # -- ripple analysis P = self.Power[ch].flatten() dP = np.gradient(P) n = len(dP) I = []; i = 0 while i < n: m = 0 # -- positive gradient while (i < n) and (dP[i] > 0): m = max([m,P[i]]) i += 1 I.append(m) # -- skip negative gradient while (i < n) and (dP[i] < 0) : i += 1 lobes = np.sort(I) if len(lobes) < 2: lobes = np.array([lobes,0]) return lobes