import numpy as np from scipy import signal import sys import cv2 from pyVHR.utils.HDI import hdi, hdi2 class SkinDetect(): def __init__(self, strength=0.2): self.description = 'Skin Detection Module' self.strength = strength self.stats_computed = False def compute_stats(self, face): assert (self.strength > 0 and self.strength < 1), "'strength' parameter must have values in [0,1]" faceColor = cv2.cvtColor(face, cv2.COLOR_RGB2HSV) h = faceColor[:,:,0].reshape(-1,1) s = faceColor[:,:,1].reshape(-1,1) v = faceColor[:,:,2].reshape(-1,1) alpha = self.strength #the highest, the stronger the masking hpd_h, x_h, y_h, modes_h = hdi2(np.squeeze(h), alpha=alpha) min_s, max_s = hdi(np.squeeze(s), alpha=alpha) min_v, max_v = hdi(np.squeeze(v), alpha=alpha) if len(hpd_h) > 1: self.multiple_modes = True if len(hpd_h) > 2: print('WARNING!! Found more than 2 HDIs in Hue Channel empirical Distribution... Considering only 2') from scipy.spatial.distance import pdist, squareform m = np.array(modes_h).reshape(-1,1) d = squareform(pdist(m)) maxij = np.where(d==d.max())[0] i = maxij[0] j = maxij[1] else: i = 0 j = 1 min_h1 = hpd_h[i][0] max_h1 = hpd_h[i][1] min_h2 = hpd_h[j][0] max_h2 = hpd_h[j][1] self.lower1 = np.array([min_h1, min_s, min_v], dtype = "uint8") self.upper1 = np.array([max_h1, max_s, max_v], dtype = "uint8") self.lower2 = np.array([min_h2, min_s, min_v], dtype = "uint8") self.upper2 = np.array([max_h2, max_s, max_v], dtype = "uint8") elif len(hpd_h) == 1: self.multiple_modes = False min_h = hpd_h[0][0] max_h = hpd_h[0][1] self.lower = np.array([min_h, min_s, min_v], dtype = "uint8") self.upper = np.array([max_h, max_s, max_v], dtype = "uint8") self.stats_computed = True def get_skin(self, face, filt_kern_size=7, verbose=False, plot=False): if not self.stats_computed: raise ValueError("ERROR! You must compute stats at least one time") faceColor = cv2.cvtColor(face, cv2.COLOR_RGB2HSV) if self.multiple_modes: if verbose: print('\nLower1: ' + str(self.lower1)) print('Upper1: ' + str(self.upper1)) print('\nLower2: ' + str(self.lower2)) print('Upper2: ' + str(self.upper2) + '\n') skinMask1 = cv2.inRange(faceColor, self.lower1, self.upper1) skinMask2 = cv2.inRange(faceColor, self.lower2, self.upper2) skinMask = np.logical_or(skinMask1, skinMask2).astype(np.uint8)*255 else: if verbose: print('\nLower: ' + str(lower)) print('Upper: ' + str(upper) + '\n') skinMask = cv2.inRange(faceColor, self.lower, self.upper) if filt_kern_size > 0: skinMask = signal.medfilt2d(skinMask, kernel_size=filt_kern_size) skinFace = cv2.bitwise_and(face, face, mask=skinMask) if plot: h = faceColor[:,:,0].reshape(-1,1) s = faceColor[:,:,1].reshape(-1,1) v = faceColor[:,:,2].reshape(-1,1) import matplotlib.pyplot as plt plt.figure() plt.subplot(2,2,1) plt.hist(h, 20) plt.title('Hue') plt.subplot(2,2,2) plt.hist(s, 20) plt.title('Saturation') plt.subplot(2,2,3) plt.hist(v, 20) plt.title('Value') plt.subplot(2,2,4) plt.imshow(skinFace) plt.title('Masked Face') plt.show() return skinFace