import numpy as np import cv2 class FaceAligner: def __init__(self, desiredLeftEye=(0.35, 0.35), desiredFaceWidth=256, desiredFaceHeight=None): # store the facial landmark predictor, desired output left # eye position, and desired output face width + height self.desiredLeftEye = desiredLeftEye self.desiredFaceWidth = desiredFaceWidth self.desiredFaceHeight = desiredFaceHeight # if the desired face height is None, set it to be the # desired face width (normal behavior) if self.desiredFaceHeight is None: self.desiredFaceHeight = self.desiredFaceWidth def align(self, image, r_eye, l_eye): leftEyeCenter = np.array(l_eye) rightEyeCenter = np.array(r_eye) # compute the angle between the eye centroids dY = rightEyeCenter[1] - leftEyeCenter[1] dX = rightEyeCenter[0] - leftEyeCenter[0] angle = np.degrees(np.arctan2(dY, dX))# - 180 # compute the desired right eye x-coordinate based on the # desired x-coordinate of the left eye desiredRightEyeX = 1.0 - self.desiredLeftEye[0] # determine the scale of the new resulting image by taking # the ratio of the distance between eyes in the *current* # image to the ratio of distance between eyes in the # *desired* image dist = np.sqrt((dX ** 2) + (dY ** 2)) desiredDist = (desiredRightEyeX - self.desiredLeftEye[0]) desiredDist *= self.desiredFaceWidth scale = desiredDist / dist # compute center (x, y)-coordinates (i.e., the median point) # between the two eyes in the input image eyesCenter = ((leftEyeCenter[0] + rightEyeCenter[0]) // 2,(leftEyeCenter[1] + rightEyeCenter[1]) // 2) # grab the rotation matrix for rotating and scaling the face M = cv2.getRotationMatrix2D(eyesCenter, angle, scale) # update the translation component of the matrix tX = self.desiredFaceWidth * 0.5 tY = self.desiredFaceHeight * self.desiredLeftEye[1] M[0, 2] += (tX - eyesCenter[0]) M[1, 2] += (tY - eyesCenter[1]) # apply the affine transformation (w, h) = (self.desiredFaceWidth, self.desiredFaceHeight) output = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC) # return the aligned face return output