import os from pathlib import Path import datasets _CITATION = """ @misc{imagenette, author = "Jeremy Howard", title = "imagenette", url = "https://github.com/fastai/imagenette/" } """ _DESCRIPTION = """\ Imagenette is a subset of 10 easily classified classes from the Imagenet dataset. It was originally prepared by Jeremy Howard of FastAI. The objective behind putting together a small version of the Imagenet dataset was mainly because running new ideas/algorithms/experiments on the whole Imagenet take a lot of time. This version of the dataset allows researchers/practitioners to quickly try out ideas and share with others. The dataset comes in three variants: * Full size * 320 px * 160 px Note: The v2 config correspond to the new 70/30 train/valid split (released in Dec 6 2019). """ _LABELS_FNAME = "image_classification/imagenette_labels.txt" _URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/" LABELS = [ "n01440764", "n02102040", "n02979186", "n03000684", "n03028079", "n03394916", "n03417042", "n03425413", "n03445777", "n03888257" ] class ImagenetteConfig(datasets.BuilderConfig): """BuilderConfig for Imagenette.""" def __init__(self, size, base, **kwargs): super(ImagenetteConfig, self).__init__( # `320px-v2`,... name=size + ("-v2" if base == "imagenette2" else ""), description="{} variant.".format(size), **kwargs) # e.g. `imagenette2-320.tgz` self.dirname = base + { "full-size": "", "320px": "-320", "160px": "-160", }[size] def _make_builder_configs(): configs = [] for base in ["imagenette2", "imagenette"]: for size in ["full-size", "320px", "160px"]: configs.append(ImagenetteConfig(base=base, size=size)) return configs class Imagenette(datasets.GeneratorBasedBuilder): """A smaller subset of 10 easily classified classes from Imagenet.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = _make_builder_configs() def _info(self): return datasets.DatasetInfo( # builder=self, description=_DESCRIPTION, features=datasets.Features({ "image_file_path": datasets.Value("string"), "labels": datasets.ClassLabel(names=LABELS) }), supervised_keys=("image_file_path", "labels"), homepage="https://github.com/fastai/imagenette", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" print(self.__dict__.keys()) print(self.config) dirname = self.config.dirname url = _URL_PREFIX + "{}.tgz".format(dirname) path = dl_manager.download_and_extract(url) train_path = os.path.join(path, dirname, "train") val_path = os.path.join(path, dirname, "val") assert os.path.exists(train_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "datapath": train_path, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "datapath": val_path, }, ), ] def _generate_examples(self, datapath): """Yields examples.""" for path in Path(datapath).glob("**/*.JPEG"): record = { "image_file_path": str(path), "labels": path.parent.name } yield path.name, record