"""New York Times Ingredient Phrase Tagger Dataset""" import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{nytimesTaggedIngredients, author = {Erica Greene and Adam Mckaig}, title = {{O}ur {T}agged {I}ngredients {D}ata is {N}ow on {G}it{H}ub --- archive.nytimes.com}, howpublished = {\\url{https://archive.nytimes.com/open.blogs.nytimes.com/2016/04/27/structured-ingredients-data-tagging/}}, year = {}, note = {[Accessed 03-10-2023]}, } """ _DESCRIPTION = """\ New York Times Ingredient Phrase Tagger Dataset We use a conditional random field model (CRF) to extract tags from labelled training data, which was tagged by human news assistants. e wrote about our approach on the [New York Times Open blog](http://open.blogs.nytimes.com/2015/04/09/extracting-structured-data-from-recipes-using-conditional-random-fields/). This repo contains scripts to extract the Quantity, Unit, Name, and Comments from unstructured ingredient phrases. We use it on Cooking to format incoming recipes. Given the following input: ``` 1 pound carrots, young ones if possible Kosher salt, to taste 2 tablespoons sherry vinegar 2 tablespoons honey 2 tablespoons extra-virgin olive oil 1 medium-size shallot, peeled and finely diced 1/2 teaspoon fresh thyme leaves, finely chopped Black pepper, to taste ``` """ _URL = "https://github.com/nytimes/ingredient-phrase-tagger" _URLS = { "train": "https://huggingface.co/datasets/napsternxg/nyt_ingredients/resolve/main/nyt-ingredients.crf.jsonl" } import json class NYTIngredientsConfig(datasets.BuilderConfig): """The NYT Ingredients Dataset.""" def __init__(self, **kwargs): """BuilderConfig for NYT Ingredients. Args: **kwargs: keyword arguments forwarded to super. """ super(NYTIngredientsConfig, self).__init__(**kwargs) class NYTIngredients(datasets.GeneratorBasedBuilder): """The NYT Ingredients Dataset.""" BUILDER_CONFIGS = [ NYTIngredientsConfig( name="nyt_ingredients", version=datasets.Version("1.0.0"), description="The NYT Ingredients Dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "input": datasets.Value("string"), "display_input": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "index": datasets.Sequence(datasets.Value("string")), "lengthGroup": datasets.Sequence(datasets.Value("string")), "isCapitalized": datasets.Sequence(datasets.Value("string")), "insideParenthesis": datasets.Sequence(datasets.Value("string")), "label": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-COMMENT", "I-COMMENT", "B-NAME", "I-NAME", "B-RANGE_END", "I-RANGE_END", "B-QTY", "I-QTY", "B-UNIT", "I-UNIT", ] ) ), } ), supervised_keys=None, homepage="https://github.com/nytimes/ingredient-phrase-tagger", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{data_dir}/nyt-ingredients.crf.jsonl"}, ), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as fp: for i, line in enumerate(fp): yield i, json.loads(line)