def offload_weight(weight, weight_name, offload_folder, index=None): dtype = None # Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16. if str(weight.dtype) == "torch.bfloat16": # Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s. weight = weight.view(torch.int16) dtype = "bfloat16" array = weight.cpu().numpy() tensor_file = os.path.join(offload_folder, f"{weight_name}.dat") if index is not None: if dtype is None: dtype = str(array.dtype) index[weight_name] = {"dtype": dtype, "shape": list(array.shape)} if array.ndim == 0: array = array[None] file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape) file_array[:] = array[:] file_array.flush() return index def load_offloaded_weight(weight_file, weight_info): shape = tuple(weight_info["shape"]) if shape == (): # NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor shape = (1,) dtype = weight_info["dtype"] if dtype == "bfloat16": # NumPy does not support bfloat16 so this was saved as a int16 dtype = "int16" weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r") if len(weight_info["shape"]) == 0: weight = weight[0] weight = torch.tensor(weight) if weight_info["dtype"] == "bfloat16": weight = weight.view(torch.bfloat16) return weight def save_offload_index(index, offload_folder): if index is None or len(index) == 0: # Nothing to save return offload_index_file = os.path.join(offload_folder, "index.json") if os.path.isfile(offload_index_file): with open(offload_index_file, "r", encoding="utf-8") as f: current_index = json.load(f) else: current_index = {} current_index.update(index) with open(offload_index_file, "w", encoding="utf-8") as f: json.dump(current_index, f, indent=2) def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: Dict[str, torch.Tensor]): """ Offload a state dict in a given folder. Args: save_dir (`str` or `os.PathLike`): The directory in which to offload the state dict. state_dict (`Dict[str, torch.Tensor]`): The dictionary of tensors to offload. """ os.makedirs(save_dir, exist_ok=True) index = {} for name, parameter in state_dict.items(): index = offload_weight(parameter, name, save_dir, index=index) # Update index save_offload_index(index, save_dir) class PrefixedDataset(Mapping): """ Will access keys in a given dataset by adding a prefix. Args: dataset (`Mapping`): Any map with string keys. prefix (`str`): A prefix to add when trying to access any element in the underlying dataset. """ def __init__(self, dataset: Mapping, prefix: str): self.dataset = dataset self.prefix = prefix def __getitem__(self, key): return self.dataset[f"{self.prefix}{key}"] def __iter__(self): return iter([key for key in self.dataset if key.startswith(self.prefix)]) def __len__(self): return len(self.dataset) class OffloadedWeightsLoader(Mapping): """ A collection that loads weights stored in a given state dict or memory-mapped on disk. Args: state_dict (`Dict[str, torch.Tensor]`, *optional*): A dictionary parameter name to tensor. save_folder (`str` or `os.PathLike`, *optional*): The directory in which the weights are stored (by `offload_state_dict` for instance). index (`Dict`, *optional*): A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default to the index saved in `save_folder`. """ def __init__( self, state_dict: Dict[str, torch.Tensor] = None, save_folder: Optional[Union[str, os.PathLike]] = None, index: Mapping = None, device=None, ): if state_dict is None and save_folder is None and index is None: raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.") self.state_dict = {} if state_dict is None else state_dict self.save_folder = save_folder if index is None and save_folder is not None: with open(os.path.join(save_folder, "index.json")) as f: index = json.load(f) self.index = {} if index is None else index self.all_keys = list(self.state_dict.keys()) self.all_keys.extend([key for key in self.index if key not in self.all_keys]) self.device = device def __getitem__(self, key: str): # State dict gets priority if key in self.state_dict: return self.state_dict[key] weight_info = self.index[key] if weight_info.get("safetensors_file") is not None: device = "cpu" if self.device is None else self.device tensor = None try: with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f: tensor = f.get_tensor(weight_info.get("weight_name", key)) except TypeError: # if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f: tensor = f.get_tensor(weight_info.get("weight_name", key)) if "dtype" in weight_info: tensor = tensor.to(getattr(torch, weight_info["dtype"])) if tensor.device != torch.device(device): tensor = tensor.to(device) return tensor weight_file = os.path.join(self.save_folder, f"{key}.dat") return load_offloaded_weight(weight_file, weight_info) def __iter__(self): return iter(self.all_keys) def __len__(self): return len(self.all_keys) def extract_submodules_state_dict(state_dict: Dict[str, torch.Tensor], submodule_names: List[str]): """ Extract the sub state-dict corresponding to a list of given submodules. Args: state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from. submodule_names (`List[str]`): The list of submodule names we want to extract. """ result = {} for module_name in submodule_names: # We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the # submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance) result.update( { key: param for key, param in state_dict.items() if key == module_name or key.startswith(module_name + ".") } ) return result