class HfDeepSpeedConfig: """ This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage. A `weakref` of this object is stored in the module's globals to be able to access the config from areas where things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore it's important that this object remains alive while the program is still running. [`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic the DeepSpeed configuration is not modified in any way. Args: config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict. """ def __init__(self, config_file_or_dict): if isinstance(config_file_or_dict, dict): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden config = deepcopy(config_file_or_dict) elif os.path.exists(config_file_or_dict): with io.open(config_file_or_dict, "r", encoding="utf-8") as f: config = json.load(f) else: try: config_decoded = base64.urlsafe_b64decode(config_file_or_dict).decode("utf-8") config = json.loads(config_decoded) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) self.config = config self.set_stage_and_offload() def set_stage_and_offload(self): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. self._stage = self.get_value("zero_optimization.stage", -1) # offload self._offload = False if self.is_zero2() or self.is_zero3(): offload_devices_valid = set(["cpu", "nvme"]) offload_devices = set( [ self.get_value("zero_optimization.offload_optimizer.device"), self.get_value("zero_optimization.offload_param.device"), ] ) if len(offload_devices & offload_devices_valid) > 0: self._offload = True def find_config_node(self, ds_key_long): config = self.config # find the config node of interest if it exists nodes = ds_key_long.split(".") ds_key = nodes.pop() for node in nodes: config = config.get(node) if config is None: return None, ds_key return config, ds_key def get_value(self, ds_key_long, default=None): """ Returns the set value or `default` if no value is set """ config, ds_key = self.find_config_node(ds_key_long) if config is None: return default return config.get(ds_key, default) def del_config_sub_tree(self, ds_key_long, must_exist=False): """ Deletes a sub-section of the config file if it's found. Unless `must_exist` is `True` the section doesn't have to exist. """ config = self.config # find the config node of interest if it exists nodes = ds_key_long.split(".") for node in nodes: parent_config = config config = config.get(node) if config is None: if must_exist: raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}") else: return # if found remove it if parent_config is not None: parent_config.pop(node) def is_true(self, ds_key_long): """ Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very specific question of whether the value is set to `True` (and it's not set to `False`` or isn't set). """ value = self.get_value(ds_key_long) return False if value is None else bool(value) def is_false(self, ds_key_long): """ Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very specific question of whether the value is set to `False` (and it's not set to `True`` or isn't set). """ value = self.get_value(ds_key_long) return False if value is None else not bool(value) def is_zero2(self): return self._stage == 2 def is_zero3(self): return self._stage == 3 def is_offload(self): return self._offload class DeepSpeedEngineWrapper: """ Internal wrapper for deepspeed.runtime.engine.DeepSpeedEngine. This is used to follow conventional training loop. Args: engine (deepspeed.runtime.engine.DeepSpeedEngine): deepspeed engine to wrap """ def __init__(self, engine): self.engine = engine def backward(self, loss, **kwargs): # runs backpropagation and handles mixed precision self.engine.backward(loss, **kwargs) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class DeepSpeedOptimizerWrapper(AcceleratedOptimizer): """ Internal wrapper around a deepspeed optimizer. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. """ def __init__(self, optimizer): super().__init__(optimizer, device_placement=False, scaler=None) self.__has_overflow__ = hasattr(self.optimizer, "overflow") def zero_grad(self, set_to_none=None): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def step(self): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def step_was_skipped(self): """Whether or not the optimizer step was done, or skipped because of gradient overflow.""" if self.__has_overflow__: return self.optimizer.overflow return False class DeepSpeedSchedulerWrapper(AcceleratedScheduler): """ Internal wrapper around a deepspeed scheduler. Args: scheduler (`torch.optim.lr_scheduler.LambdaLR`): The scheduler to wrap. optimizers (one or a list of `torch.optim.Optimizer`): """ def __init__(self, scheduler, optimizers): super().__init__(scheduler, optimizers) def step(self): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class DummyOptim: """ Dummy optimizer presents model parameters or param groups, this is primarily used to follow conventional training loop when optimizer config is specified in the deepspeed config file. Args: lr (float): Learning rate. params (iterable): iterable of parameters to optimize or dicts defining parameter groups weight_decay (float): Weight decay. **kwargs: Other arguments. """ def __init__(self, params, lr=0.001, weight_decay=0, **kwargs): self.params = params self.lr = lr self.weight_decay = weight_decay self.kwargs = kwargs class DummyScheduler: """ Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training loop when scheduler config is specified in the deepspeed config file. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. total_num_steps (int, *optional*): Total number of steps. warmup_num_steps (int, *optional*): Number of steps for warmup. lr_scheduler_callable (callable, *optional*): A callable function that creates an LR Scheduler. It accepts only one argument `optimizer`. **kwargs: Other arguments. """ def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, lr_scheduler_callable=None, **kwargs): self.optimizer = optimizer self.total_num_steps = total_num_steps self.warmup_num_steps = warmup_num_steps self.lr_scheduler_callable = lr_scheduler_callable self.kwargs = kwargs