logger = get_logger(__name__) class Accelerator: """ Creates an instance of an accelerator for distributed training (on multi-GPU, TPU) or mixed precision training. Args: device_placement (`bool`, *optional*, defaults to `True`): Whether or not the accelerator should put objects on device (tensors yielded by the dataloader, model, etc...). split_batches (`bool`, *optional*, defaults to `False`): Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set in your script multiplied by the number of processes. mixed_precision (`str`, *optional*): Whether or not to use mixed precision training. Choose from 'no','fp16','bf16 or 'fp8'. Will default to the value in the environment variable `ACCELERATE_MIXED_PRECISION`, which will use the default value in the accelerate config of the current system or the flag passed with the `accelerate.launch` command. 'fp8' requires the installation of transformers-engine. gradient_accumulation_steps (`int`, *optional*, default to 1): The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`. If not passed, will default to the value in the environment variable `ACCELERATE_GRADIENT_ACCUMULATION_STEPS`. Can also be configured through a `GradientAccumulationPlugin`. cpu (`bool`, *optional*): Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only. deepspeed_plugin (`DeepSpeedPlugin`, *optional*): Tweak your DeepSpeed related args using this argument. This argument is optional and can be configured directly using *accelerate config* fsdp_plugin (`FullyShardedDataParallelPlugin`, *optional*): Tweak your FSDP related args using this argument. This argument is optional and can be configured directly using *accelerate config* megatron_lm_plugin (`MegatronLMPlugin`, *optional*): Tweak your MegatronLM related args using this argument. This argument is optional and can be configured directly using *accelerate config* rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration in your prepared dataloaders. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. Will default to `["torch"]` for PyTorch versions <=1.5.1 and `["generator"]` for PyTorch versions >= 1.6. log_with (list of `str`, [`~utils.LoggerType`] or [`~tracking.GeneralTracker`], *optional*): A list of loggers to be setup for experiment tracking. Should be one or several of: - `"all"` - `"tensorboard"` - `"wandb"` - `"comet_ml"` If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`. project_config (`ProjectConfiguration`, *optional*): A configuration for how saving the state can be handled. project_dir (`str`, `os.PathLike`, *optional*): A path to a directory for storing data such as logs of locally-compatible loggers and potentially saved checkpoints. dispatch_batches (`bool`, *optional*): If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose underlying dataset is an `IterableDataset`, `False` otherwise. even_batches (`bool`, *optional*, defaults to `True`): If set to `True`, in cases where the total batch size across all processes does not exactly divide the dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among all workers. step_scheduler_with_optimizer (`bool`, *optional`, defaults to `True`): Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only done under certain circumstances (at the end of each epoch, for instance). kwargs_handlers (`list[KwargHandler]`, *optional*) A list of `KwargHandler` to customize how the objects related to distributed training or mixed precision are created. See [kwargs](kwargs) for more information. dynamo_backend (`str` or `DynamoBackend`, *optional*, defaults to `"no"`): Set to one of the possible dynamo backends to optimize your training with torch dynamo. gradient_accumulation_plugin (`GradientAccumulationPlugin`, *optional*): A configuration for how gradient accumulation should be handled, if more tweaking than just the `gradient_accumulation_steps` is needed. **Available attributes:** - **device** (`torch.device`) -- The device to use. - **distributed_type** ([`~utils.DistributedType`]) -- The distributed training configuration. - **local_process_index** (`int`) -- The process index on the current machine. - **mixed_precision** (`str`) -- The configured mixed precision mode. - **num_processes** (`int`) -- The total number of processes used for training. - **optimizer_step_was_skipped** (`bool`) -- Whether or not the optimizer update was skipped (because of gradient overflow in mixed precision), in which case the learning rate should not be changed. - **process_index** (`int`) -- The overall index of the current process among all processes. - **state** ([`~state.AcceleratorState`]) -- The distributed setup state. - **sync_gradients** (`bool`) -- Whether the gradients are currently being synced across all processes. - **use_distributed** (`bool`) -- Whether the current configuration is for distributed training. """ def __init__( self, device_placement: bool = True, split_batches: bool = False, mixed_precision: PrecisionType | str | None = None, gradient_accumulation_steps: int = 1, cpu: bool = False, deepspeed_plugin: DeepSpeedPlugin | None = None, fsdp_plugin: FullyShardedDataParallelPlugin | None = None, megatron_lm_plugin: MegatronLMPlugin | None = None, rng_types: list[str | RNGType] | None = None, log_with: str | LoggerType | GeneralTracker | list[str | LoggerType | GeneralTracker] | None = None, project_dir: str | os.PathLike | None = None, project_config: ProjectConfiguration | None = None, gradient_accumulation_plugin: GradientAccumulationPlugin | None = None, dispatch_batches: bool | None = None, even_batches: bool = True, step_scheduler_with_optimizer: bool = True, kwargs_handlers: list[KwargsHandler] | None = None, dynamo_backend: DynamoBackend | str | None = None, ): self.trackers = [] if project_config is not None: self.project_configuration = project_config else: self.project_configuration = ProjectConfiguration(project_dir=project_dir) if project_dir is not None and self.project_dir is None: self.project_configuration.set_directories(project_dir) if mixed_precision is not None: mixed_precision = str(mixed_precision) if mixed_precision not in PrecisionType: raise ValueError( f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}" ) dynamo_plugin = TorchDynamoPlugin() if dynamo_backend is None else TorchDynamoPlugin(backend=dynamo_backend) if deepspeed_plugin is None: # init from env variables deepspeed_plugin = ( DeepSpeedPlugin() if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" else None ) else: assert isinstance( deepspeed_plugin, DeepSpeedPlugin ), "`deepspeed_plugin` must be an `accelerate.utils.DeepSpeedPlugin` object." os.environ["ACCELERATE_USE_DEEPSPEED"] = "true" # use DeepSpeed if plugin is provided if deepspeed_plugin: if not is_deepspeed_available(): raise ImportError("DeepSpeed is not installed => run `pip install deepspeed` or build it from source.") if compare_versions("deepspeed", "<", "0.9.3"): raise ImportError("DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.") mixed_precision = ( os.environ.get("ACCELERATE_MIXED_PRECISION", "no") if mixed_precision is None else mixed_precision ) deepspeed_plugin.set_mixed_precision(mixed_precision) deepspeed_plugin.set_deepspeed_weakref() if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" or isinstance( fsdp_plugin, FullyShardedDataParallelPlugin ): if is_torch_version("<", FSDP_PYTORCH_VERSION): raise ValueError(f"FSDP requires PyTorch >= {FSDP_PYTORCH_VERSION}") if fsdp_plugin is None: # init from env variables fsdp_plugin = ( FullyShardedDataParallelPlugin() if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" else None ) else: if not isinstance(fsdp_plugin, FullyShardedDataParallelPlugin): raise TypeError("`fsdp_plugin` must be a FullyShardedDataParallelPlugin object.") os.environ["ACCELERATE_USE_FSDP"] = "true" # use FSDP if plugin is provided if megatron_lm_plugin is None: # init from env variables megatron_lm_plugin = ( MegatronLMPlugin() if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" else None ) else: if not isinstance(megatron_lm_plugin, MegatronLMPlugin): raise TypeError("`megatron_lm_plugin` must be a MegatronLMPlugin object.") os.environ["ACCELERATE_USE_MEGATRON_LM"] = "true" # use MegatronLM if plugin is provided if megatron_lm_plugin: if not is_megatron_lm_available(): raise ImportError("Megatron is not installed. please build it from source.") # Kwargs handlers self.ddp_handler = None self.scaler_handler = None self.init_handler = None self.fp8_recipe_handler = None self.autocast_handler = None if kwargs_handlers is not None: for handler in kwargs_handlers: assert isinstance( handler, KwargsHandler ), f"Unsupported kwargs handler passed: {handler}, must be one that inherits `accelerate.utils.KwargsHandler`." if isinstance(handler, DistributedDataParallelKwargs): if self.ddp_handler is not None: raise ValueError("You can only pass one `DistributedDataParallelKwargs` in `kwargs_handler`.") else: self.ddp_handler = handler elif isinstance(handler, GradScalerKwargs): if self.scaler_handler is not None: raise ValueError("You can only pass one `GradScalerKwargs` in `kwargs_handler`.") else: self.scaler_handler = handler elif isinstance(handler, InitProcessGroupKwargs): if self.init_handler is not None: raise ValueError("You can only pass one `InitProcessGroupKwargs` in `kwargs_handler`.") else: self.init_handler = handler elif isinstance(handler, FP8RecipeKwargs): if self.fp8_recipe_handler is not None: raise ValueError("You can only pass one `FP8RecipeKwargs` in `kwargs_handler`.") else: self.fp8_recipe_handler = handler elif isinstance(handler, AutocastKwargs): if self.autocast_handler is not None: raise ValueError("You can only pass one `AutocastKwargs` in `kwargs_handler`.") else: self.autocast_handler = handler if self.fp8_recipe_handler is None and mixed_precision == "fp8": self.fp8_recipe_handler = FP8RecipeKwargs() kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {} self.state = AcceleratorState( mixed_precision=mixed_precision, cpu=cpu, dynamo_plugin=dynamo_plugin, deepspeed_plugin=deepspeed_plugin, fsdp_plugin=fsdp_plugin, megatron_lm_plugin=megatron_lm_plugin, _from_accelerator=True, **kwargs, ) trackers = filter_trackers(log_with, self.logging_dir) if len(trackers) < 1 and log_with is not None: warnings.warn(f"`log_with={log_with}` was passed but no supported trackers are currently installed.") self.log_with = trackers if ( (mixed_precision != "bf16") and getattr(self.state, "downcast_bfloat", False) and (self.state.distributedType != DistributedType.TPU) ): raise ValueError("Can only use `downcast_bf16` when using `mixed_precision='bf16'` and on a TPU") if gradient_accumulation_plugin is not None: if gradient_accumulation_steps != 1: raise ValueError( "You can only pass one of `gradient_accumulation_steps` and `gradient_accumulation_plugin`. Please only pass in the created `GradientAccumulationPlugin` object." ) else: gradient_accumulation_steps = int( parse_choice_from_env("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", gradient_accumulation_steps) ) gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=gradient_accumulation_steps) self.gradient_state = GradientState( gradient_accumulation_plugin=gradient_accumulation_plugin, ) if self.state.distributed_type == DistributedType.TPU: if self.gradient_state.num_steps != 1: raise ValueError( "Gradient accumulation is not supported on TPU. Please set `gradient_accumulation_steps` to 1 and don't pass in a `GradientAccumulationPlugin` object." ) self.device_placement = device_placement self.split_batches = split_batches self.dispatch_batches = dispatch_batches self.even_batches = even_batches self.step_scheduler_with_optimizer = step_scheduler_with_optimizer # Mixed precision attributes self.scaler = None self.native_amp = False err = "{mode} mixed precision requires {requirement}" if ( self.state.mixed_precision == "fp16" and self.device.type != "cpu" and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM) ): self.native_amp = True if self.device.type not in ("xpu", "cuda", "mps", "npu"): raise ValueError(err.format(mode="fp16", requirement="a GPU")) kwargs = self.scaler_handler.to_kwargs() if self.scaler_handler is not None else {} if self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler self.scaler = ShardedGradScaler(**kwargs) elif is_npu_available(): self.scaler = torch.npu.amp.GradScaler(**kwargs) else: self.scaler = torch.cuda.amp.GradScaler(**kwargs) elif self.state.mixed_precision == "bf16" and self.distributed_type not in ( DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM, ): if self.device.type in ["cpu", "xpu"]: self.native_amp = True else: self.native_amp = is_bf16_available(True) if mixed_precision == "bf16" and not self.native_amp and not is_tpu_available(): raise ValueError(err.format(mode="bf16", requirement="PyTorch >= 1.10 and a supported device.")) # Start of internal step tracking self.step = 0 # Internal references to the training objects self._optimizers = [] self._models = [] self._schedulers = [] self._dataloaders = [] self._custom_objects = [] # Hooks self._load_model_state_pre_hook = OrderedDict() self._save_model_state_pre_hook = OrderedDict() # RNG Types self.rng_types = rng_types if self.rng_types is None: self.rng_types = ["generator"] # Set a flag tensor for early stopping and other breakpoints self.flag_tensor = None check_os_kernel() @property def use_distributed(self): """ Whether the Accelerator is configured for distributed training """ return self.state.use_distributed @property def distributed_type(self): return self.state.distributed_type @property def num_processes(self): return self.state.num_processes @property def process_index(self): return self.state.process_index @property def local_process_index(self): return self.state.local_process_index @property def device(self): return self.state.device @property def project_dir(self): return self.project_configuration.project_dir @property def logging_dir(self): return self.project_configuration.logging_dir @property def save_iteration(self): return self.project_configuration.iteration @property def is_main_process(self): """True for one process only.""" return self.state.is_main_process @property def is_local_main_process(self): """True for one process per server.""" return self.state.is_local_main_process @property def use_fp16(self): warnings.warn( "The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use " "`Accelerator.mixed_precision == 'fp16'` instead.", FutureWarning, ) return self.mixed_precision != "no" @property def is_last_process(self): return self.process_index == self.num_processes - 1 @property def mixed_precision(self): return self.state.mixed_precision @contextmanager def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False): """ Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing distributed inference, such as with different prompts. Note that when using a `dict`, all keys need to have the same number of elements. Args: inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`): The input to split between processes. apply_padding (`bool`, `optional`, defaults to `False`): Whether to apply padding by repeating the last element of the input so that all processes have the same number of elements. Useful when trying to perform actions such as `Accelerator.gather()` on the outputs or passing in less inputs than there are processes. If so, just remember to drop the padded elements afterwards. Example: ```python # Assume there are two processes from accelerate import Accelerator accelerator = Accelerator() with accelerator.split_between_processes(["A", "B", "C"]) as inputs: print(inputs) # Process 0 ["A", "B"] # Process 1 ["C"] with accelerator.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs: print(inputs) # Process 0 ["A", "B"] # Process 1 ["C", "C"] ``` """ with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs: yield inputs def on_main_process(self, function: Callable[..., Any] = None): """ A decorator that will run the decorated function on the main process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> @accelerator.on_main_process ... def print_something(): ... print("This will be printed by process 0 only.") >>> print_something() "This will be printed by process 0 only" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_main_process(function)(*args, **kwargs) return _inner def on_local_main_process(self, function: Callable[..., Any] = None): """ A decorator that will run the decorated function on the local main process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python # Assume we have 2 servers with 4 processes each. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_local_main_process def print_something(): print("This will be printed by process 0 only on each server.") print_something() # On server 1: "This will be printed by process 0 only" # On server 2: "This will be printed by process 0 only" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_local_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_local_main_process(function)(*args, **kwargs) return _inner def on_last_process(self, function: Callable[..., Any]): """ A decorator that will run the decorated function on the last process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python # Assume we have 4 processes. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_last_process def print_something(): print(f"Printed on process {accelerator.process_index}") print_something() "Printed on process 3" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_last_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_last_process(function)(*args, **kwargs) return _inner def on_process(self, function: Callable[..., Any] = None, process_index: int = None): """ A decorator that will run the decorated function on a given process index only. Can also be called using the `PartialState` class. Args: function (`Callable`, `optional`): The function to decorate. process_index (`int`, `optional`): The index of the process on which to run the function. Example: ```python # Assume we have 4 processes. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_process(process_index=2) def print_something(): print(f"Printed on process {accelerator.process_index}") print_something() "Printed on process 2" ``` """ # Initial construction of the decorator. if (self is not None) and (process_index is not None) and (function is None): return partial(self.on_process, process_index=process_index) # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_process(function, process_index)(*args, **kwargs) return _inner def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None): """ A decorator that will run the decorated function on a given local process index only. Can also be called using the `PartialState` class. Args: function (`Callable`, *optional*): The function to decorate. local_process_index (`int`, *optional*): The index of the local process on which to run the function. Example: ```python # Assume we have 2 servers with 4 processes each. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_local_process(local_process_index=2) def print_something(): print(f"Printed on process {accelerator.local_process_index}") print_something() # On server 1: "Printed on process 2" # On server 2: "Printed on process 2" ``` """ # Initial construction of the decorator. if (self is not None) and (local_process_index is not None) and (function is None): return partial(self.on_local_process, local_process_index=local_process_index) # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_local_process(function, local_process_index)(*args, **kwargs) return _inner @contextmanager def main_process_first(self): """ Lets the main process go first inside a with block. The other processes will enter the with block after the main process exits. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> with accelerator.main_process_first(): ... # This will be printed first by process 0 then in a seemingly ... # random order by the other processes. ... print(f"This will be printed by process {accelerator.process_index}") ``` """ with self.state.main_process_first(): yield @contextmanager def local_main_process_first(self): """ Lets the local main process go inside a with block. The other processes will enter the with block after the main process exits. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> with accelerator.local_main_process_first(): ... # This will be printed first by local process 0 then in a seemingly ... # random order by the other processes. ... print(f"This will be printed by process {accelerator.local_process_index}") ``` """ with self.state.local_main_process_first(): yield @contextmanager def no_sync(self, model): """ A context manager to disable gradient synchronizations across DDP processes by calling `torch.nn.parallel.DistributedDataParallel.no_sync`. If `model` is not in DDP, this context manager does nothing Args: model (`torch.nn.Module`): PyTorch Module that was prepared with `Accelerator.prepare` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer) >>> input_a = next(iter(dataloader)) >>> input_b = next(iter(dataloader)) >>> with accelerator.no_sync(): ... outputs = model(input_a) ... loss = loss_func(outputs) ... accelerator.backward(loss) ... # No synchronization across processes, only accumulate gradients >>> outputs = model(input_b) >>> accelerator.backward(loss) >>> # Synchronization across all processes >>> optimizer.step() >>> optimizer.zero_grad() ``` """ context = contextlib.nullcontext if self.use_distributed: context = getattr(model, "no_sync", context) with context(): yield @staticmethod @contextmanager def trigger_sync_in_backward(model): """Trigger the sync of the gradients in the next backward pass of the model after multiple forward passes under `Accelerator.no_sync` (only applicable in multi-GPU scenarios). If the script is not launched in distributed mode, this context manager does nothing. Args: model (`torch.nn.Module`): The model for which to trigger the gradient synchronization. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer) >>> with accelerator.no_sync(): ... loss_a = loss_func(model(input_a)) # first forward pass ... loss_b = loss_func(model(input_b)) # second forward pass >>> accelerator.backward(loss_a) # No synchronization across processes, only accumulate gradients >>> with accelerator.trigger_sync_in_backward(model): ... accelerator.backward(loss_b) # Synchronization across all processes >>> optimizer.step() >>> optimizer.zero_grad() ``` """ if not isinstance(model, torch.nn.parallel.DistributedDataParallel): yield return old_require_backward_grad_sync = model.require_backward_grad_sync old_require_forward_param_sync = model.require_forward_param_sync # EXPERIMENTAL: This will force grad sync during `backward()`, but it is unknown if it breaks other DDP features. # https://github.com/pytorch/pytorch/blob/e1502c0cdbfd17548c612f25d5a65b1e4b86224d/torch/nn/parallel/distributed.py#L1453-L1466 model.require_backward_grad_sync = True model.require_forward_param_sync = True # https://github.com/pytorch/pytorch/blob/e1502c0cdbfd17548c612f25d5a65b1e4b86224d/torch/csrc/distributed/c10d/reducer.cpp#L1371-L1402 model.reducer.prepare_for_backward([]) try: yield finally: model.require_backward_grad_sync = old_require_backward_grad_sync model.require_forward_param_sync = old_require_forward_param_sync def _do_sync(self): "Sets the right `sync_gradients` context and either resets or increases `self.step`" if self.gradient_state.sync_with_dataloader and self.gradient_state.end_of_dataloader: self.step = 0 self.gradient_state._set_sync_gradients(True) else: self.step += 1 self.gradient_state._set_sync_gradients((self.step % self.gradient_state.num_steps) == 0) @property def sync_gradients(self): return self.gradient_state.sync_gradients @sync_gradients.setter def sync_gradients(self, sync_gradients): self.gradient_state.sync_gradients = sync_gradients @property def gradient_accumulation_steps(self): return self.gradient_state.num_steps @gradient_accumulation_steps.setter def gradient_accumulation_steps(self, gradient_accumulation_steps): self.gradient_state.plugin_kwargs.update({"num_steps": gradient_accumulation_steps}) @contextmanager def accumulate(self, *models): """ A context manager that will lightly wrap around and perform gradient accumulation automatically Args: *models (list of `torch.nn.Module`): PyTorch Modules that were prepared with `Accelerator.prepare`. Models passed to `accumulate()` will skip gradient syncing during backward pass in distributed training Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=1) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, output in dataloader: ... with accelerator.accumulate(model): ... outputs = model(input) ... loss = loss_func(outputs) ... loss.backward() ... optimizer.step() ... scheduler.step() ... optimizer.zero_grad() ``` """ self._do_sync() with contextlib.ExitStack() as cm_stack: for m in models: cm_stack.enter_context(contextlib.nullcontext() if self.sync_gradients else self.no_sync(m)) yield @contextmanager def join_uneven_inputs(self, joinables, even_batches=None): """ A context manager that facilitates distributed training or evaluation on uneven inputs, which acts as a wrapper around `torch.distributed.algorithms.join`. This is useful when the total batch size does not evenly divide the length of the dataset. Args: joinables (`list[torch.distributed.algorithms.Joinable]`): A list of models or optimizers that subclass `torch.distributed.algorithms.Joinable`. Most commonly, a PyTorch Module that was prepared with `Accelerator.prepare` for DistributedDataParallel training. even_batches (`bool`, *optional*) If set, this will override the value of `even_batches` set in the `Accelerator`. If it is not provided, the default `Accelerator` value wil be used. `join_uneven_inputs` is only supported for Distributed Data Parallel training on multiple GPUs. For any other configuration, this method will have no effect. Overidding `even_batches` will not affect iterable-style data loaders. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(even_batches=True) >>> ddp_model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) >>> with accelerator.join_uneven_inputs([ddp_model], even_batches=False): ... for input, output in dataloader: ... outputs = model(input) ... loss = loss_func(outputs) ... loss.backward() ... optimizer.step() ... optimizer.zero_grad() ``` """ if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU): dl_even_batches_values = [] if even_batches is not None: iterable_dl_seen = False # override value in batch sampler for map-style datasets for dl_idx, dl in enumerate(self._dataloaders): if isinstance(dl, DataLoaderDispatcher): iterable_dl_seen = True continue dl_even_batches_values.append((dl_idx, dl.batch_sampler.even_batches)) dl.batch_sampler.even_batches = even_batches if iterable_dl_seen: warnings.warn( "Overridding even_batches is only supported for map-style datasets, yet some dataloaders given were iterable" ) else: even_batches = self.even_batches enable_join = False if even_batches else True try: with Join(joinables, enable=enable_join, throw_on_early_termination=False): yield finally: # reset any batch samplers that have been modified for dl_idx, even_batches_value in dl_even_batches_values: self._dataloaders[dl_idx].batch_sampler.even_batches = even_batches_value else: # Even when disabled, Join expects models to subclass Joinable, so skip entirely for single process runs if self.distributed_type != DistributedType.NO: warnings.warn( "Joining uneven inputs is only supported for multi-GPU training, as a result `join_uneven_inputs` will have no effect." ) with contextlib.nullcontext(joinables): yield def print(self, *args, **kwargs): """ Drop in replacement of `print()` to only print once per server. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> accelerator.print("Hello world!") ``` """ self.state.print(*args, **kwargs) def _prepare_one(self, obj, first_pass=False, device_placement=None): # First pass of preparation: DataLoader, model, optimizer if first_pass: if isinstance(obj, torch.utils.data.DataLoader): return self.prepare_data_loader(obj, device_placement=device_placement) elif isinstance(obj, torch.nn.Module): return self.prepare_model(obj, device_placement=device_placement) elif isinstance(obj, torch.optim.Optimizer): optimizer = self.prepare_optimizer(obj, device_placement=device_placement) return optimizer # Second pass of preparation: LR scheduler (which need the full list of optimizers) elif isinstance(obj, LRScheduler): scheduler = self.prepare_scheduler(obj) return scheduler # Return the unprocessed object if previous criteria was not met return obj def prepare(self, *args, device_placement=None): """ Prepare all objects passed in `args` for distributed training and mixed precision, then return them in the same order. Args: *args (list of objects): Any of the following type of objects: - `torch.utils.data.DataLoader`: PyTorch Dataloader - `torch.nn.Module`: PyTorch Module - `torch.optim.Optimizer`: PyTorch Optimizer - `torch.optim.lr_scheduler.LRScheduler`: PyTorch LR Scheduler device_placement (`list[bool]`, *optional*): Used to customize whether automatic device placement should be performed for each object passed. Needs to be a list of the same length as `args`. Not compatible with DeepSpeed or FSDP. You don't need to prepare a model if you only use it for inference without any kind of mixed precision Examples: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model, optimizer, data_loader and scheduler are defined >>> model, optimizer, data_loader, scheduler = accelerator.prepare(model, optimizer, data_loader, scheduler) ``` ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model, optimizer, data_loader and scheduler are defined >>> device_placement = [True, True, False, False] >>> # Will place the first to items passed in automatically to the right device but not the last two. >>> model, optimizer, data_loader, scheduler = accelerator.prepare( ... model, optimizer, data_loader, scheduler, device_placement=device_placement ... ) ``` """ if device_placement is None: device_placement = [None for _ in args] elif self.distributed_type in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM): raise ValueError("You can't customize device placements with DeepSpeed or Megatron-LM.") elif len(device_placement) != len(args): raise ValueError( f"`device_placement` should be a list with {len(args)} elements (the number of objects passed)." ) for obj in args: # TODO: Look at enabling native TP training directly with a proper config if ( isinstance(obj, torch.nn.Module) and self.verify_device_map(obj) and self.distributed_type != DistributedType.NO and os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true" ): raise ValueError( "You can't train a model that has been loaded with `device_map='auto'` in any distributed mode." " Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`." ) if self.distributed_type == DistributedType.DEEPSPEED: model_count = 0 for obj in args: if isinstance(obj, torch.nn.Module): model_count += 1 if model_count > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed" ) # On TPUs, putting the model on the XLA device will create new parameters, so the corresponding optimizer will # have parameters disconnected from the model (so no training :-( ). # If the model and optimizer have parameters on different devices we raise an error. if self.distributed_type == DistributedType.TPU: model_device, optimizer_device = self._get_devices() if model_device is not None and optimizer_device is not None and model_device != optimizer_device: raise ValueError( "The model and the optimizer parameters are not on the same device, which probably means you " "created an optimizer around your model **before** putting on the device. Make sure the line " "model.to(device) is before the optimizer creation in your script or remove it entirely and use " "the flag default value for `device_placement` in your `Accelerator` to let it handle that " "part for you." ) # If we're dealing with device placement, this deals with that by... tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.TPU if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"): # 1. grabbing old model parameters old_named_params = self._get_named_parameters(*args) if self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]: if self.device.type == "cpu" and self.state.use_ipex: args = self._prepare_ipex(*args) elif self.device.type == "xpu" and is_xpu_available(): args = self._prepare_ipex(*args) if self.distributed_type == DistributedType.DEEPSPEED: result = self._prepare_deepspeed(*args) elif self.distributed_type == DistributedType.MEGATRON_LM: result = self._prepare_megatron_lm(*args) else: if self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "MSAMP": args = self._prepare_msamp(*args) # MS-AMP will handle the device placement device_placement = [False for _ in args] result = tuple( self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement) ) result = tuple(self._prepare_one(obj, device_placement=d) for obj, d in zip(result, device_placement)) if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"): # 2. grabbing new model parameters new_named_params = self._get_named_parameters(*result) # 3. building a map from the first to the second mapping = {p: new_named_params[n] for n, p in old_named_params.items()} # 4. using that map to update the parameters of the optimizer for obj in result: if isinstance(obj, torch.optim.Optimizer): obj._switch_parameters(mapping) for item in result: if any( item in container for container in (self._dataloaders, self._models, self._optimizers, self._schedulers) ): setattr(item, "_is_accelerate_prepared", True) return result if len(result) > 1 else result[0] def prepare_model(self, model: torch.nn.Module, device_placement: bool = None, evaluation_mode: bool = False): """ Prepares a PyTorch model for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: model (`torch.nn.Module`): A PyTorch model to prepare. You don't need to prepare a model if it is used only for inference without any kind of mixed precision device_placement (`bool`, *optional*): Whether or not to place the model on the proper device. Will default to `self.device_placement`. evaluation_mode (`bool`, *optional*, defaults to `False`): Whether or not to set the model for evaluation only, by just applying mixed precision and `torch.compile` (if configured in the `Accelerator` object). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model is defined >>> model = accelerator.prepare_model(model) ``` """ if device_placement is None: device_placement = self.device_placement and self.distributed_type != DistributedType.FSDP self._models.append(model) # TODO: Look at enabling native TP training directly with a proper config if ( self.verify_device_map(model) and self.distributed_type != DistributedType.NO and os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true" ): raise ValueError( "You can't train a model that has been loaded with `device_map='auto'` in any distributed mode." " Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`." ) if self.native_amp: model._original_forward = model.forward model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler) new_forward = autocast_context(model_forward_func) if hasattr(model.forward, "__func__"): model.forward = MethodType(new_forward, model) model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model) else: model.forward = convert_outputs_to_fp32(new_forward) elif self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE": if not has_transformer_engine_layers(model): with torch.no_grad(): convert_model(model) model._converted_to_transformer_engine = True model._original_forward = model.forward kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {} if "fp8_format" in kwargs: kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"]) fp8_recipe = te_recipe.DelayedScaling(**kwargs) model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward) if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr( model, "hf_device_map", False ): model_devices = set(model.hf_device_map.values()) if len(model_devices) > 1 and self.distributed_type != DistributedType.NO: raise ValueError( "You can't train a model that has been loaded in 8-bit precision on multiple devices in any distributed mode." " In order to use 8-bit models that have been loaded across multiple GPUs the solution is to use Naive Pipeline Parallelism." " Therefore you should not specify that you are under any distributed regime in your accelerate config." ) current_device = list(model_devices)[0] current_device_index = current_device.index if isinstance(current_device, torch.device) else current_device if torch.device(current_device_index) != self.device: # if on the first device (GPU 0) we don't care if (self.device.index is not None) or (current_device_index != 0): raise ValueError( "You can't train a model that has been loaded in 8-bit precision on a different device than the one " "you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device() or device_map={'':torch.xpu.current_device()}" ) if "cpu" in model_devices or "disk" in model_devices: raise ValueError( "You can't train a model that has been loaded in 8-bit precision with CPU or disk offload." ) elif device_placement and not self.verify_device_map(model): model = model.to(self.device) if not evaluation_mode: if self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, ): if any(p.requires_grad for p in model.parameters()): kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {} # TODO: Look at enabling native TP training directly with a proper config if os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true": device_ids, output_device = [self.local_process_index], self.local_process_index else: device_ids, output_device = None, None model = torch.nn.parallel.DistributedDataParallel( model, device_ids=device_ids, output_device=output_device, **kwargs ) elif self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP # Check if the model is already a FSDP model due to `Manual Wrapping` and if so, # don't wrap it again # In case the model is already compiled using PyTorch 2.0 and the wrapped model in it # is a FSDP model, don't wrap it again is_type_fsdp = isinstance(model, FSDP) or ( is_compiled_module(model) and isinstance(model._orig_mod, FSDP) ) if not is_type_fsdp: self.state.fsdp_plugin.set_auto_wrap_policy(model) fsdp_plugin = self.state.fsdp_plugin kwargs = { "sharding_strategy": fsdp_plugin.sharding_strategy, "cpu_offload": fsdp_plugin.cpu_offload, "auto_wrap_policy": fsdp_plugin.auto_wrap_policy, "mixed_precision": fsdp_plugin.mixed_precision_policy, "sync_module_states": fsdp_plugin.sync_module_states, "backward_prefetch": fsdp_plugin.backward_prefetch, "forward_prefetch": fsdp_plugin.forward_prefetch, "use_orig_params": fsdp_plugin.use_orig_params, "param_init_fn": fsdp_plugin.param_init_fn, "ignored_modules": fsdp_plugin.ignored_modules, "limit_all_gathers": fsdp_plugin.limit_all_gathers, "device_id": self.device, } model = FSDP(model, **kwargs) if fsdp_plugin.activation_checkpointing: from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=functools.partial( checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ), auto_wrap_policy=fsdp_plugin.auto_wrap_policy, ) # if the previous and current models are same, delete the previous one if len(self._models) > 1 and (self._models[-2] is self._models[-1]): del self._models[-2] self._models[-1] = model elif self.distributed_type == DistributedType.MULTI_CPU: kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {} model = torch.nn.parallel.DistributedDataParallel(model, **kwargs) elif self.distributed_type == DistributedType.TPU and self.state.fork_launched: model = xmp.MpModelWrapper(model).to(self.device) # torch.compile should be called last and only if the model isn't already compiled. if self.state.dynamo_plugin.backend != DynamoBackend.NO and not is_compiled_module(model): if not is_torch_version(">=", "2.0"): raise ValueError("Using `torch.compile` requires PyTorch 2.0 or higher.") model = torch.compile(model, **self.state.dynamo_plugin.to_kwargs()) return model def _prepare_deepspeed(self, *args): import deepspeed deepspeed_plugin = self.state.deepspeed_plugin is_dataloader_present = any(isinstance(obj, torch.utils.data.DataLoader) for obj in args) result = [ self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj for obj in args ] if deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto": if is_dataloader_present: batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")] if any(bs is None for bs in batch_sizes): raise ValueError( "At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. " "Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." ) if self.split_batches: batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes] batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes) if len(batch_sizes) > 1: logger.info( "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here " f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})." ) else: raise ValueError( "When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders " "with `batch_size` attribute returning an integer value " "or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." ) else: batch_size_per_device = deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] # handle `gradient_accumulation_steps` when the value is `auto` deepspeed_plugin.fill_match( "gradient_accumulation_steps", must_match=False, gradient_accumulation_steps=self.gradient_accumulation_steps, ) config_kwargs = { "train_micro_batch_size_per_gpu": batch_size_per_device, "train_batch_size": batch_size_per_device * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * self.num_processes, "gradient_clipping": 1.0, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } model = None optimizer = None scheduler = None for obj in result: if isinstance(obj, torch.nn.Module): model = obj elif isinstance(obj, (torch.optim.Optimizer, DummyOptim)): optimizer = obj elif (isinstance(obj, (LRScheduler, DummyScheduler))) or ( type(obj).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES ): scheduler = obj if optimizer is not None: if "optimizer" in deepspeed_plugin.deepspeed_config and not isinstance(optimizer, (DummyOptim)): raise ValueError( "You cannot specify an optimizer in the config file and in the code at the same time. " "Please remove the optimizer from the config file or " "create `accelerate.utils.DummyOptim` in the code." ) elif "optimizer" not in deepspeed_plugin.deepspeed_config and isinstance(optimizer, (DummyOptim)): raise ValueError( "You cannot create a `DummyOptim` without specifying an optimizer in the config file." ) if isinstance(optimizer, (torch.optim.Optimizer)): deepspeed_plugin.deepspeed_config["zero_allow_untested_optimizer"] = True if scheduler is not None: if "scheduler" in deepspeed_plugin.deepspeed_config and not isinstance(scheduler, (DummyScheduler)): raise ValueError( "You cannot specify a scheduler in the config file and in the code at the same time. " "Please remove the scheduler from the config file or " "create `accelerate.utils.DummyScheduler` in the code." ) elif ( "scheduler" not in deepspeed_plugin.deepspeed_config and isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is None ): raise ValueError( "Either specify a scheduler in the config file or " "pass in the `lr_scheduler_callable` parameter when using `accelerate.utils.DummyScheduler`." ) if optimizer is not None and scheduler is not None: if isinstance(optimizer, (DummyOptim)) and not isinstance(scheduler, (DummyScheduler)): raise ValueError( "You can only specify `accelerate.utils.DummyScheduler` in the code when using " "`accelerate.utils.DummyOptim`." ) if model is not None: if hasattr(model, "config"): hidden_size = ( max(model.config.hidden_sizes) if getattr(model.config, "hidden_sizes", None) else getattr(model.config, "hidden_size", None) ) if hidden_size is not None: config_kwargs.update( { "zero_optimization.reduce_bucket_size": hidden_size * hidden_size, "zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, } ) if isinstance(optimizer, (DummyOptim)): config_kwargs.update( {"optimizer.params.lr": optimizer.lr, "optimizer.params.weight_decay": optimizer.weight_decay} ) if isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is None: max_lr = ( getattr(scheduler.optimizer, "lr", None) if getattr(scheduler.optimizer, "defaults", None) is None else scheduler.optimizer.defaults["lr"] ) config_kwargs.update( { "scheduler.params.warmup_min_lr": 0, "scheduler.params.warmup_max_lr": max_lr, "scheduler.params.warmup_num_steps": scheduler.warmup_num_steps, } ) if scheduler.total_num_steps is not None: config_kwargs["scheduler.params.total_num_steps"] = ( math.ceil(scheduler.total_num_steps / self.num_processes) if not self.split_batches else scheduler.total_num_steps ) deepspeed_plugin.deepspeed_config_process(must_match=False, **config_kwargs) self.deepspeed_config = deepspeed_plugin.deepspeed_config kwargs = dict(model=model, config_params=self.deepspeed_config) if optimizer is not None: if isinstance(optimizer, (DummyOptim)): kwargs["model_parameters"] = optimizer.params if isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is not None: kwargs["lr_scheduler"] = scheduler.lr_scheduler_callable else: if self.deepspeed_config["zero_optimization"].get("offload_optimizer", {}).get( "device", "none" ) != "none" and self.deepspeed_config.get("zero_force_ds_cpu_optimizer", True): from deepspeed.ops.adam import DeepSpeedCPUAdam defaults = {k: v for k, v in optimizer.defaults.items() if k in ["lr", "weight_decay"]} optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults) kwargs["optimizer"] = optimizer if scheduler is not None: if ( isinstance(scheduler, LRScheduler) or type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES ): kwargs["lr_scheduler"] = scheduler engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs) if optimizer is not None: optimizer = DeepSpeedOptimizerWrapper(optimizer) if scheduler is not None: if lr_scheduler is None: scheduler = AcceleratedScheduler( scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches, ) else: scheduler = DeepSpeedSchedulerWrapper(lr_scheduler, optimizer) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = engine elif isinstance(result[i], (torch.optim.Optimizer, DummyOptim)): result[i] = optimizer elif (isinstance(result[i], (LRScheduler, DummyScheduler))) or ( type(result[i]).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES ): result[i] = scheduler # pointing for deepspeed_engine_wrapped.backward() self.deepspeed_engine_wrapped = DeepSpeedEngineWrapper(engine) self._models.append(engine) if optimizer is not None: self._optimizers.append(optimizer) if scheduler is not None: self._schedulers.append(scheduler) if len(self._models) > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed" ) return tuple(result) def _prepare_megatron_lm(self, *args): megatron_lm_plugin = self.state.megatron_lm_plugin if not megatron_lm_plugin.megatron_dataset_flag: batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")] if len(batch_sizes) == 0: raise ValueError( "You must specify a training or evaluation dataloader in `accelerate.prepare()` when using Megatron-LM." ) micro_batch_size = min(batch_sizes) if megatron_lm_plugin.is_train_batch_min else max(batch_sizes) if len(batch_sizes) > 1: logger.info( "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here " f"{megatron_lm_plugin.is_train_batch_min} will decide the `train_batch_size` ({micro_batch_size})." ) else: for obj in args: if isinstance(obj, MegatronLMDummyDataLoader): micro_batch_size = obj.dataset_args["micro_batch_size"] break dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree) megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree) model = None optimizer = None scheduler = None is_dummy_scheduler = False batch_data = None for obj in args: if isinstance(obj, torch.utils.data.DataLoader) and batch_data is None: batch_data = next(iter(obj)) if isinstance(obj, torch.nn.Module): model = obj elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj elif isinstance(obj, (LRScheduler, MegatronLMDummyScheduler)): scheduler = obj if model is not None: megatron_lm_plugin.set_network_size_args(model, batch_data) if optimizer is not None: megatron_lm_plugin.set_optimizer_type(optimizer) if scheduler is not None: is_dummy_scheduler = isinstance(scheduler, MegatronLMDummyScheduler) if not is_dummy_scheduler: raise ValueError( "You can't use a custom scheduler with Megatron-LM. Please use the `accelerate.utils.MegatronLMDummyScheduler` instead." ) megatron_lm_plugin.set_scheduler_args(scheduler) # initialize megatron-lm megatron_lm_initialize(self, args_defaults=megatron_lm_plugin.megatron_lm_default_args) counter = 0 result = [] for obj in args: if isinstance(obj, torch.utils.data.DataLoader): result.append(megatron_lm_prepare_data_loader(self, obj)) counter += 1 elif isinstance(obj, MegatronLMDummyDataLoader): if counter == 0: obj.set_megatron_data_args() dataloaders = megatron_lm_prepare_data_loader(self, obj) result.append(dataloaders[counter]) counter += 1 else: result.append(obj) if model is not None: model = megatron_lm_prepare_model(self) if optimizer is not None: optimizer = megatron_lm_prepare_optimizer(self, model) if scheduler is not None: scheduler = megatron_lm_prepare_scheduler(self, optimizer, scheduler) if model is not None: model = MegatronEngine(self, model, optimizer, scheduler) if optimizer is not None: optimizer = MegatronLMOptimizerWrapper(optimizer) if scheduler is not None: scheduler = MegatronLMSchedulerWrapper(scheduler, optimizer) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], torch.optim.Optimizer): result[i] = optimizer elif isinstance(result[i], MegatronLMDummyScheduler): result[i] = scheduler if model is not None: self._models.append(model) if optimizer is not None: self._optimizers.append(optimizer) if scheduler is not None: self._schedulers.append(scheduler) if len(self._models) > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using Megatron-LM" ) return tuple(result) def _prepare_ipex(self, *args): if not is_ipex_available(): raise ImportError( "IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer" " to https://github.com/intel/intel-extension-for-pytorch." ) else: import intel_extension_for_pytorch as ipex model = None optimizer = None result = [obj for obj in args] for obj in result: if isinstance(obj, torch.nn.Module): model = obj elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj if optimizer is not None and model is not None: dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else torch.float32 if self.device.type == "xpu" and is_xpu_available(): model = model.to(self.device) model, optimizer = torch.xpu.optimize( model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1" ) else: model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1") for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], (torch.optim.Optimizer)): result[i] = optimizer return tuple(result) def _prepare_msamp(self, *args): if not is_msamp_available(): raise ImportError( "MS-AMP was not found on your system. Please ensure that MS-AMP is available " " or choose `'te'` as the backend for FP8 mixed precision training." ) else: import msamp model, optimizer = None, None num_models, num_optimizers = 0, 0 result = [obj for obj in args] for obj in result: if isinstance(obj, torch.nn.Module): model = obj num_models += 1 elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj num_optimizers += 1 if optimizer is None or model is None: raise ValueError( "You must pass a model and an optimizer together to `accelerate.prepare()` when using MS-AMP." ) elif num_models > 1 or num_optimizers > 1: raise ValueError( f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with MS-AMP." ) else: model, optimizer = msamp.initialize(model, optimizer, opt_level=self.fp8_recipe_handler.opt_level) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], (torch.optim.Optimizer)): result[i] = optimizer return tuple(result) def prepare_data_loader( self, data_loader: torch.utils.data.DataLoader, device_placement=None, slice_fn_for_dispatch=None ): """ Prepares a PyTorch DataLoader for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: data_loader (`torch.utils.data.DataLoader`): A vanilla PyTorch DataLoader to prepare device_placement (`bool`, *optional*): Whether or not to place the batches on the proper device in the prepared dataloader. Will default to `self.device_placement`. slice_fn_for_dispatch (`Callable`, *optional*`): If passed, this function will be used to slice tensors across `num_processes`. Will default to [`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be ignored otherwise. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> data_loader = torch.utils.data.DataLoader(...) >>> data_loader = accelerator.prepare_data_loader(data_loader, device_placement=True) ``` """ # Ensure we can't double wrap a DataLoader due to `find_batch_size` if getattr(data_loader, "_is_accelerate_prepared", False): if data_loader not in self._dataloaders: self._dataloaders.append(data_loader) return data_loader if device_placement is None: device_placement = self.device_placement if self.distributed_type != DistributedType.TPU else False prepared_data_loader = prepare_data_loader( data_loader, self.device, num_processes=self.num_processes, process_index=self.process_index, split_batches=self.split_batches, put_on_device=device_placement, rng_types=self.rng_types.copy(), dispatch_batches=self.dispatch_batches, even_batches=self.even_batches, slice_fn_for_dispatch=slice_fn_for_dispatch, ) self._dataloaders.append(prepared_data_loader) return prepared_data_loader def prepare_optimizer(self, optimizer: torch.optim.Optimizer, device_placement=None): """ Prepares a PyTorch Optimizer for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: optimizer (`torch.optim.Optimizer`): A vanilla PyTorch optimizer to prepare device_placement (`bool`, *optional*): Whether or not to place the optimizer on the proper device. Will default to `self.device_placement`. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> optimizer = torch.optim.Adam(...) >>> optimizer = accelerator.prepare_optimizer(optimizer, device_placement=True) ``` """ # Ensure we can't double wrap an optimizer due to `find_batch_size` if getattr(optimizer, "_is_accelerate_prepared", False): if optimizer not in self._optimizers: self._optimizers.append(optimizer) return optimizer if device_placement is None: device_placement = self.device_placement optimizer = AcceleratedOptimizer(optimizer, device_placement=device_placement, scaler=self.scaler) self._optimizers.append(optimizer) return optimizer def prepare_scheduler(self, scheduler: LRScheduler): """ Prepares a PyTorch Scheduler for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: scheduler (`torch.optim.lr_scheduler.LRScheduler`): A vanilla PyTorch scheduler to prepare Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> optimizer = torch.optim.Adam(...) >>> scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, ...) >>> scheduler = accelerator.prepare_scheduler(scheduler) ``` """ # Ensure we can't double wrap a scheduler due to `find_batch_size` if getattr(scheduler, "_is_accelerate_prepared", False): if scheduler not in self._schedulers: self._schedulers.append(scheduler) return scheduler # We try to find the optimizer associated with `scheduler`, the default is the full list. optimizer = self._optimizers for opt in self._optimizers: if getattr(scheduler, "optimizer", None) == opt.optimizer: optimizer = opt break scheduler = AcceleratedScheduler( scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches, ) self._schedulers.append(scheduler) return scheduler def backward(self, loss, **kwargs): """ Scales the gradients in accordance to the `GradientAccumulationPlugin` and calls the correct `backward()` based on the configuration. Should be used in lieu of `loss.backward()`. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> outputs = model(inputs) >>> loss = loss_fn(outputs, labels) >>> accelerator.backward(loss) ``` """ if self.distributed_type != DistributedType.DEEPSPEED: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.gradient_accumulation_steps if self.distributed_type == DistributedType.DEEPSPEED: self.deepspeed_engine_wrapped.backward(loss, **kwargs) elif self.distributed_type == DistributedType.MEGATRON_LM: return elif self.scaler is not None: self.scaler.scale(loss).backward(**kwargs) else: loss.backward(**kwargs) def set_trigger(self): """ Sets the internal trigger tensor to 1 on the current process. A latter check should follow using this which will check across all processes. Note: Does not require `wait_for_everyone()` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume later in the training script >>> # `should_do_breakpoint` is a custom function to monitor when to break, >>> # e.g. when the loss is NaN >>> if should_do_breakpoint(loss): ... accelerator.set_trigger() >>> # Assume later in the training script >>> if accelerator.check_breakpoint(): ... break ``` """ self.flag_tensor = torch.tensor(1, device=self.device) def check_trigger(self): """ Checks if the internal trigger tensor has been set to 1 in any of the processes. If so, will return `True` and reset the trigger tensor to 0. Note: Does not require `wait_for_everyone()` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume later in the training script >>> # `should_do_breakpoint` is a custom function to monitor when to break, >>> # e.g. when the loss is NaN >>> if should_do_breakpoint(loss): ... accelerator.set_trigger() >>> # Assume later in the training script >>> if accelerator.check_trigger(): ... break ``` """ # Now that we are outside `__init__`, we can initialize it if it is `None` on device if self.flag_tensor is None: self.flag_tensor = torch.tensor(0, device=self.device) flag_tensor = self.reduce(self.flag_tensor) if flag_tensor.item() >= 1: self.flag_tensor = torch.tensor(0, device=self.device) return True return False def unscale_gradients(self, optimizer=None): """ Unscale the gradients in mixed precision training with AMP. This is a noop in all other settings. Likely should be called through [`Accelerator.clip_grad_norm_`] or [`Accelerator.clip_grad_value_`] Args: optimizer (`torch.optim.Optimizer` or `list[torch.optim.Optimizer]`, *optional*): The optimizer(s) for which to unscale gradients. If not set, will unscale gradients on all optimizers that were passed to [`~Accelerator.prepare`]. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer = accelerator.prepare(model, optimizer) >>> outputs = model(inputs) >>> loss = loss_fn(outputs, labels) >>> accelerator.backward(loss) >>> accelerator.unscale_gradients(optimizer=optimizer) ``` """ if self.native_amp and self.mixed_precision == "fp16": if optimizer is None: # TODO: this unscales all optimizers where we should only unscale the one where parameters are. optimizer = self._optimizers elif not isinstance(optimizer, (tuple, list)): optimizer = [optimizer] for opt in optimizer: while isinstance(opt, AcceleratedOptimizer): opt = opt.optimizer # Reduce gradients first for XLA if self.distributed_type == DistributedType.TPU: gradients = xm._fetch_gradients(opt) self.reduce(gradients, scale=1.0 / self.num_processes) self.scaler.unscale_(opt) def clip_grad_norm_(self, parameters, max_norm, norm_type=2): """ Should be used in place of `torch.nn.utils.clip_grad_norm_`. Returns: `torch.Tensor`: Total norm of the parameter gradients (viewed as a single vector). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, target in dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... if accelerator.sync_gradients: ... accelerator.clip_grad_norm_(model.parameters(), max_grad_norm) ... optimizer.step() ``` """ if self.distributed_type == DistributedType.FSDP: self.unscale_gradients() parameters = [p for p in parameters] for model in self._models: if parameters == [p for p in model.parameters()]: return model.clip_grad_norm_(max_norm, norm_type) elif self.distributed_type == DistributedType.DEEPSPEED: # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed # We cannot return the gradient norm because DeepSpeed does it. return None self.unscale_gradients() return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type) def clip_grad_value_(self, parameters, clip_value): """ Should be used in place of `torch.nn.utils.clip_grad_value_`. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, target in dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... if accelerator.sync_gradients: ... accelerator.clip_grad_value_(model.parameters(), clip_value) ... optimizer.step() ``` """ if self.distributed_type in [DistributedType.DEEPSPEED, DistributedType.FSDP]: raise Exception("DeepSpeed and FSDP do not support `clip_grad_value_`. Use `clip_grad_norm_` instead.") self.unscale_gradients() torch.nn.utils.clip_grad_value_(parameters, clip_value) def gather(self, tensor): """ Gather the values in *tensor* across all processes and concatenate them on the first dimension. Useful to regroup the predictions from all processes when doing evaluation. Note: This gather happens in all processes. Args: tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`): The tensors to gather across all processes. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The gathered tensor(s). Note that the first dimension of the result is *num_processes* multiplied by the first dimension of the input tensors. Example: ```python >>> # Assuming four processes >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.tensor([accelerator.process_index]) >>> gathered_tensor = accelerator.gather(process_tensor) >>> gathered_tensor tensor([0, 1, 2, 3]) ``` """ return gather(tensor) def gather_for_metrics(self, input_data): """ Gathers `input_data` and potentially drops duplicates in the last batch if on a distributed system. Should be used for gathering the inputs and targets for metric calculation. Args: input (`torch.Tensor`, `object`, a nested tuple/list/dictionary of `torch.Tensor`, or a nested tuple/list/dictionary of `object`): The tensors or objects for calculating metrics across all processes Example: ```python >>> # Assuming two processes, with a batch size of 5 on a dataset with 9 samples >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader = torch.utils.data.DataLoader(range(9), batch_size=5) >>> dataloader = accelerator.prepare(dataloader) >>> batch = next(iter(dataloader)) >>> gathered_items = accelerator.gather_for_metrics(batch) >>> len(gathered_items) 9 ``` """ try: recursively_apply(lambda x: x, input_data, error_on_other_type=True) all_tensors = True except TypeError: all_tensors = False if not all_tensors: data = gather_object(input_data) else: data = self.gather(input_data) try: if self.gradient_state.end_of_dataloader: # at the end of a dataloader, `gather_for_metrics` regresses to # `gather` unless the dataset has a remainder so log. if self.gradient_state.remainder == -1: logger.info( "The used dataset had no length, returning gathered tensors. You should drop the remainder yourself." ) return data elif self.gradient_state.remainder > 0: # Last batch needs to be truncated on distributed systems as it contains additional samples def _adjust_samples(tensor): return tensor[: self.gradient_state.remainder] return recursively_apply(_adjust_samples, data) else: # remainder is 0 # no remainder even though at end of dataloader, so nothing to do. return data else: # Not at the end of the dataloader, no need to adjust the tensors return data except Exception: # Dataset had no length or raised an error return data def reduce(self, tensor, reduction="sum", scale=1.0): """ Reduce the values in *tensor* across all processes based on *reduction*. Note: All processes get the reduced value. Args: tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`): The tensors to reduce across all processes. reduction (`str`, *optional*, defaults to "sum"): A reduction type, can be one of 'sum', 'mean', or 'none'. If 'none', will not perform any operation. scale (`float`, *optional*, defaults to 1.0): A default scaling value to be applied after the reduce, only valied on XLA. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The reduced tensor(s). Example: ```python >>> # Assuming two processes >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.arange(accelerator.num_processes) + 1 + (2 * accelerator.process_index) >>> process_tensor = process_tensor.to(accelerator.device) >>> reduced_tensor = accelerator.reduce(process_tensor, reduction="sum") >>> reduced_tensor tensor([4, 6]) ``` """ return reduce(tensor, reduction, scale) def pad_across_processes(self, tensor, dim=0, pad_index=0, pad_first=False): """ Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they can safely be gathered. Args: tensor (nested list/tuple/dictionary of `torch.Tensor`): The data to gather. dim (`int`, *optional*, defaults to 0): The dimension on which to pad. pad_index (`int`, *optional*, defaults to 0): The value with which to pad. pad_first (`bool`, *optional*, defaults to `False`): Whether to pad at the beginning or the end. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The padded tensor(s). Example: ```python >>> # Assuming two processes, with the first processes having a tensor of size 1 and the second of size 2 >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.arange(accelerator.process_index + 1).to(accelerator.device) >>> padded_tensor = accelerator.pad_across_processes(process_tensor) >>> padded_tensor.shape torch.Size([2]) ``` """ return pad_across_processes(tensor, dim=dim, pad_index=pad_index, pad_first=pad_first) def unwrap_model(self, model, keep_fp32_wrapper: bool = True): """ Unwraps the `model` from the additional layer possible added by [`~Accelerator.prepare`]. Useful before saving the model. Args: model (`torch.nn.Module`): The model to unwrap. keep_fp32_wrapper (`bool`, *optional*, defaults to `True`): Whether to not remove the mixed precision hook if it was added. Returns: `torch.nn.Module`: The unwrapped model. Example: ```python >>> # Assuming two GPU processes >>> from torch.nn.parallel import DistributedDataParallel >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model = accelerator.prepare(MyModel()) >>> print(model.__class__.__name__) DistributedDataParallel >>> model = accelerator.unwrap_model(model) >>> print(model.__class__.__name__) MyModel ``` """ return extract_model_from_parallel(model, keep_fp32_wrapper) def wait_for_everyone(self): """ Will stop the execution of the current process until every other process has reached that point (so this does nothing when the script is only run in one process). Useful to do before saving a model. Example: ```python >>> # Assuming two GPU processes >>> import time >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> if accelerator.is_main_process: ... time.sleep(2) >>> else: ... print("I'm waiting for the main process to finish its sleep...") >>> accelerator.wait_for_everyone() >>> # Should print on every process at the same time >>> print("Everyone is here") ``` """ wait_for_everyone() @on_main_process def init_trackers(self, project_name: str, config: dict | None = None, init_kwargs: dict | None = {}): """ Initializes a run for all trackers stored in `self.log_with`, potentially with starting configurations Args: project_name (`str`): The name of the project. All trackers will save their data based on this config (`dict`, *optional*): Optional starting configuration to be logged. init_kwargs (`dict`, *optional*): A nested dictionary of kwargs to be passed to a specific tracker's `__init__` function. Should be formatted like so: ```python {"wandb": {"tags": ["tag_a", "tag_b"]}} ``` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers( ... project_name="my_project", ... config={"learning_rate": 0.001, "batch_size": 32}, ... init_kwargs={"tensorboard": {"flush_secs": 60}}, ... ) ``` """ for tracker in self.log_with: if issubclass(type(tracker), GeneralTracker): # Custom trackers are already initialized self.trackers.append(tracker) else: tracker_init = LOGGER_TYPE_TO_CLASS[str(tracker)] if getattr(tracker_init, "requires_logging_directory"): # We can skip this check since it was done in `__init__` self.trackers.append( tracker_init(project_name, self.logging_dir, **init_kwargs.get(str(tracker), {})) ) else: self.trackers.append(tracker_init(project_name, **init_kwargs.get(str(tracker), {}))) if config is not None: for tracker in self.trackers: tracker.store_init_configuration(config) def get_tracker(self, name: str, unwrap: bool = False): """ Returns a `tracker` from `self.trackers` based on `name` on the main process only. Args: name (`str`): The name of a tracker, corresponding to the `.name` property. unwrap (`bool`): Whether to return the internal tracking mechanism or to return the wrapped tracker instead (recommended). Returns: `GeneralTracker`: The tracker corresponding to `name` if it exists. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> tensorboard_tracker = accelerator.get_tracker("tensorboard") ``` """ if len(self.trackers) > 0: for tracker in self.trackers: if tracker.name == name: return tracker.tracker if unwrap else tracker raise ValueError(f"{name} is not an available tracker stored inside the `Accelerator`.") # Handle tracker only made on main process return GeneralTracker(_blank=True) @on_main_process def log(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}): """ Logs `values` to all stored trackers in `self.trackers` on the main process only. Args: values (`dict`): Values should be a dictionary-like object containing only types `int`, `float`, or `str`. step (`int`, *optional*): The run step. If included, the log will be affiliated with this step. log_kwargs (`dict`, *optional*): A nested dictionary of kwargs to be passed to a specific tracker's `log` function. Should be formatted like so: ```python {"wandb": {"tags": ["tag_a", "tag_b"]}} ``` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> accelerator.log({"loss": 0.5, "accuracy": 0.9}) ``` """ for tracker in self.trackers: tracker.log(values, step=step, **log_kwargs.get(tracker.name, {})) @on_main_process def end_training(self): """ Runs any special end training behaviors, such as stopping trackers on the main process only. Should always be called at the end of your script if using experiment tracking. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> # Do training >>> accelerator.end_training() ``` """ for tracker in self.trackers: tracker.finish() def save(self, obj, f, safe_serialization=False): """ Save the object passed to disk once per machine. Use in place of `torch.save`. Args: obj (`object`): The object to save. f (`str` or `os.PathLike`): Where to save the content of `obj`. safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors` Note: If `save_on_each_node` was passed in as a `ProjectConfiguration`, will save the object once per node, rather than only once on the main node. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> arr = [0, 1, 2, 3] >>> accelerator.save(arr, "array.pkl") ``` """ save( obj, f, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization, ) def save_model( self, model: torch.nn.Module, save_directory: Union[str, os.PathLike], max_shard_size: Union[int, str] = "10GB", safe_serialization: bool = True, ): """ Save a model so that it can be re-loaded using load_checkpoint_in_model Arguments: model: (`torch.nn.Module`): Model to be saved. The model can be wrapped or unwraped. save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model = ... >>> accelerator.save_model(model, save_directory) ``` """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) # get the state_dict of the model if any( [ module._hf_hook.offload for module in model.modules() if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) ] ): state_dict = get_state_dict_offloaded_model(model) else: if any(param.device == torch.device("meta") for param in model.parameters()): raise RuntimeError("You can't save the model since some parameters are on the meta device.") state_dict = self.get_state_dict(model) if safe_serialization: state_dict = clean_state_dict_for_safetensors(state_dict) weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME # Shard the model if it is too big. shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) # If we have a shard file that is not going to be replaced, we delete it, but only from the main process # in distributed settings to avoid race conditions. weights_no_suffix = weights_name.replace(".bin", "") # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 filename_no_suffix = filename.replace(".bin", "") reg = re.compile(r"(.*?)-\d{5}-of-\d{5}") if ( filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and filename not in shards.keys() and reg.fullmatch(filename_no_suffix) is not None and PartialState().is_main_process ): os.remove(full_filename) # Save the model for shard_file, shard in shards.items(): self.save(shard, os.path.join(save_directory, shard_file), safe_serialization=safe_serialization) if index is None: path_to_weights = os.path.join(save_directory, WEIGHTS_NAME) logger.info(f"Model weights saved in {path_to_weights}") else: save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME save_index_file = os.path.join(save_directory, save_index_file) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def register_save_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle: """ Registers a pre hook to be run before `save_checkpoint` is called in [`Accelerator.save_state`]. Args: hook (`Callable`): A function to be called in [`Accelerator.save_state`] before `save_checkpoint`. The hook should have the following signature: `hook(models: list[torch.nn.Module], weights: list[dict[str, torch.Tensor]], input_dir: str) -> None` The `models` argument are the models as saved in the accelerator state under `accelerator._models`, `weigths` argument are the state dicts of the `models`, and the `input_dir` argument is the `input_dir` argument passed to [`Accelerator.load_state`]. Should only be used in conjunction with [`Accelerator.register_load_state_pre_hook`]. Can be useful to save configurations in addition to model weights. Can also be used to overwrite model saving with a customized method. In this case, make sure to remove already loaded weights from the weights list. Returns: `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling `handle.remove()` """ handle = hooks.RemovableHandle(self._save_model_state_pre_hook) self._save_model_state_pre_hook[handle.id] = hook return handle def save_state(self, output_dir: str = None, safe_serialization: bool = True, **save_model_func_kwargs): """ Saves the current states of the model, optimizer, scaler, RNG generators, and registered objects to a folder. If a `ProjectConfiguration` was passed to the `Accelerator` object with `automatic_checkpoint_naming` enabled then checkpoints will be saved to `self.project_dir/checkpoints`. If the number of current saves is greater than `total_limit` then the oldest save is deleted. Each checkpoint is saved in seperate folders named `checkpoint_`. Otherwise they are just saved to `output_dir`. Should only be used when wanting to save a checkpoint during training and restoring the state in the same environment. Args: output_dir (`str` or `os.PathLike`): The name of the folder to save all relevant weights and states. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). save_model_func_kwargs (`dict`, *optional*): Additional keyword arguments for saving model which can be passed to the underlying save function, such as optional arguments for DeepSpeed's `save_checkpoint` function. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, lr_scheduler = ... >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) >>> accelerator.save_state(output_dir="my_checkpoint") ``` """ if self.project_configuration.automatic_checkpoint_naming: output_dir = os.path.join(self.project_dir, "checkpoints") os.makedirs(output_dir, exist_ok=True) if self.project_configuration.automatic_checkpoint_naming: folders = [os.path.join(output_dir, folder) for folder in os.listdir(output_dir)] if ( self.project_configuration.total_limit is not None and (len(folders) + 1 > self.project_configuration.total_limit) and self.is_main_process ): def _inner(folder): return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0] folders.sort(key=_inner) logger.warning( f"Deleting {len(folders) + 1 - self.project_configuration.total_limit} checkpoints to make room for new checkpoint." ) for folder in folders[: len(folders) + 1 - self.project_configuration.total_limit]: shutil.rmtree(folder) output_dir = os.path.join(output_dir, f"checkpoint_{self.save_iteration}") if os.path.exists(output_dir): raise ValueError( f"Checkpoint directory {output_dir} ({self.save_iteration}) already exists. Please manually override `self.save_iteration` with what iteration to start with." ) self.wait_for_everyone() os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving current state to {output_dir}") if self.distributed_type == DistributedType.TPU: # Finish running the previous step before checkpointing xm.mark_step() # Save the models taking care of FSDP and DeepSpeed nuances weights = [] for i, model in enumerate(self._models): if self.distributed_type == DistributedType.FSDP: logger.info("Saving FSDP model") save_fsdp_model(self.state.fsdp_plugin, self, model, output_dir, i) logger.info(f"FSDP Model saved to output dir {output_dir}") elif self.distributed_type == DistributedType.DEEPSPEED: logger.info("Saving DeepSpeed Model and Optimizer") ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}" model.save_checkpoint(output_dir, ckpt_id, **save_model_func_kwargs) logger.info(f"DeepSpeed Model and Optimizer saved to output dir {os.path.join(output_dir, ckpt_id)}") elif self.distributed_type == DistributedType.MEGATRON_LM: logger.info("Saving Megatron-LM Model, Optimizer and Scheduler") model.save_checkpoint(output_dir) logger.info(f"Megatron-LM Model , Optimizer and Scheduler saved to output dir {output_dir}") else: weights.append(self.get_state_dict(model, unwrap=False)) # Save the optimizers taking care of FSDP and DeepSpeed nuances optimizers = [] if self.distributed_type == DistributedType.FSDP: for i, opt in enumerate(self._optimizers): logger.info("Saving FSDP Optimizer") save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i) logger.info(f"FSDP Optimizer saved to output dir {output_dir}") elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: optimizers = self._optimizers # Save the lr schedulers taking care of DeepSpeed nuances schedulers = [] if self.distributed_type == DistributedType.DEEPSPEED: for i, scheduler in enumerate(self._schedulers): if isinstance(scheduler, DeepSpeedSchedulerWrapper): continue schedulers.append(scheduler) elif self.distributed_type not in [DistributedType.MEGATRON_LM]: schedulers = self._schedulers # Save the samplers of the dataloaders dataloaders = self._dataloaders # Call model loading hooks that might have been registered with # accelerator.register_model_state_hook for hook in self._save_model_state_pre_hook.values(): hook(self._models, weights, output_dir) save_location = save_accelerator_state( output_dir, weights, optimizers, schedulers, dataloaders, self.state.process_index, self.scaler, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization, ) for i, obj in enumerate(self._custom_objects): save_custom_state(obj, output_dir, i, save_on_each_node=self.project_configuration.save_on_each_node) self.project_configuration.iteration += 1 return save_location def register_load_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle: """ Registers a pre hook to be run before [`load_checkpoint`] is called in [`Accelerator.load_state`]. Args: hook (`Callable`): A function to be called in [`Accelerator.load_state`] before `load_checkpoint`. The hook should have the following signature: `hook(models: list[torch.nn.Module], input_dir: str) -> None` The `models` argument are the models as saved in the accelerator state under `accelerator._models`, and the `input_dir` argument is the `input_dir` argument passed to [`Accelerator.load_state`]. Should only be used in conjunction with [`Accelerator.register_save_state_pre_hook`]. Can be useful to load configurations in addition to model weights. Can also be used to overwrite model loading with a customized method. In this case, make sure to remove already loaded models from the models list. Returns: `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling `handle.remove()` """ handle = hooks.RemovableHandle(self._load_model_state_pre_hook) self._load_model_state_pre_hook[handle.id] = hook return handle def load_state(self, input_dir: str = None, **load_model_func_kwargs): """ Loads the current states of the model, optimizer, scaler, RNG generators, and registered objects. Should only be used in conjunction with [`Accelerator.save_state`]. If a file is not registered for checkpointing, it will not be loaded if stored in the directory. Args: input_dir (`str` or `os.PathLike`): The name of the folder all relevant weights and states were saved in. Can be `None` if `automatic_checkpoint_naming` is used, and will pick up from the latest checkpoint. load_model_func_kwargs (`dict`, *optional*): Additional keyword arguments for loading model which can be passed to the underlying load function, such as optional arguments for DeepSpeed's `load_checkpoint` function or a `map_location` to load the model and optimizer on. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, lr_scheduler = ... >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) >>> accelerator.load_state("my_checkpoint") ``` """ if input_dir is not None: # Check if folder exists input_dir = os.path.expanduser(input_dir) if not os.path.isdir(input_dir): raise ValueError(f"Tried to find {input_dir} but folder does not exist") elif self.project_configuration.automatic_checkpoint_naming: # Pick up from automatic checkpoint naming input_dir = os.path.join(self.project_dir, "checkpoints") folders = [os.path.join(input_dir, folder) for folder in os.listdir(input_dir)] def _inner(folder): return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0] folders.sort(key=_inner) input_dir = folders[-1] else: raise ValueError("No input_dir provided and automatic checkpoint naming is disabled.") logger.info(f"Loading states from {input_dir}") # Load the models taking care of FSDP and DeepSpeed nuances models = [] for i, model in enumerate(self._models): if self.distributed_type == DistributedType.FSDP: logger.info("Loading FSDP model") load_fsdp_model(self.state.fsdp_plugin, self, model, input_dir, i) logger.info(f"FSDP Model loaded from input dir {input_dir}") elif self.distributed_type == DistributedType.DEEPSPEED: logger.info("Loading DeepSpeed Model and Optimizer") ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}" model.load_checkpoint(input_dir, ckpt_id, **load_model_func_kwargs) logger.info(f"DeepSpeed Model and Optimizer loaded from input dir {os.path.join(input_dir, ckpt_id)}") elif self.distributed_type == DistributedType.MEGATRON_LM: logger.info("Loading Megatron-LM Model, Optimizer and Scheduler") model.load_checkpoint(input_dir) logger.info(f"Megatron-LM Model , Optimizer and Scheduler loaded from input dir {input_dir}") else: models.append(model) # Load the optimizers taking care of FSDP and DeepSpeed nuances optimizers = [] if self.distributed_type == DistributedType.FSDP: for i, opt in enumerate(self._optimizers): logger.info("Loading FSDP Optimizer") load_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], input_dir, i) logger.info(f"FSDP Optimizer loaded from input dir {input_dir}") elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: optimizers = self._optimizers # Load the lr schedulers taking care of DeepSpeed nuances schedulers = [] if self.distributed_type == DistributedType.DEEPSPEED: for i, scheduler in enumerate(self._schedulers): if isinstance(scheduler, DeepSpeedSchedulerWrapper): continue schedulers.append(scheduler) elif self.distributed_type not in [DistributedType.MEGATRON_LM]: schedulers = self._schedulers dataloaders = self._dataloaders # Call model loading hooks that might have been registered with # accelerator.register_model_state_hook for hook in self._load_model_state_pre_hook.values(): hook(models, input_dir) map_location = load_model_func_kwargs.pop("map_location", None) if map_location is None: if self.num_processes > 1 and self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, ): map_location = "on_device" else: map_location = "cpu" load_accelerator_state( input_dir, models, optimizers, schedulers, dataloaders, self.state.process_index, self.scaler, map_location, **load_model_func_kwargs, ) custom_checkpoints = [ f for f in os.listdir(input_dir) if re.search(r"^custom_checkpoint_\d+\.pkl$", f) is not None ] if len(custom_checkpoints) != len(self._custom_objects): err = "Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:" err += f"\n\tFound checkpoints: {len(custom_checkpoints)}" err += f"\n\tRegistered objects: {len(self._custom_objects)}\n" err += "Please make sure to only load checkpoints from folders that were created with the same set of registered objects," err += "or avoid using `custom_checkpoint` in the filename for files in that same directory and load them in manually." raise RuntimeError(err) else: logger.info(f"Loading in {len(custom_checkpoints)} custom states") for index, obj in enumerate(self._custom_objects): load_custom_state(obj, input_dir, index) def free_memory(self): """ Will release all references to the internal objects stored and call the garbage collector. You should call this method between two trainings with different models/optimizers. Also will reset `Accelerator.step` to 0. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, scheduler = ... >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) >>> accelerator.free_memory() >>> del model, optimizer, scheduler ``` """ self._schedulers = [] self._optimizers = [] self._models = [] self._dataloaders = [] self.deepspeed_engine_wrapped = None self.step = 0 release_memory() def clear(self): """ Alias for [`Accelerate.free_memory`], releases all references to the internal objects stored and call the garbage collector. You should call this method between two trainings with different models/optimizers. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, scheduler = ... >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) >>> accelerator.free_memory() >>> del model, optimizer, scheduler ``` """ self.free_memory() def _get_named_parameters(self, *args): named_parameters = {} for obj in args: if isinstance(obj, torch.nn.Module): obj = extract_model_from_parallel(obj) named_parameters.update({n: p for n, p in obj.named_parameters()}) return named_parameters def _get_devices(self, *args): model_device = None optimizer_device = None for obj in args: # Loop through model parameters and stop at the first once we have its device. if isinstance(obj, torch.nn.Module): for param in obj.parameters(): model_device = param.device break # Loop through optimizer parameters groups and stop at the first once we have its device. if isinstance(obj, torch.optim.Optimizer): for param_group in obj.param_groups: if len(param_group["params"]) > 0: optimizer_device = param_group["params"][0].device break return (model_device, optimizer_device) def get_state_dict(self, model, unwrap=True): """ Returns the state dictionary of a model sent through [`Accelerator.prepare`] potentially without full precision. Args: model (`torch.nn.Module`): A PyTorch model sent through [`Accelerator.prepare`] unwrap (`bool`, *optional*, defaults to `True`): Whether to return the original underlying state_dict of `model` or to return the wrapped state_dict Returns: `dict`: The state dictionary of the model potentially without full precision. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> net = torch.nn.Linear(2, 2) >>> net = accelerator.prepare(net) >>> state_dict = accelerator.get_state_dict(net) ``` """ if self.distributed_type == DistributedType.DEEPSPEED: if self.deepspeed_config["zero_optimization"]["stage"] == 3: if model.zero_gather_16bit_weights_on_model_save(): state_dict = model._zero3_consolidated_16bit_state_dict() else: raise ValueError( "Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. " "To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or " "set `zero3_save_16bit_model` to True when using `accelerate config`. " "To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights." ) else: from deepspeed.checkpoint.utils import clone_tensors_for_torch_save state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict()) elif self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp import FullStateDictConfig, StateDictType from torch.distributed.fsdp import FullyShardedDataParallel as FSDP full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, full_state_dict_config): state_dict = model.state_dict() else: if unwrap: model = self.unwrap_model(model) state_dict = model.state_dict() return state_dict def register_for_checkpointing(self, *objects): """ Makes note of `objects` and will save or load them in during `save_state` or `load_state`. These should be utilized when the state is being loaded or saved in the same script. It is not designed to be used in different scripts. Every `object` must have a `load_state_dict` and `state_dict` function to be stored. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume `CustomObject` has a `state_dict` and `load_state_dict` function. >>> obj = CustomObject() >>> accelerator.register_for_checkpointing(obj) >>> accelerator.save_state("checkpoint.pt") ``` """ invalid_objects = [] for obj in objects: if not hasattr(obj, "state_dict") or not hasattr(obj, "load_state_dict"): invalid_objects.append(obj) if len(invalid_objects) > 0: err = "All `objects` must include a `state_dict` and `load_state_dict` function to be stored. The following inputs are invalid:" for index, obj in enumerate(invalid_objects): err += f"\n\t- Item at index {index}, `{get_pretty_name(obj)}`" raise ValueError(err) self._custom_objects.extend(objects) @contextmanager def autocast(self, cache_enabled: bool = False, autocast_handler: AutocastKwargs = None): """ Will apply automatic mixed-precision inside the block inside this context manager, if it is enabled. Nothing different will happen otherwise. A different `autocast_handler` can be passed in to override the one set in the `Accelerator` object. This is useful in blocks under `autocast` where you want to revert to fp32. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(mixed_precision="fp16") >>> with accelerator.autocast(): ... train() ``` """ if cache_enabled: warnings.warn( "Passing `cache_enabled=True` to `accelerator.autocast` is deprecated and will be removed in v0.23.0. " "Please use the `AutocastKwargs` class instead and pass it to the `Accelerator` as a `kwarg_handler`.", FutureWarning, ) if self.autocast_handler is not None: self.autocast_handler.cache_enabled = True else: self.autocast_handler = AutocastKwargs(cache_enabled=True) if autocast_handler is None: autocast_handler = self.autocast_handler autocast_context = get_mixed_precision_context_manager(self.native_amp, autocast_handler) autocast_context.__enter__() yield autocast_context.__exit__(*sys.exc_info()) @property def optimizer_step_was_skipped(self): """ Whether or not the optimizer update was skipped (because of gradient overflow in mixed precision), in which case the learning rate should not be changed. """ for optimizer in self._optimizers: if optimizer.step_was_skipped: return True return False def skip_first_batches(self, dataloader, num_batches: int = 0): """ Creates a new `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`. Args: dataloader (`torch.utils.data.DataLoader`): The data loader in which to skip batches. num_batches (`int`, *optional*, defaults to 0): The number of batches to skip Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> skipped_dataloader = accelerator.skip_first_batches(dataloader, num_batches=2) >>> # for the first epoch only >>> for input, target in skipped_dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... optimizer.step() >>> # subsequent epochs >>> for input, target in dataloader: ... optimizer.zero_grad() ... ... ``` """ return skip_first_batches(dataloader, num_batches=num_batches) def __deepcopy__(self, memo): logger.info("Deep copying the `Accelerator` object, note that this will point to the same original object.") return self def verify_device_map(self, model: torch.nn.Module) -> bool: """ Verifies that `model` has not been prepared with big model inference with a device-map resembling `auto`. """ # Checks if any of the child modules has the attribute `hf_device_map` and this map has more than one entry. for m in model.modules(): if hasattr(m, "hf_device_map") and len(m.hf_device_map) > 1: return True return False