--- language: - en multilinguality: - monolingual task_categories: - text-retrieval source_datasets: - https://zenodo.org/records/4063986 task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: test num_examples: 195 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_examples: 186 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_examples: 50 configs: - config_name: default data_files: - split: test path: qrels/test.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl --- **AILA_casedocs** - Original link: https://zenodo.org/records/4063986 - The task is to retrieve the case document that most closely matches or is most relevant to the scenario described in the provided query. - The query set comprises 50 queries, each describing a specific situation. - The corpus set consists of case documents. **Usage** ``` import datasets # Download the dataset queries = datasets.load_dataset("mteb/AILA_casedocs", "queries") documents = datasets.load_dataset("mteb/AILA_casedocs", "corpus") pair_labels = datasets.load_dataset("mteb/AILA_casedocs", "default") ```