from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Iris efficiency dataset from the UCI repository." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/53/iris" _URLS = ("https://archive-beta.ics.uci.edu/dataset/53/iris") _CITATION = """ @misc{misc_iris_53, author = {Fisher,R. A. & Fisher,R.A.}, title = {{Iris}}, year = {1988}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C56C76}} }""" # Dataset info _BASE_FEATURE_NAMES = [ "sepal_length", "sepal_width", "petal_length", "petal_width", "class" ] urls_per_split = { "train": "https://huggingface.co/datasets/mstz/iris/raw/main/iris.data" } features_types_per_config = { "iris": { "sepal_length": datasets.Value("float64"), "sepal_width": datasets.Value("float64"), "petal_length": datasets.Value("float64"), "petal_width": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=3, names=("setosa", "versicolor", "virginica")) }, "setosa": { "sepal_length": datasets.Value("float64"), "sepal_width": datasets.Value("float64"), "petal_length": datasets.Value("float64"), "petal_width": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, "versicolor": { "sepal_length": datasets.Value("float64"), "sepal_width": datasets.Value("float64"), "petal_length": datasets.Value("float64"), "petal_width": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, "virginica": { "sepal_length": datasets.Value("float64"), "sepal_width": datasets.Value("float64"), "petal_length": datasets.Value("float64"), "petal_width": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class IrisConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(IrisConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Iris(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "iris" BUILDER_CONFIGS = [ IrisConfig(name="iris", description="Iris dataset."), IrisConfig(name="setosa", description="Binary classification of setosa."), IrisConfig(name="versicolor", description="Binary classification of versicolor."), IrisConfig(name="virginica", description="Binary classification of virginica.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES data.loc[:, "class"] = data["class"].apply(lambda x: { "Iris-setosa": 0, "Iris-versicolor": 1, "Iris-virginica": 2 }[x]) if self.config.name == "setosa": data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) elif self.config.name == "versicolor": data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) if self.config.name == "virginica": data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) return data