from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "color", "size", "act", "age", "is_inflated" ] DESCRIPTION = "Balloons dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Balloons" _URLS = ("https://huggingface.co/datasets/mstz/balloons/raw/balloons.csv") _CITATION = """ @misc{misc_balloons_13, title = {{Balloons}}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5BP4D}} }""" # Dataset info urls_per_split = { "adult_or_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/adult+stretch.data"}, "adult_and_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/adult-stretch.data"}, "yellow_and_small": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/yellow-small.data"}, "yellow_and_small_or_adult_and_stretch": {"train": "https://huggingface.co/datasets/mstz/balloons/raw/main/yellow-small+adult-stretch.data"} } features_types_per_config = { "adult_or_stretch": { "color": datasets.Value("string"), "size": datasets.Value("string"), "act": datasets.Value("string"), "age": datasets.Value("string"), "is_inflated": datasets.ClassLabel(num_classes=2) }, "adult_and_stretch": { "color": datasets.Value("string"), "size": datasets.Value("string"), "act": datasets.Value("string"), "age": datasets.Value("string"), "is_inflated": datasets.ClassLabel(num_classes=2) }, "yellow_and_small": { "color": datasets.Value("string"), "size": datasets.Value("string"), "act": datasets.Value("string"), "age": datasets.Value("string"), "is_inflated": datasets.ClassLabel(num_classes=2) }, "yellow_and_small_or_adult_and_stretch": { "color": datasets.Value("string"), "size": datasets.Value("string"), "act": datasets.Value("string"), "age": datasets.Value("string"), "is_inflated": datasets.ClassLabel(num_classes=2) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class BalloonsConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(BalloonsConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Balloons(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "adult_or_stretch" BUILDER_CONFIGS = [ BalloonsConfig(name="adult_or_stretch", description="Binary classification, balloons are inflated if age == adult or act == stretch."), BalloonsConfig(name="adult_and_stretch", description="Binary classification, balloons are inflated if age == adult and act == stretch."), BalloonsConfig(name="yellow_and_small", description="Binary classification, balloons are inflated if color == yellow and size == small."), BalloonsConfig(name="yellow_and_small_or_adult_and_stretch", description="Binary classification, balloons are inflated if color == yellow and size == small or age == adult and act == stretch.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads_per_config = {config: dl_manager.download_and_extract(urls_per_split) for config in urls_per_split} print(downloads_per_config) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads_per_config[self.config.name][self.config.name]["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = _BASE_FEATURE_NAMES data.loc[:, "is_inflated"] = data.inflated.apply(lambda x: 1 if x == "T" else 0) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row