# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """we're testin'""" import datasets import json class TestDatasetConfig(datasets.BuilderConfig): """BuilderConfig for Test Dataset for testing HF parsing""" def __init__( self, text_features, hero = "juggernaut", foo = "foo", process_label=lambda x: x, **kwargs, ): """BuilderConfig for TestDatset. Args: text_features: `dict[string, string]`, map from the name of the feature dict for each text field to the name of the column in the tsv file label_column: `string`, name of the column in the tsv file corresponding to the label data_dir: `string`, the path to the folder containing the tsv files in the downloaded zip label_classes: `list[string]`, the list of classes if the label is categorical. If not provided, then the label will be of type `datasets.Value('float32')`. process_label: `Function[string, any]`, function taking in the raw value of the label and processing it to the form required by the label feature **kwargs: keyword arguments forwarded to super. """ super(TestDatasetConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.text_features = text_features self.hero = hero self.foo = foo self.process_label = process_label class TestDatasetEvals(datasets.GeneratorBasedBuilder): """The General Language Understanding Evaluation (GLUE) benchmark.""" BUILDER_CONFIGS = [ TestDatasetConfig( name="name_for_test_dataset", description= "this is a test dataset for our unit test intergrating HF datasets" , text_features={"context": "context", "answer": "answer"}, data_dir="heroes", ), ] def _info(self): features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} features["idx"] = datasets.Value("int32") return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), ) def _split_generators(self, dl_manager): constructed_filepath = self.construct_filepath() data_file = dl_manager.download(constructed_filepath) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": data_file, # "split": "test", }, ), ] def construct_filepath(self): return self.hero + '/' + self.config.data_dir + '/data.jsonl' def _generate_examples(self, data_file): with open(data_file, encoding="utf8") as f: for n, row in enumerate(f): data = json.loads(row) example = {feat: data[col] for feat, col in self.config.text_features.items()} example["idx"] = n yield example["idx"], example