# pip install openai lxml cssselector requests xmltodict from datetime import date, datetime, timedelta import json import lxml.html from lxml.cssselect import CSSSelector import time from openai import OpenAI import requests import xmltodict tabooWords = ['deletion', 'rape', 'rapist', 'abuse', 'minor'] # load from WikiNews English recent days (not yet published) recentArticles = [] dateForArticle = {} today = date.today() for days in range(5, 12): tdate = (today - timedelta(days=days)) tstamp = tdate.strftime("%B_%d,_%Y") r = requests.get(f"https://en.wikinews.org/wiki/Category:{tstamp}") contents = lxml.html.fromstring(r.content) selAnchor = CSSSelector('a') for linkEl in selAnchor(contents): link = str(linkEl.get('href')) if link[:6] == '/wiki/' and '/Special:' not in link and '/Category:' not in link and 'Main_Page' not in link and 'Help:' not in link and 'Wikinews:' not in link and 'File:' not in link: recentArticles.append(link) dateForArticle[link] = tdate.strftime("%Y/%m/%d") time.sleep(1) client = OpenAI() outputs = [] for article in recentArticles: print(article) r = requests.get(f"https://en.wikinews.org{article}") contents = lxml.html.fromstring(r.content) selMain = CSSSelector('.mw-body-content p') plaintxt = "" for para in selMain(contents): c = para.text_content() if 'pre-publication review' in c or 'last amended' in c: continue plaintxt += c + "\n" if 'Have an opinion' in plaintxt: plaintxt = plaintxt[:plaintxt.index('Have an opinion')] plaintxt = plaintxt.strip() block = False for taboo in tabooWords: if taboo in plaintxt.lower(): block = True if block: print("Article marked for deletion or about subject sensitive for AI summarization") continue dt = dateForArticle[article] selAnchor = CSSSelector('a[rel="nofollow"]') foundElements = selAnchor(contents) articleLinks = [] for el in foundElements: link = el.get('href') linkblocks = ['/wiki/', '.com/intent/tweet', 'creativecommons.org/licenses', 'facebook.com/sharer.php', 'mailto:', 'reddit.com/submit', 'linkedin.com/shareArticle'] block = False for blocker in linkblocks: if blocker in link.lower(): block = True if block: continue articleLinks.append(link) qs = [] response = client.chat.completions.create( model="gpt-4o", messages=[ { "role": "system", "content": "You will be provided with an article from today's news. Provide 3-5 multiple choice questions based on the content of the article, especially newly-introduced facts or knowledge. Don't make the correct answer any more specific, numeric, or realistic compared to the others.\n Respond in JSON format: [{ question: 'Who was elected president of Sesame Street?', choices: ['Big Bird', 'Donald Duck'], answer: 'Big Bird' }]", }, { "role": "user", "content": f"Here's the article: \n{plaintxt}", }, ], ) reply = response.choices[0].message.content reply = reply[reply.index('[') : reply.rindex(']') + 1] qs = json.loads(reply) for q in qs: if q["answer"] not in q["choices"]: continue outputs.append({ "question_date": dt, "question_url": f"https://en.wikinews.org{article}", "question_sentence": q["question"], "links": articleLinks, "choices": q["choices"], "answer_text": q["answer"], "answer": [ q["choices"].index(q["answer"]) ], }) time.sleep(1) tstamp = datetime.now().strftime("%Y%m%d") with open(f"./{tstamp}_qa_public.jsonl", "w") as fi: for idx, op in enumerate(outputs): op["question_id"] = f"{tstamp}_{idx}" op["question_source"] = "WikiNews" fi.write(json.dumps(op) + "\n")