## Dataset Summary A dataset for benchmarking keyphrase extraction and generation techniques from english news articles. For more details about the dataset please refer the original paper - [https://arxiv.org/abs/1704.02853](https://arxiv.org/abs/1704.02853) Original source of the data - [https://github.com/LIAAD/KeywordExtractor-Datasets/blob/master/datasets/SemEval2017.zip](https://github.com/LIAAD/KeywordExtractor-Datasets/blob/master/datasets/SemEval2017.zip) ## Dataset Structure ### Data Fields - **id**: unique identifier of the document. - **document**: Whitespace separated list of words in the document. - **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all. - **extractive_keyphrases**: List of all the present keyphrases. - **abstractive_keyphrase**: List of all the absent keyphrases. ### Data Splits |Split| #datapoints | |--|--| | Test | 493 | ## Usage ### Full Dataset ```python from datasets import load_dataset # get entire dataset dataset = load_dataset("midas/semeval2017", "raw") # sample from the train split print("Sample from train dataset split") test_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the test split print("Sample from test dataset split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` **Output** ```bash ``` ### Keyphrase Extraction ```python from datasets import load_dataset # get the dataset only for keyphrase extraction dataset = load_dataset("midas/semeval2017", "extraction") print("Samples for Keyphrase Extraction") # sample from the train split print("Sample from train data split") test_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("\n-----------\n") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("\n-----------\n") ``` ### Keyphrase Generation ```python # get the dataset only for keyphrase generation dataset = load_dataset("midas/semeval2017", "generation") print("Samples for Keyphrase Generation") # sample from the train split print("Sample from train data split") test_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` ## Citation Information ``` @article{DBLP:journals/corr/AugensteinDRVM17, author = {Isabelle Augenstein and Mrinal Das and Sebastian Riedel and Lakshmi Vikraman and Andrew McCallum}, title = {SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications}, journal = {CoRR}, volume = {abs/1704.02853}, year = {2017}, url = {http://arxiv.org/abs/1704.02853}, eprinttype = {arXiv}, eprint = {1704.02853}, timestamp = {Mon, 13 Aug 2018 16:46:36 +0200}, biburl = {https://dblp.org/rec/journals/corr/AugensteinDRVM17.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## Contributions Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset