A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of English scientific papers. For more details about the dataset please refer the original paper - [http://memray.me/uploads/acl17-keyphrase-generation.pdf](http://memray.me/uploads/acl17-keyphrase-generation.pdf). Data source - [https://github.com/memray/seq2seq-keyphrase](https://github.com/memray/seq2seq-keyphrase) ## Dataset Summary ## Dataset Structure ## Dataset Statistics ### Data Fields - **id**: unique identifier of the document. - **document**: Whitespace separated list of words in the document. - **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all. - **extractive_keyphrases**: List of all the present keyphrases. - **abstractive_keyphrase**: List of all the absent keyphrases. ### Data Splits |Split| No. of datapoints | |--|--| | Train | 530,809 | | Test | 20,000| | Validation | 20,000| ## Usage ### Full Dataset ```python from datasets import load_dataset # get entire dataset dataset = load_dataset("midas/kp20k", "raw") # sample from the train split print("Sample from training dataset split") train_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in train_sample.keys()]) print("Tokenized Document: ", train_sample["document"]) print("Document BIO Tags: ", train_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the validation split print("Sample from validation dataset split") validation_sample = dataset["validation"][0] print("Fields in the sample: ", [key for key in validation_sample.keys()]) print("Tokenized Document: ", validation_sample["document"]) print("Document BIO Tags: ", validation_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the test split print("Sample from test dataset split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` **Output** ```bash ``` ### Keyphrase Extraction ```python from datasets import load_dataset # get the dataset only for keyphrase extraction dataset = load_dataset("midas/kp20k", "extraction") print("Samples for Keyphrase Extraction") # sample from the train split print("Sample from training data split") train_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in train_sample.keys()]) print("Tokenized Document: ", train_sample["document"]) print("Document BIO Tags: ", train_sample["doc_bio_tags"]) print("\n-----------\n") # sample from the validation split print("Sample from validation data split") validation_sample = dataset["validation"][0] print("Fields in the sample: ", [key for key in validation_sample.keys()]) print("Tokenized Document: ", validation_sample["document"]) print("Document BIO Tags: ", validation_sample["doc_bio_tags"]) print("\n-----------\n") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("\n-----------\n") ``` ### Keyphrase Generation ```python # get the dataset only for keyphrase generation dataset = load_dataset("midas/kp20k", "generation") print("Samples for Keyphrase Generation") # sample from the train split print("Sample from training data split") train_sample = dataset["train"][0] print("Fields in the sample: ", [key for key in train_sample.keys()]) print("Tokenized Document: ", train_sample["document"]) print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the validation split print("Sample from validation data split") validation_sample = dataset["validation"][0] print("Fields in the sample: ", [key for key in validation_sample.keys()]) print("Tokenized Document: ", validation_sample["document"]) print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` ## Citation Information Please cite the works below if you use this dataset in your work. ``` @InProceedings{meng-EtAl:2017:Long, author = {Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu}, title = {Deep Keyphrase Generation}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month = {July}, year = {2017}, address = {Vancouver, Canada}, publisher = {Association for Computational Linguistics}, pages = {582--592}, url = {http://aclweb.org/anthology/P17-1054} } ``` ## Contributions Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset