## Dataset Summary A dataset for benchmarking keyphrase extraction and generation techniques from english news articles. For more details about the dataset please refer the original paper - [https://dl.acm.org/doi/10.5555/1620163.1620205](https://dl.acm.org/doi/10.5555/1620163.1620205) Original source of the data - []() ## Dataset Structure ### Data Fields - **id**: unique identifier of the document. - **document**: Whitespace separated list of words in the document. - **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all. - **extractive_keyphrases**: List of all the present keyphrases. - **abstractive_keyphrase**: List of all the absent keyphrases. ### Data Splits |Split| #datapoints | |--|--| | Test | 308 | ## Usage ### Full Dataset ```python from datasets import load_dataset # get entire dataset dataset = load_dataset("midas/duc2001", "raw") # sample from the test split print("Sample from test dataset split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` **Output** ```bash Sample from test data split Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata'] Tokenized Document: ['Here', ',', 'at', 'a', 'glance', ',', 'are', 'developments', 'today', 'involving', 'the', 'crash', 'of', 'Pan', 'American', 'World', 'Airways', 'Flight', '103', 'Wednesday', 'night', 'in', 'Lockerbie', ',', 'Scotland', ',', 'that', 'killed', 'all', '259', 'people', 'aboard', 'and', 'more', 'than', '20', 'people', 'on', 'the', 'ground', ':'] Document BIO Tags: ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'B', 'I', 'I', 'I', 'I', 'I', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'] Extractive/present Keyphrases: ['pan american world airways flight 103', 'crash', 'lockerbie'] Abstractive/absent Keyphrases: ['terrorist threats', 'widespread wreckage', 'radical palestinian faction', 'terrorist bombing', 'bomb threat', 'sabotage'] ----------- ``` ### Keyphrase Extraction ```python from datasets import load_dataset # get the dataset only for keyphrase extraction dataset = load_dataset("midas/duc2001", "extraction") print("Samples for Keyphrase Extraction") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Document BIO Tags: ", test_sample["doc_bio_tags"]) print("\n-----------\n") ``` ### Keyphrase Generation ```python # get the dataset only for keyphrase generation dataset = load_dataset("midas/duc2001", "generation") print("Samples for Keyphrase Generation") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Tokenized Document: ", test_sample["document"]) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` ## Citation Information ``` @inproceedings{10.5555/1620163.1620205, author = {Wan, Xiaojun and Xiao, Jianguo}, title = {Single Document Keyphrase Extraction Using Neighborhood Knowledge}, year = {2008}, isbn = {9781577353683}, publisher = {AAAI Press}, booktitle = {Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 2}, pages = {855–860}, numpages = {6}, location = {Chicago, Illinois}, series = {AAAI'08} } ``` ## Contributions Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset