# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Microsoft Cats vs. Dogs dataset""" from pathlib import Path from typing import List import datasets from datasets.tasks import ImageClassification logger = datasets.logging.get_logger(__name__) _URL = "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip" _HOMEPAGE = "https://www.microsoft.com/en-us/download/details.aspx?id=54765" _DESCRIPTION = "A large set of images of cats and dogs. There are 1738 corrupted images that are dropped." _CITATION = """\ @Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization, author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared}, title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization}, booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)}, year = {2007}, month = {October}, publisher = {Association for Computing Machinery, Inc.}, url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/}, edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)}, } """ class CatsVsDogs(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "labels": datasets.features.ClassLabel(names=["cat", "dog"]), } ), supervised_keys=("image_file_path", "labels"), task_templates=[ ImageClassification( image_file_path_column="image_file_path", label_column="labels", labels=["cat", "dog"] ) ], homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: images_path = Path(dl_manager.download_and_extract(_URL)) / "PetImages" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images_path": images_path}), ] def _generate_examples(self, images_path): logger.info("generating examples from = %s", images_path) for i, filepath in enumerate(images_path.glob("**/*.jpg")): with filepath.open("rb") as f: if b"JFIF" in f.peek(10): yield str(i), { "image_file_path": str(filepath), "labels": filepath.parent.name.lower(), } continue