import datasets from huggingface_hub import HfApi from datasets import DownloadManager, DatasetInfo from datasets.data_files import DataFilesDict import os import json # ここに設定を記入 _NAME = "mickylan2367/LoadingScriptPractice" _EXTENSION = [".png"] _REVISION = "main" # _HOMEPAGE = "https://github.com/fastai/imagenette" # プログラムを置く場所が決まったら、ここにホームページURLつける _HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps" _DESCRIPTION = f"""\ {_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets! Using for Project Learning... """ # え...なにこれ(;´・ω・) # _IMAGES_DIR = "mickylan2367/images/data/" # _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata" # 参考になりそうなURL集 # https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html # https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py # https://huggingface.co/datasets/food101/blob/main/food101.py # https://huggingface.co/docs/datasets/about_dataset_load class spectrogram_musicCapsConfig(datasets.BuilderConfig): """Builder Config for spectrogram_MusicCaps""" def __init__(self, **kwargs): """BuilderConfig Args: data_url: `string`, url to download the zip file from. metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs **kwargs: keyword arguments forwarded to super. """ super(spectrogram_musicCapsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) # self.data_url = data_url # self.metadata_urls = metadata_urls class spectrogram_musicCaps(datasets.GeneratorBasedBuilder): # データのサブセットはここで用意 BUILDER_CONFIGS = [ spectrogram_musicCapsConfig( name="MusicCaps data 0_10", description="Datasets from MusicCaps by Mikan", ), # spectrogram_musicCapsConfig( # name="MusicCpas data 10_100", # description="Datasets second action by Mikan", # ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "caption": datasets.Value("string"), "data_idx": datasets.Value("int32"), "number" : datasets.Value("int32"), "label" : datasets.Value("string") } ), supervised_keys=("image", "caption", "data_idx", "number", "label"), homepage=_HOMEPAGE, # citation=_CITATION, # license=_LICENSE, # task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager: DownloadManager): # huggingfaceのディレクトリからデータを取ってくる hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) split_metadata_paths = DataFilesDict.from_hf_repo( {datasets.Split.TRAIN: ["**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["jsonl", ".jsonl"], ) # **.zipのURLをDict型として取得? data_path = DataFilesDict.from_hf_repo( {datasets.Split.TRAIN: ["**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["zip", ".zip"], ) gs = [] for split, files in data_path.items(): ''' split : "train" or "test" or "val" files : zip files ''' # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得 split_metadata_path = dl_manager.download_and_extract(split_metadata_paths[split][0]) downloaded_files_path = dl_manager.download_and_extract(files) # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している? gs.append( datasets.SplitGenerator( name = split, gen_kwargs={ "images" : downloaded_files_path, "metadata_path": split_metadata_path } ) ) return gs def _generate_examples(self, images, metadata_path): """Generate images and captions for splits.""" # with open(metadata_path, encoding="utf-8") as f: # files_to_keep = set(f.read().split("\n")) file_list = list() caption_list = list() dataIDX_list = list() num_list = list() label_list = list() with open(metadata_path) as fin: for line in fin: data = json.loads(line) file_list.append(data["file_name"]) caption_list.append(data["caption"]) dataIDX_list.append(data["data_idx"]) num_list.append(data["number"]) label_list.append(data["label"]) for idx, (file_path, file_obj) in enumerate(images): yield file_path, { "image": { "path": file_path, "bytes": file_obj.read() }, "caption" : caption_list[idx], "data_idx" : dataIDX_list[idx], "number" : num_list[idx], "label": label_list[idx] }