michaelmunje nielsr HF Staff commited on
Commit
22e12f4
·
verified ·
1 Parent(s): ce0c8fb

Improve dataset card: Add description, links, sample usage, and refine metadata (#2)

Browse files

- Improve dataset card: Add description, links, sample usage, and refine metadata (198a167ad2ae8f522f3d798c89f6094445d2052c)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +51 -6
README.md CHANGED
@@ -9,15 +9,60 @@ For more information please see our [project website](https://larg.github.io/soc
9
 
10
 
11
  ---
 
 
12
  license: mit
 
 
13
  task_categories:
14
  - question-answering
15
- language:
16
- - en
17
  tags:
18
  - vlm
19
- - robotics
20
  - navigation
21
- size_categories:
22
- - 1K<n<10K
23
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
 
11
  ---
12
+ language:
13
+ - en
14
  license: mit
15
+ size_categories:
16
+ - 1K<n<10K
17
  task_categories:
18
  - question-answering
19
+ - video-text-to-text
20
+ - robotics
21
  tags:
22
  - vlm
 
23
  - navigation
24
+ - vqa
25
+ ---
26
+
27
+ # SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
28
+
29
+ The Social Navigation Scene Understanding Benchmark (SocialNav-SUB) is a Visual Question Answering (VQA) dataset and benchmark designed to evaluate Vision-Language Models (VLMs) for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. It aims to identify critical gaps in the social scene understanding capabilities of current VLMs, setting the stage for further research in foundation models for social robot navigation.
30
+
31
+ - Paper: [SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation](https://huggingface.co/papers/2509.08757)
32
+ - Project Page: [https://larg.github.io/socialnav-sub](https://larg.github.io/socialnav-sub)
33
+ - Code: [https://github.com/michaelmunje/SocialNavSUB](https://github.com/michaelmunje/SocialNavSUB)
34
+
35
+ ## Getting Started
36
+
37
+ To get started with SocialNav-SUB, you can follow these steps:
38
+
39
+ 1. **Install Dependencies**
40
+
41
+ ```bash
42
+ pip install -r requirements.txt
43
+ ```
44
+
45
+ 2. **Download the Dataset**
46
+
47
+ Please download our dataset from [HuggingFace](https://huggingface.co/datasets/michaelmunje/SocialNav-SUB) by running the `download_dataset.sh` script:
48
+ ```bash
49
+ ./download_dataset.sh
50
+ ```
51
+
52
+ 3. **Benchmark a VLM**
53
+
54
+ Make a config file and specify the VLM under the `baseline_model` parameter and parameters for the experiments (such as prompt representation). API models require an environment variable containing an API key (`GOOGLE_API_KEY` or `OPENAI_API_KEY`).
55
+
56
+ ```bash
57
+ python socialnavsub/evaluate_vlm.py --cfg_path <cfg_path>
58
+ ```
59
+
60
+ 4. **View Results**
61
+
62
+ Results will be saved in the directory specified in the config file under the `evaluation_folder` entry. To postprocess the results, please run:
63
+
64
+ ```bash
65
+ python socialnavsub/postprocess_results.py --cfg_path <cfg_path>
66
+ ```
67
+
68
+ The results will be viewable in the csv whose filepath is specified in the `postprocessed_results_csv` entry in the config file (by default, `postprocessed_results.csv`).