The O human B-species gut O microbiota B-taxonomy_domain influences O the O course O of O human B-species development O and O health O , O playing O key O roles O in O immune O stimulation O , O intestinal O cell O proliferation O , O and O metabolic O balance O . O The O ability O to O acquire O energy O from O carbohydrates B-chemical of O dietary O or O host O origin O is O central O to O the O adaptation O of O human B-species gut O bacterial B-taxonomy_domain species O to O their O niche O . O Xyloglucan B-chemical and O the O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ). O ( O A O ) O Representative O structures B-evidence of O common O xyloglucans B-chemical using O the O Consortium O for O Functional O Glycomics O Symbol O Nomenclature O ( O http O :// O www O . O functionalglycomics O . O org O / O static O / O consortium O / O Nomenclature O . O shtml O ). O Whereas O our O previous O study O focused O on O the O characterization O of O the O linkage O specificity O of O these O GHs B-protein_type , O a O key O outstanding O question O regarding O this O locus O is O how O XyG B-chemical recognition O is O mediated O at O the O cell O surface O . O Here O , O the O SGBPs B-protein_type very O likely O work O in O concert O with O the O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type endo I-protein_type - I-protein_type xyloglucanase I-protein_type B B-species . I-species ovatus I-species GH5 B-protein ( O BoGH5 B-protein ) O to O recruit O and O cleave O XyG B-chemical for O subsequent O periplasmic O import O via O the O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type of O the O XyGUL B-gene ( O Fig O . O 1B O and O C O ). O In O our O initial O study O focused O on O the O functional O characterization O of O the O glycoside B-protein_type hydrolases I-protein_type of O the O XyGUL B-gene , O we O reported O preliminary O affinity B-experimental_method PAGE I-experimental_method and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O data O indicating O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O competent O xyloglucan B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O affinity B-evidence constant I-evidence [ O Ka B-evidence ] O values O of O 3 O . O 74 O × O 105 O M O − O 1 O and O 4 O . O 98 O × O 104 O M O − O 1 O , O respectively O [ O 23 O ]). O Together O , O these O results O highlight O the O high O specificities O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein for O XyG B-chemical , O which O is O concordant O with O their O association O with O XyG B-protein_type - I-protein_type specific I-protein_type GHs I-protein_type in O the O XyGUL B-gene , O as O well O as O transcriptomic O analysis O indicating O that O B B-species . I-species ovatus I-species has O discrete O PUL B-gene for O MLG B-chemical , O GM B-chemical , O and O GGM B-chemical ( O 11 O ). O The O apo B-protein_state structure B-evidence is O color O ramped O from O blue O to O red O . O The O approximate O length O of O each O glycan B-site - I-site binding I-site site I-site is O displayed O , O colored O to O match O the O protein B-evidence structures I-evidence . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein A I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O Potential O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction interactions I-bond_interaction are O shown O as O dashed O lines O , O and O the O distance O is O shown O in O angstroms O . O Dissection O of O the O individual O contribution O of O these O residues O reveals O that O the O W82A B-mutant mutant B-protein_state displays O a O significant O 4 O . O 9 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O while O the O W306A B-mutant substitution B-experimental_method completely O abolishes B-protein_state XyG I-protein_state binding I-protein_state . O Prolines B-residue_name between O domains O are O indicated O as O spheres O . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O Hoping O to O achieve O a O higher O - O resolution O view O of O the O SGBP B-protein - I-protein B I-protein – O xyloglucan B-chemical interaction O , O we O solved B-experimental_method the O crystal B-evidence structure I-evidence of O the O fused B-mutant CD I-mutant domains I-mutant in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 1 O . O 57 O Å O , O Rwork B-evidence = O 15 O . O 6 O %, O Rfree B-evidence = O 17 O . O 1 O %, O residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ). O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O The O similarity O of O the O glycan B-chemical specificity O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein presents O an O intriguing O conundrum O regarding O their O individual O roles O in O XyG B-chemical utilization O by O B B-species . I-species ovatus I-species . O The O ΔSGBP B-mutant - I-mutant A I-mutant ( O ΔBacova_02651 B-mutant ) O strain O ( O cf O . O The O specific O glycan B-chemical signal O that O upregulates O BoXyGUL B-gene is O currently O unknown O . O From O our O present O data O , O we O cannot O eliminate O the O possibility O that O the O glycan B-chemical binding O by O SGBP B-protein - I-protein A I-protein enhances O transcriptional O activation O of O the O XyGUL B-gene . O Beyond O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O we O speculated O that O the O catalytically B-protein_state feeble I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type GH9 B-protein , O which O is O expendable O for O growth O in O the O presence O of O GH5 B-protein , O might O also O play O a O role O in O glycan B-chemical binding O to O the O cell O surface O . O We O hypothesize O that O during O exponential O growth O the O essential O role O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical recognition O , O perhaps O due O to O a O critical O interaction O with O the O TBDT B-protein_type . O A O particularly O understudied O aspect O of O glycan B-chemical utilization O is O the O mechanism O of O import O via O TBDTs B-protein_type ( O SusC B-protein homologs O ) O ( O Fig O . O 1 O ), O which O are O ubiquitous O and O defining O components O of O all O PUL B-gene . O Similarly O , O the O deletion O of O BT1762 B-gene encoding O a O fructan B-protein_type - I-protein_type targeting I-protein_type SusD I-protein_type - I-protein_type like I-protein_type protein I-protein_type in O B B-species . I-species thetaiotaomicron I-species did O not O result O in O a O dramatic O loss O of O growth O on O fructans B-chemical . O Furthermore O , O considering O the O broader O distribution O of O TBDTs B-protein_type in O PUL B-gene lacking O SGBPs B-protein_type ( O sometimes O known O as O carbohydrate B-gene utilization I-gene containing I-gene TBDT I-gene [ I-gene CUT I-gene ] I-gene loci I-gene ; O see O reference O and O reviewed O in O reference O ) O across O bacterial B-taxonomy_domain phyla O , O it O appears O that O the O intimate O biophysical O association O of O these O substrate O - O transport O and O - O binding O proteins O is O the O result O of O specific O evolution O within O the O Bacteroidetes B-taxonomy_domain . O Equally O intriguing O is O the O observation O that O while O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type such O as O SGBP B-protein - I-protein A I-protein share O moderate O primary O and O high O tertiary O structural O conservation O , O the O genes O for O the O SGBPs B-protein_type encoded O immediately O downstream O ( O Fig O . O 1B O [ O sometimes O referred O to O as O “ O susE O positioned O ”]) O encode O glycan B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type with O little O or O no O sequence O or O structural O conservation O , O even O among O syntenic O PUL B-gene that O target O the O same O polysaccharide B-chemical . O Because O the O intestinal O ecosystem O is O a O dense O consortium O of O bacteria B-taxonomy_domain that O must O compete O for O their O nutrients O , O these O multimodular O SGBPs B-protein_type may O reflect O ongoing O evolutionary O experiments O to O enhance O glycan B-chemical uptake O efficiency O . O Whether O organisms O that O express O longer O SGBPs B-protein_type , O extending O further O above O the O cell O surface O toward O the O extracellular O environment O , O are O better O equipped O to O compete O for O available O carbohydrates B-chemical is O presently O unknown O . O Monoclonal O antibodies B-protein_type inhibiting O IL B-protein - I-protein 17A I-protein signaling O have O demonstrated O remarkable O efficacy O , O but O an O oral O therapy O is O still O lacking O . O Tested O in O primary O human B-species cells O , O HAP B-chemical blocked O the O production O of O multiple O inflammatory O cytokines B-protein_type . O These O polypeptides O form O covalent B-protein_state homodimers B-oligomeric_state , O and O IL B-protein - I-protein 17A I-protein and O IL B-protein - I-protein 17F I-protein also O form O an O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17F I-complex_assembly hetereodimer B-oligomeric_state . O In O these O structures B-evidence , O both O IL B-protein - I-protein 17A I-protein and O IL B-protein - I-protein 17F I-protein adopt O a O cysteine B-structure_element - I-structure_element knot I-structure_element fold O with O two O intramolecular O disulfides B-ptm and O two O interchain O disulfide B-ptm bonds I-ptm that O covalently O link O two O monomers B-oligomeric_state . O Identification O of O IL B-protein - I-protein 17A I-protein peptide O inhibitors O Peptides O specifically O binding O to O human B-species IL B-protein - I-protein 17A I-protein were O identified O from O phage B-experimental_method panning I-experimental_method using O cyclic B-experimental_method and I-experimental_method linear I-experimental_method peptide I-experimental_method libraries I-experimental_method ( O Supplementary O Figure O S1 O ). O The O positive O binding O supernatants O were O tested O for O the O ability O to O block O biotinylated B-protein_state IL B-protein - I-protein 17A I-protein signaling O through O IL B-protein - I-protein 17RA I-protein in O an O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly competition B-experimental_method ELISA I-experimental_method assay I-experimental_method where O unlabeled O IL B-protein - I-protein 17A I-protein was O used O as O positive O control O to O inhibit O biotinylated B-protein_state IL B-protein - I-protein 17A I-protein binding O . O An O alanine B-experimental_method scan I-experimental_method of O peptide B-chemical 2 I-chemical , O an O analogue O of O 1 B-chemical with O a O lysine B-residue_name to O arginine B-residue_name substitution B-experimental_method at O position O 14 B-residue_number , O was O initiated O . O Modifications O at O positions O 2 B-residue_number and O 14 B-residue_number were O shown O to O display O improvement O in O binding B-evidence affinity I-evidence ( O data O not O shown O ). O In O this O work O , O 32 B-chemical – I-chemical 34 I-chemical are O capped B-protein_state by O protective O acetyl O group O and O reflect O the O same O inactivity O as O reported O . O Peptide B-chemical 45 I-chemical , O dimerized B-oligomeric_state via O attachment O of O a O PEG21 B-chemical spacer O at O position O 14 B-residue_number ( O Supplementary O Scheme O S1 O and O Figure O S3 O ), O was O the O most O potent O with O cellular O IC50 B-evidence of O 0 O . O 1 O nM O . O This O significant O improvement O in O antagonism O was O not O seen O in O the O peptide O monomer B-oligomeric_state functionalized O with O a O PEG21 B-chemical group O at O position O 14 B-residue_number as O peptide B-chemical 48 I-chemical had O an O IC50 B-evidence of O 21 O nM O ( O Supplementary O Scheme O S2 O ). O To O further O characterize O the O interaction O of O HAP B-chemical with O IL B-protein - I-protein 17A I-protein , O we O set O out O to O determine O its O in O vitro O binding B-evidence affinity I-evidence , O specificity O and O kinetic B-evidence profile I-evidence using O Surface B-experimental_method Plasmon I-experimental_method Resonance I-experimental_method ( O SPR B-experimental_method ) O methods O ( O Fig O . O 1A O ). O HAP B-chemical blocks O IL B-protein - I-protein 17A I-protein signaling O in O a O human B-species primary O cell O assay O In O patients O , O the O concentration O of O IL B-protein - I-protein 17A I-protein in O psoriatic O lesions O is O reported O to O be O 0 O . O 01 O ng O / O ml O , O well O below O the O EC50 O ( O 5 O – O 10ng O / O ml O ) O of O IL B-protein - I-protein 17A I-protein induced O IL B-protein_type - I-protein_type 8 I-protein_type production O in O vitro O . O It O is O known O that O an O antibody B-protein_type antigen B-structure_element - I-structure_element binding I-structure_element fragment I-structure_element ( O Fab B-structure_element ) O can O be O used O as O crystallization O chaperones O in O crystallizing O difficult O targets O . O Furthermore O , O since O it O binds O to O an O area O far O away O from O that O of O HAP B-chemical ( O see O below O ), O this O Fab B-structure_element should O have O minimum O effects O on O HAP B-chemical binding O conformation O . O Crystals B-evidence of O Fab B-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly ternary O complex O were O obtained O readily O in O crystallization B-experimental_method screens I-experimental_method . O Crystallization B-experimental_method of O IL B-protein - I-protein 17A I-protein and O its O binding O partners O was O accomplished O using O two O forms O of O IL B-protein - I-protein 17A I-protein . O Both O structures B-evidence were O solved O by O molecular B-experimental_method replacement I-experimental_method . O The O C O - O terminal O 8 B-residue_range residues I-residue_range of O the O HAP B-chemical that O are O ordered O in O the O structure B-evidence , O 7ADLWDWIN B-chemical , O form O an O amphipathic B-protein_state α B-structure_element - I-structure_element helix I-structure_element interacting O with O the O second O IL B-protein - I-protein 17A I-protein monomer B-oligomeric_state . O Pro6 B-residue_name_number of O HAP B-chemical makes O a O transition O between O the O N O - O terminal O β B-structure_element - I-structure_element strand I-structure_element and O the O C O - O terminal O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical . O Conformational O changes O in O region B-structure_element I I-structure_element induced O by O HAP B-chemical binding O alone O may O allosterically O affect O IL B-protein - I-protein 17RA I-protein binding O , O but O more O importantly O , O the O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical directly O competes O with O IL B-protein - I-protein 17RA I-protein for O binding O to O IL B-protein - I-protein 17A I-protein ( O Fig O . O 3 O ). O However O , O it O mimics O the O β B-structure_element - I-structure_element strand I-structure_element 0 I-structure_element of O IL B-protein - I-protein 17A I-protein . O Conformational O changes O of O IL B-protein - I-protein 17A I-protein are O needed O for O both O HAP B-chemical and O IL B-protein - I-protein 17RA I-protein to O bind O to O that O region O . O During O IL B-protein - I-protein 17A I-protein signaling O , O IL B-protein - I-protein 17A I-protein binds O to O one O copy O of O IL B-protein - I-protein 17RA I-protein and O one O copy O of O IL B-protein - I-protein 17RC I-protein . O HAP B-chemical , O with O only O 15 B-residue_range residues I-residue_range , O can O achieve O almost O the O same O binding B-evidence affinity I-evidence as O the O much O larger O IL B-protein - I-protein 17RA I-protein molecule O , O indicating O a O more O efficient O way O of O binding O to O IL B-protein - I-protein 17A I-protein . O As O demonstrated O by O the O crystal B-evidence structure I-evidence , O binding O of O the O α B-structure_element - I-structure_element helix I-structure_element of O HAP B-chemical should O be O sufficient O for O preventing O IL B-protein - I-protein 17RA I-protein binding O to O IL B-protein - I-protein 17A I-protein . O Theoretically O , O it O is O possible O to O design O chemicals O such O as O stapled O α O - O helical O peptides O to O block O α B-structure_element - I-structure_element helix I-structure_element - O mediated O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly interactions O . O ( O A O ) O HAP B-chemical binds O at O region B-structure_element I I-structure_element of O IL B-protein - I-protein 17A I-protein . O Polar B-bond_interaction interactions I-bond_interaction are O shown O in O dashes O . O Notice O that O the O Trp B-site binding I-site pocket I-site for O W12 B-residue_name_number of O HAP B-chemical or O W31 B-residue_name_number of O IL B-protein - I-protein 17RA I-protein is O missing O in O the O apo B-protein_state structure B-evidence . O It O is O therefore O important O to O understand O the O mechanisms O which O regulate O nadA B-gene expression O levels O , O which O are O predominantly O controlled O by O the O transcriptional B-protein_type regulator I-protein_type NadR B-protein ( O Neisseria B-protein adhesin I-protein A I-protein Regulator I-protein ) O both O in O vitro O and O in O vivo O . O NadR B-protein binds O the O nadA B-gene promoter O and O represses O gene O transcription O . O Serogroup B-taxonomy_domain B I-taxonomy_domain meningococcus I-taxonomy_domain ( O MenB B-species ) O causes O fatal O sepsis O and O invasive O meningococcal B-taxonomy_domain disease O , O particularly O in O young O children O and O adolescents O , O as O highlighted O by O recent O MenB B-species outbreaks O in O universities O of O the O United O States O and O Canada O . O The O amount O of O NadA B-protein exposed O on O the O meningococcal B-taxonomy_domain surface O also O influences O the O antibody O - O mediated O serum O bactericidal O response O measured O in O vitro O . O Although O additional O factors O influence O nadA B-gene expression O , O we O focused O on O its O regulation O by O NadR B-protein , O the O major O mediator O of O NadA B-protein phase O variable O expression O . O However O , O the O homologous O archeal B-taxonomy_domain Sulfolobus B-species tokodaii I-species protein O ST1710 B-protein presented O essentially O the O same O structure B-evidence in O ligand B-protein_state - I-protein_state free I-protein_state and O salicylate B-protein_state - I-protein_state bound I-protein_state forms O , O apparently O contrasting O the O mechanism O proposed O for O MTH313 B-protein . O Despite O these O apparent O differences O , O MTH313 B-protein and O ST1710 B-protein bind O salicylate B-chemical in O approximately O the O same O site O , O between O their O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element . O We O obtained O detailed O new O insights O into O ligand O specificity O , O how O the O ligand O allosterically O influences O the O DNA O - O binding O ability O of O NadR B-protein , O and O the O regulation O of O nadA B-gene expression O , O thus O also O providing O a O deeper O structural O understanding O of O the O ligand O - O responsive O MarR B-protein_type super O - O family O . O NadR B-protein is O dimeric B-oligomeric_state and O is O stabilized O by O specific O hydroxyphenylacetate B-chemical ligands O Recombinant O NadR B-protein was O produced O in O E B-species . I-species coli I-species using O an O expression B-experimental_method construct I-experimental_method prepared O from O N B-species . I-species meningitidis I-species serogroup I-species B I-species strain I-species MC58 I-species . O Since O ligand O - O binding O often O increases O protein O stability O , O we O also O investigated O the O effect O of O various O HPAs B-chemical ( O Fig O 1A O ) O on O the O melting B-evidence temperature I-evidence ( O Tm B-evidence ) O of O NadR B-protein . O As O a O control O of O specificity O , O we O also O tested O salicylate B-chemical , O a O known O ligand O of O some O MarR B-protein_type proteins O previously O reported O to O increase O the O Tm B-evidence of O ST1710 B-protein and O MTH313 B-protein . O 3 B-chemical - I-chemical HPA I-chemical 70 O . O 0 O ± O 0 O . O 1 O 2 O . O 7 O 2 O . O 7 O ± O 0 O . O 1 O 4 B-chemical - I-chemical HPA I-chemical 70 O . O 7 O ± O 0 O . O 1 O 3 O . O 3 O 1 O . O 5 O ± O 0 O . O 1 O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical 71 O . O 3 O ± O 0 O . O 2 O 3 O . O 9 O 1 O . O 1 O ± O 0 O . O 1 O To O further O investigate O the O binding O of O HPAs B-chemical to O NadR B-protein , O we O used O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ). O Data O collection O and O refinement O statistics O for O NadR B-protein structures B-evidence . O In O the O apo B-protein_state - O NadR B-protein crystals B-evidence , O the O two O homodimers B-oligomeric_state were O related O by O a O rotation O of O ~ O 90 O °; O the O observed O association O of O the O two O dimers B-oligomeric_state was O presumably O merely O an O effect O of O crystal O packing O , O since O the O interface B-site between O the O two O homodimers B-oligomeric_state is O small O (< O 550 O Å2 O of O buried O surface O area O ), O and O is O not O predicted O to O be O physiologically O relevant O by O the O PISA O software O . O Helices B-structure_element α3 B-structure_element and O α4 B-structure_element form O a O helix B-structure_element - I-structure_element turn I-structure_element - I-structure_element helix I-structure_element motif I-structure_element , O followed O by O the O “ O wing B-structure_element motif I-structure_element ” O comprised O of O two O short B-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element ( O β1 B-structure_element - I-structure_element β2 I-structure_element ) O linked O by O a O relatively O long O and O flexible O loop B-structure_element . O Interestingly O , O in O the O α4 B-structure_element - I-structure_element β2 I-structure_element region I-structure_element , O the O stretch O of O residues O from O R64 B-residue_range - I-residue_range R91 I-residue_range presents O seven O positively O - O charged O side O chains O , O all O available O for O potential O interactions O with O DNA B-chemical . O Using O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O a O panel O of O eight O mutant B-protein_state NadR B-protein proteins O was O prepared O ( O including O mutations O H7A B-mutant , O S9A B-mutant , O N11A B-mutant , O D112A B-mutant , O R114A B-mutant , O Y115A B-mutant , O K126A B-mutant , O L130K B-mutant and O L133K B-mutant ), O sufficient O to O explore O the O entire O dimer B-site interface I-site . O It O is O notable O that O L130 B-residue_name_number is O usually O present O as O Leu B-residue_name , O or O an O alternative O bulky O hydrophobic O amino O acid O ( O e O . O g O . O Phe B-residue_name , O Val B-residue_name ), O in O many O MarR B-protein_type family O proteins O , O suggesting O a O conserved B-protein_state role O in O stabilizing O the O dimer B-site interface I-site . O The O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly structure B-evidence revealed O the O ligand B-site - I-site binding I-site site I-site nestled O between O the O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element ( O Fig O 2 O ). O The O binding B-site pocket I-site was O almost O entirely O filled O by O 4 B-chemical - I-chemical HPA I-chemical and O one O water B-chemical molecule O , O although O there O also O remained O a O small O tunnel B-site 2 O - O 4Å O in O diameter O and O 5 O - O 6Å O long O leading O from O the O pocket B-site ( O proximal O to O the O 4 O - O hydroxyl O position O ) O to O the O protein O surface O . O Green O and O blue O ribbons O depict O NadR B-protein chains B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O . O Residues O AsnA11 B-residue_name_number and O ArgB18 B-residue_name_number likely O make O indirect O yet O local O contributions O to O ligand O binding O , O mainly O by O stabilizing O the O position O of O AspB36 B-residue_name_number . O List O of O 4 B-chemical - I-chemical HPA I-chemical atoms O bound O to O NadR B-protein via O ionic B-bond_interaction interactions I-bond_interaction and O / O or O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction . O 4 B-chemical - I-chemical HPA I-chemical atom O NadR B-protein residue O / O atom O Distance O ( O Å O ) O O2 O TrpB39 B-residue_name_number / O NE1 O 2 O . O 83 O O2 O ArgB43 B-residue_name_number / O NH1 O 2 O . O 76 O O1 O ArgB43 B-residue_name_number / O NH1 O 3 O . O 84 O O1 O SerA9 B-residue_name_number / O OG O 2 O . O 75 O O1 O TyrB115 B-residue_name_number / O OH O 2 O . O 50 O O2 O Water B-chemical (* O Ser9 B-residue_name_number / O Asn11 B-residue_name_number ) O 2 O . O 88 O OH O AspB36 B-residue_name_number / O OD1 O / O OD2 O 3 O . O 6 O / O 3 O . O 7 O * O Bond O distance O between O the O ligand O carboxylate O group O and O the O water B-chemical molecule O , O which O in O turn O makes O H B-bond_interaction - I-bond_interaction bond I-bond_interaction to O the O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number side O chains O . O In O SPR B-experimental_method , O the O signal O measured O is O proportional O to O the O total O molecular O mass O proximal O to O the O sensor O surface O ; O consequently O , O if O the O molecular O weights O of O the O interactors O are O known O , O then O the O stoichiometry O of O the O resulting O complex O can O be O determined O . O The O stoichiometry O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O was O determined O using O Eq O 1 O ( O see O Materials O and O Methods O ), O and O revealed O stoichiometries B-evidence of O 1 O . O 13 O for O 4 B-chemical - I-chemical HPA I-chemical , O 1 O . O 02 O for O 3 B-chemical - I-chemical HPA I-chemical , O and O 1 O . O 21 O for O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O strongly O suggesting O that O one O NadR B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state 1 O HPA B-chemical analyte O molecule O . O Indeed O , O we O noted O interesting O differences O in O the O side O chains O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O Arg43 B-residue_name_number , O which O in O monomer B-oligomeric_state B B-structure_element are O used O to O contact O the O ligand O while O in O monomer B-oligomeric_state A B-structure_element they O partially O occupied O the O pocket B-site and O collectively O reduced O its O volume O significantly O . O In O contrast O , O the O apo B-protein_state - O form O Met22 B-residue_name_number and O Phe25 B-residue_name_number residues O were O still O encroaching O the O spaces O of O the O 4 O - O hydroxyl O group O and O the O phenyl O ring O of O the O ligand O , O respectively O ( O Fig O 5C O ). O The O ‘ O outward B-protein_state ’ O position O of O Arg43 B-residue_name_number generated O an O open B-protein_state apo B-protein_state - O form O pocket B-site with O volume O approximately O 380Å3 O . O Taken O together O , O these O observations O suggest O that O Arg43 B-residue_name_number is O a O major O determinant O of O ligand O binding O , O and O that O its O ‘ O inward B-protein_state ’ O position O inhibits O the O binding O of O 4 B-chemical - I-chemical HPA I-chemical to O the O empty O pocket B-site of O holo B-protein_state - O NadR B-protein . O The O inner O conformer O is O the O one O that O would O display O major O clashes O if O 4 B-chemical - I-chemical HPA I-chemical were O present O . O ( O C O ) O Comparison O of O the O empty O pocket B-site from O holo B-protein_state - O NadR B-protein ( O green O residues O ) O with O the O four O empty O pockets B-site of O apo B-protein_state - O NadR B-protein ( O grey O residues O ), O shows O that O in O the O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical the O Arg43 B-residue_name_number side O chain O is O always O observed O in O the O ‘ O outward B-protein_state ’ O conformation O . O The O broad O spectral O dispersion O and O the O number O of O peaks O observed O , O which O is O close O to O the O number O of O expected O backbone O amide O N O - O H O groups O for O this O polypeptide O , O confirmed O that O apo B-protein_state - O NadR B-protein is O well B-protein_state - I-protein_state folded I-protein_state under O these O conditions O and O exhibits O one O conformation O appreciable O on O the O NMR B-experimental_method timescale O , O i O . O e O . O in O the O NMR B-experimental_method experiments O at O 25 O ° O C O , O two O or O more O distinct O conformations O of O apo B-protein_state - O NadR B-protein monomers B-oligomeric_state were O not O readily O apparent O . O ( O B O , O C O ) O Overlay B-experimental_method of O selected O regions O of O the O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence acquired O at O 25 O ° O C O of O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O red O ) O superimposed B-experimental_method with O the O spectra B-evidence acquired O at O 10 O ° O C O of O apo B-protein_state - O NadR B-protein ( O blue O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ). O Considering O the O small O size O , O fast O diffusion O and O relatively O low O binding B-evidence affinity I-evidence of O 4 B-chemical - I-chemical HPA I-chemical , O it O would O not O be O surprising O if O the O ligand O associates O and O dissociates O rapidly O on O the O NMR B-experimental_method time O scale O , O resulting O in O only O one O set O of O peaks O whose O chemical O shifts O represent O the O average O environment O of O the O bound B-protein_state and O unbound B-protein_state states O . O Interestingly O , O by O cooling O the O samples O to O 10 O ° O C O , O we O observed O that O a O number O of O those O peaks O strongly O affected O by O 4 B-chemical - I-chemical HPA I-chemical ( O and O therefore O likely O to O be O in O the O ligand B-site - I-site binding I-site site I-site ) O demonstrated O evidence O of O peak O splitting O , O i O . O e O . O a O tendency O to O become O two O distinct O peaks O rather O than O one O single O peak O ( O Fig O 6B O and O 6C O ). O Similarly O , O the O entire O holo B-protein_state - O homodimer B-oligomeric_state could O be O closely B-experimental_method superposed I-experimental_method onto O each O of O the O apo B-protein_state - O homodimers B-oligomeric_state , O showing O rmsd B-evidence values O of O 1 O . O 29Å O and O 1 O . O 31Å O , O and O with O more O notable O differences O in O the O α6 B-structure_element helix I-structure_element positions O ( O Fig O 7B O ). O Structural B-experimental_method comparisons I-experimental_method of O NadR B-protein and O modelling O of O interactions O with O DNA B-chemical . O However O , O structural B-experimental_method comparisons I-experimental_method revealed O that O the O shift O of O holo B-protein_state - O NadR B-protein helix B-structure_element α4 B-structure_element induced O by O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical was O also O accompanied O by O several O changes O at O the O holo B-protein_state dimer B-site interface I-site , O while O such O extensive O structural O differences O were O not O observed O in O the O apo B-protein_state dimer B-site interfaces I-site , O particularly O notable O when O comparing O the O α6 B-structure_element helices I-structure_element ( O S3 O Fig O ). O Interestingly O , O OhrR B-protein contacts O ohrA B-gene across O 22 O base O pairs O ( O bp O ), O and O similarly O the O main O NadR B-protein target B-site sites I-site identified O in O the O nadA B-gene promoter O ( O the O operators O Op O I O and O Op O II O ) O both O span O 22 O bp O . O When O aligned B-experimental_method with O OhrR B-protein , O the O apo B-protein_state - O homodimer B-oligomeric_state CD B-structure_element presented O yet O another O different O intermediate O conformation O ( O rmsd B-evidence 2 O . O 9Å O ), O apparently O not O ideally O pre O - O configured O for O DNA B-chemical binding O , O but O which O in O solution O can O presumably O readily O adopt O the O AB B-structure_element conformation O due O to O the O intrinsic O flexibility O described O above O . O Western B-experimental_method blot I-experimental_method analyses O of O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O strain O ( O lanes O 1 O – O 2 O ) O or O isogenic O nadR B-gene knockout O strains O ( O ΔNadR B-mutant ) O complemented O to O express O the O indicated O NadR B-protein WT B-protein_state or O mutant B-protein_state proteins O ( O lanes O 3 O – O 12 O ) O or O not O complemented O ( O lanes O 13 O – O 14 O ), O grown O in O the O presence O ( O even O lanes O ) O or O absence O ( O odd O lanes O ) O of O 5mM O 4 B-chemical - I-chemical HPA I-chemical , O showing O NadA B-protein and O NadR B-protein expression O . O The O H7A B-mutant , O S9A B-mutant and O F25A B-mutant mutants O efficiently O repress O nadA B-gene expression O but O are O less O ligand O - O responsive O than O WT B-protein_state NadR B-protein . O The O N11A B-mutant mutant B-protein_state does O not O efficiently O repress O nadA B-gene expression O either O in O presence O or O absence O of O 4 B-chemical - I-chemical HPA I-chemical . O ( O The O protein O abundance O levels O of O the O meningococcal B-taxonomy_domain factor B-protein H I-protein binding I-protein protein I-protein ( O fHbp B-protein ) O were O used O as O a O gel O loading O control O ). O NadA B-protein is O a O surface O - O exposed O meningococcal B-taxonomy_domain protein O contributing O to O pathogenesis O , O and O is O one O of O three O main O antigens O present O in O the O vaccine O Bexsero O . O We O confirmed O this O stoichiometry O in O solution O using O SPR B-experimental_method methods O . O Structural B-experimental_method analyses I-experimental_method suggested O that O ‘ O inward B-protein_state ’ O side O chain O positions O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O especially O Arg43 B-residue_name_number precluded O binding O of O a O second O ligand O molecule O . O In O the O S B-species . I-species tokodaii I-species protein O ST1710 B-protein , O salicylate B-chemical binds O to O the O same O position O in O each O monomer B-oligomeric_state of O the O dimer B-oligomeric_state , O in O a O site O equivalent O to O the O putative O biologically O relevant O site O of O MTH313 B-protein ( O Fig O 10B O ). O Unlike O other O MarR B-protein_type family O proteins O which O revealed O multiple O ligand O binding O interactions O , O we O observed O only O 1 O molecule O of O 4 B-chemical - I-chemical HPA I-chemical bound B-protein_state to I-protein_state NadR B-protein , O suggesting O a O more O specific O and O less O promiscuous O interaction O . O NadR B-protein shows O a O ligand B-site binding I-site site I-site distinct O from O other O MarR B-protein_type homologues O . O Alternatively O , O it O is O possible O that O other O MarR B-protein_type homologues O ( O e O . O g O . O NMB1585 B-protein ) O may O have O no O extant O functional O binding B-site pocket I-site and O thus O may O have O lost O the O ability O to O respond O to O a O ligand O , O acting O instead O as O constitutive O DNA B-chemical - O binding O regulatory O proteins O . O The O noted O flexibility O may O also O explain O how O NadR B-protein can O adapt O to O bind O various O DNA B-chemical target O sequences O with O slightly O different O structural O features O . O Like O other O nuclear B-protein_type hormone I-protein_type receptors I-protein_type , O RORγ B-protein ’ O s O helix12 B-structure_element which O makes O up O the O C O - O termini O of O the O LBD B-structure_element is O an O essential O part O of O the O coactivator B-site binding I-site pocket I-site and O is O commonly O referred O to O as O the O activation B-structure_element function I-structure_element helix I-structure_element 2 I-structure_element ( O AF2 B-structure_element ). O FRET B-evidence results I-evidence for O agonist B-protein_state BIO592 B-chemical ( O a O ) O and O Inverse B-protein_state Agonist I-protein_state BIO399 B-chemical ( O b O ) O a O The O ternary B-evidence structure I-evidence of O RORγ518 B-protein BIO592 B-chemical and O EBI96 B-chemical . O b O RORγ B-protein AF2 B-structure_element helix I-structure_element in O the O agonist B-protein_state conformation O . O The O structure B-evidence of O the O ternary O complex O had O features O similar O to O other O ROR B-protein_type agonist B-protein_state coactivator O structures B-evidence in O a O transcriptionally B-protein_state active I-protein_state canonical B-protein_state three I-protein_state layer I-protein_state helix I-protein_state fold I-protein_state with O the O AF2 B-structure_element helix I-structure_element in O the O agonist B-protein_state conformation O . O The O agonist B-protein_state conformation O is O stabilized O by O a O hydrogen B-bond_interaction bond I-bond_interaction between O His479 B-residue_name_number and O Tyr502 B-residue_name_number , O in O addition O to O π B-bond_interaction - I-bond_interaction π I-bond_interaction interactions I-bond_interaction between O His479 B-residue_name_number , O Tyr502 B-residue_name_number and O Phe506 B-residue_name_number ( O Fig O . O 2b O ). O Electron B-evidence density I-evidence for O the O coactivator O peptide O EBI96 B-chemical was O observed O for O residues O EFPYLLSLLG B-structure_element which O formed O a O α B-structure_element - I-structure_element helix I-structure_element stabilized O through O hydrophobic B-bond_interaction interactions I-bond_interaction with O the O coactivator B-site binding I-site pocket I-site on O RORγ B-protein ( O Fig O . O 2c O ). O b O Benzoxazinone B-chemical ring O system O of O agonist B-protein_state BIO592 B-chemical packing O against O His479 B-residue_name_number of O RORγ B-protein stabilizing O agonist B-protein_state conformation O of O the O AF2 B-structure_element helix I-structure_element BIO592 B-chemical bound B-protein_state in I-protein_state a O collapsed B-protein_state conformational O state O in O the O LBS B-site of O RORγ B-protein with O the O xylene B-chemical ring O positioned O at O the O bottom O of O the O pocket B-site making O hydrophobic B-bond_interaction interactions I-bond_interaction with O Val376 B-residue_name_number , O Phe378 B-residue_name_number , O Phe388 B-residue_name_number and O Phe401 B-residue_name_number , O with O the O ethyl B-chemical - I-chemical benzoxazinone I-chemical ring O making O several O hydrophobic B-bond_interaction interactions I-bond_interaction with O Trp317 B-residue_name_number , O Leu324 B-residue_name_number , O Met358 B-residue_name_number , O Leu391 B-residue_name_number , O Ile B-residue_name_number 400 I-residue_name_number and O His479 B-residue_name_number ( O Fig O . O 3a O , O Additional O file O 3 O ). O Hydrophobic B-bond_interaction interaction I-bond_interaction between O the O ethyl O group O of O the O benzoxazinone B-chemical and O His479 B-residue_name_number reinforce O the O His479 B-residue_name_number sidechain O position O for O making O the O hydrogen B-bond_interaction bond I-bond_interaction with O Tyr502 B-residue_name_number thereby O stabilizing O the O agonist B-protein_state conformation O ( O Fig O . O 3b O ). O However O , O in O the O presence B-protein_state of I-protein_state inverse B-protein_state agonist I-protein_state BIO399 B-chemical , O the O proteolytic B-evidence pattern I-evidence showed O significantly O less O protection O , O albeit O the O products O were O more O heterogeneous O ( O majority O ending O at O 494 B-residue_number / O 495 B-residue_number ), O indicating O the O destabilization O of O the O AF2 B-structure_element helix I-structure_element compared O to O either O the O APO B-protein_state or O ternary B-protein_state agonist I-protein_state complex I-protein_state ( O Fig O . O 4 O , O Additional O file O 5 O ). O a O Overlay B-experimental_method of O RORγ B-protein structures B-evidence bound B-protein_state to I-protein_state BIO596 B-chemical ( O Green O ), O BIO399 B-chemical ( O Cyan O ) O and O T0901317 B-chemical ( O Pink O ). O We O hypothesize O that O since O the O Met358 B-residue_name_number sidechain O conformation O in O the O T0901317 B-chemical RORγ B-protein structure B-evidence is O not O in O the O BIO399 B-chemical conformation O , O this O difference O could O account O for O the O 10 O - O fold O reduction O in O the O inverse O agonism O for O T0901317 B-chemical compared O to O BIO399 B-chemical in O the O FRET B-experimental_method assay I-experimental_method . O The O inverse B-protein_state agonist I-protein_state activity O for O these O compounds O has O been O attributed O to O orientating O Trp317 B-residue_name_number to O clash O with O Tyr502 B-residue_name_number or O a O direct O inverse B-protein_state agonist I-protein_state hydrogen B-bond_interaction bonding I-bond_interaction event O with O His479 B-residue_name_number , O both O of O which O would O perturb O the O agonist B-protein_state conformation O of O RORγ B-protein . O GAL4 B-experimental_method cell I-experimental_method assay I-experimental_method selectivity O profile O for O BIO399 B-chemical toward O RORα B-protein and O RORβ B-protein in O GAL4 B-protein Furthermore O , O RORα B-protein contains O two O phenylalanine B-residue_name residues O in O its O LBS B-site whereas O RORβ B-protein and O γ B-protein have O a O leucine B-residue_name in O the O same O position O ( O Fig O . O 6b O ). O In O metabolism O , O molecules O with O “ O high O - O energy O ” O bonds O ( O e O . O g O ., O ATP B-chemical and O Acetyl B-chemical ~ I-chemical CoA I-chemical ) O are O critical O for O both O catabolic O and O anabolic O processes O . O The O facets O of O the O shell B-structure_element are O composed O primarily O of O hexamers B-oligomeric_state that O are O typically O perforated O by O pores B-site lined O with O highly B-protein_state conserved I-protein_state , O polar B-protein_state residues B-structure_element that O presumably O function O as O the O conduits O for O metabolites O into O and O out O of O the O shell B-structure_element . O Substrates O and O cofactors O involving O the O PTAC B-protein_type reaction O are O shown O in O red O ; O other O substrates O and O enzymes O are O shown O in O black O , O and O other O cofactors O are O shown O in O gray O . O The O activities O of O core O enzymes O are O not O confined O to O BMC B-complex_assembly - O associated O functions O : O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type are O utilized O in O diverse O metabolic O reactions O , O and O PTAC B-protein_type catalyzes O a O key O biochemical O reaction O in O the O process O of O obtaining O energy O during O fermentation O . O This O occurs O , O for O example O , O during O acetoclastic O methanogenesis O in O the O archaeal B-taxonomy_domain Methanosarcina B-taxonomy_domain species I-taxonomy_domain . O Another O distinctive O feature O of O BMC B-protein_state - I-protein_state associated I-protein_state PduL B-protein_type homologs O is O an O N O - O terminal O encapsulation B-structure_element peptide I-structure_element ( O EP B-structure_element ) O that O is O thought O to O “ O target O ” O proteins O for O encapsulation O by O the O BMC B-complex_assembly shell B-structure_element . O EPs B-structure_element are O frequently O found O on O BMC B-protein_type - I-protein_type associated I-protein_type proteins I-protein_type and O have O been O shown O to O interact O with O shell O proteins O . O Here O we O report O high O - O resolution O crystal B-evidence structures I-evidence of O a O PduL B-protein_type - I-protein_type type I-protein_type PTAC I-protein_type in O both O CoA B-protein_state - I-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state forms O , O completing O our O understanding O of O the O structural O basis O of O catalysis O by O the O metabolosome B-complex_assembly common O core O enzymes O . O β B-structure_element - I-structure_element Barrel I-structure_element 1 I-structure_element consists O of O the O N O - O terminal O β B-structure_element strand I-structure_element and O β B-structure_element strands I-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O polypeptide O chain O ( O β1 B-structure_element , O β10 B-structure_element - I-structure_element β14 I-structure_element ; O residues O 37 B-residue_range – I-residue_range 46 I-residue_range and O 155 B-residue_range – I-residue_range 224 I-residue_range ). O Primary O structure O conservation O of O the O PduL B-protein_type protein O family O . O Sequence O logo O calculated O from O the O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PduL B-protein_type homologs O ( O see O Materials O and O Methods O ), O but O not B-protein_state including I-protein_state putative O EP B-structure_element sequences O . O The O position O numbers O shown O correspond O to O the O residue O numbering O of O rPduL B-protein ; O note O that O some O positions O in O the O logo O represent O gaps O in O the O rPduL B-protein sequence O . O The O asterisk O and O double O arrow O marks O the O location O of O the O π B-bond_interaction – I-bond_interaction π I-bond_interaction interaction I-bond_interaction between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PduL B-protein_type homologs O . O ( O a O )–( O c O ): O Chromatograms B-evidence of O sPduL B-protein ( O a O ), O rPduL B-protein ( O b O ), O and O pPduL B-protein ( O c O ) O with O ( O orange O ) O or O without O ( O blue O ) O the O predicted O EP B-structure_element , O post O - O nickel B-experimental_method affinity I-experimental_method purification I-experimental_method , O applied O over O a O preparative O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O second O ( O Zn2 B-chemical ) O is O in O octahedral O coordination O by O three O conserved B-protein_state histidine B-residue_name residues O ( O His157 B-residue_name_number , O His159 B-residue_name_number and O His204 B-residue_name_number ) O as O well O as O three O water B-chemical molecules O ( O Fig O 4a O ). O When O the O crystals B-experimental_method were I-experimental_method soaked I-experimental_method in O a O sodium B-chemical phosphate I-chemical solution O for O 2 O d O prior O to O data O collection O , O the O CoA B-chemical dissociates O , O and O density B-evidence for O a O phosphate B-chemical molecule O is O visible O at O the O active B-site site I-site ( O Table O 2 O , O Fig O 4b O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element Given O the O diversity O of O signature O enzymes O ( O Table O 1 O ), O it O is O plausible O that O PduL B-protein_type orthologs O may O adopt O different O oligomeric O states O that O reflect O the O differences O in O the O proteins O being O packaged O with O them O in O the O organelle O lumen O . O pPduLΔEP B-mutant eluted O as O two O smaller O forms O , O possibly O corresponding O to O a O trimer B-oligomeric_state and O a O monomer B-oligomeric_state . O Homologs O of O the O predominant O cofactor O utilizer O ( O aldehyde B-protein_type dehydrogenase I-protein_type ) O and O NAD B-chemical + I-chemical regenerator O ( O alcohol B-protein_type dehydrogenase I-protein_type ) O have O been O structurally O characterized O , O but O until O now O structural O information O was O lacking O for O PduL B-protein_type , O which O recycles O CoA B-chemical in O the O organelle O lumen O . O Refined O domain O assignment O based O on O our O structure B-evidence should O be O able O to O predict O domains O of O PF06130 B-structure_element homologs O much O more O accurately O . O Implications O for O Metabolosome B-complex_assembly Core O Assembly O Free O CoA B-chemical and O NAD B-chemical +/ I-chemical H B-chemical could O potentially O be O bound O to O the O enzymes O as O the O core O assembles O and O is O encapsulated O . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence indicates O that O in O the O opposite O reaction O direction O phosphate B-chemical is O bound O first O , O and O then O an O acyl B-chemical - I-chemical CoA I-chemical enters O . O The O two O crystal B-evidence structures I-evidence that O we O report O here O for O the O ( O Sa B-species ) O EctC B-protein protein O ( O with O resolutions O of O 1 O . O 2 O Å O and O 2 O . O 0 O Å O , O respectively O ), O and O data O derived O from O extensive O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method experiments O targeting O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state residues O within O the O extended O EctC B-protein_type protein I-protein_type family O , O provide O a O first O view O into O the O architecture O of O the O catalytic B-site core I-site of O the O ectoine B-protein_type synthase I-protein_type . O The O ( O Sa B-species ) O EctC B-protein protein O was O overproduced O and O isolated O with O good O yields O ( O 30 O – O 40 O mg O L O - O 1 O of O culture O ) O and O purity O ( O S2a O Fig O ). O Biochemical O properties O of O the O ectoine B-protein_type synthase I-protein_type N B-chemical - I-chemical α I-chemical - I-chemical ADABA I-chemical has O so O far O not O been O considered O as O a O substrate O for O EctC B-protein , O but O microorganisms B-taxonomy_domain that O use O ectoine B-chemical as O a O nutrient O produce O it O as O an O intermediate O during O catabolism O . O The O stimulation O of O EctC B-protein enzyme O activity O by O salts O has O previously O also O been O observed O for O other O ectoine B-protein_type synthases I-protein_type . O Since O variations O of O the O above O - O described O metal B-structure_element - I-structure_element binding I-structure_element motif I-structure_element occur O frequently O , O we O experimentally O investigated O the O presence O and O nature O of O the O metal B-chemical that O might O be O contained O in O the O ( O Sa B-species ) O EctC B-protein protein O by O inductive B-experimental_method - I-experimental_method coupled I-experimental_method plasma I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O ICP B-experimental_method - I-experimental_method MS I-experimental_method ). O We O note O in O this O context O , O that O the O values O obtained O for O the O iron B-chemical content O of O the O ( O Sa B-species ) O EctC B-protein proteins O varied O by O approximately O 10 O to O 20 O % O between O the O two O methods O . O Dependency O of O the O ectoine B-protein_type synthase I-protein_type activity O on O metals O . O We O then O took O such O an O inactivated B-protein_state enzyme O preparation O , O removed O the O EDTA B-chemical by O dialysis B-experimental_method , O and O added O stoichiometric O amounts O ( O 10 O μM O ) O of O various O metals O to O the O ( O Sa B-species ) O EctC B-protein enzyme O . O Hence O , O N B-chemical - I-chemical α I-chemical - I-chemical ADABA I-chemical is O a O newly O recognized O substrate O for O ectoine B-protein_type synthase I-protein_type . O The O Km B-evidence dropped O fife O - O fold O from O 4 O . O 9 O ± O 0 O . O 5 O mM O to O 25 O . O 4 O ± O 2 O . O 9 O mM O , O and O the O catalytic B-evidence efficiency I-evidence was O reduced O from O 1 O . O 47 O mM O - O 1 O s O - O 1 O to O 0 O . O 02 O mM O - O 1 O s O - O 1 O , O a O 73 O - O fold O decrease O . O Finally O , O a O monomer B-oligomeric_state of O this O structure B-evidence was O used O as O a O template O for O molecular B-experimental_method replacement I-experimental_method to O phase O the O high O - O resolution O ( O 1 O . O 2 O Å O ) O dataset O of O crystal O form O A O , O which O was O subsequently O refined O to O a O final O Rcryst B-evidence of O 12 O . O 4 O % O and O an O Rfree B-evidence of O 14 O . O 9 O % O ( O S1 O Table O ). O This O structure B-evidence adopts O an O open B-protein_state conformation O with O respect O to O the O typical O fold O of O cupin B-structure_element barrels I-structure_element and O is O therefore O termed O in O the O following O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence ( O Fig O 4b O ). O Interestingly O , O the O three O other O monomers B-oligomeric_state present O in O the O asymmetric O unit O all O range O from O Met B-residue_range - I-residue_range 1 I-residue_range to I-residue_range Glu I-residue_range - I-residue_range 115 I-residue_range and O adopt O a O conformation O similar O to O the O “ O open B-protein_state ” O EctC B-protein structure B-evidence . O The O structure B-evidence of O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein protein O consists O of O 11 O β B-structure_element - I-structure_element strands I-structure_element ( O β1 B-structure_element - I-structure_element β11 I-structure_element ) O and O two O α B-structure_element - I-structure_element helices I-structure_element ( O α B-structure_element - I-structure_element I I-structure_element and O α B-structure_element - I-structure_element II I-structure_element ) O ( O Fig O 4a O ). O Our O data O classify O EctC B-protein , O in O addition O to O the O polyketide B-protein_type cyclase I-protein_type RemF B-protein , O as O the O second O known O cupin B-protein_type - I-protein_type related I-protein_type enzyme O that O catalyze O a O cyclocondensation O reaction O . O Analysis O of O the O EctC B-protein dimer B-site interface I-site as O observed O in O the O ( O Sa B-species ) O EctC B-protein crystal B-evidence structure I-evidence It O is O worth O mentioning O that O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element is O located O next O to O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number , O which O in O all O likelihood O involved O in O metal B-chemical binding O ( O see O below O ). O In O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence , O both O proline B-residue_name residues O are O visible O in O the O electron B-evidence density I-evidence ; O however O , O almost O directly O after O Pro B-residue_name_number - I-residue_name_number 110 I-residue_name_number , O the O electron B-evidence density I-evidence is O drastically O diminished O caused O by O the O flexibility O of O the O carboxy B-structure_element - I-structure_element terminus I-structure_element . O Since O these O proline B-residue_name residues O are O followed O by O the O carboxy B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O , O the O interaction O of O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number with O Pro B-residue_name_number - I-residue_name_number 109 I-residue_name_number will O likely O play O a O substantial O role O in O spatially O orienting O this O very O flexible O part O of O the O protein O . O The O interaction O between O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number and O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number is O only O visible O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence where O the O partially B-protein_state extended I-protein_state carboxy B-structure_element - I-structure_element terminus I-structure_element is O resolved O in O the O electron B-evidence density I-evidence . O ( O b O ) O An O overlay B-experimental_method of O the O “ O open B-protein_state ” O ( O colored O in O light O blue O ) O and O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O colored O in O green O ) O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O . O The O putative O iron B-site binding I-site site I-site of O ( O Sa B-species ) O EctC B-protein In O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence of O ( O Sa B-species ) O EctC B-protein , O each O of O the O four O monomers B-oligomeric_state in O the O asymmetric O unit O contains O a O relative O strong O electron B-evidence density I-evidence positioned O within O the O cupin B-structure_element barrel I-structure_element . O Of O note O is O the O different O spatial O arrangement O of O the O side O - O chain O of O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number ( O located O in O a O loop B-structure_element after O the O end O of O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element ) O in O the O “ O open B-protein_state ” O and O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein structures B-evidence . O It O becomes O apparent O from O an O overlay B-experimental_method of O the O “ O open B-protein_state ” O and O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein crystal B-evidence structures I-evidence that O the O side O - O chain O of O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number rotates O away O from O the O position O of O the O presumptive O iron B-chemical , O whereas O the O side O - O chains O of O those O residues O that O probably O contacting O the O metal B-chemical directly O [ O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number ], O remain O in O place O ( O Fig O 6a O and O 6b O ). O We O also O replaced B-experimental_method Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number with O either O a O Phe B-residue_name or O a O Trp B-residue_name residue O and O both O mutant B-protein_state proteins O largely O lost O their O catalytic O activity O and O iron B-chemical content O ( O Table O 1 O ) O despite O the O fact O that O these O substitutions O were O conservative O . O Since O we O used O PEG B-chemical molecules O in O the O crystallization O conditions O , O the O observed O density B-evidence might O stem O from O an O ordered O part O of O a O PEG B-chemical molecule O , O or O low O molecular O weight O PEG B-chemical species O that O might O have O been O present O in O the O PEG B-chemical preparation O used O in O our O experiments O . O Despite O these O notable O limitations O , O we O considered O the O serendipitously O trapped O compound O as O a O mock O ligand O that O might O provide O useful O insights O into O the O spatial O positioning O of O the O true O EctC B-protein substrate O and O those O residues O that O coordinate O it O within O the O ectoine B-protein_type synthase I-protein_type active B-site site I-site . O The O electron B-evidence density I-evidence was O calculated O as O an O omit B-evidence map I-evidence and O contoured O at O 1 O . O 0 O σ O . O We O also O calculated O an O omit B-evidence map I-evidence and O the O electron B-evidence density I-evidence reappeared O ( O Fig O 7b O ). O These O correspond O to O amino O acids O Thr B-residue_name_number - I-residue_name_number 40 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 52 I-residue_name_number , O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Gly B-residue_name_number - I-residue_name_number 64 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number - O Leu B-residue_name_number - I-residue_name_number 87 I-residue_name_number , O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number , O Phe B-residue_name_number - I-residue_name_number 107 I-residue_name_number , O Pro B-residue_name_number - I-residue_name_number 109 I-residue_name_number , O Gly B-residue_name_number - I-residue_name_number 113 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 117 I-residue_name_number in O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 2 O ). O Each O of O these O mutant B-protein_state ( O Sa B-species ) O EctC B-protein proteins O was O overproduced O in O E B-species . I-species coli I-species and O purified O by O affinity B-experimental_method chromatography I-experimental_method ; O they O all O yielded O pure O and O stable O protein O preparations O . O We O replaced B-experimental_method each O of O these O residues O with O an O Ala B-residue_name residue O and O found O that O none O of O them O had O an O influence O on O the O iron B-chemical content O of O the O mutant B-protein_state proteins O . O Each O of O these O residues O is O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state . O His B-residue_name_number - I-residue_name_number 117 I-residue_name_number is O a O strictly B-protein_state conserved I-protein_state residue O and O its O substitution B-experimental_method by O an O Ala B-residue_name residue O results O in O a O drop O of O enzyme O activity O ( O down O to O 44 O %) O and O an O iron B-chemical content O of O 83 O % O ( O Table O 1 O ). O As O an O internal O control O for O our O mutagenesis B-experimental_method experiments I-experimental_method , O we O also O substituted B-experimental_method Thr B-residue_name_number - I-residue_name_number 41 I-residue_name_number and O His B-residue_name_number - I-residue_name_number 51 I-residue_name_number , O two O residues O that O are O not B-protein_state evolutionarily I-protein_state conserved I-protein_state in O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type with O Ala B-residue_name residues O . O Hence O , O the O active B-site site I-site of O ectoine B-protein_type synthase I-protein_type must O possess O a O certain O degree O of O structural O plasticity O , O a O notion O that O is O supported O by O the O report O on O the O EctC B-protein - O catalyzed O formation O of O the O synthetic O compatible O solute O ADPC B-chemical through O the O cyclic O condensation O of O two O glutamine B-chemical molecules O . O We O assumed O that O its O location O and O mode O of O binding O gives O , O in O all O likelihood O , O clues O as O to O the O position O of O the O true O substrate O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical within O the O EctC B-protein active B-site site I-site . O This O probably O worked O to O the O detriment O of O our O efforts O in O solving O crystal B-evidence structures I-evidence of O the O full B-protein_state - I-protein_state length I-protein_state ( O Sa B-species ) O EctC B-protein protein O in B-protein_state complex I-protein_state with I-protein_state either O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical or O ectoine B-chemical . O Interestingly O , O mutations B-experimental_method blocking O PIN B-structure_element oligomerization O had O no O RNase B-protein_type activity O , O indicating O that O both O oligomerization O and O NTD B-structure_element binding O are O crucial O for O RNase B-protein_type activity O in O vitro O . O Regnase B-protein - I-protein 1 I-protein is O a O member O of O Regnase B-protein_type family I-protein_type and O is O composed O of O a O PilT B-structure_element N I-structure_element - I-structure_element terminus I-structure_element like I-structure_element ( O PIN B-structure_element ) O domain O followed O by O a O CCCH B-structure_element - I-structure_element type I-structure_element zinc I-structure_element – I-structure_element finger I-structure_element ( O ZF B-structure_element ) O domain O , O which O are O conserved B-protein_state among O Regnase B-protein_type family I-protein_type members I-protein_type . O Moreover O , O Regnase B-protein - I-protein 1 I-protein functions O as O a O dimer B-oligomeric_state through O intermolecular O PIN B-structure_element - O PIN B-structure_element interactions O during O cleavage O of O target O mRNA B-chemical . O Although O the O PIN B-structure_element domain O is O responsible O for O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein , O the O roles O of O the O other O domains O are O largely O unknown O . O These O results O indicate O that O not O only O the O PIN B-structure_element but O also O the O ZF B-structure_element domain O contribute O to O RNA B-chemical binding O , O while O the O NTD B-structure_element is O not O likely O to O be O involved O in O direct O interaction O with O RNA B-chemical . O Regnase B-protein - I-protein 1 I-protein lacking B-protein_state the O ZF B-structure_element domain O generated O a O smaller O but O appreciable O amount O of O cleaved O product O ( O T1 O / O 2 O ~ O 70 O minutes O ), O while O those O lacking B-protein_state the O NTD B-structure_element did O not O generate O cleaved O products O ( O T1 O / O 2 O > O 90 O minutes O ). O Dimer B-oligomeric_state formation O of O the O PIN B-structure_element domains O Domain O - O domain O interaction O between O the O NTD B-structure_element and O the O PIN B-structure_element domain O Residues O critical O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O The O other O mutated O residues O — O K152 B-residue_name_number , O R158 B-residue_name_number , O R188 B-residue_name_number , O R200 B-residue_name_number , O K204 B-residue_name_number , O K206 B-residue_name_number , O K257 B-residue_name_number , O and O R258 B-residue_name_number — O were O not O critical O for O RNase B-protein_type activity O . O One O group O consisted O of O catalytically B-protein_state active I-protein_state PIN B-structure_element domains O with O mutation B-experimental_method of I-experimental_method basic O residues O found O in O the O previous O section O to O confer O decreased O RNase B-protein_type activity O ( O Fig O . O 4 O ). O According O to O the O proposed O model O , O an O R214A B-mutant PIN B-structure_element domain O can O only O form O a O dimer B-oligomeric_state when O the O DDNN B-mutant PIN B-structure_element acts O as O the O secondary B-protein_state PIN B-structure_element . O The O previously O reported O crystal B-evidence structure I-evidence of O the O Regnase B-protein - I-protein 1 I-protein PIN B-structure_element domain O derived O from O Homo B-species sapiens I-species is O nearly O identical O to O the O one O derived O from O Mus B-species musculus I-species in O this O study O , O with O a O backbone O RMSD B-evidence of O 0 O . O 2 O Å O . O The O amino O acid O sequences O corresponding O to O PIN B-structure_element ( O residues O 134 B-residue_range – I-residue_range 295 I-residue_range ) O are O the O two O non O - O identical O residues O are O substituted O with O similar O amino O acids O . O Since O the O NMR B-experimental_method spectra B-evidence of O monomeric B-oligomeric_state mutants B-protein_state overlaps O with O those O of O the O oligomeric O forms O , O it O is O unlikely O that O the O tertiary O structure O of O the O monomeric B-oligomeric_state mutants B-protein_state were O affected O by O the O mutations O . O ( O Supplementary O Fig O . O 4b O , O c O ). O Moreover O , O we O found O that O the O NTD B-structure_element associates O with O the O oligomeric B-site surface I-site of O the O primary B-protein_state PIN B-structure_element , O docking O to O a O helix B-structure_element that O harbors O its O catalytic B-site residues I-site ( O Figs O 2b O and O 3a O ). O The O affinity B-evidence of O the O domain O - O domain O interaction O between O two O PIN B-structure_element domains O ( O Kd B-evidence = O ~ O 10 O − O 4 O M O ) O is O similar O to O that O of O the O NTD B-structure_element - O PIN B-structure_element ( O Kd B-evidence = O 110 O ± O 5 O . O 8 O μM O ) O interactions O ; O however O , O the O covalent O connection O corresponding O to O residues O 90 B-residue_range – I-residue_range 133 I-residue_range between O the O NTD B-structure_element and O the O primary B-protein_state PIN B-structure_element will O greatly O enhance O the O intramolecular O domain O interaction O in O the O case O of O full B-protein_state - I-protein_state length I-protein_state Regnase B-protein - I-protein 1 I-protein . O Based O on O these O structural B-experimental_method and I-experimental_method functional I-experimental_method analyses I-experimental_method of O Regnase B-protein - I-protein 1 I-protein domain O - O domain O interactions O , O we O performed O docking B-experimental_method simulations I-experimental_method of O the O NTD B-structure_element , O PIN B-structure_element dimer B-oligomeric_state , O and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O The O overall O model O of O regulation O of O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O through O domain O - O domain O interactions O in O vitro O is O summarized O in O Fig O . O 6 O . O Structural B-experimental_method and I-experimental_method functional I-experimental_method analyses I-experimental_method of O Regnase B-protein - I-protein 1 I-protein . O Fluorescence B-evidence intensity I-evidence of O the O free B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type in O each O sample O was O indicated O as O the O percentage O against O that O in O the O absence B-protein_state of I-protein_state Regnase B-protein - I-protein 1 I-protein . O Domain O - O domain O interaction O between O the O NTD B-structure_element and O the O PIN B-structure_element domain O . O Residues O in O close O proximity O (< O 5 O Å O ) O to O each O other O in O the O docking B-evidence structure I-evidence were O colored O yellow O . O Mutated O basic O residues O were O shown O in O sticks O and O those O with O significantly O reduced O RNase B-protein_type activities O were O colored O red O or O yellow O . O ( O c O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O Regnase B-protein - I-protein 1 I-protein for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O Crystal B-evidence Structure I-evidence and O Activity B-experimental_method Studies I-experimental_method of O the O C11 B-protein_type Cysteine B-protein_type Peptidase I-protein_type from O Parabacteroides B-species merdae I-species in O the O Human B-species Gut O Microbiome O * O However O , O despite O these O similarities O , O clan B-protein_type CD I-protein_type forms O a O functionally O diverse O group O of O enzymes O : O the O overall O structural O diversity O between O ( O and O at O times O within O ) O the O various O families O provides O these O peptidases B-protein_type with O a O wide O variety O of O substrate O specificities O and O activation O mechanisms O . O Structure B-evidence of O PmC11 B-protein The O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element – I-structure_element β9 I-structure_element ) O of O PmC11 B-protein consists O of O six O parallel B-structure_element and O three O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element with O 4 O ↑ O 3 O ↓ O 2 O ↑ O 1 O ↑ O 5 O ↑ O 6 O ↑ O 7 O ↓ O 8 O ↓ O 9 O ↑ O topology O ( O Fig O . O 1A O ) O and O the O overall O structure B-evidence includes O 14 O α B-structure_element - I-structure_element helices I-structure_element with O six O ( O α1 B-structure_element – I-structure_element α2 I-structure_element and O α4 B-structure_element – I-structure_element α7 I-structure_element ) O closely O surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element in O an O approximately O parallel O orientation O . O Helices B-structure_element α1 B-structure_element , O α7 B-structure_element , O and O α6 B-structure_element are O located O on O one O side O of O the O β B-structure_element - I-structure_element sheet I-structure_element with O α2 B-structure_element , O α4 B-structure_element , O and O α5 B-structure_element on O the O opposite O side O ( O Fig O . O 1A O ). O The O core B-structure_element caspase I-structure_element - I-structure_element fold I-structure_element is O highlighted O in O a O box O . O The O CTD B-structure_element of O PmC11 B-protein is O composed O of O a O tight B-structure_element helical I-structure_element bundle I-structure_element formed O from O helices B-structure_element α8 B-structure_element – I-structure_element α14 I-structure_element and O includes O strands B-structure_element βC B-structure_element and O βF B-structure_element , O and O β B-structure_element - I-structure_element hairpin I-structure_element βD B-structure_element – I-structure_element βE I-structure_element . O The O CTD B-structure_element sits O entirely O on O one O side O of O the O enzyme O interacting O only O with O α3 B-structure_element , O α5 B-structure_element , O β9 B-structure_element , O and O the O loops B-structure_element surrounding O β8 B-structure_element . O D O , O cysteine O peptidase O activity O of O PmC11 B-protein . O Inactive O PmC11C179A B-mutant was O not O processed O to O a O major O extent O by O active B-protein_state PmC11 B-protein until O around O a O ratio O of O 1 O : O 4 O ( O 5 O μg O of O active B-protein_state PmC11 B-protein ). O F O , O activity B-evidence of O PmC11 B-protein against O basic O substrates O . O G O , O electrostatic O surface O potential O of O PmC11 B-protein shown O in O a O similar O orientation O , O where O blue O and O red O denote O positively O and O negatively O charged O surface O potential O , O respectively O , O contoured O at O ± O 5 O kT O / O e O . O Asp177 B-residue_name_number is O located O near O the O catalytic B-protein_state cysteine B-residue_name and O is O conserved B-protein_state throughout I-protein_state the O C11 B-protein_type family I-protein_type , O suggesting O it O is O the O primary O S1 B-site binding I-site site I-site residue I-site . O Asp177 B-residue_name_number is O highly B-protein_state conserved I-protein_state throughout O the O clan B-protein_type CD I-protein_type C11 I-protein_type peptidases I-protein_type and O is O thought O to O be O primarily O responsible O for O substrate O specificity O of O the O clan B-protein_type CD I-protein_type enzymes I-protein_type , O as O also O illustrated O from O the O proximity O of O these O residues O relative O to O the O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical when O PmC11 B-protein is O overlaid B-experimental_method on O the O MALT1 B-protein - I-protein P I-protein structure B-evidence ( O Fig O . O 3C O ). O A O , O PmC11 O activity O is O inhibited O by O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O B O , O gel B-experimental_method - I-experimental_method shift I-experimental_method assay I-experimental_method reveals O that O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical binds O to O PmC11 B-protein . O The O primary B-experimental_method structural I-experimental_method alignment I-experimental_method also O shows O that O the O catalytic B-site dyad I-site in O PmC11 B-protein is O structurally B-protein_state conserved I-protein_state in O clostripain B-protein ( O Fig O . O 1A O ). O Unlike O PmC11 B-protein , O clostripain B-protein has O two O cleavage B-site sites I-site ( O Arg181 B-residue_name_number and O Arg190 B-residue_name_number ), O which O results O in O the O removal O of O a O nonapeptide B-structure_element , O and O is O required O for O full B-protein_state activation I-protein_state of O the O enzyme O ( O highlighted O in O Fig O . O 1A O ). O Interestingly O , O Arg190 B-residue_name_number was O found O to O align O with O Lys147 B-residue_name_number in O PmC11 B-protein . O As O studies O on O clostripain B-protein revealed O addition O of O Ca2 B-chemical + I-chemical ions O are O required O for O full B-protein_state activation I-protein_state , O the O Ca2 B-chemical + I-chemical dependence O of O PmC11 B-protein was O examined O . O In O support O of O these O findings O , O EGTA B-chemical did O not O inhibit O PmC11 B-protein suggesting O that O , O unlike O clostripain B-protein , O PmC11 B-protein does O not O require O Ca2 B-chemical + I-chemical or O other O divalent O cations O , O for O activity O . O The O enzyme O exhibits O all O of O the O key O structural O elements O of O clan B-protein_type CD I-protein_type members I-protein_type , O but O is O unusual O in O that O it O has O a O nine O - O stranded O central O β B-structure_element - I-structure_element sheet I-structure_element with O a O novel O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O In O addition O , O the O structure B-evidence suggested O a O mechanism O of O self O - O inhibition O in O both O PmC11 B-protein and O clostripain B-protein and O an O activation O mechanism O that O requires O autoprocessing B-ptm . O This O is O also O the O case O in O PmC11 B-protein , O although O the O cleavage B-ptm loop B-structure_element is O structurally O different O to O that O found O in O the O caspases B-protein_type and O follows O the O catalytic B-protein_state His B-residue_name ( O Fig O . O 1A O ), O as O opposed O to O the O Cys B-residue_name in O the O caspases B-protein_type . O Like O PmC11 B-protein , O these O structures O show O preformed O catalytic O machinery O and O , O for O a O substrate O to O gain O access O , O movement O and O / O or O cleavage B-ptm of O the O blocking B-structure_element region I-structure_element is O required O . O Indeed O , O insights O gained O from O an O analysis O of O the O PmC11 B-protein structure B-evidence revealed O the O identity O of O the O Trypanosoma B-species brucei I-species PNT1 B-protein protein O as O a O C11 B-protein_type cysteine I-protein_type peptidase I-protein_type with O an O essential O role O in O organelle O replication O . O In O addition O , O 18S B-chemical and O 25S B-chemical ( O yeast B-taxonomy_domain )/ O 28S B-chemical ( O humans B-species ) O rRNAs B-chemical contain O several O base O modifications O catalyzed O by O site O - O specific O and O snoRNA B-chemical - O independent O enzymes O . O In O a O second O step O , O the O essential O SPOUT B-protein_type - I-protein_type class I-protein_type methyltransferase I-protein_type Nep1 B-protein / O Emg1 B-protein modifies O the O pseudouridine B-chemical to O N1 B-chemical - I-chemical methylpseudouridine I-chemical . O Hypermodified B-protein_state m1acp3Ψ B-chemical elutes O at O 7 O . O 4 O min O ( O wild B-protein_state type I-protein_state , O left O profile O ) O and O is O missing O in O Δtsr3 B-mutant ( O middle O profile O ) O and O Δnep1 B-mutant Δnop6 I-mutant mutants O ( O right O profile O ). O Upper O lanes O show O the O ethidium B-chemical bromide I-chemical staining O of O the O 18S B-chemical rRNAs I-chemical for O quantification O . O The O efficiency O of O siRNA B-chemical mediated O HsTSR3 B-protein repression O correlates O with O the O primer B-evidence extension I-evidence signals I-evidence ( O see O Supplementary O Figure O S2A O ). O In O contrast O , O the O only O other O structurally O characterized O acp B-protein_type transferase I-protein_type enzyme O Tyw2 B-protein belongs O to O the O Rossmann B-protein_type - I-protein_type fold I-protein_type class I-protein_type of I-protein_type methyltransferase I-protein_type proteins I-protein_type . O Indeed O , O in O wild B-protein_state - I-protein_state type I-protein_state yeast B-taxonomy_domain a O strong O primer B-evidence extension I-evidence stop I-evidence signal I-evidence occurred O at O position O 1192 B-residue_number . O As O expected O , O in O a O Δsnr35 B-mutant deletion B-experimental_method preventing O pseudouridylation B-ptm and O N1 B-ptm - I-ptm methylation I-ptm ( O resulting O in O acp3U B-chemical ) O as O well O as O in O a O Δnep1 B-mutant deletion O strain O where O pseudouridine B-chemical is O not B-protein_state methylated I-protein_state ( O resulting O in O acp3Ψ B-chemical ) O a O primer B-evidence extension I-evidence stop I-evidence signal I-evidence of O similar O intensity O as O in O the O wild B-protein_state type I-protein_state was O observed O . O The O efficiency O of O siRNA B-chemical - O mediated O depletion O was O established O by O RT B-experimental_method - I-experimental_method qPCR I-experimental_method and O found O to O be O very O high O with O siRNA B-chemical 544 O ( O Supplementary O Figure O S2A O , O remaining O TSR3 B-protein mRNA O level O of O 2 O %). O Phenotypic O characterization O of O Δtsr3 B-mutant mutants O Phenotypic O characterization O of O yeast B-taxonomy_domain TSR3 B-protein deletion O ( O Δtrs3 B-mutant ) O and O human B-species TSR3 B-protein depletion O ( O siRNAs B-chemical 544 O and O 545 O ) O and O cellular O localization O of O yeast B-taxonomy_domain Tsr3 B-protein . O ( O A O ) O Growth O of O yeast B-taxonomy_domain wild B-protein_state type I-protein_state , O Δtsr3 B-mutant , O Δsnr35 B-mutant and O Δtsr3 B-mutant Δsnr35 I-mutant segregants O after O meiosis O and O tetrad O dissection O of O Δtsr3 B-mutant / O TSR3 B-protein Δsnr35 B-mutant / O SNR35 B-protein heterozygous O diploids O . O Surprisingly O , O early O nucleolar O processing O reactions O were O also O inhibited O , O and O this O was O observed O in O both O yeast B-taxonomy_domain Δtsr3 B-mutant cells O ( O see O accumulation O of O 35S B-complex_assembly in O Supplementary O Figure O S2C O ) O and O Tsr3 B-protein depleted O human B-species cells O ( O see O 47S B-complex_assembly / O 45S B-complex_assembly accumulation O in O Figure O 2C O and O Northern B-experimental_method blot I-experimental_method quantification O in O Supplementary O Figure O S2B O ). O Consistent O with O its O role O in O late O 18S B-chemical rRNA I-chemical processing O , O TSR3 B-protein deletion O leads O to O a O ribosomal O subunit O imbalance O with O a O reduced O 40S B-complex_assembly to O 60S B-complex_assembly ratio O of O 0 O . O 81 O ( O σ O = O 0 O . O 024 O ) O which O was O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombinant O to O 0 O . O 73 O ( O σ O = O 0 O . O 023 O ) O ( O Supplementary O Figure O S2F O ). O After O polysome B-experimental_method gradient I-experimental_method separation I-experimental_method C O - O terminally O epitope O - O labeled O Tsr3 B-mutant - I-mutant 3xHA I-mutant was O exclusively O detectable O in O the O low O - O density O fraction O ( O Figure O 2E O ). O Such O distribution B-evidence on I-evidence a I-evidence density I-evidence gradient I-evidence suggests O that O Tsr3 B-protein only O interacts O transiently O with O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly , O which O presumably O explains O why O it O was O not O characterized O in O pre B-experimental_method - I-experimental_method ribosome I-experimental_method affinity I-experimental_method purifications I-experimental_method . O Structure B-evidence of O Tsr3 B-protein However O , O these O archaeal B-taxonomy_domain homologs O are O significantly O smaller O than O ScTsr3 B-protein (∼ O 190 O aa O in O archaea B-taxonomy_domain vs O . O 313 O aa O in O yeast B-taxonomy_domain ) O due O to O shortened O N O - O and O C O - O termini O ( O Supplementary O Figure O S1A O ). O N O - O terminal O truncations B-experimental_method of O up O to O 45 B-residue_range aa I-residue_range and O C O - O terminal O truncations B-experimental_method of O up O to O 76 B-residue_range aa I-residue_range mediated O acp B-chemical modification O as O efficiently O as O the O full B-protein_state - I-protein_state length I-protein_state protein O and O no O significant O increased O levels O of O 20S B-chemical pre I-chemical - I-chemical RNA I-chemical were O detected O . O Even O a O Tsr3 B-protein fragment O with O a O 90 B-residue_range aa I-residue_range C O - O terminal O truncation O showed O a O residual O primer O extension O stop O , O whereas O N O - O terminal O truncations O exceeding O 46 B-residue_range aa I-residue_range almost O completely O abolished O the O primer O extension O arrest O ( O Figure O 3B O ). O Strong O 20S O rRNA O accumulation O similar O to O that O of O the O Δtsr3 B-mutant deletion B-experimental_method is O observed O for O Tsr3 B-protein fragments O 37 B-residue_range – I-residue_range 223 I-residue_range or O 46 B-residue_range – I-residue_range 223 I-residue_range . O We O focused O on O archaeal B-taxonomy_domain species O containing O a O putative O Nep1 B-protein homolog O suggesting O that O these O species O are O in O principle O capable O of O synthesizing O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical acp I-chemical - I-chemical pseudouridine I-chemical . O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O aa O 93 B-residue_range – I-residue_range 184 I-residue_range ) O has O a O globular B-structure_element all I-structure_element α I-structure_element - I-structure_element helical I-structure_element structure I-structure_element comprising O α B-structure_element - I-structure_element helices I-structure_element α4 B-structure_element to I-structure_element α9 I-structure_element . O Remarkably O , O the O entire O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O 92 B-residue_range aa I-residue_range ) O of O the O protein O is O threaded O through O the O loop B-structure_element which O connects O β B-structure_element - I-structure_element strand I-structure_element β3 B-structure_element and O α B-structure_element - I-structure_element helix I-structure_element α2 B-structure_element of O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O Tsr3 B-protein has O a O fold O similar O to O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type methyltransferases I-protein_type . O ( O A O ) O Cartoon O representation O of O the O X B-evidence - I-evidence ray I-evidence structure I-evidence of O VdTsr3 B-protein in O two O orientations O . O A O red O arrow O marks O the O location O of O the O topological B-structure_element knot I-structure_element in O the O structure B-evidence . O ( O B O ) O Secondary O structure O representation O of O the O VdTsr3 B-protein structure B-evidence . O Structure B-experimental_method predictions I-experimental_method suggested O that O Tsr3 B-protein might O contain O a O so O - O called O RLI B-structure_element domain I-structure_element which O contains O a O ‘ O bacterial B-structure_element like I-structure_element ’ I-structure_element ferredoxin I-structure_element fold I-structure_element and O binds O two O iron O - O sulfur O clusters O through O eight O conserved B-protein_state cysteine B-residue_name residues O . O A O notable O exception O is O Trm10 B-protein . O However O , O there O are O no O structural O similarities O between O Tsr3 B-protein and O Tyw2 B-protein , O which O contains O an O all B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O a O different O topology O and O no O knot B-structure_element structure I-structure_element . O The O ribose B-chemical 2 O ′ O and O 3 O ′ O hydroxyl O groups O of O SAM B-chemical are O hydrogen B-bond_interaction bonded I-bond_interaction to O the O backbone O carbonyl O group O of O I69 B-residue_name_number . O Consequently O , O the O accessibility O of O this O methyl O group O for O a O nucleophilic O attack O is O strongly O reduced O in O comparison O with O RNA B-protein_type - I-protein_type methyltransferases I-protein_type such O as O Trm10 B-protein ( O Figure O 5B O , O C O ). O In O contrast O , O the O acp B-chemical side O chain O of O SAM B-chemical is O accessible O for O reactions O in O the O Tsr3 B-protein_state - I-protein_state bound I-protein_state state O ( O Figure O 5B O ). O Hydrogen B-bond_interaction bonds I-bond_interaction are O indicated O by O dashed O lines O . O ( O E O ) O Binding O of O 14C B-chemical - I-chemical labeled I-chemical SAM I-chemical to O SsTsr3 B-protein . O This O correlates O with O a O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulation O comparable O to O the O Δtsr3 B-mutant deletion O ( O right O : O northern B-experimental_method blot I-experimental_method ). O This O suggests O that O the O hydrophobic B-bond_interaction interaction I-bond_interaction between O SAM B-chemical ' O s O methyl O group O and O the O hydrophobic B-site pocket I-site of O Tsr3 B-protein is O thermodynamically O important O for O the O interaction O . O Furthermore O , O a O W B-experimental_method to I-experimental_method A I-experimental_method mutation I-experimental_method at O the O equivalent O position O W114 B-residue_name_number in O ScTsr3 B-protein strongly O reduced O the O in O vivo O acp B-protein_type transferase I-protein_type activity O ( O Figure O 5F O ). O The O side O chain O hydroxyl O group O of O T19 B-residue_name_number seems O of O minor O importance O for O SAM B-chemical binding O since O mutations B-experimental_method of O T17 B-residue_name_number ( O T19 B-residue_name_number in O VdTsr3 B-protein ) O to O either O A B-residue_name or O D B-residue_name did O not O significantly O influence O the O SAM B-evidence - I-evidence binding I-evidence affinity I-evidence of O SsTsr3 B-protein ( O KD B-evidence ' O s O = O 3 O . O 9 O or O 11 O . O 2 O mM O , O respectively O ). O In O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O the O surface O exposed O α B-structure_element - I-structure_element helices I-structure_element α5 B-structure_element and O α7 B-structure_element carry O a O significant O amount O of O positively O charged O amino O acids O . O RNA O - O binding O of O Tsr3 B-protein . O Also O shown O in O stick O representation O is O a O negatively O charged O MES B-chemical ion O . O The O presence O of O saturating O amounts O of O SAM B-chemical ( O 2 O mM O ) O did O not O have O a O significant O influence O on O the O RNA B-evidence - I-evidence affinity I-evidence of O SsTsr3 B-protein ( O KD B-evidence of O 1 O . O 7 O μM O for O the O 20mer B-oligomeric_state - I-oligomeric_state GC I-oligomeric_state - O RNA B-chemical ) O suggesting O no O cooperativity O in O substrate O binding O . O This O suggests O that O enzymes O with O a O SAM B-protein_type - I-protein_type dependent I-protein_type acp I-protein_type transferase I-protein_type activity O might O have O evolved O from O SAM B-protein_type - I-protein_type dependent I-protein_type methyltransferases I-protein_type by O slight O modifications O of O the O SAM B-site - I-site binding I-site pocket I-site . O In O contrast O to O Nep1 B-protein , O the O enzyme O preceding O Tsr3 B-protein in O the O m1acp3Ψ B-chemical biosynthesis O pathway O , O Tsr3 B-protein binds O rather O weakly O and O with O little O specificity O to O its O isolated O substrate O RNA B-chemical . O Recently O , O structural B-experimental_method , I-experimental_method functional I-experimental_method , I-experimental_method and I-experimental_method CRAC I-experimental_method ( I-experimental_method cross I-experimental_method - I-experimental_method linking I-experimental_method and I-experimental_method cDNA I-experimental_method analysis I-experimental_method ) I-experimental_method experiments I-experimental_method of O late O assembly O factors O involved O in O cytoplasmic O processing O of O 40S B-complex_assembly subunits I-complex_assembly , O along O with O cryo B-experimental_method - I-experimental_method EM I-experimental_method studies O of O the O late B-protein_state pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly have O provided O important O insights O into O late O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly processing O . O The O cleavage O step O most O likely O acts O as O a O quality O control O check O that O ensures O the O proper O 40S B-complex_assembly subunit I-complex_assembly assembly O with O only O completely O processed O precursors O . O The O YfiBNR B-complex_assembly system O contains O three O protein O members O and O modulates O intracellular O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical levels O in O response O to O signals O received O in O the O periplasm O ( O Malone O et O al O .,). O More O recently O , O this O system O was O also O reported O in O other O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain , O such O as O Escherichia B-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O Klebsiella B-species pneumonia I-species ( O Huertas O et O al O .,) O and O Yersinia B-species pestis I-species ( O Ren O et O al O .,). O Whether O YfiB B-protein directly O recruits O YfiR B-protein or O recruits O YfiR B-protein via O a O third O partner O is O an O open O question O . O It O has O been O reported O that O the O activation O of O YfiN B-protein may O be O induced O by O redox O - O driven O misfolding O of O YfiR B-protein ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O In O addition O , O quorum O sensing O - O related O dephosphorylation O of O the O PAS B-structure_element domain I-structure_element of O YfiN B-protein may O also O be O involved O in O the O regulation O ( O Ueda O and O Wood O ,; O Xu O et O al O .,). O The O crystal B-evidence structure I-evidence of O YfiB B-protein monomer B-oligomeric_state consists O of O a O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element - I-structure_element 2 I-structure_element - I-structure_element 5 I-structure_element - I-structure_element 3 I-structure_element - I-structure_element 4 I-structure_element ) O flanked O by O five B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O α1 B-structure_element – I-structure_element 5 I-structure_element ) O on O one O side O . O The O residues O proposed O to O contribute O to O YfiB B-protein activation O are O illustrated O in O sticks O . O It O has O been O reported O that O single B-experimental_method mutants I-experimental_method of I-experimental_method Q39 B-residue_name_number , O L43 B-residue_name_number , O F48 B-residue_name_number and O W55 B-residue_name_number contribute O to O YfiB B-protein activation O leading O to O the O induction O of O the O SCV O phenotype O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,). O These O two O regions O contribute O a O robust O hydrogen B-site - I-site bonding I-site network I-site to O the O YfiB B-site - I-site YfiR I-site interface I-site , O resulting O in O a O tightly O bound O complex O . O Therefore O , O it O is O possible O that O both O dimeric B-oligomeric_state types O might O exist O in O solution O . O In O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O structure B-evidence , O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O interacts O with O the O side O - O chain O atoms O of O D71 B-residue_name_number and O the O main O - O chain O amide O of O D37 B-residue_name_number ( O Fig O . O 4B O ). O Calculation O using O the O ConSurf B-experimental_method Server I-experimental_method ( O http O :// O consurf O . O tau O . O ac O . O il O /), O which O estimates O the O evolutionary B-evidence conservation I-evidence of O amino O acid O positions O and O visualizes O information O on O the O structure B-site surface I-site , O revealed O a O conserved B-site surface I-site on O YfiR B-protein that O contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O E163 B-residue_name_number and O I169 B-residue_name_number are O YfiB B-site - I-site interacting I-site residues I-site of O YfiR B-protein , O in O which O E163 B-residue_name_number forms O a O hydrogen B-bond_interaction bond I-bond_interaction with O R96 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O II O ) O and O I169 B-residue_name_number is O involved O in O forming O the O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number hydrophobic B-site core I-site for O anchoring O F57 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O Intriguingly O , O a O Dali B-experimental_method search I-experimental_method ( O Holm O and O Rosenstrom O ,) O indicated O that O the O closest O homologs O of O YfiR B-protein shared O the O characteristic O of O being O able O to O bind O several O structurally O similar O small O molecules O , O such O as O L B-chemical - I-chemical Trp I-chemical , O L B-chemical - I-chemical Phe I-chemical , O B O - O group O vitamins O and O their O analogs O , O encouraging O us O to O test O whether O YfiR B-protein can O recognize O these O molecules O . O Structural B-experimental_method analyses I-experimental_method revealed O that O the O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical molecules O are O bound B-protein_state at I-protein_state the O periphery O of O the O YfiR B-protein dimer B-oligomeric_state , O but O not O at O the O dimer B-site interface I-site . O To O evaluate O the O importance O of O F57 B-residue_name_number in O YfiBL43P B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O binding B-evidence affinities I-evidence of O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant for O YfiR B-protein were O measured O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O Provided O that O the O diameter O of O the O widest O part O of O the O YfiB B-protein dimer B-oligomeric_state is O approximately O 64 O Å O , O which O is O slightly O smaller O than O the O smallest O diameter O of O the O PG O pore O ( O 70 O Å O ) O ( O Meroueh O et O al O .,), O the O YfiB B-protein dimer B-oligomeric_state should O be O able O to O penetrate O the O PG O layer O . O Once O activated B-protein_state by O certain O cell O stress O , O the O dimeric B-oligomeric_state YfiB B-protein transforms O from O a O compact B-protein_state conformation I-protein_state to O a O stretched B-protein_state conformation I-protein_state , O allowing O the O periplasmic B-structure_element domain I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state , O thus O relieving O the O repression O of O YfiN B-protein The O YfiBNR B-complex_assembly system O provides O a O good O example O of O a O delicate O homeostatic O system O that O integrates O multiple O signals O to O regulate O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O . O These O APFs B-complex_assembly had O an O outer O diameter O that O ranged O from O 11 O – O 14 O nm O and O an O inner O diameter O that O ranged O from O 2 O . O 5 O – O 4 O nm O . O These O observations O suggest O that O the O Aβ B-protein trimers B-oligomeric_state , O hexamers B-oligomeric_state , O dodecamers B-oligomeric_state , O and O related O assemblies O may O be O associated O with O presymptomatic O neurodegeneration O , O while O Aβ B-protein dimers B-oligomeric_state are O more O closely O associated O with O fibril O formation O and O plaque O deposition O during O symptomatic O Alzheimer O ’ O s O disease O .− O Many O of O these O studies O have O reported O the O monomer B-oligomeric_state subunit B-structure_element as O adopting O a O β B-structure_element - I-structure_element hairpin I-structure_element conformation O , O in O which O the O hydrophobic O central B-structure_element and O C B-structure_element - I-structure_element terminal I-structure_element regions I-structure_element form O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O In O 2008 O , O Hoyer O et O al O . O reported O the O NMR B-experimental_method structure B-evidence of O an O Aβ B-protein monomer B-oligomeric_state bound B-protein_state to I-protein_state an O artificial B-chemical binding I-chemical protein I-chemical called O an O affibody B-chemical ( O PDB O 2OTK O ). O This O Aβ B-protein β B-structure_element - I-structure_element hairpin I-structure_element encompasses O residues O 17 B-residue_range – I-residue_range 37 I-residue_range and O contains O two O β B-structure_element - I-structure_element strands I-structure_element comprising O Aβ17 B-protein – B-residue_range 24 I-residue_range and O Aβ30 B-protein – B-residue_range 37 I-residue_range connected O by O an O Aβ25 B-protein – B-residue_range 29 I-residue_range loop B-structure_element . O In O a O related O study O , O Sandberg O et O al O . O constrained O Aβ B-protein in O a O β B-structure_element - I-structure_element hairpin I-structure_element conformation O by O mutating B-experimental_method residues O A21 B-residue_name_number and O A30 B-residue_name_number to O cysteine B-residue_name and O forming O an O intramolecular O disulfide B-ptm bond I-ptm . O After O determining O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O the O p B-chemical - I-chemical iodophenylalanine I-chemical variant O we O attempt O to O determine O the O structure B-evidence of O the O native O phenylalanine B-residue_name compound O by O isomorphous B-experimental_method replacement I-experimental_method . O Upon O synthesizing O peptide B-mutant 3 I-mutant , O we O found O that O it O formed O an O amorphous O precipitate O in O most O crystallization O conditions O screened O and O failed O to O afford O crystals B-evidence in O any O condition O . O Although O the O disulfide B-ptm bond I-ptm between O positions O 24 B-residue_number and O 29 B-residue_number helps O stabilize O the O β B-structure_element - I-structure_element hairpin I-structure_element , O it O does O not O alter O the O charge O or O substantially O change O the O hydrophobicity O of O the O Aβ17 B-protein – B-residue_range 36 I-residue_range β B-structure_element - I-structure_element hairpin I-structure_element . O Crystallization B-experimental_method , O X B-experimental_method - I-experimental_method ray I-experimental_method Crystallographic I-experimental_method Data I-experimental_method Collection I-experimental_method , O Data O Processing O , O and O Structure B-experimental_method Determination I-experimental_method of O Peptides B-mutant 2 I-mutant and I-mutant 4 I-mutant Data O from O peptides B-mutant 4 I-mutant and I-mutant 2 I-mutant suitable O for O refinement O at O 2 O . O 30 O Å O were O obtained O from O the O diffractometer O ; O data O from O peptide B-mutant 2 I-mutant suitable O for O refinement O at O 1 O . O 90 O Å O were O obtained O from O the O synchrotron O . O Peptide B-mutant 2 I-mutant assembles O into O oligomers B-oligomeric_state similar O in O morphology O to O those O formed O by O peptide B-mutant 1 I-mutant . O Hydrogen B-bond_interaction bonding I-bond_interaction and O hydrophobic B-bond_interaction interactions I-bond_interaction between O residues O on O the O β B-structure_element - I-structure_element strands I-structure_element comprising O Aβ17 B-protein – B-residue_range 23 I-residue_range and O Aβ30 B-protein – B-residue_range 36 I-residue_range stabilize O the O core B-structure_element of O the O trimer B-oligomeric_state . O At O the O corners O of O the O trimer B-oligomeric_state , O the O pairs O of O β B-structure_element - I-structure_element hairpin I-structure_element monomers B-oligomeric_state form O four O hydrogen B-bond_interaction bonds I-bond_interaction : O two O between O the O main O chains O of O V18 B-residue_name_number and O E22 B-residue_name_number and O two O between O δOrn B-structure_element and O the O main O chain O of O C24 B-residue_name_number ( O Figure O 3B O ). O The O other O face O of O the O trimer B-oligomeric_state displays O a O smaller O hydrophobic B-site surface I-site , O which O includes O the O side O chains O of O residues O V18 B-residue_name_number , O F20 B-residue_name_number , O and O I31 B-residue_name_number of O the O three O β B-structure_element - I-structure_element hairpins I-structure_element ( O Figure O 3D O ). O Dodecamer B-oligomeric_state The O four O trimers B-oligomeric_state arrange O in O a O tetrahedral B-protein_state fashion O , O creating O a O central B-site cavity I-site inside O the O dodecamer B-oligomeric_state . O Because O each O trimer B-oligomeric_state is O triangular B-protein_state , O the O resulting O arrangement O resembles O an O octahedron B-protein_state . O Residues O L17 B-residue_name_number , O L34 B-residue_name_number , O and O V36 B-residue_name_number are O shown O as O spheres O , O illustrating O the O hydrophobic B-bond_interaction packing I-bond_interaction that O occurs O at O the O six O vertices O of O the O dodecamer B-oligomeric_state . O ( O D O ) O Detailed O view O of O one O of O the O six O vertices O of O the O dodecamer B-oligomeric_state . O The O electron B-evidence density I-evidence map I-evidence for O the O X B-evidence - I-evidence ray I-evidence crystallographic I-evidence structure I-evidence of O peptide B-mutant 2 I-mutant has O long O tubes O of O electron B-evidence density I-evidence inside O the O central B-site cavity I-site of O the O dodecamer B-oligomeric_state . O Although O Jeffamine B-chemical M I-chemical - I-chemical 600 I-chemical is O a O heterogeneous O mixture O with O varying O chain O lengths O and O stereochemistry O , O we O modeled O a O single O stereoisomer O with O nine O propylene O glycol O units O ( O n O = O 9 O ) O to O fit O the O electron B-evidence density I-evidence . O Annular B-site Pore I-site The O same O eclipsed B-site interface I-site also O occurs O between O dodecamers B-structure_element 1 I-structure_element and I-structure_element 5 I-structure_element and O 3 B-structure_element and I-structure_element 4 I-structure_element . O ( O C O ) O Staggered B-site interface I-site between O dodecamers B-structure_element 2 I-structure_element and I-structure_element 3 I-structure_element ( O side O view O ). O It O is O important O to O note O that O the O annular B-site pore I-site formed O by O peptide B-mutant 2 I-mutant is O not O a O discrete O unit O in O the O crystal B-evidence lattice I-evidence . O The O dodecamers B-oligomeric_state further O assemble O to O form O an O annular B-site pore I-site ( O Figure O 6 O ). O Monomeric B-oligomeric_state Aβ B-protein folds O to O form O a O β B-structure_element - I-structure_element hairpin I-structure_element in O which O the O hydrophobic O central B-structure_element and O C B-structure_element - I-structure_element terminal I-structure_element regions I-structure_element form O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O Four O triangular B-protein_state trimers B-oligomeric_state assemble O to O form O a O dodecamer B-oligomeric_state . O Five O dodecamers B-oligomeric_state assemble O to O form O an O annular B-site pore I-site . O These O criteria O have O been O used O to O classify O the O Aβ B-protein oligomers B-oligomeric_state that O accumulate O in O vivo O . O Aβ B-protein dimers B-oligomeric_state have O been O classified O as O fibrillar B-protein_state oligomers B-oligomeric_state , O whereas O Aβ B-protein trimers B-oligomeric_state , O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly , O and O APFs B-complex_assembly have O been O classified O as O nonfibrillar B-protein_state oligomers B-oligomeric_state . O The O hierarchical O assembly O of O peptide B-mutant 2 I-mutant is O consistent O with O this O model O ; O and O the O trimer B-oligomeric_state , O dodecamer B-oligomeric_state , O and O annular B-site pore I-site formed O by O peptide B-mutant 2 I-mutant may O share O similarities O to O the O trimers B-oligomeric_state , O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly , O and O APFs B-complex_assembly observed O in O vivo O . O Annular B-site Pores I-site Formed O by O Aβ B-protein and O Peptide B-mutant 2 I-mutant This O mode O of O assembly O is O not O unique O to O Aβ B-protein . O We O believe O this O iterative O , O “ O bottom O up O ” O approach O of O identifying O the O minimal O modification O required O to O crystallize B-experimental_method Aβ B-protein peptides O will O ultimately O allow O larger O fragments O of O Aβ B-protein to O be O crystallized B-experimental_method , O thus O providing O greater O insights O into O the O structures B-evidence of O Aβ B-protein oligomers B-oligomeric_state . O In O contrast O , O the O N O ‐ O terminal O coactivator B-site ‐ I-site binding I-site site I-site , O activation B-structure_element function I-structure_element ‐ I-structure_element 1 I-structure_element ( O AF B-structure_element ‐ I-structure_element 1 I-structure_element ), O determined O cell O ‐ O specific O signaling O induced O by O ligands O that O used O alternate O mechanisms O to O control O cell O proliferation O . O ERα B-protein domain O organization O lettered O , O A O ‐ O F O . O DBD B-structure_element , O DNA B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O LBD B-structure_element , O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O AF B-structure_element , O activation B-structure_element function I-structure_element Branched O causality O model O for O ERα B-protein ‐ O mediated O cell O proliferation O . O However O , O the O agonist O activity O of O SERMs B-protein_type derives O from O activation B-structure_element function I-structure_element ‐ I-structure_element 1 I-structure_element ( O AF B-structure_element ‐ I-structure_element 1 I-structure_element )— O a O coactivator B-site recruitment I-site site I-site located O in O the O AB B-structure_element domain O ( O Berry O et O al O , O 1990 O ; O Shang O & O Brown O , O 2002 O ; O Abot O et O al O , O 2013 O ). O The O simplest O response O model O for O ligand O ‐ O specific O proliferative O effects O is O a O linear O causality O model O , O where O the O degree O of O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O in O turn O drives O ligand O ‐ O specific O cell O proliferation O ( O Fig O 1D O ). O OBHS B-chemical is O an O indirect O modulator O that O dislocates O the O h11 B-structure_element C O ‐ O terminus O to O destabilize O the O h11 B-site – I-site h12 I-site interface I-site ( O PDB O 4ZN9 O ). O The O ERα B-protein ligand O library O contains O 241 O ligands O representing O 15 O indirect O modulator O scaffolds O , O plus O 4 O direct O modulator O scaffolds O . O Ligand O ‐ O specific O signaling O underlies O ERα B-protein ‐ O mediated O cell O proliferation O ( O B O ) O Ligand O class B-experimental_method analysis I-experimental_method of O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state and O ERα B-mutant ‐ I-mutant ΔAB I-mutant activities O in O HepG2 O cells O . O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O significantly O reduced O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O 14 O scaffolds O ( O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence ≤ O 0 O . O 05 O ) O ( O Fig O 3B O ). O The O value O of O r B-evidence ranges O from O − O 1 O to O 1 O , O and O it O defines O the O extent O to O which O the O data O fit O a O straight O line O when O compounds O show O similar O agonist O / O antagonist O activity O profiles O between O cell O types O ( O Fig O EV3A O ). O This O cluster O includes O two O classes O of O direct O modulators O ( O cyclofenil B-chemical ‐ I-chemical ASC I-chemical and O WAY B-chemical dimer I-chemical ), O and O six O classes O of O indirect O modulators O ( O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O furan B-chemical , O and O WAY B-chemical ‐ I-chemical D I-chemical ). O In O contrast O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element was O a O determinant O of O signaling O specificity O for O scaffolds O in O cluster O 2 O . O For O ligands O in O cluster O 3 O , O we O could O not O eliminate O a O role O for O AF B-structure_element ‐ I-structure_element 1 I-structure_element in O determining O signaling O specificity O , O since O this O cluster O lacked O positively O correlated O activity O profiles O ( O Fig O 3C O ), O and O deletion B-experimental_method of I-experimental_method the O AB B-structure_element or O F B-structure_element domain O rarely O induced O such O correlations O ( O Fig O 3D O ), O except O for O A B-chemical ‐ I-chemical CD I-chemical and O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O , O where O deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O or O F B-structure_element domain O led O to O positive O correlations O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O and O / O or O GREB1 B-protein levels O ( O Fig O 3D O lanes O 13 O and O 18 O ). O To O determine O mechanisms O for O ligand O ‐ O dependent O control O of O breast O cancer O cell O proliferation O , O we O performed O linear B-experimental_method regression I-experimental_method analyses I-experimental_method across O the O 19 O scaffolds O using O MCF O ‐ O 7 O cell O proliferation O as O the O dependent O variable O , O and O the O other O activities O as O independent O variables O ( O Fig O 3F O ). O The O lack O of O significant O predictors O for O OBHS B-chemical analogs O ( O Fig O 3F O lane O 1 O ) O reflects O their O small O range O of O proliferative O effects O on O MCF O ‐ O 7 O cells O ( O Fig O EV2I O ). O The O significant O correlations O with O GREB1 B-protein expression O and O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O observed O in O this O cluster O are O consistent O with O the O canonical O signaling O model O ( O Fig O 1D O ), O where O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O then O drives O proliferation O . O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O cyclofenil B-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical , O and O imidazopyridine B-chemical analogs O had O NCOA1 B-protein / I-protein 3 I-protein recruitment O profiles O that O predicted O their O proliferative O effects O , O without O determining O GREB1 B-protein levels O ( O Fig O 3E O and O F O , O lanes O 5 O and O 14 O – O 16 O ). O Therefore O , O we O first O performed O a O time B-experimental_method ‐ I-experimental_method course I-experimental_method study I-experimental_method , O and O found O that O E2 B-chemical and O the O WAY B-chemical ‐ I-chemical C I-chemical analog O , O AAPII B-chemical ‐ I-chemical 151 I-chemical ‐ I-chemical 4 I-chemical , O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O in O a O temporal O cycle O that O peaked O after O 45 O min O in O MCF O ‐ O 7 O cells O ( O Fig O 4A O ). O However O , O the O ChIP B-experimental_method assays I-experimental_method for O WAY B-chemical ‐ I-chemical C I-chemical ‐ O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O did O not O correlate O with O any O of O the O other O WAY B-chemical ‐ I-chemical C I-chemical activity O profiles O ( O Fig O 4D O ), O although O the O positive O correlation O between O ChIP B-experimental_method assays I-experimental_method and O NCOA3 B-protein recruitment O via O M2H B-experimental_method assay I-experimental_method showed O a O trend O toward O significance O with O r B-evidence 2 I-evidence = O 0 O . O 36 O and O P B-evidence = O 0 O . O 09 O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O ). O ERβ B-protein activity O is O not O an O independent O predictor O of O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O To O further O validate O this O approach O , O we O solved B-experimental_method the O structure B-evidence of O the O ERα B-mutant ‐ I-mutant Y537S I-mutant LBD B-structure_element in B-protein_state complex I-protein_state with I-protein_state diethylstilbestrol B-chemical ( O DES B-chemical ), O which O bound O identically O in O the O wild B-protein_state ‐ I-protein_state type I-protein_state and O ERα B-mutant ‐ I-mutant Y537S I-mutant LBDs B-structure_element , O demonstrating O again O that O this O surface O mutation O stabilizes O h12 B-structure_element dynamics O to O facilitate O crystallization O without O changing O ligand O binding O ( O Appendix O Fig O S1A O and O B O ) O ( O Nettles O et O al O , O 2008 O ; O Bruning O et O al O , O 2010 O ; O Delfosse O et O al O , O 2012 O ). O Using O this O approach O , O we O solved B-experimental_method 76 O ERα B-protein LBD B-structure_element structures B-evidence in O the O active B-protein_state conformation I-protein_state and O bound B-protein_state to I-protein_state ligands I-protein_state studied O here O ( O Appendix O Fig O S1C O ). O The O indirect O modulator O scaffolds O in O cluster O 1 O did O not O show O cell O ‐ O specific O signaling O ( O Fig O 3C O ), O but O shared O common O structural O perturbations O that O we O designed O to O modulate O h12 B-structure_element dynamics O . O The O 24 O structures B-evidence containing O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O or O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O showed O structural O diversity O in O the O same O part O of O the O scaffolds O ( O Figs O 5A O and O EV5A O ), O and O the O same O region O of O the O LBD B-structure_element — O the O C O ‐ O terminal O end O of O h11 B-structure_element ( O Figs O 5B O and O C O , O and O EV5B O ), O which O in O turn O nudges O h12 B-structure_element ( O Fig O 5C O and O D O ). O We O observed O that O the O OBHS B-chemical ‐ I-chemical N I-chemical analogs O displaced O h11 B-structure_element along O a O vector O away O from O Leu354 B-residue_name_number in O a O region O of O h3 B-structure_element that O is O unaffected O by O the O ligands O , O and O toward O the O dimer B-site interface I-site . O Remarkably O , O these O individual O inter B-evidence ‐ I-evidence atomic I-evidence distances I-evidence showed O a O ligand O class O ‐ O specific O ability O to O significantly O predict O proliferative O effects O ( O Fig O 5E O and O F O ), O demonstrating O the O feasibility O of O developing O a O minimal O set O of O activity O predictors O from O crystal B-evidence structures I-evidence . O The O h11 B-site – I-site h12 I-site interface I-site ( O circled O ) O includes O the O C O ‐ O terminal O part O of O h11 B-structure_element . O Direct O modulators O like O tamoxifen B-chemical drive O AF B-structure_element ‐ I-structure_element 1 I-structure_element ‐ O dependent O cell O ‐ O specific O activity O by O completely O occluding O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O but O it O is O not O known O how O indirect O modulators O produce O cell O ‐ O specific O ERα B-protein activity O . O The O 2F O o O ‐ O F O c O electron O density O map O and O F O o O ‐ O F O c O difference O map O of O a O 2 B-protein_state , I-protein_state 5 I-protein_state ‐ I-protein_state DTP I-protein_state ‐ I-protein_state bound I-protein_state structure B-evidence ( O PDB O 5DRJ O ) O were O contoured O at O 1 O . O 0 O sigma O and O ± O 3 O . O 0 O sigma O , O respectively O . O The O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O showed O perturbation O of O h11 B-structure_element , O as O well O as O h3 B-structure_element , O which O forms O part O of O the O AF B-site ‐ I-site 2 I-site surface I-site . O The O shifts O in O h3 B-structure_element suggest O these O compounds O are O positioned O to O alter O coregulator O preferences O . O Therefore O , O these O indirect O modulators O , O including O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analogs O — O all O of O which O show O cell O ‐ O specific O activity O profiles O — O induced O shifts O in O h3 B-structure_element and O h12 B-structure_element that O were O transmitted O to O the O coactivator O peptide O via O an O altered O AF B-site ‐ I-site 2 I-site surface I-site . O In O contrast O , O an O extended O side O chain O designed O to O directly O reposition O h12 B-structure_element and O completely O disrupt O the O AF B-site ‐ I-site 2 I-site surface I-site results O in O cell O ‐ O specific O signaling O . O If O we O calculated O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence matrices I-evidence containing O 4 O , O 000 O atoms O per O structure O × O 76 O ligand O – O receptor O complexes O , O we O would O have O 3 O × O 105 O predictions O . O We O have O found O that O the O TOCA1 B-protein HR1 B-structure_element , O like O the O closely O related O CIP4 B-protein HR1 B-structure_element , O has O interesting O structural O features O that O are O not O observed O in O other O HR1 B-structure_element domains O . O NMR B-experimental_method experiments O show O that O the O Cdc42 B-site - I-site binding I-site domain I-site from O N B-protein - I-protein WASP I-protein is O able O to O displace O TOCA1 B-protein HR1 B-structure_element from O Cdc42 B-protein , O whereas O the O N B-protein - I-protein WASP I-protein domain O but O not O the O TOCA1 B-protein HR1 B-structure_element domain O inhibits O actin O polymerization O . O This O suggests O that O TOCA1 B-protein binding O to O Cdc42 B-protein is O an O early O step O in O the O Cdc42 B-protein - O dependent O pathways O that O govern O actin O dynamics O , O and O the O differential O binding B-evidence affinities I-evidence of O the O effectors O facilitate O a O handover O from O TOCA1 B-protein to O N B-protein - I-protein WASP I-protein , O which O can O then O drive O recruitment O of O the O actin O - O modifying O machinery O . O These O molecular O switches O cycle O between O active B-protein_state , O GTP B-protein_state - I-protein_state bound I-protein_state , O and O inactive B-protein_state , O GDP B-protein_state - I-protein_state bound I-protein_state , O states O with O the O help O of O auxiliary O proteins O . O In O the O active B-protein_state state O , O G B-protein_type proteins I-protein_type bind O to O an O array O of O downstream O effectors O , O through O which O they O exert O their O extensive O roles O within O the O cell O . O RhoA B-protein acts O to O rearrange O existing O actin O structures O to O form O stress O fibers O , O whereas O Rac1 B-protein and O Cdc42 B-protein promote O de O novo O actin O polymerization O to O form O lamellipodia O and O filopodia O , O respectively O . O Following O their O release O , O the O C B-structure_element - I-structure_element terminal I-structure_element regions I-structure_element of O N B-protein - I-protein WASP I-protein are O free O to O interact O with O G B-protein_type - I-protein_type actin I-protein_type and O a O known O nucleator O of O actin O assembly O , O the O Arp2 B-complex_assembly / I-complex_assembly 3 I-complex_assembly complex O . O The O TOCA1 B-protein SH3 B-structure_element domain O has O many O known O binding O partners O , O including O N B-protein - I-protein WASP I-protein and O dynamin B-protein . O The O HR1 B-structure_element domain O has O been O directly O implicated O in O the O interaction O between O TOCA1 B-protein and O Cdc42 B-protein , O representing O the O first O Cdc42 B-protein - O HR1 B-structure_element domain O interaction O to O be O identified O . O Both O of O the O G B-site protein I-site switch I-site regions I-site are O involved O in O the O interaction O . O The O interactions O of O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein with O Cdc42 B-protein as O well O as O with O each O other O have O raised O questions O as O to O whether O the O two O Cdc42 B-protein effectors O can O interact O with O a O single O molecule O of O Cdc42 B-protein simultaneously O . O Cdc42 B-protein - O TOCA1 B-protein Binding O A O , O curves O derived O from O direct B-experimental_method binding I-experimental_method assays I-experimental_method in O which O the O indicated O concentrations O of O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly were O incubated B-experimental_method with O 30 O nm O GST B-mutant - I-mutant PAK I-mutant or O HR1 B-mutant - I-mutant His6 I-mutant in O SPAs B-experimental_method . O The O Kd B-evidence values O derived O for O the O ACK B-protein GBD B-structure_element with O Cdc42Δ7 B-mutant and O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein were O 0 O . O 032 O ± O 0 O . O 01 O and O 0 O . O 011 O ± O 0 O . O 01 O μm O , O respectively O . O Other O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O have O also O failed O to O show O heat O changes O in O our O hands O . O 7 O Infrared B-experimental_method interferometry I-experimental_method with O immobilized B-protein_state Cdc42 B-protein was O also O attempted O but O was O unsuccessful O for O both O TOCA1 B-protein HR1 B-structure_element and O for O the O positive O control O , O ACK B-protein . O The O affinity B-evidence was O therefore O determined O using O competition B-experimental_method SPAs I-experimental_method . O Free B-protein_state ACK B-protein competed O with O itself O with O an O affinity B-evidence of O 32 O nm O , O similar O to O the O value O obtained O by O direct B-experimental_method binding I-experimental_method of O 23 O nm O . O The O TOCA1 B-protein HR1 B-structure_element domain O also O fully O competed O with O the O GST B-mutant - I-mutant ACK I-mutant but O bound B-protein_state with O an O affinity B-evidence of O 6 O μm O ( O Fig O . O 1 O , O B O and O C O ), O in O agreement O with O the O low O affinity B-evidence observed O in O the O direct B-experimental_method binding I-experimental_method experiments I-experimental_method . O These O residues O are O not O generally O required O for O G B-protein_type protein I-protein_type - O effector O interactions O , O including O the O interaction O between O RhoA B-protein and O the O PRK1 B-protein HR1a B-structure_element domain O . O In O contrast O , O the O C O terminus O of O Rac1 B-protein contains O a O polybasic O sequence O , O which O is O crucial O for O Rac1 B-protein binding O to O the O HR1b B-structure_element domain O from O PRK1 B-protein . O This O construct O competed O with O GST B-mutant - I-mutant ACK I-mutant GBD B-structure_element to O give O a O similar O affinity O to O the O HR1 B-structure_element domain O alone B-protein_state ( O Kd B-evidence = O 4 O . O 6 O ± O 4 O μm O ; O Fig O . O 2C O ). O Domain O boundaries O are O derived O from O secondary O structure O predictions O ; O B O , O binding B-evidence curves I-evidence derived O from O direct B-experimental_method binding I-experimental_method assays I-experimental_method , O in O which O the O indicated O concentrations O of O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly were O incubated B-experimental_method with O 30 O nm O GST B-mutant - I-mutant ACK I-mutant or O His B-protein_state - I-protein_state tagged I-protein_state TOCA1 B-protein constructs O , O as O indicated O , O in O SPAs B-experimental_method . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O . O The O structure B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O . O B O , O a O sequence B-experimental_method alignment I-experimental_method of O the O HR1 B-structure_element domains O from O TOCA1 B-protein , O CIP4 B-protein , O and O PRK1 B-protein . O Residues O with O significantly O affected O backbone O or O side O chain O chemical O shifts O when O Cdc42 B-protein_state bound I-protein_state and O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O yellow O . O Side O chains O whose O CH O groups O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein are O marked O on O the O graph O in O Fig O . O 4B O with O green O asterisks O . O The O overall O CSP B-experimental_method was O calculated O for O each O residue O . O The O red O line O indicates O the O mean O CSP B-experimental_method , O plus O one O S O . O D O . O Residues O that O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein were O assigned O a O CSP B-experimental_method of O 0 O . O 1 O and O are O indicated O with O open O bars O . O This O suggests O that O the O switch B-site regions I-site are O not O rigidified O in O the O HR1 B-structure_element complex O and O are O still O in O conformational O exchange O . O Modeling O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly HR1 I-complex_assembly Complex O Cdc42 O is O shown O in O cyan O , O and O TOCA1 B-protein is O shown O in O purple O . O Some O of O these O can O be O rationalized O ; O for O example O , O Thr B-residue_name_number - I-residue_name_number 24Cdc42 I-residue_name_number , O Leu B-residue_name_number - I-residue_name_number 160Cdc42 I-residue_name_number , O and O Lys B-residue_name_number - I-residue_name_number 163Cdc42 I-residue_name_number all O pack O behind O switch B-site I I-site and O are O likely O to O be O affected O by O conformational O changes O within O the O switch B-site , O while O Glu B-residue_name_number - I-residue_name_number 95Cdc42 I-residue_name_number and O Lys B-residue_name_number - I-residue_name_number 96Cdc42 I-residue_name_number are O in O the O helix B-structure_element behind O switch B-site II I-site . O Competition O between O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein A O , O the O model O of O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly HR1 B-structure_element domain O complex O overlaid O with O the O Cdc42 B-complex_assembly - I-complex_assembly WASP I-complex_assembly structure B-evidence . O B O , O competition B-experimental_method SPA I-experimental_method experiments O carried O out O with O indicated O concentrations O of O the O N B-protein - I-protein WASP I-protein GBD B-structure_element construct O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant or O GST B-mutant - I-mutant WASP I-mutant GBD B-structure_element and O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O Unlabeled B-protein_state N B-protein - I-protein WASP I-protein GBD B-structure_element was O titrated B-experimental_method into O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly , O and O the O backbone O NH O groups O were O monitored O using O HSQCs B-experimental_method ( O Fig O . O 7C O ). O Actin B-protein_type polymerization O in O all O cases O was O initiated O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O . O Endogenous O N B-protein - I-protein WASP I-protein is O present O at O ∼ O 100 O nm O in O Xenopus B-taxonomy_domain extracts O , O whereas O TOCA1 B-protein is O present O at O a O 10 O - O fold O lower O concentration O than O N B-protein - I-protein WASP I-protein . O This O is O consistent O with O endogenous B-protein_state N B-protein - I-protein WASP I-protein , O activated O by O other O components O of O the O assay O , O outcompeting O the O TOCA1 B-protein HR1 B-structure_element domain O for O Cdc42 B-protein binding O . O Fluorescence B-evidence curves I-evidence show O actin O polymerization O in O the O presence B-protein_state of I-protein_state increasing B-experimental_method concentrations I-experimental_method of O N B-protein - I-protein WASP I-protein GBD B-structure_element or O TOCA1 B-protein HR1 B-structure_element domain O as O indicated O . O This O is O over O 100 O times O lower O than O that O of O the O N B-protein - I-protein WASP I-protein GBD B-structure_element ( O Kd B-evidence = O 37 O nm O ) O and O considerably O lower O than O other O known O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O The O TOCA1 B-protein HR1 B-structure_element domain O is O a O left O - O handed O coiled B-structure_element - I-structure_element coil I-structure_element comparable O with O other O known O HR1 B-structure_element domains O . O The O interhelical B-structure_element loops I-structure_element of O TOCA1 B-protein and O CIP4 B-protein differ O from O the O same O region O in O the O HR1 B-structure_element domains O of O PRK1 B-protein in O that O they O are O longer O and O contain O two O short O stretches O of O 310 B-structure_element - I-structure_element helix I-structure_element . O This O region O lies O within O the O G B-site protein I-site - I-site binding I-site surface I-site of O all O of O the O HR1 B-structure_element domains O ( O Fig O . O 4D O ). O Many O of O these O residues O are O significantly O affected O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein , O so O it O is O likely O that O the O conformation O of O this O loop B-structure_element is O altered O in O the O Cdc42 B-protein complex O . O These O observations O therefore O provide O a O molecular O mechanism O whereby O mutation B-experimental_method of O Met383 B-residue_name_number - O Gly384 B-residue_name_number - O Asp385 B-residue_name_number to O Ile383 B-residue_name_number - O Ser384 B-residue_name_number - O Thr385 B-residue_name_number abolishes O TOCA1 B-protein binding O to O Cdc42 B-protein . O For O example O , O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number , O which O is O not O visible O in O free B-protein_state Cdc42 B-protein or O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly , O is O close O to O the O TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 6A O ). O Some O residues O that O are O affected O in O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O but O do O not O correspond O to O contact O residues O of O RhoA B-protein or O Rac1 B-protein ( O Fig O . O 6C O ) O may O contact O HR1TOCA1 B-structure_element directly O ( O Fig O . O 6D O ). O The O weak O binding O prevented O detailed O structural B-experimental_method and I-experimental_method thermodynamic I-experimental_method studies I-experimental_method of O the O complex O . O Nonetheless O , O structural B-experimental_method studies I-experimental_method of O the O TOCA1 B-protein HR1 B-structure_element domain O , O combined O with O chemical B-experimental_method shift I-experimental_method mapping I-experimental_method , O have O highlighted O some O potentially O interesting O differences O between O Cdc42 B-protein - O HR1TOCA1 B-structure_element and O RhoA B-protein / O Rac1 B-protein - O HR1PRK1 B-structure_element binding O . O As O such O , O the O ability O of O the O TOCA1 B-protein HR1 B-structure_element domain O to O bind O to O Cdc42 B-protein ( O a O close O relative O of O Rac1 B-protein rather O than O RhoA B-protein ) O fits O this O trend O . O The O low O affinity O of O the O HR1TOCA1 B-structure_element - O Cdc42 B-protein interaction O in O the O context O of O the O physiological O concentration O of O TOCA1 B-protein in O Xenopus B-taxonomy_domain extracts O (∼ O 10 O nm O ) O suggests O that O binding O between O TOCA1 B-protein and O Cdc42 B-protein is O likely O to O occur O in O vivo O only O when O TOCA1 B-protein is O at O high O local O concentrations O and O membrane O - O localized O and O therefore O in O close O proximity O to O activated B-protein_state Cdc42 B-protein . O WIP B-protein inhibits O the O activation O of O N B-protein - I-protein WASP I-protein by O Cdc42 B-protein , O an O effect O that O is O reversed O by O TOCA1 B-protein . O A O combination O of O allosteric O activation O by O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical , O activated B-protein_state Cdc42 B-protein and O TOCA1 B-protein , O and O oligomeric O activation O implemented O by O TOCA1 B-protein would O lead O to O full B-protein_state activation I-protein_state of O N B-protein - I-protein WASP I-protein and O downstream O actin O polymerization O . O The O commonly O used O MGD B-mutant → I-mutant IST I-mutant ( O Cdc42 B-protein_state - I-protein_state binding I-protein_state deficient I-protein_state ) O mutant O of O TOCA1 B-protein has O a O reduced O ability O to O activate O the O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly complex O , O further O indicating O the O importance O of O the O Cdc42 B-protein - O HR1TOCA1 B-structure_element interaction O prior O to O downstream O activation O of O N B-protein - I-protein WASP I-protein . O Step O 1 O , O TOCA1 B-protein is O recruited O to O the O membrane O via O its O F B-structure_element - I-structure_element BAR I-structure_element domain O and O / O or O Cdc42 B-protein interactions O . O It O is O clear O from O the O data O presented O here O that O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein do O not O bind O Cdc42 B-protein simultaneously O and O that O N B-protein - I-protein WASP I-protein is O likely O to O outcompete O TOCA1 B-protein for O Cdc42 B-protein binding O . O In O contrast O to O related O carboxylases B-protein_type , O large O - O scale O conformational O changes O are O required O for O substrate O turnover O , O and O are O mediated O by O the O CD B-structure_element under O phosphorylation B-ptm control O . O BRCA1 B-protein binds O only O to O the O phosphorylated B-protein_state form O of O ACC1 B-protein and O prevents O ACC B-protein_type activation O by O phosphatase B-protein_type - O mediated O dephosphorylation O . O Its O phosphorylation B-ptm by O the O AMPK B-protein homologue O SNF1 B-protein results O in O strongly O reduced O ACC B-protein_type activity O . O The O organization O of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element The O crystal B-evidence structure I-evidence of O the O CD B-structure_element of O SceACC B-protein ( O SceCD B-species ) O was O determined O at O 3 O . O 0 O Å O resolution O by O experimental B-experimental_method phasing I-experimental_method and O refined B-experimental_method to O Rwork B-evidence / O Rfree B-evidence = O 0 O . O 20 O / O 0 O . O 24 O ( O Table O 1 O ). O SceCD B-species comprises O four O distinct O domains O , O an O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element domain I-structure_element ( O CDN B-structure_element ), O and O a O central O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element linker I-structure_element domain I-structure_element ( O CDL B-structure_element ), O followed O by O two O α B-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element C I-structure_element - I-structure_element terminal I-structure_element domains I-structure_element ( O CDC1 B-structure_element / O CDC2 B-structure_element ). O CDL B-structure_element does O not O interact O with O CDN B-structure_element apart O from O the O covalent O linkage O and O forms O only O a O small O contact O to O CDC2 B-structure_element via O a O loop B-structure_element between O Lα2 B-structure_element / I-structure_element α3 I-structure_element and O the O N O - O terminal O end O of O Lα1 B-structure_element , O with O an O interface B-site area O of O 400 O Å2 O . O CDC1 B-structure_element / O CDC2 B-structure_element share O a O common O fold O ; O they O are O composed O of O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheets I-structure_element flanked O on O one O side O by O two O long B-structure_element , I-structure_element bent I-structure_element helices I-structure_element inserted O between O strands B-structure_element β3 B-structure_element / I-structure_element β4 I-structure_element and O β4 B-structure_element / I-structure_element β5 I-structure_element . O On O the O basis O of O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence of O main O chain O atom O positions O of O 2 O . O 2 O Å O , O CDC1 B-structure_element / O CDC2 B-structure_element are O structurally O more O closely O related O to O each O other O than O to O any O other O protein O ( O Fig O . O 1c O ); O they O may O thus O have O evolved O by O duplication O . O Phosphorylated B-protein_state SceACC B-protein shows O only O residual O activity O ( O kcat B-evidence = O 0 O . O 4 O ± O 0 O . O 2 O s O − O 1 O , O s O . O d O . O based O on O five O replicate O measurements O ), O which O increases O 16 O - O fold O ( O kcat B-evidence = O 6 O . O 5 O ± O 0 O . O 3 O s O − O 1 O ) O after O dephosphorylation O with O λ B-protein_type protein I-protein_type phosphatase I-protein_type . O As O a O result O , O the O N O terminus O of O CDL B-structure_element at O helix B-structure_element Lα1 B-structure_element , O which O connects O to O CDN B-structure_element , O is O shifted O by O 12 O Å O . O Remarkably O , O CDN B-structure_element of O HsaBT B-mutant - I-mutant CD I-mutant adopts O a O completely O different O orientation O compared O with O SceCD B-species . O To O improve B-experimental_method crystallizability I-experimental_method , O we O generated B-experimental_method ΔBCCP B-mutant variants I-mutant of O full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O which O , O based O on O SAXS B-experimental_method analysis I-experimental_method , O preserve O properties O of O intact B-protein_state ACC B-protein_type ( O Supplementary O Table O 1 O and O Supplementary O Fig O . O 2a O – O c O ). O The O connecting B-structure_element region I-structure_element is O remarkably O similar O in O isolated B-protein_state CD B-structure_element and O CthCD B-mutant - I-mutant CTCter I-mutant structures B-evidence , O indicating O inherent O conformational O stability O . O Surprisingly O , O in O both O the O linear B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state , O the O approximate O distances O between O the O BC B-structure_element and O CT B-structure_element active B-site sites I-site would O remain O larger O than O 110 O Å O . O These O observed O distances O are O considerably O larger O than O in O static B-protein_state structures B-evidence of O any O other O related O biotin B-protein_type - I-protein_type dependent I-protein_type carboxylase I-protein_type . O The O CD B-structure_element consists O of O four O distinct O subdomains B-structure_element and O acts O as O a O tether O from O the O CT B-structure_element to O the O mobile B-protein_state BCCP B-structure_element and O an O oriented B-protein_state BC B-structure_element domain O . O A O second B-structure_element hinge I-structure_element can O be O identified O between O CDC1 B-structure_element / O CDC2 B-structure_element . O The O only O bona O fide O regulatory B-protein_state phophorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type in O the O regulatory B-structure_element loop I-structure_element is O directly O participating O in O CDC1 B-structure_element / O CDC2 B-structure_element domain O interactions O and O thus O stabilizes O the O hinge B-structure_element conformation I-structure_element . O In O flACC B-protein , O the O regulatory B-structure_element loop I-structure_element is O mostly B-protein_state disordered I-protein_state , O illustrating O the O increased O flexibility O due O to O the O absence O of O the O phosphoryl B-chemical group O . O Thus O , O in O accordance O with O the O results O presented O here O , O phosphorylation B-ptm of O Ser1157 B-residue_name_number in O SceACC B-protein most O likely O limits O flexibility O in O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element such O that O activation O through O BC B-structure_element dimerization O is O not O possible O ( O Fig O . O 4d O ), O which O however O does O not O exclude O intermolecular O dimerization O . O Cartoon O representation O of O crystal B-evidence structures I-evidence of O multidomain B-mutant constructs I-mutant of O CthACC B-protein . O ( O b O ) O The O interdomain B-site interface I-site of O CDC1 B-structure_element and O CDC2 B-structure_element exhibits O only O limited O plasticity O . O The O conformational O dynamics O of O fungal B-taxonomy_domain ACC B-protein_type . O CthCD B-mutant - I-mutant CT1 I-mutant ( O in O colour O ) O serves O as O reference O , O the O compared B-experimental_method structures I-experimental_method ( O as O indicated O , O numbers O after O construct O name O differentiate O between O individual O protomers B-oligomeric_state ) O are O shown O in O grey O . O Crystal B-evidence Structures I-evidence of O Putative O Sugar B-protein_type Kinases I-protein_type from O Synechococcus B-species Elongatus I-species PCC I-species 7942 I-species and O Arabidopsis B-species Thaliana I-species Here O we O solved B-experimental_method the O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein in O both O their O apo B-protein_state forms O and O in B-protein_state complex I-protein_state with I-protein_state nucleotide B-chemical substrates O . O Phosphorylation B-ptm is O one O of O the O various O pivotal O modifications O of O carbohydrates B-chemical , O and O is O catalyzed O by O specific O sugar B-protein_type kinases I-protein_type . O These O kinases B-protein_type exhibit O considerable O differences O in O their O folding O pattern O and O substrate O specificity O . O Based O on O sequence B-experimental_method analysis I-experimental_method , O they O can O be O divided O into O four O families O , O namely O HSP B-protein_type 70_NBD I-protein_type family I-protein_type , O FGGY B-protein_type family I-protein_type , O Mer_B B-protein_type like I-protein_type family I-protein_type and O Parm_like B-protein_type family I-protein_type . O Our O findings O provide O new O details O of O the O catalytic O mechanism O of O SePSK B-protein and O lay O the O foundation O for O future O studies O into O its O homologs O in O eukaryotes B-taxonomy_domain . O Apo B-protein_state - O SePSK B-protein contains O two O domains O referred O to O further O on O as O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element ( O Fig O 1A O ). O 2 B-residue_range – I-residue_range 228 I-residue_range and O aa O . O The O secondary O structural O elements O are O indicated O ( O α B-structure_element - I-structure_element helix I-structure_element : O green O , O β B-structure_element - I-structure_element sheet I-structure_element : O wheat O ). O As O shown O in O Fig O 2A O , O both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein exhibited O ATP B-chemical hydrolysis O activity O . O ( O A O ) O The O ATP B-chemical hydrolysis O activity O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O Both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrate O . O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein possess O a O similar O ATP B-site binding I-site site I-site This O result O was O consistent O with O our O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method where O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O without O adding O any O substrates O ( O Fig O 2A O and O 2C O ). O The O tail O of O AMP B-chemical - I-chemical PNP I-chemical points O to O the O hinge B-structure_element region I-structure_element of O SePSK B-protein , O and O its O α O - O phosphate B-chemical and O β O - O phosphate B-chemical groups O are O stabilized O by O Gly376 B-residue_name_number and O Ser243 B-residue_name_number , O respectively O . O The O four O α B-structure_element - I-structure_element helices I-structure_element ( O α26 B-structure_element , O α28 B-structure_element , O α27 B-structure_element and O α30 B-structure_element ) O are O labeled O in O red O . O To O better O understand O the O interaction O pattern O between O SePSK B-protein and O D B-chemical - I-chemical ribulose I-chemical , O the O apo B-protein_state - O SePSK B-protein crystals B-experimental_method were I-experimental_method soaked I-experimental_method into I-experimental_method the O reservoir B-experimental_method with O 10 O mM O D B-chemical - I-chemical ribulose I-chemical ( O RBL B-chemical ) O and O the O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence was O solved B-experimental_method . O As O shown O in O Fig O 4A O , O the O nearest O distance O between O the O carbon O skeleton O of O two O D B-chemical - I-chemical ribulose I-chemical molecules O are O approx O . O The O hydrogen B-bond_interaction bonds I-bond_interaction are O indicated O by O the O black O dashed O lines O and O the O numbers O near O the O dashed O lines O are O the O distances O ( O Å O ). O ( O C O ) O The O binding B-experimental_method affinity I-experimental_method assays I-experimental_method of O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical . O A O unique O macromolecular O cage O formed O by O two O decamers B-oligomeric_state of O the O Escherichia B-species coli I-species LdcI B-protein and O five O hexamers B-oligomeric_state of O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein was O shown O to O counteract O acid O stress O under O starvation O . O Multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method reveals O that O certain O enterobacteria B-taxonomy_domain exert O evolutionary O pressure O on O the O lysine B-protein_type decarboxylase I-protein_type towards O the O cage O - O like O assembly O with O RavA B-protein , O implying O that O this O complex O may O have O an O important O function O under O particular O stress O conditions O . O These O amino B-protein_type acid I-protein_type decarboxylases I-protein_type are O therefore O called O acid O stress O inducible B-protein_state or O biodegradative B-protein_state to O distinguish O them O from O their O biosynthetic B-protein_state lysine B-protein_type and I-protein_type ornithine I-protein_type decarboxylase I-protein_type paralogs O catalysing O the O same O reaction O but O responsible O for O the O polyamine B-chemical production O at O neutral B-protein_state pH I-protein_state . O In O particular O , O the O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein ( O or O CadA B-protein ) O attracts O attention O due O to O its O broad B-protein_state pH I-protein_state range I-protein_state of O activity O and O its O capacity O to O promote O survival O and O growth O of O pathogenic O enterobacteria B-taxonomy_domain such O as O Salmonella B-species enterica I-species serovar I-species Typhimurium I-species , O Vibrio B-species cholerae I-species and O Vibrio B-species vulnificus I-species under O acidic O conditions O . O The O crystal B-evidence structure I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein as O well O as O its O low O resolution O characterisation O by O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O showed O that O it O is O a O decamer B-oligomeric_state made O of O two O pentameric B-oligomeric_state rings B-structure_element . O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O In O addition O , O we O improved O our O earlier O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O from O 7 O . O 5 O Å O to O 6 O . O 2 O Å O resolution O ( O Figs O 1E O , O F O and O S3 O ). O Based O on O these O reconstructions B-evidence , O reliable O pseudoatomic B-evidence models I-evidence of O the O three O assemblies O were O obtained O by O flexible B-experimental_method fitting I-experimental_method of I-experimental_method either O the O crystal B-evidence structure I-evidence of O LdcIi B-protein or O a O derived O structural B-experimental_method homology I-experimental_method model I-experimental_method of O LdcC B-protein ( O Table O S1 O ). O The O resolution O of O the O cryoEM B-experimental_method maps B-evidence does O not O allow O modeling O the O position O of O the O PLP B-chemical moiety O and O calls O for O caution O in O detailed O mechanistic O interpretations O in O terms O of O individual O amino B-chemical acids I-chemical . O While O differences O in O the O ppGpp B-site binding I-site site I-site could O indeed O be O visualized O ( O Fig O . O S4 O ), O the O level O of O resolution O warns O against O speculations O about O their O significance O . O Swinging O and O stretching O of O the O CTDs B-structure_element upon O pH B-protein_state - I-protein_state dependent I-protein_state LdcI B-protein activation O and O LARA B-structure_element binding O Inspection O of O the O superimposed B-experimental_method decameric B-oligomeric_state structures B-evidence ( O Figs O 2 O and O S6 O ) O suggests O a O depiction O of O the O wing B-structure_element domains I-structure_element as O an O anchor O around O which O the O peripheral O CTDs B-structure_element swing O . O This O swinging O movement O seems O to O be O mediated O by O the O core B-structure_element domains I-structure_element and O is O accompanied O by O a O stretching O of O the O whole O LdcI B-protein subunits B-structure_element attracted O by O the O RavA B-protein magnets O . O Our O structures B-evidence show O that O this B-structure_element motif I-structure_element is O not O involved O in O the O enzymatic O activity O or O the O oligomeric O state O of O the O proteins O . O One O of O the O elucidated O roles O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O is O to O maintain O LdcI B-protein activity O under O conditions O of O enterobacterial B-taxonomy_domain starvation O by O preventing O LdcI B-protein inhibition O by O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical . O Furthermore O , O the O recently O documented O interaction O of O both O LdcI B-protein and O RavA B-protein with O specific O subunits B-structure_element of O the O respiratory B-protein_type complex I-protein_type I I-protein_type , O together O with O the O unanticipated O link O between O RavA B-protein and O maturation O of O numerous O iron B-protein_type - I-protein_type sulfur I-protein_type proteins I-protein_type , O tend O to O suggest O an O additional O intriguing O function O for O this O 3 O . O 5 O MDa O assembly O . O Besides O , O the O structures B-evidence and O the O pseudoatomic B-evidence models I-evidence of O the O active B-protein_state ppGpp B-protein_state - I-protein_state free I-protein_state states O of O both O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type offer O an O additional O tool O for O analysis O of O their O role O in O UPEC B-species infectivity O . O The O active B-site site I-site is O boxed O . O ( O D O , O E O ) O A O gallery O of O negative O stain O EM O images O of O ( O D O ) O the O wild B-protein_state type I-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O and O ( O E O ) O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O ( O F O ) O Some O representative O class O averages O of O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O Numbering O as O in O E B-species . I-species coli I-species . O Relative O to O the O open B-protein_state bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O non B-protein_state - I-protein_state phosphorylated I-protein_state Mep2 B-protein_type exhibits O shifts O in O cytoplasmic B-structure_element loops I-structure_element and O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O to O occlude O the O cytoplasmic O exit B-site of O the O channel B-site and O to O interact O with O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O Here O , O the O authors O report O the O crystal B-evidence structures I-evidence of O closed B-protein_state states O of O Mep2 B-protein_type proteins I-protein_type and O propose O a O model O for O their O regulation O by B-experimental_method comparing I-experimental_method them I-experimental_method with I-experimental_method the O open B-protein_state ammonium B-protein_type transporters I-protein_type of O bacteria B-taxonomy_domain . O A O common O feature O of O transceptors B-protein_type is O that O they O are O induced O when O cells O are O starved O for O their O substrate O . O With O the O exception O of O the O human B-species RhCG B-protein structure B-evidence , O no O structural O information O is O available O for O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O To O elucidate O the O mechanism O of O Mep2 B-protein_type transport O regulation O , O we O present O here O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type transceptors I-protein_type from O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species . O Despite O different O crystal O packing O ( O Supplementary O Table O 1 O ), O the O two O CaMep2 B-protein structures B-evidence are O identical O to O each O other O and O very O similar O to O ScMep2 B-protein ( O Cα O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence Unless O specifically O stated O , O the O drawn O conclusions O also O apply O to O ScMep2 B-protein . O Together O with O additional O , O smaller O differences O in O other O extracellular B-structure_element loops I-structure_element , O these O changes O generate O a O distinct O vestibule B-structure_element leading O to O the O ammonium B-site binding I-site site I-site that O is O much O more O pronounced O than O in O the O bacterial B-taxonomy_domain proteins O . O The O largest O differences O between O the O Mep2 B-protein structures B-evidence and O the O other O known O ammonium B-protein_type transporter I-protein_type structures B-evidence are O located O on O the O intracellular O side O of O the O membrane O . O ICL1 B-structure_element has O also O moved O inwards O relative O to O its O position O in O the O bacterial B-taxonomy_domain Amts B-protein_type . O Compared O with O ICL1 B-structure_element , O the O backbone O conformational O changes O observed O for O the O neighbouring O ICL2 B-structure_element are O smaller O , O but O large O shifts O are O nevertheless O observed O for O the O conserved B-protein_state residues O Glu140 B-residue_name_number and O Arg141 B-residue_name_number ( O Fig O . O 4 O ). O Phosphorylation B-site target I-site site I-site is O at O the O periphery O of O Mep2 B-protein In O the O absence B-protein_state of I-protein_state Npr1 B-protein , O plasmid B-experimental_method - I-experimental_method encoded I-experimental_method WT B-protein_state Mep2 B-protein in O a O S B-species . I-species cerevisiae I-species mep1 B-mutant - I-mutant 3Δ I-mutant strain O ( O triple B-mutant mepΔ I-mutant ) O does O not O allow O growth O on O low O concentrations O of O ammonium B-chemical , O suggesting O that O the O transporter B-protein_type is O inactive B-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ). O We O obtained O a O similar O result O for O ammonium O uptake O by O the O 446Δ B-mutant mutant B-protein_state ( O Fig O . O 3 O ), O supporting O the O data O from O Marini O et O al O . O We O then O constructed B-experimental_method and I-experimental_method purified I-experimental_method the O analogous O CaMep2 B-protein 442Δ B-mutant truncation B-protein_state mutant I-protein_state and O determined B-experimental_method the O crystal B-evidence structure I-evidence using O data O to O 3 O . O 4 O Å O resolution O . O The O structure B-evidence shows O that O removal B-experimental_method of I-experimental_method the O AI B-structure_element region I-structure_element markedly O increases O the O dynamics O of O the O cytoplasmic B-structure_element parts I-structure_element of O the O transporter B-protein_type . O The O first O one O is O that O the O open B-protein_state state O is O disfavoured O by O crystallization B-experimental_method because O of O lower O stability O or O due O to O crystal O packing O constraints O . O The O ammonium B-chemical uptake O activity O of O the O S B-species . I-species cerevisiae I-species version O of O the O DD B-mutant mutant I-mutant is O the O same O as O that O of O WT B-protein_state Mep2 B-protein and O the O S453D B-mutant mutant B-protein_state , O indicating O that O the O mutations O do O not O affect O transporter O functionality O in O the O triple B-mutant mepΔ I-mutant background O ( O Fig O . O 3 O ). O The O movement O of O the O acidic O residues O away O from O Arg452 B-residue_name_number and O Sep453 B-residue_name_number is O more O pronounced O in O this O simulation B-experimental_method in O comparison O with O the O movement O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number in O the O DD B-mutant mutant I-mutant . O The O reason O why O similar O transporters B-protein_type such O as O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein and O Mep2 B-protein are O regulated O in O opposite O ways O by O phosphorylation B-ptm ( O inactivation B-protein_state in O plants B-taxonomy_domain and O activation B-protein_state in O fungi B-taxonomy_domain ) O is O not O known O . O By O determining O the O first O structures B-evidence of O closed B-protein_state ammonium B-protein_type transporters I-protein_type and O comparing B-experimental_method those O structures B-evidence with O the O permanently B-protein_state open I-protein_state bacterial B-taxonomy_domain proteins O , O we O demonstrate O that O Mep2 B-protein_type channel B-site closure O is O likely O due O to O movements O of O the O CTR B-structure_element and O ICL1 B-structure_element and O ICL3 B-structure_element . O Owing O to O the O crosstalk O between O monomers B-oligomeric_state , O a O single O phosphorylation B-ptm event O might O lead O to O opening O of O the O entire O trimer B-oligomeric_state , O although O this O has O not O yet O been O tested O ( O Fig O . O 9b O ). O It O should O also O be O noted O that O the O tyrosine B-residue_name residue O interacting O with O His2 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O , O suggesting O that O the O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site might O be O a O general O way O to O close B-protein_state Mep2 B-protein_type proteins I-protein_type . O For O example O , O NH3 B-chemical uniport O or O symport O of O NH3 B-chemical / O H B-chemical + I-chemical might O result O in O changes O in O local O pH O , O but O NH4 B-chemical + I-chemical uniport O might O not O , O and O this O difference O might O determine O signalling O . O ( O a O ) O Monomer B-oligomeric_state cartoon O models O viewed O from O the O side O for O ( O left O ) O A O . O fulgidus O Amt B-protein - I-protein 1 I-protein ( O PDB O ID O 2B2H O ), O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O middle O ) O and O C B-species . I-species albicans I-species Mep2 B-protein ( O right O ). O One O monomer B-oligomeric_state is O coloured O as O in O a O and O one O monomer B-oligomeric_state is O coloured O by O B O - O factor O ( O blue O , O low O ; O red O ; O high O ). O The O secondary O structure O elements O observed O for O CaMep2 B-protein are O indicated O , O with O the O numbers O corresponding O to O the O centre O of O the O TM B-structure_element segment I-structure_element . O Growth B-experimental_method of O ScMep2 B-mutant variants I-mutant on O low O ammonium O medium O . O ( O b O ) O Overlay B-experimental_method of O the O CTRs B-structure_element of O ScMep2 B-protein ( O grey O ) O and O CaMep2 B-protein ( O green O ), O showing O the O similar O electronegative O environment O surrounding O the O phosphorylation B-site site I-site ( O P O ). O The O AI B-structure_element regions I-structure_element are O coloured O magenta O . O Missing O regions O are O labelled O . O ( O b O ) O Stereo O superpositions B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O truncation B-protein_state mutant I-protein_state . O Schematic O model O for O phosphorylation O - O based O regulation O of O Mep2 B-protein ammonium O transporters O . O To O support O antibody B-protein_type therapeutic O development O , O the O crystal B-evidence structures I-evidence of O a O set O of O 16 O germline O variants O composed O of O 4 O different O kappa B-structure_element light I-structure_element chains I-structure_element paired O with O 4 O different O heavy B-structure_element chains I-structure_element have O been O determined O . O CDR B-structure_element H3 B-structure_element , O despite O having O the O same O amino O acid O sequence O , O exhibits O the O largest O conformational O diversity O . O About O half O of O the O structures B-evidence have O CDR B-structure_element H3 B-structure_element conformations O similar O to O that O of O the O parent O ; O the O others O diverge O significantly O . O The O structures B-evidence and O their O analyses O provide O a O rich O foundation O for O future O antibody B-protein_type modeling O and O engineering O efforts O . O Isotypes O IgG B-protein , O IgD B-protein and O IgA B-protein each O have O 4 O domains O , O one O variable B-structure_element ( O V B-structure_element ) O and O 3 O constant B-structure_element ( O C B-structure_element ) O domains O , O while O IgE B-protein and O IgM B-protein each O have O the O same O 4 O domains O along O with O an O additional O C B-structure_element domain I-structure_element . O These O domains O have O a O common O folding O pattern O often O referred O to O as O the O “ O immunoglobulin B-structure_element fold I-structure_element ,” O formed O by O the O packing O together O of O 2 O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O In O antibodies B-protein_type , O the O heavy B-structure_element and I-structure_element light I-structure_element chain I-structure_element V B-structure_element domains I-structure_element pack O together O forming O the O antigen B-site combining I-site site I-site . O Later O studies O found O that O the O CDR B-structure_element loop I-structure_element length O is O the O primary O determining O factor O of O antigen B-site - I-site binding I-site site I-site topography O because O it O is O the O primary O factor O for O determining O a O canonical O structure O . O In O the O torso B-structure_element region I-structure_element , O 2 O primary O groups O could O be O identified O , O which O led O to O sequence O - O based O rules O that O can O predict O with O some O degree O of O reliability O the O conformation O of O the O stem B-structure_element region I-structure_element . O The O “ O kinked B-protein_state ” O or O “ O bulged B-protein_state ” O conformation O is O the O most O prevalent O , O but O an O “ O extended B-protein_state ” O or O “ O non B-protein_state - I-protein_state bulged I-protein_state ” O conformation O is O also O , O but O less O frequently O , O observed O . O Crystallization B-experimental_method of O the O 16 O Fabs B-structure_element was O previously O reported O . O Three O sets O of O the O crystals B-evidence were O isomorphous O with O nearly O identical O unit O cells O ( O Table O 1 O ). O The O crystal B-evidence structures I-evidence of O the O 16 O Fabs B-structure_element have O been O determined O at O resolutions O ranging O from O 3 O . O 3 O Å O to O 1 O . O 65 O Å O ( O Table O 1 O ). O Overall O the O structures B-evidence are O fairly O complete O , O and O , O as O can O be O expected O , O the O models O for O the O higher O resolution O structures B-evidence are O more O complete O than O those O for O the O lower O resolution O structures B-evidence ( O Table O S1 O ). O CDRs B-structure_element are O defined O using O the O Dunbrack O convention O [ O 12 O ]. O CDR B-structure_element H2 B-structure_element Most O likely O this O is O the O result O of O interaction O of O CDR B-structure_element H2 B-structure_element with O CDR B-structure_element H1 B-structure_element , O namely O with O the O residue O at O position O 33 B-residue_number ( O residue O 11 O of O 13 O in O CDR B-structure_element H1 B-structure_element ). O The O four O LC B-structure_element CDRs B-structure_element L1 B-structure_element feature O 3 O different O lengths O ( O 11 B-residue_range , O 12 B-residue_range and O 17 B-residue_range residues O ) O having O a O total O of O 4 O different O canonical O structure O assignments O . O Two O structures B-evidence , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly are O assigned O to O canonical O structure O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant with O virtually O identical O backbone O conformations O . O As O with O CDR B-structure_element L2 B-structure_element , O all O 4 O LCs B-structure_element have O CDR B-structure_element L3 B-structure_element of O the O same O length O and O canonical O structure B-evidence , O L3 B-mutant - I-mutant 9 I-mutant - I-mutant cis7 I-mutant - I-mutant 1 I-mutant ( O Table O 2 O ). O CDR B-structure_element H3 B-structure_element conformational O diversity O Despite O having O the O same O amino O acid O sequence O in O all O variants O , O CDR B-structure_element H3 B-structure_element has O the O highest O degree O of O structural O diversity O and O disorder O of O all O of O the O CDRs B-structure_element in O the O experimental O set O . O Another O four O of O the O Fabs B-structure_element , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly have O missing O side O - O chain O atoms O . O A O representative O CDR B-structure_element H3 B-structure_element structure B-evidence for O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly illustrating O this O is O shown O in O Fig O . O 7A O . O In O fact O , O it O is O the O only O Fab B-structure_element in O the O set O that O has O a O water B-chemical molecule O present O at O this O site O . O Three O of O the O Fabs B-structure_element , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O have O distinctive O conformations O . O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly domain O packing O The O VH B-structure_element and O VL B-structure_element domains O have O a O β B-structure_element - I-structure_element sandwich I-structure_element structure I-structure_element ( O also O often O referred O as O a O Greek B-structure_element key I-structure_element motif I-structure_element ) O and O each O is O composed O of O a O 4 B-structure_element - I-structure_element stranded I-structure_element and I-structure_element a I-structure_element 5 I-structure_element - I-structure_element stranded I-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O They O include O : O 1 O ) O a O bidentate O hydrogen B-bond_interaction bond I-bond_interaction between O L B-structure_element - O Gln38 B-residue_name_number and O H B-structure_element - O Gln39 B-residue_name_number ; O 2 O ) O H B-structure_element - O Leu45 B-residue_name_number in O a O hydrophobic B-site pocket I-site between O L B-structure_element - O Phe98 B-residue_name_number , O L B-structure_element - O Tyr87 B-residue_name_number and O L B-structure_element - O Pro44 B-residue_name_number ; O 3 O ) O L B-structure_element - O Pro44 B-residue_name_number stacked O against O H B-structure_element - O Trp103 B-residue_name_number ; O and O 4 O ) O L B-structure_element - O Ala43 B-residue_name_number opposite O the O face O of O H B-structure_element - O Tyr91 B-residue_name_number ( O Fig O . O 8 O ). O With O the O exception O of O L B-structure_element - O Ala43 B-residue_name_number , O all O other O residues O are O conserved O in O human B-species germlines O . O The O first O approach O uses O ABangles B-experimental_method , O the O results O of O which O are O shown O in O Table O S2 O . O For O structures B-evidence with O 2 O copies O of O the O Fab B-structure_element in O the O asymmetric O unit O , O only O one O structure B-evidence was O used O . O The O largest O deviations O in O the O tilt B-evidence angle I-evidence , O up O to O 11 O . O 0 O °, O are O found O for O 2 O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O that O stand O out O from O the O other O Fabs B-structure_element . O Two O examples O illustrating O large O ( O 10 O . O 5 O °) O and O small O ( O 1 O . O 6 O °) O differences O in O the O tilt B-evidence angles I-evidence are O shown O in O Fig O . O 9 O . O Some O side O chain O atoms O in O CDR B-structure_element H3 B-structure_element are O missing O . O Parts O of O CDR B-structure_element H3 B-structure_element main O chain O are O completely O disordered B-protein_state , O and O were O not O modeled O in O Fabs B-structure_element H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly that O have O the O lowest O Tms B-evidence in O the O set O . O Pairing O of O different O germlines O yields O antibodies B-protein_type with O various O degrees O of O stability O . O Curiously O , O the O 2 O Fabs B-structure_element , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O deviate O markedly O in O their O tilt B-evidence angles I-evidence from O the O rest O of O the O panel O . O Note O that O most O of O the O VH B-site : I-site VL I-site interface I-site residues O are O invariant O ; O therefore O , O significant O change O of O the O tilt O angle O must O come O with O a O penalty O in O free O energy O . O Comparison O of O the O CDR B-structure_element H3s B-structure_element reveals O a O large O set O of O variants O with O conformations O similar O to O the O parent O , O while O a O second O set O has O significant O conformational O variability O , O indicating O that O both O the O sequence O and O the O structural O context O define O the O CDR B-structure_element H3 B-structure_element conformation O . O Fortunately O , O for O most O applications O of O antibody B-protein_type modeling O , O such O as O engineering O affinity O and O biophysical O properties O , O an O accurate O CDR B-structure_element H3 B-structure_element structure B-evidence is O not O always O necessary O . O Visualizing O chaperone B-protein_type - O assisted O protein O folding O NMR B-experimental_method can O theoretically O be O used O to O determine O heterogeneous O ensembles O , O but O in O practice O , O this O proves O to O be O very O challenging O . O Importantly O , O even O though O we O only O labeled O a O subset O of O the O residues O in O the O flexible B-protein_state regions O of O the O substrate O with O iodine B-chemical , O the O residual B-evidence electron I-evidence density I-evidence can O provide O spatial O information O on O many O of O the O other O flexible B-protein_state residues O . O As O described O in O detail O below O , O we O developed O the O READ B-experimental_method method O to O uncover O the O ensemble O of O conformations O that O the O Spy B-structure_element - I-structure_element binding I-structure_element domain I-structure_element of O Im7 B-protein ( O i O . O e O ., O Im76 B-mutant - I-mutant 45 I-mutant ) O adopts O while O bound B-protein_state to I-protein_state Spy B-protein . O We O then O co B-experimental_method - I-experimental_method crystallized I-experimental_method Spy B-protein and O the O eight O Im76 B-mutant - I-mutant 45 I-mutant peptides O , O each O of O which O harbored O an O individual O pI B-chemical - I-chemical Phe I-chemical substitution B-experimental_method at O one O distinct O position O , O and O collected B-experimental_method anomalous B-evidence data I-evidence for O all O eight O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O ( O Fig O . O 1B O , O Supplementary O Table O 1 O Supplementary O Dataset O 1 O , O and O Supplementary O Table O 2 O ). O To O determine O the O structural O ensemble O that O Im76 B-mutant - I-mutant 45 I-mutant adopts O while O bound B-protein_state to I-protein_state Spy B-protein , O we O combined O the O residual B-evidence electron I-evidence density I-evidence and O the O anomalous B-evidence signals I-evidence from O our O pI B-chemical - I-chemical Phe I-chemical substituted O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O . O The O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method algorithm I-experimental_method is O diagrammed O in O Fig O . O 2 O . O Prior O to O performing O the O selection O , O we O generated O a O large O and O diverse O pool O of O chaperone B-protein_type - O substrate O complexes O using O coarse B-experimental_method - I-experimental_method grained I-experimental_method MD I-experimental_method simulations I-experimental_method in O a O pseudo B-experimental_method - I-experimental_method crystal I-experimental_method environment I-experimental_method ( O Fig O . O 2 O and O Supplementary O Fig O . O 4 O ). O The O initial O conditions O of O the O binding B-experimental_method simulations I-experimental_method are O not O biased O toward O a O particular O conformation O of O the O substrate O or O any O specific O chaperone B-protein_type - O substrate O interaction O ( O Online O Methods O ). O Im76 B-mutant - I-mutant 45 I-mutant binds O and O unbinds O to O Spy B-protein throughout O the O simulations B-experimental_method . O The O anomalous B-evidence scattering I-evidence portion O of O the O selection O uses O our O basic O knowledge O of O pI B-chemical - I-chemical Phe I-chemical geometry O : O the O iodine B-chemical is O separated O from O its O respective O Cα O atom O in O each O coarse O - O grained O conformer O by O 6 O . O 5 O Å O . O The O selection O then O picks O ensembles O that O best O reproduce O the O collection O of O iodine B-chemical anomalous B-evidence signals I-evidence . O To O make O the O electron B-experimental_method density I-experimental_method selection I-experimental_method practical O , O we O needed O to O develop O a O method O to O rapidly O evaluate O the O agreement O between O the O selected O sub O - O ensembles O and O the O experimental O electron B-evidence density I-evidence on O - O the O - O fly O during O the O selection O procedure O . O Folding O and O interactions O of O Im7 B-protein while O bound B-protein_state to I-protein_state Spy B-protein The O ensemble O primarily O encompasses O Im76 B-mutant - I-mutant 45 I-mutant laying O diagonally O within O the O Spy B-protein cradle B-site in O several O different O orientations O , O but O some O conformations O traverse O as O far O as O the O tips O or O even O extend O over O the O side O of O the O cradle B-site ( O Figs O . O 3 O , O 4a O ). O This O mixture O suggests O the O importance O of O both O electrostatic O and O hydrophobic O components O in O binding O the O Im76 B-mutant - I-mutant 45 I-mutant ensemble O . O This O shift O in O contacts O is O likely O due O to O hydrophobic O residues O of O Im76 B-mutant - I-mutant 45 I-mutant preferentially O forming O intra O - O molecular O contacts O upon O folding O ( O i O . O e O ., O hydrophobic O collapse O ), O effectively O removing O themselves O from O the O interaction B-site sites I-site . O The O diversity O of O conformations O and O binding B-site sites I-site observed O here O emphasizes O the O dynamic O and O heterogeneous O nature O of O the O chaperone B-protein_type - O substrate O ensemble O . O It O is O possible O that O this O twist O serves O to O increase O heterogeneity O in O Spy B-protein by O providing O more O binding O poses O . O Additionally O , O we O observed O that O the O linker B-structure_element region I-structure_element ( O residues O 47 B-residue_range – I-residue_range 57 I-residue_range ) O of O Spy B-protein , O which O participates O in O substrate O interaction O , O becomes O mostly O disordered B-protein_state upon O binding O the O substrate O . O Importantly O , O we O observed O the O same O structural O changes O in O Spy B-protein regardless O of O which O of O the O four O substrates O was O bound O ( O Fig O . O 5b O , O Table O 1 O ). O This O substrate O - O chaperone B-protein_type ensemble O helps O accomplish O the O longstanding O goal O of O obtaining O a O detailed O view O of O how O a O chaperone B-protein_type aids O protein O folding O . O The O high O - O resolution O ensemble B-evidence obtained O here O now O provides O insight O into O exactly O how O this O occurs O . O Nearly O all O Im76 B-mutant - I-mutant 45 I-mutant residues O come O in O contact O with O Spy B-protein . O Unfolded B-protein_state substrate O conformers O interact O with O Spy B-protein through O both O hydrophobic B-bond_interaction and I-bond_interaction hydrophilic I-bond_interaction interactions I-bond_interaction , O whereas O the O binding O of O native B-protein_state - I-protein_state like I-protein_state states O is O mainly O hydrophilic O . O Previous O analysis O revealed O that O the O Super O Spy B-protein variants B-protein_state either O bound B-protein_state Im7 B-protein tighter O than O WT B-protein_state Spy B-protein , O increased O chaperone B-protein_type flexibility O as O measured O via O H B-experimental_method / I-experimental_method D I-experimental_method exchange I-experimental_method , O or O both O . O Moreover O , O our O co B-evidence - I-evidence structure I-evidence suggests O that O the O L32P B-mutant substitution O , O which O increases O Spy B-protein ’ O s O flexibility O , O could O operate O by O unhinging O the O N B-structure_element - I-structure_element terminal I-structure_element helix I-structure_element and O effectively O expanding O the O size O of O the O disordered B-protein_state linker B-structure_element . O This O possibility O is O supported O by O the O Spy B-protein : O substrate O structures B-evidence , O in O which O the O linker B-structure_element region I-structure_element becomes O more O flexible O compared O to O the O apo B-protein_state state O ( O Fig O . O 6a O ). O Instead O , O when O Spy B-protein is O bound B-protein_state to I-protein_state substrate O , O F115 B-residue_name_number engages O in O close O CH O ⋯ O π O hydrogen B-bond_interaction bonds I-bond_interaction with O Tyr104 B-residue_name_number ( O Fig O . O 6b O ). O Overall O , O comparison O of O our O ensemble B-evidence to O the O Super O Spy B-protein variants B-protein_state provides O specific O examples O to O corroborate O the O importance O of O conformational O flexibility O in O chaperone B-protein_type - O substrate O interactions O . O Spy B-protein is O depicted O as O a O gray O surface O and O the O Im76 B-mutant - I-mutant 45 I-mutant conformer O is O shown O as O orange O balls O . O The O frequency O plotted O is O calculated O as O the O average O contact B-evidence frequency I-evidence from O Spy B-protein to O every O residue O of O Im76 B-mutant - I-mutant 45 I-mutant and O vice O - O versa O . O The O mechanism O of O NCX B-protein_type proteins O is O therefore O highly O likely O to O be O consistent O with O the O alternating O - O access O model O of O secondary O - O active O transport O . O With O similar O ion O exchange O properties O to O those O of O its O eukaryotic B-taxonomy_domain counterparts O , O NCX_Mj B-protein provides O a O compelling O model O system O to O investigate O the O structural O basis O for O the O specificity O , O stoichiometry O and O mechanism O of O the O ion O - O exchange O reaction O catalyzed O by O NCX B-protein_type . O The O assignment O of O the O four O central B-site binding I-site sites I-site identified O in O the O previously O reported O NCX_Mj B-protein structure B-evidence was O hampered O by O the O presence O of O both O Na B-chemical + I-chemical and O Ca2 B-chemical + I-chemical in O the O protein O crystals B-evidence . O First O , O the O electron B-evidence density I-evidence at O Smid B-site does O not O depend O significantly O on O the O Na B-chemical + I-chemical concentration O . O This O structurally O - O derived O Na B-evidence + I-evidence affinity I-evidence agrees O well O with O the O external O Na B-chemical + I-chemical concentration O required O for O NCX B-protein_type activation O in O eukaryotes B-taxonomy_domain . O Similarly O to O Sr2 B-chemical +, I-chemical Ca2 B-chemical + I-chemical binds O with O low O affinity B-evidence to O outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein and O can O be O readily O displaced O by O Na B-chemical + I-chemical ( O Supplementary O Note O 1 O and O Supplementary O Fig O . O 2c O ). O This O finding O is O consistent O with O physiological B-evidence and I-evidence biochemical I-evidence data I-evidence for O both O eukaryotic B-taxonomy_domain NCX B-protein_type and O NCX_Mj B-protein indicating O that O the O apparent O Ca2 B-evidence + I-evidence affinity I-evidence is O much O lower O on O the O extracellular O than O the O cytoplasmic O side O . O We O were O able O to O determine O an O apo B-protein_state - O state O structure B-evidence of O NCX_Mj B-protein , O by O crystallizing B-experimental_method the O protein O at O lower B-protein_state pH I-protein_state and O in O the O absence B-protein_state of I-protein_state Na B-chemical + I-chemical ( O Methods O ). O To O examine O this O central O question O , O we O sought O to O characterize O the O conformational B-evidence free I-evidence - I-evidence energy I-evidence landscape I-evidence of O NCX_Mj B-protein and O to O examine O its O dependence O on O the O ion O - O occupancy O state O , O using O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O simulations B-experimental_method . O This O computational O analysis O was O based O solely O on O the O published O structure B-evidence of O NCX_Mj B-protein , O independently O of O the O crystallographic B-experimental_method studies I-experimental_method described O above O . O These O initial O simulations B-experimental_method revealed O noticeable O changes O in O the O transporter B-protein_type , O consistent O with O those O observed O in O the O new O crystal B-evidence structures I-evidence . O The O most O noticeable O is O an O increased O separation O between O TM7 B-structure_element and O TM2 B-structure_element ( O Fig O . O 4f O ), O previously O brought O together O by O concurrent O backbone O interactions O with O the O Na B-chemical + I-chemical ion O at O SCa B-site ( O Fig O . O 4d O - O e O ). O TM1 B-structure_element and O TM6 B-structure_element also O slide O further O towards O the O membrane O center O , O relative O to O the O outward B-protein_state - I-protein_state occluded I-protein_state state O ( O Fig O . O 4c O ). O To O more O rigorously O characterize O the O influence O of O the O ion O - O occupancy O state O on O the O conformational O dynamics O of O the O exchanger B-protein_type , O we O carried O out O a O series O of O enhanced O - O sampling O MD B-experimental_method calculations I-experimental_method designed O to O reversibly O simulate O the O transition O between O the O outward B-protein_state - I-protein_state occluded I-protein_state and O fully B-protein_state outward I-protein_state - I-protein_state open I-protein_state states O , O and O thus O quantify O the O free B-evidence - I-evidence energy I-evidence landscape I-evidence encompassing O these O states O ( O Methods O ). O It O is O however O also O non O - O trivial O : O antiporters B-protein_type , O for O example O , O do O not O undergo O the O alternating O - O access O transition O without O a O cargo O , O but O this O is O precisely O how O membrane B-protein_type symporters I-protein_type reset O their O transport O cycles O . O Similarly O puzzling O is O that O a O given O antiporter B-protein_type will O undergo O this O transition O upon O recognition O of O substrates O of O different O charge O , O size O and O number O . O The O internal O symmetry O of O outward B-protein_state - I-protein_state facing I-protein_state NCX_Mj B-protein and O the O inward B-protein_state - I-protein_state facing I-protein_state crystal B-evidence structures I-evidence of O several O Ca2 B-protein_type +/ I-protein_type H I-protein_type + I-protein_type exchangers I-protein_type indicate O that O the O alternating O - O access O mechanism O of O NCX B-protein_type proteins O entails O a O sliding O motion O of O TM1 B-structure_element and O TM6 B-structure_element relative O to O the O rest O of O the O transporter B-protein_type . O Indeed O , O we O show O that O it O is O the O presence O or O absence O of O the O occluded B-protein_state state O in O this O landscape O that O explains O the O antiport O function O of O NCX_Mj B-protein and O its O 3Na O +: B-chemical 1Ca2 O + B-chemical stoichiometry O . O Consistent O with O that O finding O , O mutations O that O have O been O shown O to O inactivate O or O diminish O the O transport O activity O of O NCX_Mj B-protein and O cardiac O NCX B-protein_type perfectly O map O to O the O first O ion O - O coordination O shell O in O our O NCX_Mj B-protein structures B-evidence ( O Supplementary O Fig O . O 4c O - O d O ). O The O Sext B-site site O , O by O contrast O , O might O be O thought O as O an O activation B-site site I-site for O inward O Na B-chemical + I-chemical translocation O , O since O this O is O where O the O third O Na B-chemical + I-chemical ion O binds O at O high O Na B-chemical + I-chemical concentration O , O enabling O the O transition O to O the O occluded B-protein_state state O . O Lastly O , O our O theory O that O occlusion O of O NCX_Mj B-protein is O selectively O induced O upon O Ca2 B-chemical + I-chemical or O Na B-chemical + I-chemical recognition O is O consonant O with O a O recent O analysis O of O the O rate O of O hydrogen B-experimental_method - I-experimental_method deuterium I-experimental_method exchange I-experimental_method ( O HDX B-experimental_method ) O in O NCX_Mj B-protein , O in O the O presence B-protein_state or O absence B-protein_state of I-protein_state these O ions O , O in O conditions O that O favor O outward B-protein_state - I-protein_state facing I-protein_state conformations O . O Specifically O , O saturating O amounts O of O Ca2 B-chemical + I-chemical or O Na B-chemical + I-chemical resulted O in O a O noticeable O slowdown O in O the O HDX B-evidence rate I-evidence for O extracellular O portions O of O the O α B-structure_element - I-structure_element repeat I-structure_element helices I-structure_element . O We O interpret O these O observations O as O reflecting O that O the O solvent O accessibility O of O the O protein O interior O is O diminished O upon O ion O recognition O , O consistent O with O our O finding O that O opening O and O closing O of O extracellular O aqueous O pathways O to O the O ion B-site - I-site binding I-site sites I-site depend O on O ion O occupancy O state O . O Our O data O would O also O explain O the O observation O that O the O reduction O in O the O HDX B-evidence rate I-evidence is O comparable O for O Na B-chemical + I-chemical and O Ca2 B-chemical +, I-chemical as O well O as O the O finding O that O the O degree O of O deuterium O incorporation O remains O non O - O negligible O even O under O saturating O ion O concentrations O . O ( O c O ) O Close O - O up O view O of O the O Na B-site +- I-site binding I-site sites I-site . O Residues O surrounding O this O site O are O also O indicated O ; O note O A206 B-residue_name_number ( O labeled O in O red O ) O coordinates B-bond_interaction Na B-chemical + I-chemical at O Sext B-site via O its O backbone O carbonyl O oxygen O . O Divalent O cation O binding O and O apo B-protein_state structure B-evidence of O NCX_Mj B-protein . O ( O a O ) O A O single O Sr2 B-chemical + I-chemical ( O dark O blue O sphere O ) O binds O at O SCa B-site in O crystals B-experimental_method titrated I-experimental_method with O 10 O mM O Sr2 B-chemical + I-chemical and O 2 O . O 5 O mM O Na B-chemical + I-chemical ( O see O also O Supplementary O Fig O . O 2 O ). O There O are O no O significant O changes O in O the O side O - O chains O involved O in O ion O coordination O , O relative O to O the O Na B-protein_state +- I-protein_state bound I-protein_state state O . O The O relative O occupancies O are O 55 O % O and O 45 O %, O respectively O . O ( O c O ) O Superimposition B-experimental_method of O NCX_Mj B-protein structures B-evidence obtained O at O low O Na B-chemical + I-chemical concentration O ( O 10 O mM O ) O and O pH O 6 O . O 5 O ( O brown O ) O and O in O the O absence B-protein_state of I-protein_state Na B-chemical + I-chemical and O pH B-protein_state 4 I-protein_state ( O light O green O ), O referred O to O as O apo B-protein_state state O . O ( O d O ) O Close O - O up O view O of O the O ion B-site - I-site binding I-site sites I-site in O the O apo B-protein_state ( O or O high B-protein_state H I-protein_state +) I-protein_state state O . O ( O a O ) O Representative O simulation B-experimental_method snapshots O of O NCX_Mj B-protein ( O Methods O ) O with O Na B-chemical + I-chemical bound B-protein_state at I-protein_state Sext B-site , O SCa B-site and O Sint B-site ( O orange O cartoons O , O green O spheres O ) O and O with O Na B-chemical + I-chemical bound B-protein_state only I-protein_state at I-protein_state SCa B-site and O Sint B-site ( O marine O cartoons O , O yellow O spheres O ) O ( O b O ) O Close O - O up O of O the O backbone O of O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O TM7 B-structure_element ( O TM7ab B-structure_element ), O in O the O same O Na B-chemical + I-chemical occupancy O states O depicted O in O ( O a O ). O ( O g O ) O Probability B-evidence distributions I-evidence of O an O analytical O descriptor O of O the O backbone O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction pattern O in O TM7ab B-structure_element ( O Eq O . O 2 O ). O ( O h O ) O Mean O value O ( O with O standard O deviation O ) O of O a O quantitative O descriptor O of O the O solvent O accessibility O of O the O Sext B-site site O ( O Eq O . O 1 O ). O ( O i O ) O Mean O value O ( O with O standard O deviation O ) O of O a O quantitative O descriptor O of O the O solvent O accessibility O of O the O SCa B-site site O ( O Eq O . O 1 O ). O The O free B-evidence energy I-evidence is O plotted O as O a O function O of O two O coordinates O , O each O describing O the O degree O of O opening O of O the O aqueous B-site channels I-site leading O to O the O Sext B-site and O SCa B-site sites O , O respectively O ( O see O Methods O ). O ( O b O ) O Density B-evidence isosurfaces I-evidence for O water B-chemical molecules O within O 12 O Å O of O the O ion B-site - I-site binding I-site region I-site ( O grey O volumes O ), O for O each O of O the O major O conformational B-evidence free I-evidence - I-evidence energy I-evidence minima I-evidence in O each O ion O - O occupancy O state O . O Na B-chemical + I-chemical ions O are O shown O as O green O spheres O . O Black O circles O map O the O crystal B-evidence structures I-evidence obtained O at O high O Ca2 B-chemical + I-chemical concentration O and O at O low B-protein_state pH I-protein_state ( O or O high B-protein_state H I-protein_state +) I-protein_state reported O in O this O study O . O ( O b O ) O Water B-evidence - I-evidence density I-evidence isosurfaces I-evidence analogous O to O those O in O Fig O . O 5 O are O shown O for O each O of O the O major O conformational O free B-evidence - I-evidence energy I-evidence minima I-evidence in O the O free B-evidence - I-evidence energy I-evidence maps I-evidence . O Here O , O the O authors O report O U2AF65 B-protein structures B-evidence and O single B-experimental_method molecule I-experimental_method FRET I-experimental_method that O reveal O mechanistic O insights O into O splice B-site site I-site recognition O . O The O splice B-site sites I-site are O marked O by O relatively O short B-structure_element consensus I-structure_element sequences I-structure_element and O are O regulated O by O additional O pre B-structure_element - I-structure_element mRNA I-structure_element motifs I-structure_element ( O reviewed O in O ref O .). O In O turn O , O the O ternary B-complex_assembly complex I-complex_assembly of O U2AF65 B-protein with O SF1 B-protein and O U2AF35 B-protein identifies O the O surrounding O BPS B-site and O 3 B-site ′ I-site splice I-site site I-site junctions O . O Likewise O , O both O U2AF651 B-mutant , I-mutant 2L I-mutant and O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein showed O similar O sequence B-evidence specificity I-evidence for O U B-structure_element - I-structure_element rich I-structure_element stretches I-structure_element in O the O 5 B-site ′- I-site region I-site of O the O Py B-chemical tract I-chemical and O promiscuity O for O C B-structure_element - I-structure_element rich I-structure_element regions I-structure_element in O the O 3 B-site ′- I-site region I-site ( O Fig O . O 1c O , O Supplementary O Fig O . O 1e O – O h O ). O By O sequential B-experimental_method boot I-experimental_method strapping I-experimental_method ( O Methods O ), O we O optimized O the O oligonucleotide B-chemical length O , O the O position O of O a O Br B-chemical - I-chemical dU I-chemical , O and O the O identity O of O the O terminal O nucleotide B-chemical ( O rU B-residue_name , O dU B-residue_name and O rC B-residue_name ) O to O achieve O full O views O of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state contiguous B-structure_element Py B-chemical tracts I-chemical at O up O to O 1 O . O 5 O Å O resolution O . O We O compare O the O global O conformation O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence with O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structure I-evidence and O U2AF651 B-mutant , I-mutant 2 I-mutant NMR B-experimental_method structure B-evidence in O the O Supplementary O Discussion O and O Supplementary O Fig O . O 2 O . O Yet O , O only O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O at O sites B-site 1 I-site and I-site 7 I-site are O nearly O identical O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Fig O . O 3a O , O f O ). O In O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM1 B-structure_element , O the O side O chains O of O K225 B-residue_name_number and O R227 B-residue_name_number donate O additional O hydrogen B-bond_interaction bonds I-bond_interaction to O the O rU5 B-residue_name_number - O O2 O lone O pair O electrons O . O We O tested B-experimental_method the I-experimental_method contribution I-experimental_method of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O the O new O central O nucleotide B-chemical to O Py B-evidence - I-evidence tract I-evidence affinity I-evidence ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4a O , O b O ). O U2AF65 B-protein RRM B-structure_element extensions I-structure_element interact O with O the O Py B-chemical tract I-chemical Indirectly O , O the O additional O contacts O with O the O third B-residue_number nucleotide B-chemical shift O the O rU2 B-residue_name_number nucleotide B-chemical in O the O second B-site binding I-site site I-site closer O to O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM2 B-structure_element . O Consistent O with O loss O of O a O hydrogen B-bond_interaction bond I-bond_interaction with O the O ninth B-residue_number pyrimidine B-chemical - O O2 O ( O ΔΔG B-evidence 1 O . O 0 O kcal O mol O − O 1 O ), O mutation B-experimental_method of O the O Q147 B-residue_name_number to O an O alanine B-residue_name reduced O U2AF651 B-evidence , I-evidence 2L I-evidence affinity I-evidence for O the O AdML B-gene Py B-chemical tract I-chemical by O five O - O fold O ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4c O ). O We O introduced O glycine B-residue_name substitutions B-experimental_method to O maximally O reduce O the O buried O surface O area O without O directly O interfering O with O its O hydrogen B-bond_interaction bonds I-bond_interaction between O backbone O atoms O and O the O base O . O To O further O test O cooperation O among O the O U2AF65 B-protein RRM B-structure_element extensions I-structure_element and O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element for O RNA O recognition O , O we O tested O the O impact O of O a O triple O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method ( O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant ) O for O RNA O binding O ( O Fig O . O 4b O ; O Supplementary O Fig O . O 4d O ). O We O proceeded O to O test O the O importance O of O new O U2AF65 B-complex_assembly – I-complex_assembly Py I-complex_assembly - I-complex_assembly tract I-complex_assembly interactions O for O splicing O of O a O model O pre B-chemical - I-chemical mRNA I-chemical substrate O in O a O human B-species cell O line O ( O Fig O . O 5 O ; O Supplementary O Fig O . O 5 O ). O When O transfected B-experimental_method into O HEK293T O cells O containing O only O endogenous B-protein_state U2AF65 B-protein , O the O PY B-site splice I-site site I-site is O used O and O the O remaining O transcript O remains O unspliced O . O The O strong O PY B-site splice I-site site I-site is O insensitive O to O added O U2AF65 B-protein , O suggesting O that O endogenous B-protein_state U2AF65 B-protein levels O are O sufficient O to O saturate O this O site O ( O Supplementary O Fig O . O 5b O ). O The O positions O of O single O cysteine B-residue_name mutations B-experimental_method for O fluorophore B-chemical attachment O ( O A181C B-mutant in O RRM1 B-structure_element and O Q324C B-mutant in O RRM2 B-structure_element ) O were O chosen O based O on O inspection O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence and O the O ‘ O closed B-protein_state ' O model O of O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant . O Criteria O included O ( O i O ) O residue O locations O that O are O distant O from O and O hence O not O expected O to O interfere O with O the O RRM B-complex_assembly / I-complex_assembly RNA I-complex_assembly or O inter B-site - I-site RRM I-site interfaces I-site , O ( O ii O ) O inter O - O dye O distances O ( O 50 O Å O for O U2AF651 B-complex_assembly , I-complex_assembly 2L I-complex_assembly – I-complex_assembly Py I-complex_assembly tract I-complex_assembly and O 30 O Å O for O the O closed B-protein_state apo B-protein_state - O model O ) O that O are O expected O to O be O near O the O Förster B-experimental_method radius I-experimental_method ( I-experimental_method Ro I-experimental_method ) I-experimental_method for O the O Cy3 B-chemical / O Cy5 B-chemical pair O ( O 56 O Å O ), O where O changes O in O the O efficiency O of O energy O transfer O are O most O sensitive O to O distance O , O and O ( O iii O ) O FRET B-evidence efficiencies I-evidence that O are O calculated O to O be O significantly O greater O for O the O ‘ O closed B-protein_state ' O apo B-protein_state - O model O as O opposed O to O the O ‘ O open B-protein_state ' O RNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence ( O by O ∼ O 30 O %). O We O examined O the O effect O on O U2AF651 B-mutant , I-mutant 2L I-mutant conformations O of O purine B-experimental_method interruptions I-experimental_method that O often O occur O in O relatively O degenerate O human B-species Py B-chemical tracts I-chemical . O Nevertheless O , O the O predominant O 0 O . O 45 O FRET B-evidence state I-evidence in O the O presence O of O RNA B-chemical agrees O with O the O Py B-protein_state - I-protein_state tract I-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant . O Importantly O , O the O majority O of O traces B-evidence (∼ O 70 O %) O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical lacked O FRET O fluctuations O and O predominately O exhibited O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O for O example O , O Fig O . O 6g O ). O The O U2AF65 B-protein structures B-evidence and O analyses B-evidence presented O here O represent O a O successful O step O towards O defining O a O molecular O map O of O the O 3 B-site ′ I-site splice I-site site I-site . O The O intact B-protein_state U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element - O containing O domain O and O flanking O residues O are O required O for O binding O contiguous B-structure_element Py B-chemical tracts I-chemical . O Structures B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant recognizing O a O contiguous B-structure_element Py B-chemical tract I-chemical . O For O clarity O , O we O consistently O number O the O U2AF651 B-mutant , I-mutant 2L I-mutant nucleotide B-site - I-site binding I-site sites I-site from O one O to O nine O , O although O in O some O cases O the O co B-experimental_method - I-experimental_method crystallized I-experimental_method oligonucleotide B-chemical comprises O eight O nucleotides B-chemical and O as O such O leaves O the O first B-site binding I-site site I-site empty O . O ( O b O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O for O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical of O the O wild B-protein_state - I-protein_state type I-protein_state ( O blue O ) O U2AF651 B-mutant , I-mutant 2L I-mutant protein O compared O with O mutations O of O the O residues O shown O in O a O : O 3Gly B-mutant ( O yellow O ), O 5Gly B-mutant ( O red O ), O NLALA B-mutant ( O hatched O red O ), O 12Gly B-mutant ( O orange O ) O and O the O linker B-experimental_method deletions I-experimental_method dU2AF651 B-mutant , I-mutant 2 I-mutant in O the O minimal B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element ( O residues O 148 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 336 I-residue_range ) O or O dU2AF651 B-mutant , I-mutant 2L I-mutant ( O residues O 141 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 342 I-residue_range ). O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O 3Gly B-mutant , O 47 O ± O 4 O nM O ; O 5Gly B-mutant , O 61 O ± O 3 O nM O ; O 12Gly B-mutant , O 88 O ± O 21 O nM O ; O NLALA B-mutant , O 45 O ± O 3 O nM O ; O dU2AF651 B-mutant , I-mutant 2L I-mutant , O 123 O ± O 5 O nM O ; O dU2AF651 B-mutant , I-mutant 2 I-mutant , O 5000 O ± O 100 O nM O ; O 3Mut B-mutant , O 5630 O ± O 70 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O ( O a O , O b O ) O Views O of O FRET B-experimental_method pairs O chosen O to O follow O the O relative O movement O of O RRM1 B-structure_element and O RRM2 B-structure_element on O the O crystal B-evidence structure I-evidence of O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O U2AF651 B-mutant , I-mutant 2L I-mutant RRMs B-structure_element bound B-protein_state to I-protein_state a O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical ( O a O , O representative O structure O iv O ) O or O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O model O of O U2AF651 B-mutant , I-mutant 2 I-mutant ( O b O , O PDB O ID O 2YH0 O ) O in O identical O orientations O of O RRM2 B-structure_element . O RNA B-chemical protects O a O nucleoprotein B-complex_assembly complex O against O radiation O damage O The O availability O of O two O TRAP B-complex_assembly molecules O in O the O asymmetric O unit O , O of O which O only O one O contained O bound B-protein_state RNA B-chemical , O allowed O a O controlled O investigation O into O the O exact O role O of O RNA B-chemical binding O in O protein O specific O damage O susceptibility O . O With O the O wide O use O of O high O - O flux O third O - O generation O synchrotron O sources O , O radiation O damage O ( O RD O ) O has O once O again O become O a O dominant O reason O for O the O failure O of O structure B-experimental_method determination I-experimental_method using O macromolecular B-experimental_method crystallography I-experimental_method ( O MX B-experimental_method ) O in O experiments O conducted O both O at O room O temperature O and O under O cryocooled O conditions O ( O 100 O K O ). O Specific B-experimental_method radiation I-experimental_method damage I-experimental_method ( O SRD B-experimental_method ) O is O observed O in O the O real B-evidence - I-evidence space I-evidence electron I-evidence density I-evidence , O and O has O been O detected O at O much O lower O doses O than O any O observable O decay O in O the O intensity O of O reflections O . O SRD O has O been O well O characterized O in O a O large O range O of O proteins O , O and O is O seen O to O follow O a O reproducible O order O : O metallo O - O centre O reduction O , O disulfide B-ptm - I-ptm bond I-ptm cleavage O , O acidic O residue O decarboxylation O and O methionine O methylthio O cleavage O ( O Ravelli O & O McSweeney O , O 2000 O ; O Burmeister O , O 2000 O ; O Weik O et O al O ., O 2000 O ; O Yano O et O al O ., O 2005 O ). O Understanding O RD O to O such O complexes O is O crucial O , O since O DNA B-chemical is O rarely O naked O within O a O cell O , O instead O dynamically O interacting O with O proteins O , O facilitating O replication O , O transcription O , O modification O and O DNA B-chemical repair O . O As O of O early O 2016 O , O > O 5400 O nucleoprotein B-complex_assembly complex O structures B-evidence have O been O deposited O within O the O PDB O , O with O 91 O % O solved O by O MX B-experimental_method . O Using O newly O developed O methodology O , O we O present O a O controlled B-experimental_method SRD I-experimental_method investigation O at O 1 O . O 98 O Å O resolution O using O a O large O (∼ O 91 O kDa O ) O crystalline O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O : O trp B-protein_type RNA I-protein_type - I-protein_type binding I-protein_type attenuation I-protein_type protein I-protein_type ( O TRAP B-complex_assembly ) O bound B-protein_state to I-protein_state a O 53 O bp O RNA B-chemical sequence O ( B-chemical GAGUU I-chemical ) I-chemical 10GAG I-chemical ( O PDB O entry O 1gtf O ; O Hopcroft O et O al O ., O 2002 O ). O It O binds O with O high O affinity O ( O K B-evidence d I-evidence ≃ O 1 O . O 0 O nM O ) O to O RNA B-chemical segments O containing O 11 O GAG B-structure_element / I-structure_element UAG I-structure_element triplets I-structure_element separated O by O two O or O three O spacer B-structure_element nucleotides I-structure_element ( O Elliott O et O al O ., O 2001 O ) O to O regulate O the O transcription O of O tryptophan B-chemical biosynthetic O genes O in O Bacillus B-species subtilis I-species ( O Antson O et O al O ., O 1999 O ). O Previous O studies O have O characterized O SRD B-site sites I-site by O reporting O magnitudes O of O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence in O terms O of O the O sigma B-evidence ( O σ B-evidence ) O contour O level O ( O the O number O of O standard B-evidence deviations I-evidence from O the O mean B-evidence map I-evidence electron I-evidence - I-evidence density I-evidence value I-evidence ) O at O which O peaks O become O visible O . O Visual B-experimental_method inspection I-experimental_method of I-experimental_method Fourier B-evidence difference I-evidence maps I-evidence illustrated O the O clear O lack O of O RNA B-chemical electron B-evidence - I-evidence density I-evidence degradation I-evidence with O increasing O dose O compared O with O the O obvious O protein O damage O manifestations O ( O Figs O . O 3 O ▸ O b O and O 3 O ▸ O c O ). O For O each O TRAP B-complex_assembly ring B-structure_element subunit B-structure_element , O the O Glu36 B-residue_name_number side O - O chain O carboxyl O group O accepts O a O pair O of O hydrogen B-bond_interaction bonds I-bond_interaction from O the O two O N O atoms O of O the O G3 B-residue_name_number RNA B-chemical base O . O With O increasing O dose O , O the O D B-evidence loss I-evidence associated O with O the O Phe32 B-residue_name_number side O chain O was O significantly O reduced O upon O RNA B-chemical binding O ( O Fig O . O 5 O ▸ O e O ; O Phe32 B-residue_name_number Cζ O ; O p O = O 0 O . O 0014 O ), O an O indication O that O radiation O - O induced O conformation O disordering O of O Phe32 B-residue_name_number had O been O reduced O . O The O RNA B-chemical was O found O to O be O substantially O more O radiation B-protein_state - I-protein_state resistant I-protein_state than O the O protein O , O even O at O the O highest O doses O investigated O (∼ O 25 O . O 0 O MGy O ), O which O is O in O strong O concurrence O with O our O previous O SRD B-experimental_method investigation I-experimental_method of O the O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly protein O – O DNA B-chemical complex O ( O Bury O et O al O ., O 2015 O ). O Consistent O with O that O study O , O at O high O doses O of O above O ∼ O 20 O MGy O , O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence map I-evidence density I-evidence was O detected O around O P O , O O3 O ′ O and O O5 O ′ O atoms O of O the O RNA B-chemical backbone O , O with O no O significant O difference B-evidence density I-evidence localized O to O RNA B-chemical ribose O and O basic O subunits B-structure_element . O This O is O in O good O agreement O with O previous O mutagenesis B-experimental_method and I-experimental_method nucleoside I-experimental_method analogue I-experimental_method studies I-experimental_method ( O Elliott O et O al O ., O 2001 O ), O which O indicated O that O the O G1 B-residue_name_number nucleotide O does O not O bind O to O TRAP B-complex_assembly as O strongly O as O do O A2 B-residue_name_number and O G3 B-residue_name_number , O and O plays O little O role O in O the O high O RNA B-evidence - I-evidence binding I-evidence affinity I-evidence of O TRAP B-complex_assembly ( O K B-evidence d I-evidence ≃ O 1 O . O 1 O ± O 0 O . O 4 O nM O ). O The O prevalence O of O radical O attack O from O solvent O channels O surrounding O the O protein O in O the O crystal B-evidence is O a O questionable O cause O , O considering O previous O observations O indicating O that O the O strongly O oxidizing O hydroxyl O radical O is O immobile O at O 100 O K O ( O Allan O et O al O ., O 2013 O ; O Owen O et O al O ., O 2012 O ). O For O example O , O Asp17 B-residue_name_number is O located O ∼ O 6 O . O 8 O Å O from O the O G1 B-residue_name_number base O , O outside O the O RNA B-site - I-site binding I-site interfaces I-site , O and O has O indistinguishable O Cγ O atom O D O loss B-evidence dose I-evidence - I-evidence dynamics I-evidence between O RNA B-protein_state - I-protein_state bound I-protein_state and O nonbound B-protein_state TRAP B-complex_assembly ( O p O > O 0 O . O 9 O ). O This O structure B-evidence reveals O the O molecular O mechanism O underlying O the O docking O interaction O between O MKP7 B-protein and O JNK1 B-protein . O On O the O basis O of O sequence O similarity O , O substrate O specificity O and O predominant O subcellular O localization O , O the O MKP B-protein_type family I-protein_type can O be O further O divided O into O three O groups O ( O Fig O . O 1 O ). O In O addition O to O the O CD B-structure_element and O KBD B-structure_element , O MKP7 B-protein has O a O long O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element that O contains O both O nuclear O localization O and O export O sequences O by O which O MKP7 B-protein shuttles O between O the O nucleus O and O the O cytoplasm O ( O Fig O . O 2a O ). O Thus O , O the O kinetic B-evidence data I-evidence were O analysed O using O the O general O initial B-evidence velocity I-evidence equation I-evidence , O taking O substrate O depletion O into O account O : O The O overall O folding O of O MKP7 B-protein - O CD B-structure_element is O typical O of O DUSPs B-protein_type , O with O a O central O twisted B-structure_element five I-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element surrounded O by O six O α B-structure_element - I-structure_element helices I-structure_element . O Since O helix B-structure_element α0 B-structure_element and O the O following O loop B-structure_element α0 B-structure_element – I-structure_element β1 I-structure_element are O known O for O a O substrate B-site - I-site recognition I-site motif I-site of O VHR B-protein and O other O phosphatases B-protein_type , O the O absence O of O these O moieties O implicates O a O different O substrate O - O binding O mode O of O MKP7 B-protein . O The O MKP7 B-protein - O CD B-structure_element structure B-evidence near O the O active B-site site I-site exhibits O a O typical O active B-protein_state conformation I-protein_state as O found O in O VHR B-protein and O other O PTPs B-protein_type . O The O catalytic B-site residue I-site , O Cys244 B-residue_name_number , O is O located O just O after O strand B-structure_element β5 B-structure_element and O optimally O positioned O for O nucleophilic O attack O . O The O carboxylate O of O Asp268 B-residue_name_number in O MKP7 B-protein forms O a O salt B-bond_interaction bridge I-bond_interaction with O side O chain O of O Arg263 B-residue_name_number in O JNK1 B-protein , O and O Lys275 B-residue_name_number of O MKP7 B-protein forms O a O hydrogen B-bond_interaction bond I-bond_interaction and O a O salt B-bond_interaction bridge I-bond_interaction with O Thr228 B-residue_name_number and O Asp229 B-residue_name_number of O JNK1 B-protein , O respectively O . O Gel B-experimental_method filtration I-experimental_method analysis I-experimental_method further O confirmed O the O key O role O of O Phe285 B-residue_name_number in O the O MKP7 B-protein – O JNK1 B-protein interaction O : O no O F285D B-complex_assembly – I-complex_assembly JNK1 I-complex_assembly complex O was O detected O when O 3 O molar O equivalents O of O MKP7 B-protein - O CD B-structure_element ( O F285D B-mutant ) O were O mixed O with O 1 O molar O equivalent O of O JNK1 B-protein ( O Fig O . O 4b O ). O To O determine O whether O the O deficiencies O in O their O abilities O to O bind O partner O proteins O or O carry O out O catalytic O function O are O owing O to O misfolding O of O the O purified O mutant B-protein_state proteins O , O we O also O examined O the O folding O properties O of O the O JNK1 B-protein and O MKP7 B-protein mutants B-protein_state with O circular B-experimental_method dichroism I-experimental_method . O The O spectra B-evidence of O these O mutants B-protein_state are O similar O to O the O wild B-protein_state - I-protein_state type I-protein_state proteins O , O indicating O that O these O mutants B-protein_state fold O as O well O as O the O wild B-protein_state - I-protein_state type I-protein_state proteins O ( O Fig O . O 4d O , O e O ). O It O has O previously O been O reported O that O several O cytosolic O and O inducible O nuclear O MKPs B-protein_type undergo O catalytic O activation O upon O interaction O with O the O MAPK B-protein_type substrates O . O Incubation B-experimental_method of O MKP7 B-protein with O JNK1 B-protein did O not O markedly O stimulate O the O phosphatase B-protein_type activity O , O which O is O consistent O with O previous O results O that O MKP7 B-protein solely O possesses O the O intrinsic O activity O ( O Supplementary O Fig O . O 2b O ). O In O addition O , O His230 B-residue_name_number and O Val256 B-residue_name_number in O JNK1 B-protein are O replaced O by O the O negatively O charged O residues O Glu208 B-residue_name_number and O Asp235 B-residue_name_number in O CDK2 B-protein ( O Fig O . O 5d O ), O and O the O charge O distribution O on O the O CDK2 B-protein interactive B-site surface I-site is O quite O different O from O that O of O JNK B-protein_type . O These O data O indicated O that O a O unique O hydrophobic B-site pocket I-site formed O between O the O MAPK B-structure_element insert I-structure_element and O αG B-structure_element helix I-structure_element plays O a O major O role O in O the O substrate O recognition O by O MKPs B-protein_type . O The O KBD B-structure_element of O MKP5 B-protein interacts O with O the O D B-site - I-site site I-site of O p38α B-protein to O mediate O the O enzyme O – O substrate O interaction O . O The O substrate B-evidence specificity I-evidence constant I-evidence kcat B-evidence / I-evidence Km I-evidence value O for O MKP5 B-protein - O CD B-structure_element was O calculated O as O 1 O . O 0 O × O 105 O M O − O 1 O s O − O 1 O , O which O is O very O close O to O that O of O MKP7 B-protein - O CD B-structure_element ( O 1 O . O 07 O × O 105 O M O − O 1 O s O − O 1 O ). O Comparisons O between O catalytic B-structure_element domains I-structure_element structures B-evidence of O MKP5 B-protein and O MKP7 B-protein reveal O that O the O overall O folds O of O the O two O proteins O are O highly O similar O , O with O only O a O few O regions O exhibiting O small O deviations O ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence of O 0 O . O 79 O Å O ; O Fig O . O 7c O ). O Given O the O distinct O interaction O mode O revealed O by O the O crystal B-evidence structure I-evidence of O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly , O one O obvious O question O is O whether O this O is O a O general O mechanism O used O by O all O members O of O the O JNK B-protein_type - I-protein_type specific I-protein_type MKPs I-protein_type . O Pull B-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method also O confirmed O the O protein O – O protein O interactions O observed O above O . O In O addition O , O there O were O no O significant O differences O in O the O CD B-evidence spectra I-evidence between O wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state proteins O , O indicating O that O the O overall O structures B-evidence of O these O mutants B-protein_state did O not O change O significantly O from O that O of O wild B-protein_state - I-protein_state type I-protein_state MKP5 B-protein protein O ( O Supplementary O Fig O . O 4a O ). O In O addition O , O the O key O interacting O residues O of O MKP7 B-protein - O CD B-structure_element , O Phe215 B-residue_name_number , O Leu267 B-residue_name_number and O Leu288 B-residue_name_number , O are O replaced O by O less O hydrophobic O residues O , O Asn379 B-residue_name_number , O Met431 B-residue_name_number and O Met452 B-residue_name_number in O MKP5 B-protein - O CD B-structure_element ( O Fig O . O 5c O ), O respectively O , O which O may O result O in O weaker O hydrophobic B-bond_interaction interactions I-bond_interaction between O MKP5 B-protein - O CD B-structure_element and O JNK1 B-protein . O The O propagation O of O MAPK B-protein_type signals O is O attenuated O through O the O actions O of O the O MKPs B-protein_type . O Most O studies O have O focused O on O the O dephosphorylation O of O MAPKs B-protein_type by O phosphatases B-protein_type containing O the O ‘ O kinase B-structure_element - I-structure_element interaction I-structure_element motif I-structure_element ' O ( O D B-structure_element - I-structure_element motif I-structure_element ), O including O a O group O of O DUSPs B-protein_type ( O MKPs B-protein_type ) O and O a O distinct O subfamily O of O tyrosine B-protein_type phosphatases I-protein_type ( O HePTP B-protein , O STEP B-protein and O PTP B-protein - I-protein SL I-protein ). O In O contrast O to O MKP5 B-protein , O removal B-experimental_method of I-experimental_method the O KBD B-structure_element domain O from O MKP7 B-protein does O not O drastically O affect O enzyme O catalysis O , O and O the O kinetic O parameters O of O MKP7 B-protein - O CD B-structure_element for O p38α B-protein substrate O are O very O similar O to O those O for O JNK1 B-protein substrate O . O The O MKP7 B-protein - O KBD B-structure_element docks O to O the O D B-site - I-site site I-site located O on O the O back O side O of O the O p38α B-protein catalytic B-site pocket I-site for O high O - O affinity O association O , O whereas O the O interaction O of O the O MKP7 B-protein - O CD B-structure_element with O another O p38α B-protein structural O region O , O which O is O close O to O the O activation B-structure_element loop I-structure_element , O may O not O only O stabilize O binding O but O also O provide O contacts O crucial O for O organizing O the O MKP7 B-protein active B-site site I-site with O respect O to O the O phosphoreceptor O in O the O p38α B-protein substrate O for O efficient O dephosphorylation O . O This O hydrophobic B-site site I-site was O first O identified O by O changes B-evidence in I-evidence deuterium I-evidence exchange I-evidence profiles I-evidence , O and O is O near O the O MAPK B-structure_element insertion I-structure_element and O helix B-structure_element αG B-structure_element . O Interestingly O , O many O of O the O equivalent O residues O in O JNK1 B-protein , O important O for O MKP7 B-protein - O CD B-structure_element recognition O , O are O also O used O for O substrate O binding O by O ERK2 B-protein ( O ref O .), O indicating O that O this O site O is O overlapped O with O the O DEF B-site - I-site site I-site previously O identified O in O ERK2 B-protein ( O Fig O . O 5d O ). O Therefore O , O it O is O tempting O to O speculate O that O the O catalytic B-structure_element domain I-structure_element of O MKP3 B-protein may O bind O to O ERK2 B-protein in O a O manner O analogous O to O the O way O by O which O MKP7 B-protein - O CD B-structure_element binds O to O JNK1 B-protein . O The O ongoing O work O demonstrates O that O although O the O overall O interaction O modes O are O similar O between O the O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly and O ERK2 B-complex_assembly – I-complex_assembly MKP3 I-complex_assembly - I-complex_assembly CD I-complex_assembly complexes O , O the O ERK2 B-complex_assembly – I-complex_assembly MKP3 I-complex_assembly - I-complex_assembly CD I-complex_assembly interaction O is O less O extensive O and O helix B-structure_element α4 B-structure_element from O MKP3 B-protein - O CD B-structure_element does O not O interact O directly O with O ERK2 B-protein . O Phe285 B-residue_name_number is O essential O for O JNK1 B-protein substrate O binding O , O whereas O Phe287 B-residue_name_number plays O a O role O for O the O precise O alignment O of O active B-site - I-site site I-site residues I-site , O which O are O important O for O transition O - O state O stabilization O . O ( O a O ) O Domain O organization O of O human B-species MKP7 B-protein and O JNK1 B-protein . O The O 2Fo B-evidence − I-evidence Fc I-evidence omit I-evidence map I-evidence ( O contoured O at O 1 O . O 5σ O ) O for O the O P B-structure_element - I-structure_element loop I-structure_element of O MKP7 B-protein - O CD B-structure_element is O shown O at O inset O of O b O . O ( O c O ) O Structure B-evidence of O VHR B-protein with O its O active B-site site I-site highlighted O in O marine O blue O . O ( O d O ) O Close O - O up O view O of O the O JNK1 B-site – I-site MKP7 I-site interface I-site showing O interacting O amino O acids O of O JNK1 B-protein ( O orange O ) O and O MKP7 B-protein - O CD B-structure_element ( O cyan O ). O MKP7 B-protein - O CD B-structure_element is O shown O in O surface O representation O coloured O according O to O electrostatic O potential O ( O positive O , O blue O ; O negative O , O red O ). O Mutational B-experimental_method analysis I-experimental_method on O interactions O between O MKP7 B-protein - O CD B-structure_element and O JNK1 B-protein . O However O , O in O contrast O to O the O wild B-protein_state - I-protein_state type I-protein_state MKP7 B-protein - O CD B-structure_element , O mutant B-protein_state F285D B-mutant did O not O co O - O migrate O with O JNK1 B-protein . O ( O c O ) O Pull B-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method of O MKP7 B-protein - O CD B-structure_element by O GST B-protein_state - I-protein_state tagged I-protein_state JNK1 B-protein mutants B-protein_state . O Measurements O were O averaged O for O three O scans O . O ( O e O ) O Circular B-experimental_method dichroism I-experimental_method spectra B-evidence for O JNK1 B-protein wild B-protein_state type I-protein_state and O mutants B-protein_state . O The O N B-structure_element - I-structure_element lobe I-structure_element and O C B-structure_element - I-structure_element lobe I-structure_element of O CDK2 B-protein are O coloured O in O grey O and O pink O , O respectively O , O and O KAP B-protein is O coloured O in O green O . O Interestingly O , O the O recognition O of O CDK2 B-protein by O KAP B-protein is O augmented O by O a O similar O interface B-site as O that O observed O in O the O complex O of O JNK1 B-protein and O MKP7 B-protein - O CD B-structure_element ( O region B-structure_element II I-structure_element ). O One O remarkable O difference O between O these O two O kinase O - O phosphatase O complexes O is O that O helix B-structure_element α6 B-structure_element of O KAP B-protein ( O corresponding O to O helix B-structure_element α4 B-structure_element of O MKP7 B-protein - O CD B-structure_element ) O plays O little O , O if O any O , O role O in O the O formation O of O a O stable B-protein_state heterodimer B-oligomeric_state of O CDK2 B-protein and O KAP B-protein . O ( O c O ) O Sequence B-experimental_method alignment I-experimental_method of O the O JNK B-site - I-site interacting I-site regions I-site on O MKPs B-protein_type . O ( O d O ) O F B-site - I-site site I-site is O required O for O JNK1 B-protein to O interact O with O MKP7 B-protein . O ( O e O ) O Effect O of O MKP7 B-protein ( O wild B-protein_state type I-protein_state or O mutants B-protein_state ) O expression O on O ultraviolet O - O induced O apoptosis O . O ( O f O ) O Statistical O analysis O of O apoptotic O cells O ( O mean O ± O s O . O e O . O m O ., O n O = O 3 O ), O * B-evidence P I-evidence < O 0 O . O 05 O , O *** B-evidence P I-evidence < O 0 O . O 001 O ( O ANOVA B-experimental_method followed O by O Tukey B-experimental_method ' I-experimental_method s I-experimental_method test I-experimental_method ). O The O error O bars O represent O s O . O e O . O m O . O ( O c O ) O Structural B-experimental_method comparison I-experimental_method of O the O JNK B-site - I-site interacting I-site residues I-site on O MKP5 B-protein - O CD B-structure_element ( O PDB O 1ZZW O ) O and O MKP7 B-protein - O CD B-structure_element . O Mechanistic O insight O into O a O peptide B-protein_type hormone I-protein_type signaling O complex O mediating O floral O organ O abscission O It O is O unknown O how O expression O of O IDA B-protein in O the O abscission O zone O leads O to O HAESA B-protein activation O . O The O HAESA B-protein co B-protein_type - I-protein_type receptor I-protein_type SERK1 B-protein , O a O positive O regulator O of O the O floral O abscission O pathway O , O allows O for O high O - O affinity O sensing O of O the O peptide B-protein_type hormone I-protein_type by O binding O to O an O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O Plants B-taxonomy_domain can O shed O their O leaves O , O flowers O or O other O organs O when O they O no O longer O need O them O . O But O how O does O a O leaf O or O a O flower O know O when O to O let O go O ? O A O receptor B-protein_type protein I-protein_type called O HAESA B-protein is O found O on O the O surface O of O the O cells O that O surround O a O future O break O point O on O the O plant O . O When O its O time O to O shed O an O organ O , O a O hormone B-chemical called O IDA B-protein instructs O HAESA B-protein to O trigger O the O shedding O process O . O Cysteine B-residue_name residues O engaged O in O disulphide B-ptm bonds I-ptm are O depicted O in O green O . O IDA B-protein ( O in O bonds O representation O , O surface O view O included O ) O is O depicted O in O yellow O . O Hydrogren O bonds O are O depicted O as O dotted O lines O ( O in O magenta O ), O a O water B-chemical molecule O is O shown O as O a O red O sphere O . O Abscission O of O floral O organs O in O Arabidopsis B-taxonomy_domain is O a O model O system O to O study O these O cell O separation O processes O in O molecular O detail O . O This B-structure_element sequence I-structure_element motif I-structure_element is O highly B-protein_state conserved I-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type ( O IDA B-protein_type - I-protein_type LIKE I-protein_type PROTEINS I-protein_type , O IDLs B-protein_type ) O and O contains O a O central O Pro B-residue_name residue O , O presumed O to O be O post B-protein_state - I-protein_state translationally I-protein_state modified I-protein_state to O hydroxyproline B-residue_name ( O Hyp B-residue_name ; O Figure O 1A O ). O The O available O genetic O and O biochemical O evidence O suggests O that O IDA B-protein and O HAESA B-protein together O control O floral O abscission O , O but O it O is O poorly O understood O if O IDA B-protein is O directly O sensed O by O the O receptor B-protein_type kinase I-protein_type HAESA B-protein and O how O IDA B-protein binding O at O the O cell O surface O would O activate O the O receptor O . O Close O - O up O views O of O ( O A O ) O IDA B-protein , O ( O B O ) O the O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state PKGV B-mutant - I-mutant IDA I-mutant and O ( O C O ) O IDL1 B-protein bound B-protein_state to I-protein_state the O HAESA B-protein hormone B-site binding I-site pocket I-site ( O in O bonds O representation O , O in O yellow O ) O and O including O simulated B-experimental_method annealing I-experimental_method 2Fo B-evidence – I-evidence Fc I-evidence omit I-evidence electron I-evidence density I-evidence maps I-evidence contoured O at O 1 O . O 0 O σ O . O ( O B O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O A O SDS B-experimental_method PAGE I-experimental_method of O the O peak O fractions O is O shown O alongside O . O Purified O HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O ( O C O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state and O Hyp64 B-ptm → I-ptm Pro I-ptm IDA B-protein versus O the O HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element . O The O titration B-experimental_method of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state versus O the O isolated O HAESA B-protein ectodomain B-structure_element from O Figure O 1B O is O shown O for O comparison O ( O red O line O ; O n O . O d O . O We O purified B-experimental_method the O HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O from O baculovirus B-experimental_method - I-experimental_method infected I-experimental_method insect I-experimental_method cells I-experimental_method ( O Figure O 1 O — O figure O supplement O 1A O , O see O Materials O and O methods O ) O and O quantified O the O interaction O of O the O ~ O 75 O kDa O glycoprotein B-protein_type with O synthetic B-protein_state IDA B-chemical peptides I-chemical using O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O IDA B-protein binds O in O a O completely B-protein_state extended I-protein_state conformation I-protein_state along O the O inner O surface O of O the O HAESA B-protein ectodomain B-structure_element , O covering O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ( O Figure O 1C O , O D O , O Figure O 1 O — O figure O supplement O 2 O ). O Other O hydrophobic B-bond_interaction and I-bond_interaction polar I-bond_interaction interactions I-bond_interaction are O mediated O by O Ser62IDA B-residue_name_number , O Ser65IDA B-residue_name_number and O by O backbone O atoms O along O the O IDA B-chemical peptide I-chemical ( O Figure O 1D O , O Figure O 1 O — O figure O supplement O 2A O – O C O ). O Consistently O , O PKGV B-mutant - I-mutant IDA I-mutant and O IDA B-protein have O similar O binding B-evidence affinities I-evidence in O our O ITC B-experimental_method assays I-experimental_method , O further O indicating O that O HAESA B-protein senses O a O dodecamer B-structure_element peptide B-chemical comprising O residues O 58 B-residue_range - I-residue_range 69IDA I-residue_range ( O Figure O 2D O ). O Replacing B-experimental_method Hyp64IDA B-ptm , O which O is O common O to O all O IDLs B-protein_type , O with O proline B-residue_name impairs O the O interaction O with O the O receptor O , O as O does O the O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state discussed O below O ( O Figure O 1A O , O 2D O ). O Our O binding B-experimental_method assays I-experimental_method reveal O that O IDA B-chemical family I-chemical peptides I-chemical are O sensed O by O the O isolated B-protein_state HAESA B-protein ectodomain B-structure_element with O relatively O weak O binding B-evidence affinities I-evidence ( O Figures O 1B O , O 2A O – O D O ). O The O serk2 B-gene - I-gene 2 I-gene , O serk3 B-gene - I-gene 1 I-gene , O serk4 B-gene - I-gene 1 I-gene and O serk5 B-gene - I-gene 1 I-gene mutant B-protein_state lines O showed O a O petal O break O - O strength O profile O not O significantly O different O from O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain . O In O vitro O , O the O LRR B-structure_element ectodomain I-structure_element of O SERK1 B-protein ( O residues O 24 B-residue_range – I-residue_range 213 I-residue_range ) O forms O stable B-protein_state , O IDA B-protein_state - I-protein_state dependent I-protein_state heterodimeric B-oligomeric_state complexes B-protein_state with I-protein_state HAESA B-protein in O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O ( O Figure O 3B O ). O We O found O that O HAESA B-protein senses O IDA B-protein with O a O ~ O 60 O fold O higher O binding B-evidence affinity I-evidence in O the O presence B-protein_state of I-protein_state SERK1 B-protein , O suggesting O that O SERK1 B-protein is O involved O in O the O specific O recognition O of O the O peptide B-protein_type hormone I-protein_type ( O Figure O 3C O ). O Importantly O , O hydroxyprolination B-ptm of O IDA B-protein is O critical O for O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O ( O Figure O 3C O , O D O ). O Upon O IDA B-protein binding O at O the O cell O surface O , O the O kinase B-structure_element domains I-structure_element of O HAESA B-protein and O SERK1 B-protein , O which O have O been O shown O to O be O active B-protein_state protein B-protein_type kinases I-protein_type , O may O interact O in O the O cytoplasm O to O activate O each O other O . O Crystal B-evidence structure I-evidence of O a O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly signaling O complex O . O Polar B-bond_interaction interactions I-bond_interaction are O highlighted O as O dotted O lines O ( O in O magenta O ). O ( O A O ) O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O similar O to O Figure O 3B O , O D O reveal O that O IDA B-protein mutant B-protein_state peptides B-chemical targeting O the O C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element do O not O form O biochemically B-protein_state stable I-protein_state HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complexes O . O We O over B-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state wild B-protein_state - I-protein_state type I-protein_state IDA B-protein or O this O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state to O similar O levels O in O Col O - O 0 O Arabidopsis B-taxonomy_domain plants B-taxonomy_domain ( O Figure O 5D O ). O We O found O that O over B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state IDA B-protein leads O to O early O floral O abscission O and O an O enlargement O of O the O abscission O zone O ( O Figure O 5C O – O E O ). O It O will O be O thus O interesting O to O see O if O proteolytic O processing O of O full B-protein_state - I-protein_state length I-protein_state IDA B-protein in O vivo O is O regulated O in O a O cell O - O type O or O tissue O - O specific O manner O . O This O observation O is O consistent O with O our O complex O structure B-evidence in O which O receptor O and O co O - O receptor O together O form O the O IDA B-site binding I-site pocket I-site . O In O addition O , O residues O 53 B-residue_range - I-residue_range 55SERK1 I-residue_range from O the O SERK1 B-protein N O - O terminal O cap B-structure_element mediate O specific O interactions O with O the O IDA B-chemical peptide I-chemical ( O Figures O 4C O , O 6B O ). O Different O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type contain O a O C O - O terminal O ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element , O which O in O IDA B-protein represents O the O co B-site - I-site receptor I-site recognition I-site site I-site . O Importantly O , O this B-structure_element motif I-structure_element can O also O be O found O in O other O peptide B-protein_type hormone I-protein_type families I-protein_type ( O Figure O 7 O ). O Using O electron B-experimental_method cryo I-experimental_method - I-experimental_method microscopy I-experimental_method of O a O single O specimen O , O we O present O five O ribosome B-complex_assembly structures B-evidence formed O with O the O Taura B-species syndrome I-species virus I-species IRES B-site and O translocase B-protein_type eEF2 B-complex_assembly • I-complex_assembly GTP I-complex_assembly bound B-protein_state with I-protein_state sordarin B-chemical . O The O structures B-evidence suggest O missing O links O in O our O understanding O of O tRNA B-chemical translocation O . O To O this O end O , O internal B-site ribosome I-site entry I-site site I-site ( O IRES B-site ) O RNAs B-chemical are O employed O ( O reviewed O in O . O An O unusual O strategy O of O initiation B-protein_state is O used O by O intergenic B-structure_element - I-structure_element region I-structure_element ( O IGR B-structure_element ) O IRESs B-site found O in O Dicistroviridae B-species arthropod I-species - O infecting O viruses B-taxonomy_domain . O These O include O shrimp B-taxonomy_domain - O infecting O Taura B-species syndrome I-species virus I-species ( O TSV B-species ), O and O insect B-taxonomy_domain viruses O Plautia B-species stali I-species intestine I-species virus I-species ( O PSIV B-species ) O and O Cricket B-species paralysis I-species virus I-species ( O CrPV B-species ). O A O recent O demonstration O of O bacterial B-taxonomy_domain translation O initiation B-protein_state by O an O IGR B-structure_element IRES B-site indicates O that O the O IRESs B-site take O advantage O of O conserved O structural O and O dynamic O properties O of O the O ribosome B-complex_assembly . O For O a O cognate O aminoacyl B-chemical - I-chemical tRNA I-chemical to O bind O the O first O viral B-taxonomy_domain mRNA B-chemical codon O , O PKI B-structure_element has O to O be O translocated O from O the O A B-site site I-site , O so O that O the O first O codon O can O be O presented O in O the O A B-site site I-site . O First O , O studies O of O bacterial B-taxonomy_domain ribosomes B-complex_assembly showed O that O a O ~ O 10 O ° O rotation O of O the O small B-structure_element subunit I-structure_element relative O to O the O large B-structure_element subunit I-structure_element , O known O as O intersubunit O rotation O , O or O ratcheting O , O is O required O for O translocation O . O Schematic O of O cryo B-experimental_method - I-experimental_method EM I-experimental_method refinement O and O classification O procedures O . O All O particles B-experimental_method were O initially O aligned O to O a O single O model O . O All O measurements O are O relative O to O the O non B-protein_state - I-protein_state rotated I-protein_state 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly structure B-evidence . O This O approach O revealed O five O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly • I-complex_assembly GDP I-complex_assembly structures B-evidence at O average O resolutions O of O 3 O . O 5 O to O 4 O . O 2 O Å O , O sufficient O to O locate O IRES B-site domains O and O to O resolve O individual O residues O in O the O core O regions O of O the O ribosome B-complex_assembly and O eEF2 B-protein ( O Figures O 3c O , O d O , O and O 5f O , O h O ; O see O also O Figure O 1 O — O figure O supplement O 2 O and O Figure O 5 O — O figure O supplement O 2 O ), O including O the O post O - O translational O modification O diphthamide B-ptm 699 I-ptm ( O Figure O 3c O ). O The O views O were O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O 25S B-chemical rRNAs I-chemical ; O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element ( O SRL B-structure_element ) O of O 25S B-chemical rRNA I-chemical is O shown O in O gray O for O reference O . O ( O c O ) O Comparison O of O the O 40S B-complex_assembly conformations O in O Structures B-evidence I I-evidence through I-evidence V I-evidence shows O distinct O positions O of O the O head B-structure_element relative O to O the O body B-structure_element of O the O 40S B-complex_assembly subunit B-structure_element ( O head B-structure_element swivel O ). O Conformation O of O the O non B-protein_state - I-protein_state swiveled I-protein_state 40S B-complex_assembly subunit B-structure_element in O the O S B-species . I-species cerevisiae I-species 80S B-complex_assembly ribosome I-complex_assembly bound B-protein_state with I-protein_state two O tRNAs B-chemical is O shown O for O reference O ( O blue O ). O The O central B-structure_element protuberance I-structure_element ( O CP B-structure_element ) O is O labeled O . O Structures B-evidence II I-evidence and I-evidence III I-evidence are O in O mid B-protein_state - I-protein_state rotation I-protein_state conformations O (~ O 5 O °). O IRES B-site rearrangements O Position O and O interactions O of O loop B-structure_element 3 I-structure_element ( O variable B-structure_element loop I-structure_element region I-structure_element ) O of O the O PKI B-structure_element domain O in O Structure B-evidence V I-evidence ( O this O work O ) O resembles O those O of O the O anticodon B-structure_element stem I-structure_element loop I-structure_element of O the O E B-site - I-site site I-site tRNA B-chemical ( O blue O ) O in O the O 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O . O Structures B-evidence of O translocation O complexes O of O the O bacterial B-taxonomy_domain 70S B-complex_assembly ribosome I-complex_assembly bound B-protein_state with I-protein_state two O tRNAs B-chemical and O yeast B-taxonomy_domain 80S B-complex_assembly complexes B-protein_state with I-protein_state tRNAs B-chemical are O shown O in O the O upper O row O and O labeled O . O Positions O of O the O IRES B-site relative O to O eEF2 B-protein and O elements O of O the O ribosome B-complex_assembly in O Structures B-evidence I I-evidence through I-evidence V I-evidence . O The O minor B-site groove I-site of O SL5 B-structure_element ( O at O nt O 6862 B-residue_range – I-residue_range 6868 I-residue_range ) O contacts O the O positively O charged O region O of O eS25 B-protein ( O R49 B-residue_name_number , O R58 B-residue_name_number and O R68 B-residue_name_number ) O ( O Figure O 3 O — O figure O supplement O 4 O ). O The O view O was O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O body B-structure_element domains O of O 18S B-chemical rRNAs I-chemical of O the O corresponding O 80S B-complex_assembly structures B-evidence . O Rearrangements O of O the O IRES B-site involve O restructuring O of O several O interactions O with O the O ribosome B-complex_assembly . O In O Structure B-evidence I I-evidence , O SL3 B-structure_element of O the O PKI B-structure_element domain O is O positioned O between O the O A B-structure_element - I-structure_element site I-structure_element finger I-structure_element ( O nt O 1008 B-residue_range – I-residue_range 1043 I-residue_range of O 25S B-chemical rRNA I-chemical ) O and O the O P B-site site I-site of O the O 60S B-complex_assembly subunit B-structure_element , O comprising O helix B-structure_element 84 I-structure_element of O 25S B-chemical rRNA I-chemical ( O nt O . O The O second O set O of O major O structural O changes O involves O interaction O of O the O P B-site site I-site region I-site of O the O large B-structure_element subunit I-structure_element with O the O hinge B-structure_element point I-structure_element of O the O IRES B-site bending O between O the O 5 B-structure_element ´ I-structure_element domain I-structure_element and O the O PKI B-structure_element domain O ( O nt O . O 6886 B-residue_range – I-residue_range 6890 I-residue_range ). O The O view O and O colors O are O as O in O Figure O 5b O : O eEF2 B-protein is O shown O in O green O , O IRES B-site RNA B-chemical in O red O , O 40S B-complex_assembly subunit B-structure_element elements O in O orange O , O 60S B-complex_assembly in O cyan O / O teal O . O Cryo B-experimental_method - I-experimental_method EM I-experimental_method density B-evidence of O the O GTPase B-structure_element region I-structure_element in O Structures B-evidence I I-evidence and I-evidence II I-evidence . O Repositioning O ( O sliding O ) O of O the O positively B-site - I-site charged I-site cluster I-site of O domain O IV B-structure_element of O eEF2 B-protein over O the O phosphate O backbone O ( O red O ) O of O the O 18S B-structure_element helices I-structure_element 33 I-structure_element and I-structure_element 34 I-structure_element . O Interactions O of O eEF2 B-protein with O the O 40S B-complex_assembly subunit B-structure_element . O From O Structure B-evidence I I-evidence to I-evidence V I-evidence , O these O central O domains O migrate O by O ~ O 10 O Å O along O the O 40S B-complex_assembly surface O ( O Figure O 6c O ). O At O the O head B-structure_element , O C1274 B-residue_name_number of O the O 18S B-chemical rRNA I-chemical ( O C1054 B-residue_name_number in O E B-species . I-species coli I-species ) O base O pairs O with O the O first O nucleotide O of O the O ORF B-structure_element immediately O downstream O of O PKI B-structure_element . O The O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element is O shown O in O red O , O the O downstream O first O codon O of O the O ORF B-structure_element in O magenta O . O Histidines B-residue_name_number 583 I-residue_name_number and I-residue_name_number 694 I-residue_name_number interact O with O the O phosphate O backbone O of O the O anticodon B-structure_element - I-structure_element like I-structure_element strand I-structure_element ( O at O G6907 B-residue_name_number and O C6908 B-residue_name_number ). O Thus O , O in O comparison O with O the O initiation B-protein_state state O , O the O histidine B-site - I-site diphthamide I-site tip I-site of O eEF2 B-protein replaces O the O codon B-structure_element - I-structure_element anticodon I-structure_element – I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element . O The O histidine B-residue_name resides O next O to O the O backbone O of O G3028 B-residue_name_number of O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element and O near O the O diphosphate O of O GDP B-chemical ( O Figure O 5e O ). O By O contrast O , O switch B-structure_element loop I-structure_element I I-structure_element ( O aa O 50 B-residue_range – I-residue_range 70 I-residue_range in O S B-species . I-species cerevisiae I-species eEF2 B-protein ) O is O resolved O only O in O Structure B-evidence I I-evidence ( O Figure O 5 O — O figure O supplement O 2 O ). O As O such O , O the O conformations O of O SWI B-structure_element and O the O GTPase B-site center I-site in O general O are O similar O to O those O observed O in O ribosome B-protein_state - I-protein_state bound I-protein_state EF B-protein - I-protein Tu I-protein and O EF B-protein - I-protein G I-protein in O the O presence B-protein_state of I-protein_state GTP B-chemical analogs O . O Structure B-evidence II I-evidence reveals O PKI B-structure_element between O the O body B-structure_element A B-site and I-site P I-site sites I-site and O eEF2 B-protein partially O advanced O into O the O A B-site site I-site Domain O IV B-structure_element of O eEF2 B-protein is O further O entrenched O in O the O A B-site site I-site by O ~ O 3 O Å O relative O to O the O body B-structure_element and O ~ O 8 O Å O relative O to O the O head B-structure_element , O preserving O its O interactions O with O PKI B-structure_element . O In O Structure B-evidence IV I-evidence , O the O 40S B-complex_assembly subunit B-structure_element is O almost O non B-protein_state - I-protein_state rotated I-protein_state relative O to O the O 60S B-complex_assembly subunit B-structure_element , O and O the O 40S B-complex_assembly head B-structure_element is O mid B-protein_state - I-protein_state swiveled I-protein_state . O In O Structure B-evidence V I-evidence , O protein O uS12 B-protein is O shifted O along O with O the O 40S B-complex_assembly body B-structure_element as O a O result O of O intersubunit O rotation O . O This O shifts O the O tip O of O helix B-structure_element A I-structure_element of O domain O III B-structure_element ( O at O aa O 500 B-residue_number ) O by O ~ O 5 O Å O ( O relative O to O that O in O Structure B-evidence I I-evidence ) O toward O domain O I B-structure_element . O Although O domain O III B-structure_element remains O in O contact O with O domain O V B-structure_element , O the O shift O occurs O in O the O direction O that O could O eventually O disconnect O the O β B-structure_element - I-structure_element platforms I-structure_element of O these O domains O . O The O imidazole O moiety O stacks O on O G6907 B-residue_name_number ( O corresponding O to O nt O 36 O in O the O tRNA B-chemical anticodon O ) O and O hydrogen B-bond_interaction bonds I-bond_interaction with O O2 O ’ O of O G6906 B-residue_name_number ( O nt O 35 O of O tRNA B-chemical ). O The O front B-structure_element ' I-structure_element legs I-structure_element ' O ( O SL4 B-structure_element and O SL5 B-structure_element ) O of O the O 5 B-structure_element ’- I-structure_element domain I-structure_element ( O front B-structure_element end I-structure_element ) O are O attached O to O the O 40S B-complex_assembly head B-structure_element proteins O uS7 B-protein , O uS11 B-protein and O eS25 B-protein ( O Figure O 3 O — O figure O supplement O 2 O ). O Notably O , O at O all O steps O , O the O head B-structure_element of O the O IRES B-site inchworm B-protein_state ( O L1 B-structure_element . I-structure_element 1 I-structure_element region I-structure_element ) O is O supported O by O the O mobile B-protein_state L1 B-structure_element stalk I-structure_element . O Partitioned O roles O of O 40S B-complex_assembly subunit B-structure_element rearrangements O Specifically O , O intersubunit O rotation O allows O eEF2 B-protein entry O into O the O A B-site site I-site , O while O the O head B-structure_element swivel O mediates O PKI B-structure_element translocation O . O Because O the O histidine B-site - I-site diphthamide I-site tip I-site of O eEF2 B-protein ( O H583 B-residue_name_number , O H694 B-residue_name_number and O Diph699 B-ptm ) O attaches O to O the O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element , O eEF2 B-protein appears O to O directly O force O PKI B-structure_element out O of O the O A B-site site I-site . O To O our O knowledge O , O our O work O provides O the O first O high O - O resolution O view O of O the O dynamics O of O a O ribosomal B-protein_type translocase I-protein_type that O is O inferred O from O an O ensemble O of O structures B-evidence sampled O under O uniform O conditions O . O While O the O ribosome B-complex_assembly itself O has O the O capacity O to O translocate O in O the O absence B-protein_state of I-protein_state the O translocase B-protein_type , O spontaneous O translocation O is O slow O . O The O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly structures B-evidence reported O here O suggest O two O main O roles O for O eEF2 B-protein in O translocation O . O In O our O structures B-evidence , O the O tip O of O domain O IV B-structure_element docks O next O to O PKI B-structure_element , O with O diphthamide B-ptm 699 I-ptm fit O into O the O minor B-site groove I-site of O the O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element ( O Figure O 7 O ). O This O arrangement O rationalizes O inactivation O of O eEF2 B-protein by O diphtheria B-protein_type toxin I-protein_type , O which O catalyzes O ADP B-ptm - I-ptm ribosylation I-ptm of O the O diphthamide B-ptm ( O reviewed O in O ). O The O enzyme O ADP B-ptm - I-ptm ribosylates I-ptm the O NE2 O atom O of O the O imidazole O ring O , O which O in O our O structures B-evidence interacts O with O the O first O two O residues O of O the O anticodon B-structure_element - I-structure_element like I-structure_element strand I-structure_element of O PKI B-structure_element . O However O , O the O structural O and O mechanistic O definitions O of O the O locked B-protein_state and O unlocked B-protein_state states O have O remained O unclear O , O ranging O from O the O globally O distinct O ribosome B-complex_assembly conformations O to O unknown O local O rearrangements O , O e O . O g O . O those O in O the O decoding B-site center I-site . O FRET B-evidence data I-evidence indicate O that O translocation O of O 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly on O the O 70S B-complex_assembly ribosome I-complex_assembly requires O a O forward O - O and O - O reverse O head B-structure_element swivel O , O which O may O be O related O to O the O unlocking O phenomenon O . O Mutations B-experimental_method of O residues O flanking O A344 B-residue_name_number in O E B-species . I-species coli I-species 16S B-chemical rRNA I-chemical modestly O inhibit O translation O but O do O not O specifically O affect O EF B-protein - I-protein G I-protein - O mediated O translocation O . O However O , O the O effect O of O A344 B-residue_name_number mutation B-experimental_method on O translation O was O not O addressed O in O that O study O , O leaving O the O question O open O whether O this O residue O is O critical O for O eEF2 B-protein / O EF B-protein - I-protein G I-protein function O . O The O interaction O between O h14 B-structure_element and O switch B-structure_element loop I-structure_element I I-structure_element is O not O resolved O in O Structures B-evidence II I-evidence to I-evidence V I-evidence , O in O all O of O which O the O small B-structure_element subunit I-structure_element is O partially B-protein_state rotated I-protein_state or O non B-protein_state - I-protein_state rotated I-protein_state , O so O that O helix B-structure_element 14 I-structure_element is O placed O at O least O 6 O Å O farther O from O eEF2 B-protein ( O Figure O 5d O ). O We O conclude O that O unlike O other O conformations O of O the O ribosome B-complex_assembly , O the O fully B-protein_state rotated I-protein_state 40S B-complex_assembly subunit B-structure_element of O the O pre B-protein_state - I-protein_state translocation I-protein_state ribosome B-complex_assembly provides O an O interaction B-site surface I-site , O complementing O the O P B-structure_element stalk I-structure_element and O SRL B-structure_element , O for O binding O of O the O GTP B-protein_state - I-protein_state bound I-protein_state translocase B-protein_type . O This O displacement O is O caused O by O the O 8 O Å O movement O of O the O 40S B-complex_assembly body B-structure_element protein O uS12 B-protein upon O reverse O intersubunit O rotation O from O Structure B-evidence I I-evidence to I-evidence V I-evidence ( O Figure O 6d O ). O As O we O discuss O below O , O Structure B-evidence V I-evidence captures O a O ' O pre B-protein_state - I-protein_state unstacking I-protein_state ' O state O due O to O stabilization O of O the O interface B-site between O domains O III B-structure_element and O V B-structure_element by O sordarin B-chemical . O Intersubunit O rearrangements O and O tRNA B-chemical hybrid B-protein_state states O have O been O proposed O to O play O key O roles O half O a O century O ago O . O Despite O an O impressive O body B-structure_element of O biochemical B-evidence , I-evidence fluorescence I-evidence and I-evidence structural I-evidence data I-evidence accumulated O since O then O , O translocation O remains O the O least O understood O step O of O elongation O . O Furthermore O , O the O step O - O wise O coupling O of O ribosome B-complex_assembly dynamics O with O IRES B-site translocation O is O overall O consistent O with O that O observed O for O 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly translocation O in O solution O . O We O deem O the O pre B-protein_state - I-protein_state translocation I-protein_state complex O locked B-protein_state , O because O the O A B-protein_state - I-protein_state site I-protein_state bound I-protein_state ASL O - O mRNA B-chemical is O stabilized O by O interactions O with O the O decoding B-site center I-site . O This O unlatches O the O head B-structure_element , O allowing O creation O of O hitherto O elusive O intermediate O tRNA B-chemical positions O during O spontaneous O reverse O body B-structure_element rotation O . O Finally O , O the O similar O populations O of O particles B-experimental_method ( O within O a O 2X O range O ) O in O our O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly reconstructions B-evidence ( O Figure O 1 O — O figure O supplement O 2 O ) O suggest O that O the O intermediate O translocation O states O sample O several O energetically O similar O and O interconverting O conformations O . O The O cryo B-experimental_method - I-experimental_method EM I-experimental_method structures B-evidence demonstrate O that O the O TSV B-species IRES B-site structurally O and O dynamically O represents O a O chimera O of O the O 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly translocating O complex O ( O A B-complex_assembly / I-complex_assembly P I-complex_assembly - I-complex_assembly tRNA I-complex_assembly • I-complex_assembly P I-complex_assembly / I-complex_assembly E I-complex_assembly - I-complex_assembly tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly ). O Intergenic O IRESs B-site , O in O turn O , O represent O a O striking O example O of O convergent O molecular O evolution O . O This O work O provides O insights O into O the O basic O mechanism O of O proteolysis O and O propeptide B-ptm autolysis I-ptm , O as O well O as O the O evolutionary O pressures O that O drove O the O proteasome B-complex_assembly to O become O a O threonine B-protein_type protease I-protein_type . O Data O from O biochemical B-experimental_method and I-experimental_method structural I-experimental_method analyses I-experimental_method of O proteasome O variants O with O mutations O in O the O β5 B-protein propeptide B-structure_element and O the O active B-site site I-site strongly O support O the O model O and O deliver O novel O insights O into O the O structural O constraints O required O for O the O autocatalytic B-ptm activation I-ptm of O the O proteasome B-complex_assembly . O Proteasome B-complex_assembly - O mediated O degradation O of O cell O - O cycle O regulators O and O potentially O toxic O misfolded O proteins O is O required O for O the O viability O of O eukaryotic B-taxonomy_domain cells O . O These O results O indicate O that O the O β1 B-protein and O β2 B-protein proteolytic O activities O are O not O essential O for O cell O survival O . O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number positions O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O via O hydrogen B-bond_interaction bonding I-bond_interaction (∼ O 2 O . O 8 O Å O ) O in O a O perfect O trajectory O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1b O and O Supplementary O Fig O . O 2b O ). O As O histidine B-residue_name commonly O functions O as O a O proton O shuttle O in O the O catalytic B-site triads I-site of O serine B-protein_type proteases I-protein_type , O we O investigated O the O role O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O processing O of O the O β5 B-protein propeptide B-structure_element by O exchanging B-experimental_method it I-experimental_method for I-experimental_method Asn B-residue_name , O Lys B-residue_name , O Phe B-residue_name and O Ala B-residue_name . O All O yeast B-taxonomy_domain mutants O were O viable O at O 30 O ° O C O , O but O suffered O from O growth O defects O at O 37 O ° O C O with O the O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutants O being O most O affected O ( O Supplementary O Fig O . O 3b O and O Table O 1 O ). O In O agreement O , O the O chymotrypsin O - O like O ( O ChT O - O L O ) O activity O of O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutant B-protein_state yCPs B-complex_assembly was O impaired O in O situ O and O in O vitro O ( O Supplementary O Fig O . O 3c O ). O Next O , O we O examined O the O effect O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number on O the O orientation O of O the O propeptide B-structure_element by O creating B-experimental_method mutants I-experimental_method that I-experimental_method combine I-experimental_method the O T1A B-mutant ( O K81R B-mutant ) O mutation B-experimental_method ( I-experimental_method s I-experimental_method ) I-experimental_method with O H B-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant , O H B-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant or O H B-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant substitutions B-experimental_method . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence displays O a O different O orientation O for O the O β2 B-protein propeptide B-structure_element than O has O been O observed O for O the O β2 B-mutant - I-mutant T1A I-mutant proteasome B-complex_assembly . O The O phenotype O of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state was O however O less O pronounced O than O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant yeast B-taxonomy_domain ( O Fig O . O 4a O ). O Structural B-experimental_method comparison I-experimental_method of O the O β5 B-mutant - I-mutant L I-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant - I-mutant K33A I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant active B-site sites I-site revealed O that O mutation B-experimental_method of O Lys33 B-residue_name_number to O Ala B-residue_name creates O a O cavity O that O is O filled O with O Thr1 B-residue_name_number and O the O remnant O propeptide B-structure_element . O In O contrast O to O the O cis B-protein_state - O construct O , O expression B-experimental_method of O the O β5 B-protein propeptide B-structure_element in O trans B-protein_state allowed O straightforward O isolation B-experimental_method and O crystallization B-experimental_method of O the O D17N B-mutant mutant B-protein_state proteasome B-complex_assembly . O This O observation O is O consistent O with O a O strongly O reduced O reactivity O of O β5 B-protein - O Thr1 B-residue_name_number and O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical cis B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical . O Asp166Oδ B-residue_name_number is O hydrogen B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O Thr1NH2 B-residue_name_number via O Ser129OH B-residue_name_number and O Ser169OH B-residue_name_number , O and O therefore O was O proposed O to O be O involved O in O catalysis O . O Instead O , O a O water B-chemical molecule O is O bound B-protein_state to I-protein_state Ser129OH B-residue_name_number and O Thr1NH2 B-residue_name_number ( O Supplementary O Fig O . O 8b O ), O which O may O enable O precursor B-ptm processing I-ptm . O In O the O carfilzomib B-complex_assembly complex I-complex_assembly structure B-evidence , O Thr1Oγ B-residue_name_number and O Thr1N B-residue_name_number incorporate O into O a O morpholine O ring O structure O and O Ser129 B-residue_name_number adopts O its O WT B-protein_state - O like O orientation O . O Whereas O Asn B-residue_name can O to O some O degree O replace O Asp166 B-residue_name_number due O to O its O carbonyl O group O in O the O side O chain O , O Ala B-residue_name at O this O position O was O found O to O prevent O both O autolysis B-ptm and O catalysis O . O These O results O suggest O that O Asp166 B-residue_name_number and O Ser129 B-residue_name_number function O as O a O proton O shuttle O and O affect O the O protonation O state O of O Thr1N B-residue_name_number during O autolysis B-ptm and O catalysis O . O Owing O to O the O unequal O positions O of O the O two O β5 B-protein subunits O within O the O CP B-complex_assembly in O the O crystal O lattice O , O maturation O and O propeptide B-structure_element displacement O may O occur O at O different O timescales O in O the O two O subunits O . O In O agreement O , O soaking B-experimental_method crystals I-experimental_method with O the O CP B-complex_assembly inhibitors O bortezomib B-chemical or O carfilzomib B-chemical modifies O only O the O β1 B-protein and O β2 B-protein active B-site sites I-site , O while O leaving O the O β5 B-mutant - I-mutant T1C I-mutant proteolytic B-site centres I-site unmodified B-protein_state even O though O they O are O only O partially O occupied O by O the O cleaved B-protein_state propeptide B-structure_element remnant O . O In O agreement O , O at O an O elevated O growing O temperature O of O 37 O ° O C O the O T1S B-mutant mutant B-protein_state is O unable O to O grow O ( O Fig O . O 4a O ). O Hence O , O the O mean B-evidence residence I-evidence time I-evidence of O carfilzomib B-chemical at O the O active B-site site I-site is O prolonged O and O the O probability O to O covalently O react O with O Ser1 B-residue_name_number is O increased O . O The O 20S B-complex_assembly proteasome I-complex_assembly CP B-complex_assembly is O the O major O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type in O eukaryotic B-taxonomy_domain cells O , O and O its O assembly O is O highly O organized O . O Depending O on O the O (- B-residue_number 2 I-residue_number ) I-residue_number residue O we O observed O various O propeptide B-structure_element conformations O , O but O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O in O all O structures B-evidence perfectly O located O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number , O although O it O does O not O adopt O the O tight B-structure_element turn I-structure_element observed O for O the O prosegment B-structure_element of O subunit O β1 B-protein . O Lys33NH2 B-residue_name_number is O expected O to O act O as O the O proton O acceptor O during O autocatalytic B-ptm removal I-ptm of O the O propeptides B-structure_element , O as O well O as O during O substrate O proteolysis O , O while O Asp17Oδ B-residue_name_number orients O Lys33NH2 B-residue_name_number and O makes O it O more O prone O to O protonation O by O raising O its O pKa O ( O hydrogen B-bond_interaction bond I-bond_interaction distance O : O Lys33NH3 B-residue_name_number +– O Asp17Oδ B-residue_name_number : O 2 O . O 9 O Å O ). O Analogously O to O the O proteasome B-complex_assembly , O a O Thr B-site – I-site Lys I-site – I-site Asp I-site triad I-site is O also O found O in O L B-protein_type - I-protein_type asparaginase I-protein_type . O In O this O new O view O of O the O proteasomal O active B-site site I-site , O the O positively O charged O Thr1NH3 B-residue_name_number +- O terminus O hydrogen B-bond_interaction bonds I-bond_interaction to O the O amide O nitrogen O of O incoming O peptide O substrates O and O stabilizes O as O well O as O activates O them O for O the O endoproteolytic B-ptm cleavage I-ptm by O Thr1Oγ B-residue_name_number ( O Fig O . O 3d O ). O Breakdown O of O this O tetrahedral O transition O state O releases O the O Thr1 B-residue_name_number N O terminus O that O is O protonated O by O aspartic B-residue_name_number acid I-residue_name_number 166 I-residue_name_number via O Ser129OH B-residue_name_number to O yield O Thr1NH3 B-residue_name_number +. O This O interpretation O agrees O with O the O strongly O reduced O catalytic O activity O of O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state on O the O one O hand O , O and O the O ability O to O react O readily O with O carfilzomib B-chemical on O the O other O . O In O accord O with O the O proposed O Thr1 B-residue_name_number – O Lys33 B-residue_name_number – O Asp17 B-residue_name_number catalytic B-site triad I-site , O crystallographic B-evidence data I-evidence on O the O proteolytically B-protein_state inactive I-protein_state β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state demonstrate O that O the O interaction O of O Lys33NH2 B-residue_name_number and O Cys1 B-residue_name_number is O broken O . O Thr1 B-residue_name_number is O well O anchored O in O the O active B-site site I-site by O hydrophobic B-bond_interaction interactions I-bond_interaction of O its O Cγ O methyl O group O with O Ala46 B-residue_name_number ( O Cβ O ), O Lys33 B-residue_name_number ( O carbon O side O chain O ) O and O Thr3 B-residue_name_number ( O Cγ O ). O Notably O , O in O the O threonine B-protein_type aspartase I-protein_type Taspase1 B-protein , O mutation B-experimental_method of O the O active B-site - I-site site I-site Thr234 B-residue_name_number to O Ser B-residue_name also O places O the O side O chain O in O the O position O of O the O methyl O group O of O Thr234 B-residue_name_number in O the O WT B-protein_state , O thereby O reducing O catalytic O activity O . O ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-protein propeptides B-structure_element in O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant , O β5 B-mutant -( I-mutant H I-mutant - I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state proteasomes B-complex_assembly . O While O the O residues O (- B-residue_range 2 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 4 I-residue_range ) I-residue_range vary O in O their O conformation O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number are O located O in O all O structures B-evidence at O the O same O positions O . O The O strictly B-protein_state conserved I-protein_state oxyanion O hole O Gly47NH B-residue_name_number stabilizing O the O negatively O charged O intermediate O is O illustrated O as O a O semicircle O . O Next O , O Thr1NH2 B-residue_name_number polarizes O a O water B-chemical molecule O for O the O nucleophilic O attack O of O the O acyl O - O enzyme O intermediate O . O On O hydrolysis O of O the O latter O , O the O active B-site - I-site site I-site Thr1 B-residue_name_number is O ready O for O catalysis O ( O right O set O of O structures O ). O The O proteasome B-complex_assembly favours O threonine B-residue_name as O the O active O - O site O nucleophile O . O ( O a O ) O Growth B-experimental_method tests I-experimental_method by I-experimental_method serial I-experimental_method dilution I-experimental_method of O WT B-protein_state and O pre2 O ( O β5 B-protein ) O mutant B-protein_state yeast B-taxonomy_domain cultures O reveal O growth O defects O of O the O active B-site - I-site site I-site mutants B-experimental_method under O the O indicated O conditions O after O 2 O days O ( O 2 O d O ) O of O incubation O . O ( O c O ) O Illustration O of O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence ( O blue O mesh O contoured O at O 1σ O ) O for O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element fragment O . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O Inhibition B-experimental_method assays I-experimental_method ( O left O panel O ). O p300 B-protein - O catalyzed O histone B-protein_type crotonylation B-ptm , O which O is O likely O metabolically O regulated O , O stimulates O transcription O to O a O greater O degree O than O p300 B-protein - O catalyzed O acetylation B-ptm . O The O discovery O of O individual O biological O roles O for O the O crotonyllysine B-residue_name and O acetyllysine B-residue_name marks O suggests O that O these O PTMs O can O be O read O by O distinct O readers O . O However O , O Taf14 B-protein is O also O found O in O a O number O of O chromatin O - O remodeling O complexes O ( O i O . O e O ., O INO80 B-complex_assembly , O SWI B-complex_assembly / I-complex_assembly SNF I-complex_assembly and O RSC B-complex_assembly ) O and O the O histone B-protein_type acetyltransferase I-protein_type complex O NuA3 B-complex_assembly , O indicating O a O multifaceted O role O of O Taf14 B-protein in O transcriptional O regulation O and O chromatin O biology O . O In O this O study O , O we O identified O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element as O a O reader O of O crotonyllysine B-residue_name that O binds O to O histone B-protein_type H3 B-protein_type crotonylated B-protein_state at O lysine B-residue_name_number 9 I-residue_name_number ( O H3K9cr B-protein_type ) O via O a O distinctive O binding O mechanism O . O This O distinctive O mechanism O was O corroborated O through O mapping O the O Taf14 B-protein YEATS B-site - I-site H3K9cr I-site binding I-site interface I-site in O solution O using O NMR B-experimental_method chemical I-experimental_method shift I-experimental_method perturbation I-experimental_method analysis I-experimental_method ( O Supplementary O Fig O . O 2a O , O b O ). O To O determine O whether O H3K9cr B-protein_type is O present O in O yeast B-taxonomy_domain , O we O generated O whole B-experimental_method cell I-experimental_method extracts I-experimental_method from O logarithmically O growing O yeast B-taxonomy_domain cells O and O subjected O them O to O Western B-experimental_method blot I-experimental_method analysis I-experimental_method using O antibodies O directed O towards O H3K9cr B-protein_type , O H3K9ac B-protein_type and O H3 B-protein_type ( O Fig O . O 2a O , O b O , O Supplementary O Fig O . O 3 O and O Supplementary O Table O 2 O ). O We O next O asked O if O H3K9cr B-protein_type is O regulated O by O the O actions O of O histone B-protein_type acetyltransferases I-protein_type ( O HATs B-protein_type ) O and O histone B-protein_type deacetylases I-protein_type ( O HDACs B-protein_type ). O Furthermore O , O fluctuations O in O the O H3K9cr B-protein_type levels O were O more O substantial O than O fluctuations O in O the O corresponding O H3K9ac B-protein_type levels O . O Together O , O these O results O reveal O that O H3K9cr B-protein_type is O a O dynamic O mark O of O chromatin O in O yeast B-taxonomy_domain and O suggest O an O important O role O for O this O modification O in O transcription O as O it O is O regulated O by O HATs B-protein_type and O HDACs B-protein_type . O The O selectivity O of O Taf14 B-protein towards O crotonyllysine B-residue_name was O substantiated O by O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method experiments O , O in O which O either O H3K9cr5 B-chemical - I-chemical 13 I-chemical or O H3K9ac5 B-chemical - I-chemical 13 I-chemical peptide O was O titrated B-experimental_method into O the O 15N B-protein_state - I-protein_state labeled I-protein_state Taf14 B-protein YEATS B-structure_element domain I-structure_element ( O Fig O . O 2c O and O Supplementary O Fig O . O 4a O , O b O ). O To O determine O if O the O binding O to O crotonyllysine B-residue_name is O conserved B-protein_state , O we O tested O human B-species YEATS B-structure_element domains I-structure_element by O pull B-experimental_method - I-experimental_method down I-experimental_method experiments I-experimental_method using O singly O and O multiply O acetylated B-protein_state , O propionylated B-protein_state , O butyrylated B-protein_state , O and O crotonylated B-protein_state histone B-protein_type peptides O ( O Supplementary O Fig O . O 6 O ). O These O results O demonstrate O that O the O YEATS B-structure_element domain I-structure_element is O currently O the O sole O reader O of O crotonyllysine B-residue_name . O The O unique O and O previously O unobserved O aromatic O - O amide O / O aliphatic O - O aromatic O π B-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction π I-bond_interaction - I-bond_interaction stacking I-bond_interaction mechanism O facilitates O the O specific O recognition O of O the O crotonyl B-chemical moiety O . O We O further O demonstrate O that O H3K9cr B-protein_type exists O in O yeast B-taxonomy_domain and O is O dynamically O regulated O by O HATs B-protein_type and O HDACs B-protein_type . O Total O H3 B-protein_type was O used O as O a O loading O control O . O Structure B-evidence of O the O GAT B-structure_element domain O of O the O endosomal O adapter B-protein_type protein I-protein_type Tom1 B-protein The O Tom1 B-protein GAT B-structure_element domain O solution B-evidence structure I-evidence will O provide O additional O tools O for O modulating O its O biological O function O . O A O conformational O response O of O the O Tom1 B-protein GAT B-structure_element domain O upon O Tollip B-protein TBD B-structure_element binding O can O serve O as O an O example O to O explain O mutually O exclusive O ligand O binding O events O . O The O Tom1 B-protein GAT B-structure_element structural B-evidence restraints I-evidence yielded O ten O helical O structures B-evidence ( O Fig O . O 2A O , O B O ) O with O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O of O 0 O . O 9 O Å O for O backbone O and O 1 O . O 3 O Å O for O all O heavy O atoms O ( O Table O 1 O ) O and O estimated O the O presence O of O three O helices O spanning O residues O Q216 B-residue_range - I-residue_range E240 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 1 I-structure_element ), O P248 B-residue_range - I-residue_range Q274 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 2 I-structure_element ), O and O E278 B-residue_range - I-residue_range T306 I-residue_range ( O α B-structure_element - I-structure_element helix I-structure_element 3 I-structure_element ). O NMR B-experimental_method structural B-evidence statistics I-evidence for O lowest O energy O conformers O of O Tom1 B-protein GAT B-structure_element using O PSVS B-experimental_method . O Much O attention O has O been O paid O to O the O roles O of O haem B-chemical - O iron B-chemical in O cancer O development O . O Thus O , O a O tenuous O balance O between O free O haem B-chemical and O CO B-chemical plays O key O roles O in O cancer O development O and O chemoresistance O , O although O the O underlying O mechanisms O are O not O fully O understood O . O Consequently O , O the O five O - O coordinated O haem B-chemical of O PGRMC1 B-protein has O an O open O surface B-site that O allows O its O dimerization B-oligomeric_state through O hydrophobic B-bond_interaction haem I-bond_interaction – I-bond_interaction haem I-bond_interaction stacking I-bond_interaction . O Furthermore O , O free B-evidence energy I-evidence of I-evidence dissociation I-evidence predicted O by O PISA B-experimental_method suggested O that O the O haem B-chemical - O mediated O dimer B-oligomeric_state is O stable B-protein_state in O solution O while O the O other O potential O interactions O are O not O . O A O value O of O this O kind O implies O that O the O PGRMC1 B-protein dimer B-oligomeric_state is O more O stable O than O other O dimers B-oligomeric_state of O extracellular B-structure_element domain I-structure_element of O membrane B-protein_type proteins I-protein_type such O as O Toll B-protein like I-protein receptor I-protein 9 I-protein ( O dimerization B-oligomeric_state Kd B-evidence of O 20 O μmol O l O − O 1 O ) O ( O ref O .) O and O plexin B-protein A2 I-protein receptor I-protein ( O dimerization B-oligomeric_state Kd B-evidence higher O than O 300 O μmol O l O − O 1 O ) O ( O ref O .). O These O results O suggest O that O CO B-chemical favours O the O six O - O coordinate O form O of O haem B-chemical and O interferes O with O the O haem B-chemical - O mediated O dimerization B-oligomeric_state of O PGRMC1 B-protein . O Because O PGRMC1 B-protein is O known O to O interact O with O EGFR B-protein_type and O to O accelerate O tumour O progression O , O we O examined O the O effect O of O haem B-chemical - O dependent O dimerization B-oligomeric_state of O PGRMC1 B-protein on O its O interaction O with O EGFR B-protein_type by O using O purified O proteins O . O We O also O examined O the O effect O of O succinylacetone B-chemical ( O SA B-chemical ), O an O inhibitor O of O haem B-chemical biosynthesis O ( O Fig O . O 4d O ). O Thus O , O PGRMC1 B-protein dimerization B-oligomeric_state is O important O for O cancer O cell O proliferation O and O chemoresistance O . O We O examined O the O role O of O PGRMC1 B-protein in O metastatic O progression O by O xenograft B-experimental_method transplantation I-experimental_method assays I-experimental_method using O super O - O immunodeficient O NOD O / O scid O / O γnull O ( O NOG O ) O mice O . O Recombinant O CYP1A2 B-protein and O CYP3A4 B-protein including O a O microsomal O formulation O containing O cytochrome B-protein_type b5 I-protein_type and O cytochrome B-protein P450 I-protein reductase I-protein , O drug O - O metabolizing O cytochromes B-protein_type P450 I-protein_type , O interacted O with O wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein , O but O not O with O the O Y113F B-mutant mutant B-protein_state , O in O a O haem B-chemical - O dependent O manner O ( O Fig O . O 6a O , O b O ). O Enhanced O doxorubicin B-chemical sensitivity O was O modestly O but O significantly O induced O by O PGRMC1 B-mutant - I-mutant KD I-mutant . O Recently O , O Lucas O et O al O . O reported O that O translationally B-protein_type - I-protein_type controlled I-protein_type tumour I-protein_type protein I-protein_type was O dimerized B-protein_state by O binding O with O haem B-chemical , O but O its O structural O basis O remains O unclear O . O Sequence B-experimental_method alignments I-experimental_method show O that O haem B-site - I-site binding I-site residues I-site ( O Tyr113 B-residue_name_number , O Tyr107 B-residue_name_number , O Lys163 B-residue_name_number and O Tyr164 B-residue_name_number ) O in O PGRMC1 B-protein are O conserved B-protein_state among O MAPR B-protein_type proteins O ( O Supplementary O Fig O . O 5 O ). O Moreover O , O exposure O of O cancer O cells O to O stimuli O such O as O hypoxia O , O radiation O and O chemotherapy O causes O cell O damages O and O leads O to O protein O degradation O , O resulting O in O increased O levels O of O TCA O cycle O intermediates O and O in O an O enhanced O haem B-chemical biosynthesis O . O ( O a O ) O FLAG O - O PGRMC1 B-protein wild B-protein_state - I-protein_state type I-protein_state ( O wt B-protein_state ) O and O Y113F B-mutant mutant B-protein_state proteins O ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ), O in O either O apo B-protein_state - O or O haem B-protein_state - I-protein_state bound I-protein_state form O , O were O incubated B-experimental_method with O purified O EGFR B-protein_type and O co B-experimental_method - I-experimental_method immunoprecipitated I-experimental_method with O anti O - O FLAG O antibody O - O conjugated O beads O . O ( O g O , O h O ) O HCT116 O cells O were O treated O with O or O without O EGF B-protein_type , O SA B-chemical , O RuCl3 B-chemical and O CORM3 B-chemical as O indicated O , O and O components O of O the O EGFR B-protein_type signaling O pathway O were O detected O by O Western B-experimental_method blotting I-experimental_method . O ( O c O ) O Binding B-experimental_method assay I-experimental_method was O performed O as O in O ( O a O ) O using O haem B-protein_state - I-protein_state bound I-protein_state FLAG O - O PGRMC1 B-protein wt B-protein_state and O CYP1A2 B-protein with O or O without O RuCl3 B-chemical and O CORM3 B-chemical . O We O generated O high O - O resolution O structures B-evidence of O the O 1E6 B-complex_assembly TCR I-complex_assembly bound B-protein_state to I-protein_state 7 O altered B-chemical peptide I-chemical ligands I-chemical , O including O a O pathogen O - O derived O peptide O that O was O an O order O of O magnitude O more O potent O than O the O natural O self O - O peptide O . O Highly O potent O antigens O of O the O 1E6 B-complex_assembly TCR I-complex_assembly engaged O with O a O strong O antipathogen B-evidence - I-evidence like I-evidence binding I-evidence affinity I-evidence ; O this O engagement O was O governed O though O an O energetic O switch O from O an O enthalpically O to O entropically O driven O interaction O compared O with O the O natural O autoimmune O ligand O . O This O ability O is O required O to O enable O the O estimated O 25 O million O distinct O TCRs B-complex_assembly expressed O in O humans B-species to O provide O effective O immune O coverage O against O all O possible O foreign O peptide O antigens O . O The O RQFGPDWIVA B-chemical sequence O ( O present O in O C B-species . I-species asparagiforme I-species ) O activated O the O 1E6 O T O cell O with O around O 1 O log O – O greater O potency O compared O with O ALWGPDPAAA B-chemical . O The O range O of O Tm B-evidence was O between O 49 O . O 4 O ° O C O ( O RQFGPDWIVA B-chemical ) O and O 60 O . O 3 O ° O C O ( O YQFGPDFPIA B-chemical ), O with O an O average O approximately O 55 O ° O C O , O similar O to O our O previous O findings O . O First O , O the O 1E6 O T O cell O could O still O functionally O respond O to O peptide O when O the O TCR B-evidence binding I-evidence affinity I-evidence was O extremely O weak O , O e O . O g O ., O the O 1E6 B-evidence TCR I-evidence binding I-evidence affinity I-evidence for O the O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical peptide O was O KD B-evidence = O ~ O 600 O μM O . O Second O , O the O 1E6 B-complex_assembly TCR I-complex_assembly bound B-protein_state to I-protein_state A2 B-chemical - I-chemical RQFGPDFPTI I-chemical with O KD B-evidence = O 0 O . O 5 O μM O , O equivalent O to O the O binding B-evidence affinity I-evidence of O the O very O strongest O antipathogen O TCRs B-complex_assembly . O To O confirm O the O affinity B-evidence spread O detected O by O SPR B-experimental_method , O and O to O evaluate O whether O experiments O performed O using O soluble O molecules O were O biologically O relevant O to O events O at O the O T O cell O surface O , O we O determined O the O effective O 2D B-evidence affinity I-evidence of O each O APL B-chemical using O an O adhesion B-experimental_method frequency I-experimental_method assay I-experimental_method in O which O a O human B-species rbc O coated O in O pMHC B-complex_assembly acted O as O an O adhesion O sensor O . O As O with O the O 3D B-evidence affinity I-evidence measurements O , O the O 2D B-evidence affinity I-evidence measurements O correlated O well O with O the O EC50 B-evidence values O for O each O ligand O ( O Figure O 2K O ) O demonstrating O a O strong O correlation O ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 8 O , O P B-evidence = O 0 O . O 01 O ) O between O T O cell O antigen O sensitivity O and O TCR B-evidence binding I-evidence affinity I-evidence . O Overall O , O the O 1E6 B-complex_assembly TCR I-complex_assembly used O a O canonical O binding O mode O to O engage O each O APL B-chemical with O the O TCR B-complex_assembly α B-structure_element - I-structure_element chain I-structure_element positioned O over O the O MHC B-complex_assembly class I-complex_assembly I I-complex_assembly ( O MHCI B-complex_assembly ) O α2 B-structure_element - I-structure_element helix I-structure_element and O the O TCR B-complex_assembly β B-structure_element - I-structure_element chain I-structure_element over O the O MHCI B-complex_assembly α B-structure_element - I-structure_element 1 I-structure_element helix I-structure_element , O straddling O the O peptide O cargo O . O Focused O hotspot O binding O around O a O conserved B-protein_state GPD B-structure_element motif I-structure_element enables O the O 1E6 B-complex_assembly TCR I-complex_assembly to O tolerate O peptide O degeneracy O . O Although O the O number O of O peptide O contacts O was O a O good O predictor O of O TCR B-evidence binding I-evidence affinity I-evidence for O some O of O the O APLs B-chemical , O for O others O , O the O correlation O was O poor O ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence = O 0 O . O 045 O , O P O = O 0 O . O 92 O ), O possibly O because O of O different O resolutions O for O each O complex O structure B-evidence . O The O unligated B-protein_state A2 B-chemical - I-chemical MVWGPDPLYV I-chemical ( O KD B-evidence = O ~ O 600 O μM O ) O structure B-evidence revealed O that O the O side O chain O Tyr9 B-residue_name_number swung O around O 8 O Å O in O the O complex O structure B-evidence , O subsequently O making O contacts O with O TCR B-complex_assembly residues O Asp30β B-residue_name_number and O Asn51β B-residue_name_number ( O Figure O 6A O and O Figure O 5A O , O respectively O ). O The O overall O free B-evidence binding I-evidence energies I-evidence ( O ΔG B-evidence °) I-evidence were O between O – O 4 O . O 4 O and O – O 8 O . O 6 O kcal O / O mol O , O reflecting O the O wide O range O of O TCR B-evidence binding I-evidence affinities I-evidence we O observed O for O the O different O APLs B-chemical . O The O enthalpic O contribution O in O each O complex O did O not O follow O a O clear O trend O with O affinity B-evidence , O with O all O but O the O 1E6 B-complex_assembly - I-complex_assembly A2 I-complex_assembly - I-complex_assembly RQFGPDFPTI I-complex_assembly interaction O ( O ΔH B-evidence ° I-evidence = O 6 O . O 3 O kcal O / O mol O ) O generating O an O energetically O favorable O enthalpy B-evidence value O ( O ΔH B-evidence ° I-evidence = O – O 3 O . O 7 O to O – O 11 O . O 4 O kcal O / O mol O ); O this O indicated O a O net O gain O in O electrostatic O interactions O during O complex O formation O . O Furthermore O , O the O structures O of O the O unligated B-protein_state pMHCs B-complex_assembly demonstrated O that O , O for O these O stronger O - O affinity B-evidence ligands O , O there O was O less O conformational O difference O between O the O TCR B-complex_assembly ligated B-protein_state pMHCs B-complex_assembly compared O with O the O weaker O - O affinity B-evidence ligands O ( O Figure O 6 O ). O Sethi O and O colleagues O recently O demonstrated O that O the O MHCII B-protein_type - O restricted O Hy B-protein . I-protein 1B11 I-protein TCR B-complex_assembly , O which O was O isolated O from O a O patient O with O multiple O sclerosis O , O could O anchor O into O a O deep B-site pocket I-site formed O from O peptide O residues O 2 B-residue_number , O 3 B-residue_number , O and O 5 B-residue_number ( O from O MBP85 B-protein – I-protein 99 I-protein bound B-protein_state to I-protein_state HLA B-protein - I-protein DQ1 I-protein ). O Although O the O 1E6 O T O cell O was O able O to O activate O weakly O with O peptides O that O lacked B-protein_state this O motif O , O we O were O unable O to O robustly O measure O binding B-evidence affinities I-evidence or O generate O complex O structures B-evidence with O these O ligands O , O highlighting O the O central O role O of O this O interaction O during O 1E6 O T O cell O antigen O recognition O . O These O findings O are O also O analogous O to O the O observed O binding O mode O of O the O Hy B-protein . I-protein 1B11 I-protein TCR B-complex_assembly , O in O which O one O aromatic O residue O of O the O TCR B-complex_assembly CDR3α B-structure_element loop I-structure_element anchored O into O a O pocket O created O by O a O conserved O peptide O motif O . O Despite O some O weak O statistical O correlation O between O the O surface B-evidence complementarity I-evidence ( O SC B-evidence ) O and O affinity B-evidence , O closer O inspection O of O the O interface B-site revealed O no O obvious O structural O signature O that O could O definitively O explain O the O differences O in O antigen B-evidence potency I-evidence and O TCR B-evidence binding I-evidence strength I-evidence between O the O different O ligands O . O However O , O similar O to O our O findings O in O other O systems O , O modifications O to O residues O outside O of O the O canonical O central B-structure_element peptide I-structure_element bulge I-structure_element were O important O for O generating O new O interactions O . O These O data O also O explain O our O previous O findings O that O alteration O of O the O anchor B-structure_element residue I-structure_element at O peptide O position O 2 B-residue_number ( O Leu B-mutant - I-mutant Gln I-mutant ) O has O a O direct O effect O on O 1E6 B-evidence TCR I-evidence binding I-evidence affinity I-evidence because O our O structural B-experimental_method analysis I-experimental_method demonstrated O that O 1E6 O made O 3 O additional O bonds O with O A2 B-chemical - I-chemical AQWGPDPAAA I-chemical compared O with O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical , O consistent O with O the O > O 3 O - O fold O stronger O binding B-evidence affinity I-evidence . O Although O no O energetic O signature O appears O to O exist O for O different O TCRs B-complex_assembly , O we O used O thermodynamic B-experimental_method analysis I-experimental_method here O to O explore O whether O changes O in O energetics O could O help O explain O ligand O discrimination O by O a O single O TCR B-complex_assembly . O This O analysis O demonstrated O a O strong O relationship O ( O according O to O the O Pearson B-experimental_method ’ I-experimental_method s I-experimental_method correlation I-experimental_method analysis I-experimental_method ) O between O the O energetic O signature O used O by O the O 1E6 B-complex_assembly TCR I-complex_assembly and O the O sensitivity O of O the O 1E6 O T O cell O clone O to O different O APLs B-chemical . O ( O C O ) O The O 1E6 O T O cell O clone O was O stained O , O in O duplicate O , O with O tetramers B-oligomeric_state composed O of O each O APL B-chemical ( O colored O as O above O ) O presented O by O HLA B-protein - I-protein A I-protein * I-protein 0201 I-protein . O ( O D O ) O The O stability O of O each O APL B-chemical ( O colored O as O above O ) O was O tested O , O in O duplicate O , O using O CD B-experimental_method by O recording O the O peak O at O 218 O nm O absorbance O from O 5 O ° O C O – O 90 O ° O C O . O The O 1E6 B-complex_assembly TCR I-complex_assembly uses O a O conserved O binding O mode O to O engage O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical and O the O APLs B-chemical . O Interaction O between O 1E6 B-complex_assembly TCR I-complex_assembly ( O gray O illustration O ) O residues O Tyr97α B-residue_name_number and O Tyr97β B-residue_name_number ( O the O position O of O these O side O chains O in O the O TCR B-complex_assembly in B-protein_state complex I-protein_state with I-protein_state all O 7 O APLs B-chemical , O and O the O previously O reported O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical epitope O , O is O shown O in O multicolored O sticks O ; O ref O .) O and O the O GPD B-structure_element peptide I-structure_element motif I-structure_element ( O the O position O of O these O side O chains O in O all O 7 O APLs B-chemical and O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical in B-protein_state complex I-protein_state with I-protein_state the O 1E6 B-complex_assembly TCR I-complex_assembly is O shown O in O multicolored O sticks O ). O Interactions O between O the O 1E6 B-complex_assembly TCR I-complex_assembly and O peptide O residues O outside O of O the O conserved B-protein_state GPD B-structure_element motif I-structure_element . O Hydrogen B-bond_interaction bonds I-bond_interaction are O shown O as O red O dotted O lines O ; O van B-bond_interaction der I-bond_interaction Waals I-bond_interaction ( I-bond_interaction vdW I-bond_interaction ) I-bond_interaction contacts I-bond_interaction are O shown O as O black O dotted O lines O . O ( O A O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O black O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical ( O black O illustration O and O sticks O ). O ( O B O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O red O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical YLGGPDFPTI I-chemical ( O red O illustration O and O sticks O ). O ( O C O ) O Interaction O between O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O blue O illustration O and O sticks O ) O and O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical ( O blue O illustration O and O sticks O ) O reproduced O from O previous O published O data O . O The O 1E6 B-complex_assembly TCR I-complex_assembly makes O distinct O peptide O contacts O with O the O MHC B-site surface I-site depending O on O the O peptide O cargo O . O Boxes O show O total O contacts O between O the O 1E6 B-complex_assembly TCR I-complex_assembly and O these O key O residues O ( O green O boxes O are O MHC B-complex_assembly residues O ; O white O boxes O are O TCR B-complex_assembly residues O ). O