anno_start anno_end anno_text entity_type sentence section 19 25 IL-17A protein Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide TITLE 30 37 IL-17RA protein Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide TITLE 65 72 peptide chemical Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide TITLE 0 6 IL-17A protein IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. ABSTRACT 29 37 cytokine protein_type IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. ABSTRACT 11 21 antibodies protein_type Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. ABSTRACT 33 39 IL-17A protein Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. ABSTRACT 2 41 high affinity IL-17A peptide antagonist chemical A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 43 46 HAP chemical A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 51 62 15 residues residue_range A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 86 109 phage-display screening experimental_method A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 122 157 saturation mutagenesis optimization experimental_method A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 162 186 amino acid substitutions experimental_method A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. ABSTRACT 0 3 HAP chemical HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. ABSTRACT 26 32 IL-17A protein HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. ABSTRACT 69 77 cytokine protein_type HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. ABSTRACT 87 95 receptor protein_type HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. ABSTRACT 97 104 IL-17RA protein HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. ABSTRACT 18 23 human species Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. ABSTRACT 31 34 HAP chemical Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. ABSTRACT 83 92 cytokines protein_type Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. ABSTRACT 0 25 Crystal structure studies experimental_method Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. ABSTRACT 44 47 HAP chemical Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. ABSTRACT 70 76 IL-17A protein Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. ABSTRACT 77 82 dimer oligomeric_state Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. ABSTRACT 27 30 HAP chemical The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 38 46 β-strand structure_element The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 72 78 IL-17A protein The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 79 87 monomers oligomeric_state The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 126 133 α helix structure_element The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 155 162 IL-17RA protein The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 198 204 IL-17A protein The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. ABSTRACT 14 29 IL-17 cytokines protein_type The family of IL-17 cytokines and receptors consists of six polypeptides, IL-17A-F, and five receptors, IL-17RA-E. IL-17A is secreted from activated Th17 cells, and several innate immune T cell types including macrophages, neutrophils, natural killer cells, and dendritic cells. INTRO 74 82 IL-17A-F protein The family of IL-17 cytokines and receptors consists of six polypeptides, IL-17A-F, and five receptors, IL-17RA-E. IL-17A is secreted from activated Th17 cells, and several innate immune T cell types including macrophages, neutrophils, natural killer cells, and dendritic cells. INTRO 104 113 IL-17RA-E protein The family of IL-17 cytokines and receptors consists of six polypeptides, IL-17A-F, and five receptors, IL-17RA-E. IL-17A is secreted from activated Th17 cells, and several innate immune T cell types including macrophages, neutrophils, natural killer cells, and dendritic cells. INTRO 115 121 IL-17A protein The family of IL-17 cytokines and receptors consists of six polypeptides, IL-17A-F, and five receptors, IL-17RA-E. IL-17A is secreted from activated Th17 cells, and several innate immune T cell types including macrophages, neutrophils, natural killer cells, and dendritic cells. INTRO 0 6 IL-17A protein IL-17A signals through a specific cell surface receptor complex which consists of IL-17RA and IL-17RC. INTRO 47 55 receptor protein_type IL-17A signals through a specific cell surface receptor complex which consists of IL-17RA and IL-17RC. INTRO 82 89 IL-17RA protein IL-17A signals through a specific cell surface receptor complex which consists of IL-17RA and IL-17RC. INTRO 94 101 IL-17RC protein IL-17A signals through a specific cell surface receptor complex which consists of IL-17RA and IL-17RC. INTRO 0 6 IL-17A protein IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 76 85 cytokines protein_type IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 94 98 IL-6 protein_type IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 100 104 IL-8 protein_type IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 106 112 CCL-20 protein_type IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 117 122 CXCL1 protein_type IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 205 209 mRNA chemical IL-17A’s downstream signaling leads to increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20 and CXCL1 by various mechanisms including stimulation of transcription and stabilization of mRNA. INTRO 58 65 IL-17RA protein Although various cell types have been reported to express IL-17RA, the highest responses to IL-17A come from epithelial cells, endothelial cells, keratinocytes and fibroblasts. INTRO 92 98 IL-17A protein Although various cell types have been reported to express IL-17RA, the highest responses to IL-17A come from epithelial cells, endothelial cells, keratinocytes and fibroblasts. INTRO 0 6 IL-17A protein IL-17A and its signaling is important in host defense against certain fungal and bacterial infections as demonstrated by patients with autoantibodies against IL-17A and IL-17F, or with inborn errors of IL-17 immunity. INTRO 158 164 IL-17A protein IL-17A and its signaling is important in host defense against certain fungal and bacterial infections as demonstrated by patients with autoantibodies against IL-17A and IL-17F, or with inborn errors of IL-17 immunity. INTRO 169 175 IL-17F protein IL-17A and its signaling is important in host defense against certain fungal and bacterial infections as demonstrated by patients with autoantibodies against IL-17A and IL-17F, or with inborn errors of IL-17 immunity. INTRO 202 207 IL-17 protein_type IL-17A and its signaling is important in host defense against certain fungal and bacterial infections as demonstrated by patients with autoantibodies against IL-17A and IL-17F, or with inborn errors of IL-17 immunity. INTRO 39 45 IL-17A protein In addition to its physiological role, IL-17A is a key pathogenic factor in inflammatory and autoimmune diseases. INTRO 61 71 antibodies protein_type In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 80 86 IL-17A protein In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 88 99 secukinumab chemical In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 104 114 ixekizumab chemical In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 123 131 receptor protein_type In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 132 139 IL-17RA protein In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 141 151 brodalumab chemical In phase II and III clinical trials, neutralizing monoclonal antibodies against IL-17A (secukinumab and ixekizumab) or its receptor IL-17RA (brodalumab) are highly efficacious in treating moderate to severe plaque psoriasis and psoriatic arthritis. INTRO 0 11 Secukinumab chemical Secukinumab has been approved recently as a new psoriasis drug by the US Food and Drug Administration (Cosentyx™). INTRO 103 112 Cosentyx™ chemical Secukinumab has been approved recently as a new psoriasis drug by the US Food and Drug Administration (Cosentyx™). INTRO 50 56 IL-17A protein In addition to psoriasis and psoriatic arthritis, IL-17A blockade has also shown preclinical and clinical efficacies in ankylosing spondylitis and rheumatoid arthritis. INTRO 6 21 IL-17 cytokines protein_type Among IL-17 cytokines, IL-17A and IL-17F share the highest homology. INTRO 23 29 IL-17A protein Among IL-17 cytokines, IL-17A and IL-17F share the highest homology. INTRO 34 40 IL-17F protein Among IL-17 cytokines, IL-17A and IL-17F share the highest homology. INTRO 24 32 covalent protein_state These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 33 43 homodimers oligomeric_state These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 49 55 IL-17A protein These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 60 66 IL-17F protein These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 80 93 IL-17A/IL-17F complex_assembly These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 94 106 hetereodimer oligomeric_state These polypeptides form covalent homodimers, and IL-17A and IL-17F also form an IL-17A/IL-17F hetereodimer. INTRO 0 10 Structures evidence Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 25 28 apo protein_state Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 29 35 IL-17F protein Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 44 56 complex with protein_state Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 57 64 IL-17RA protein Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 70 73 apo protein_state Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 74 80 IL-17A protein Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 86 98 complex with protein_state Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 102 110 antibody protein_type Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 111 114 Fab structure_element Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 124 136 complex with protein_state Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 137 144 IL-17RA protein Structures are known for apo IL-17F and its complex with IL-17RA, for apo IL-17A, its complex with an antibody Fab, and its complex with IL-17RA. INTRO 9 19 structures evidence In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 26 32 IL-17A protein In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 37 43 IL-17F protein In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 52 65 cysteine-knot structure_element In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 95 105 disulfides ptm In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 125 140 disulfide bonds ptm In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 166 174 monomers oligomeric_state In these structures, both IL-17A and IL-17F adopt a cysteine-knot fold with two intramolecular disulfides and two interchain disulfide bonds that covalently link two monomers. INTRO 116 122 IL-17A protein There has been active research in identifying orally available chemical entities that would functionally antagonize IL-17A-mediated signaling. INTRO 141 166 IL-17A/IL-17RA interfaces site Developing small molecules targeting protein-protein interactions is difficult with particular challenges associated with the large, shallow IL-17A/IL-17RA interfaces. INTRO 6 13 IL-17RA protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 26 34 receptor protein_type Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 48 54 IL-17A protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 56 62 IL-17F protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 64 77 IL-17A/IL-17F complex_assembly Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 82 88 IL-17E protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 107 113 IL-17A protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 192 199 IL-17RA protein Since IL-17RA is a shared receptor for at least IL-17A, IL-17F, IL-17A/IL-17F and IL-17E, we chose to seek IL-17A-specific inhibitors that may have more defined pharmacological responses than IL-17RA inhibitors. INTRO 39 78 high affinity IL-17A peptide antagonist chemical Our efforts resulted in discovery of a high affinity IL-17A peptide antagonist (HAP), which we attempted to increase the functional production and pharmacokinetics after fusing HAP to antibodies for evaluation as a bispecific therapeutic in animal studies. INTRO 80 83 HAP chemical Our efforts resulted in discovery of a high affinity IL-17A peptide antagonist (HAP), which we attempted to increase the functional production and pharmacokinetics after fusing HAP to antibodies for evaluation as a bispecific therapeutic in animal studies. INTRO 170 176 fusing experimental_method Our efforts resulted in discovery of a high affinity IL-17A peptide antagonist (HAP), which we attempted to increase the functional production and pharmacokinetics after fusing HAP to antibodies for evaluation as a bispecific therapeutic in animal studies. INTRO 177 180 HAP chemical Our efforts resulted in discovery of a high affinity IL-17A peptide antagonist (HAP), which we attempted to increase the functional production and pharmacokinetics after fusing HAP to antibodies for evaluation as a bispecific therapeutic in animal studies. INTRO 184 194 antibodies protein_type Our efforts resulted in discovery of a high affinity IL-17A peptide antagonist (HAP), which we attempted to increase the functional production and pharmacokinetics after fusing HAP to antibodies for evaluation as a bispecific therapeutic in animal studies. INTRO 63 71 uncapped protein_state Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 72 75 HAP chemical Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 167 170 HAP chemical Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 186 203 complex structure evidence Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 207 213 IL-17A protein Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 219 222 HAP chemical Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 274 294 peptide optimization experimental_method Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 299 330 structure activity relationship experimental_method Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 332 335 SAR experimental_method Unfortunately, this past work revealed stability issues of the uncapped HAP in cell culture Here, we provide the details of the discovery and optimization that led to HAP and report the complex structure of IL-17A with HAP, which provides structure based rationalization of peptide optimization and structure activity relationship (SAR). INTRO 18 24 IL-17A protein Identification of IL-17A peptide inhibitors RESULTS 33 38 human species Peptides specifically binding to human IL-17A were identified from phage panning using cyclic and linear peptide libraries (Supplementary Figure S1). RESULTS 39 45 IL-17A protein Peptides specifically binding to human IL-17A were identified from phage panning using cyclic and linear peptide libraries (Supplementary Figure S1). RESULTS 67 80 phage panning experimental_method Peptides specifically binding to human IL-17A were identified from phage panning using cyclic and linear peptide libraries (Supplementary Figure S1). RESULTS 87 122 cyclic and linear peptide libraries experimental_method Peptides specifically binding to human IL-17A were identified from phage panning using cyclic and linear peptide libraries (Supplementary Figure S1). RESULTS 0 20 Positive phage pools experimental_method Positive phage pools were then sub-cloned into a maltose-binding protein (MBP) fusion system. RESULTS 31 41 sub-cloned experimental_method Positive phage pools were then sub-cloned into a maltose-binding protein (MBP) fusion system. RESULTS 49 92 maltose-binding protein (MBP) fusion system experimental_method Positive phage pools were then sub-cloned into a maltose-binding protein (MBP) fusion system. RESULTS 104 137 enzyme-linked immunosorbent assay experimental_method Single clones were isolated and sub-cultured in growth medium, and culture supernatants were used in an enzyme-linked immunosorbent assay (ELISA) to identify specific IL-17A-binding clones. RESULTS 139 144 ELISA experimental_method Single clones were isolated and sub-cultured in growth medium, and culture supernatants were used in an enzyme-linked immunosorbent assay (ELISA) to identify specific IL-17A-binding clones. RESULTS 167 173 IL-17A protein Single clones were isolated and sub-cultured in growth medium, and culture supernatants were used in an enzyme-linked immunosorbent assay (ELISA) to identify specific IL-17A-binding clones. RESULTS 71 83 biotinylated protein_state The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 84 90 IL-17A protein The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 109 116 IL-17RA protein The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 123 137 IL-17A/IL-17RA complex_assembly The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 138 161 competition ELISA assay experimental_method The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 178 184 IL-17A protein The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 225 237 biotinylated protein_state The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 238 244 IL-17A protein The positive binding supernatants were tested for the ability to block biotinylated IL-17A signaling through IL-17RA in an IL-17A/IL-17RA competition ELISA assay where unlabeled IL-17A was used as positive control to inhibit biotinylated IL-17A binding. RESULTS 59 65 IL-17A protein Approximately 10% of the clones that specifically bound to IL-17A also prevented the cytokine from binding to IL-17RA. RESULTS 85 93 cytokine protein_type Approximately 10% of the clones that specifically bound to IL-17A also prevented the cytokine from binding to IL-17RA. RESULTS 110 117 IL-17RA protein Approximately 10% of the clones that specifically bound to IL-17A also prevented the cytokine from binding to IL-17RA. RESULTS 26 38 phage clones experimental_method Sequences identified from phage clones were chemically synthesized (Supplementary Table 1) and tested for inhibition of IL-17A binding to IL-17RA (Table 1). RESULTS 44 66 chemically synthesized experimental_method Sequences identified from phage clones were chemically synthesized (Supplementary Table 1) and tested for inhibition of IL-17A binding to IL-17RA (Table 1). RESULTS 120 126 IL-17A protein Sequences identified from phage clones were chemically synthesized (Supplementary Table 1) and tested for inhibition of IL-17A binding to IL-17RA (Table 1). RESULTS 138 145 IL-17RA protein Sequences identified from phage clones were chemically synthesized (Supplementary Table 1) and tested for inhibition of IL-17A binding to IL-17RA (Table 1). RESULTS 16 25 peptide 1 chemical A 15-mer linear peptide 1 was shown to block IL-17A/IL-17RA binding with an IC50 of 80 nM in the competition ELISA assay (Table 1). RESULTS 45 59 IL-17A/IL-17RA complex_assembly A 15-mer linear peptide 1 was shown to block IL-17A/IL-17RA binding with an IC50 of 80 nM in the competition ELISA assay (Table 1). RESULTS 76 80 IC50 evidence A 15-mer linear peptide 1 was shown to block IL-17A/IL-17RA binding with an IC50 of 80 nM in the competition ELISA assay (Table 1). RESULTS 97 120 competition ELISA assay experimental_method A 15-mer linear peptide 1 was shown to block IL-17A/IL-17RA binding with an IC50 of 80 nM in the competition ELISA assay (Table 1). RESULTS 34 61 cell-based functional assay experimental_method This peptide was then tested in a cell-based functional assay wherein production of GRO-α in BJ human fibroblast cells was measured as a function of IL-17A stimulation using 1 ng/ml IL-17A. RESULTS 84 89 GRO-α protein This peptide was then tested in a cell-based functional assay wherein production of GRO-α in BJ human fibroblast cells was measured as a function of IL-17A stimulation using 1 ng/ml IL-17A. RESULTS 96 101 human species This peptide was then tested in a cell-based functional assay wherein production of GRO-α in BJ human fibroblast cells was measured as a function of IL-17A stimulation using 1 ng/ml IL-17A. RESULTS 149 155 IL-17A protein This peptide was then tested in a cell-based functional assay wherein production of GRO-α in BJ human fibroblast cells was measured as a function of IL-17A stimulation using 1 ng/ml IL-17A. RESULTS 182 188 IL-17A protein This peptide was then tested in a cell-based functional assay wherein production of GRO-α in BJ human fibroblast cells was measured as a function of IL-17A stimulation using 1 ng/ml IL-17A. RESULTS 0 9 Peptide 1 chemical Peptide 1 was found to be active in this functional assay with an IC50 of 370 nM. RESULTS 41 57 functional assay experimental_method Peptide 1 was found to be active in this functional assay with an IC50 of 370 nM. RESULTS 66 70 IC50 evidence Peptide 1 was found to be active in this functional assay with an IC50 of 370 nM. RESULTS 16 22 IL-17A protein Optimization of IL-17A peptide inhibitors RESULTS 2 5 SAR experimental_method A SAR campaign was undertaken to improve the potency of peptide 1. RESULTS 56 65 peptide 1 chemical A SAR campaign was undertaken to improve the potency of peptide 1. RESULTS 3 15 alanine scan experimental_method An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 19 28 peptide 2 chemical An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 45 46 1 chemical An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 54 60 lysine residue_name An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 64 72 arginine residue_name An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 73 85 substitution experimental_method An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 98 100 14 residue_number An alanine scan of peptide 2, an analogue of 1 with a lysine to arginine substitution at position 14, was initiated. RESULTS 5 12 alanine residue_name When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 44 45 7 residue_number When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 50 52 15 residue_number When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 55 67 substitution experimental_method When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 82 88 lysine residue_name When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 99 112 peptides 3–17 chemical When alanine was already present (positions 7 and 15), substitution was made with lysine (Table 1, peptides 3–17). RESULTS 10 11 1 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 13 14 2 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 16 17 4 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 19 20 5 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 22 23 7 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 25 27 14 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 32 34 15 residue_number Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 124 140 binding affinity evidence Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 160 174 IL-17A/IL-17RA complex_assembly Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 175 192 competition ELISA experimental_method Positions 1, 2, 4, 5, 7, 14 and 15 were shown to be amenable to substitution without significant loss (less than 3-fold) of binding affinity as measured by the IL-17A/IL-17RA competition ELISA. RESULTS 27 28 5 residue_number In particular, at position 5 (13), substitution of methionine with alanine resulted in a seven fold improvement in potency (80 nM versus 11 nM respectively). RESULTS 30 32 13 chemical In particular, at position 5 (13), substitution of methionine with alanine resulted in a seven fold improvement in potency (80 nM versus 11 nM respectively). RESULTS 35 47 substitution experimental_method In particular, at position 5 (13), substitution of methionine with alanine resulted in a seven fold improvement in potency (80 nM versus 11 nM respectively). RESULTS 51 61 methionine residue_name In particular, at position 5 (13), substitution of methionine with alanine resulted in a seven fold improvement in potency (80 nM versus 11 nM respectively). RESULTS 67 74 alanine residue_name In particular, at position 5 (13), substitution of methionine with alanine resulted in a seven fold improvement in potency (80 nM versus 11 nM respectively). RESULTS 44 56 substitution experimental_method In order to rapidly evaluate the effects of substitution of natural amino acids at tolerant positions identified by the alanine scan, the lead sequence was subjected to site-specific saturation mutagenesis using MBP. RESULTS 120 132 alanine scan experimental_method In order to rapidly evaluate the effects of substitution of natural amino acids at tolerant positions identified by the alanine scan, the lead sequence was subjected to site-specific saturation mutagenesis using MBP. RESULTS 169 205 site-specific saturation mutagenesis experimental_method In order to rapidly evaluate the effects of substitution of natural amino acids at tolerant positions identified by the alanine scan, the lead sequence was subjected to site-specific saturation mutagenesis using MBP. RESULTS 212 215 MBP experimental_method In order to rapidly evaluate the effects of substitution of natural amino acids at tolerant positions identified by the alanine scan, the lead sequence was subjected to site-specific saturation mutagenesis using MBP. RESULTS 46 58 alanine scan experimental_method Each of the seven positions identified by the alanine scan was individually modified while keeping the rest of the sequence constant. RESULTS 27 28 2 residue_number Modifications at positions 2 and 14 were shown to display improvement in binding affinity (data not shown). RESULTS 33 35 14 residue_number Modifications at positions 2 and 14 were shown to display improvement in binding affinity (data not shown). RESULTS 73 89 binding affinity evidence Modifications at positions 2 and 14 were shown to display improvement in binding affinity (data not shown). RESULTS 25 40 point mutations experimental_method Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 54 55 2 residue_number Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 57 58 5 residue_number Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 64 66 14 residue_number Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 72 83 synthesized experimental_method Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 105 122 competition ELISA experimental_method Peptides with beneficial point mutations at positions 2, 5, and 14 were synthesized and evaluated in the competition ELISA (Table 1). RESULTS 20 23 V2H mutant Two of the changes, V2H (18) or V2T (21) displayed improved binding in the competition ELISA. RESULTS 25 27 18 chemical Two of the changes, V2H (18) or V2T (21) displayed improved binding in the competition ELISA. RESULTS 32 35 V2T mutant Two of the changes, V2H (18) or V2T (21) displayed improved binding in the competition ELISA. RESULTS 37 39 21 chemical Two of the changes, V2H (18) or V2T (21) displayed improved binding in the competition ELISA. RESULTS 75 92 competition ELISA experimental_method Two of the changes, V2H (18) or V2T (21) displayed improved binding in the competition ELISA. RESULTS 10 21 replacement experimental_method Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 25 35 methionine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 48 49 5 residue_number Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 55 62 alanine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 118 128 isoleucine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 130 132 24 chemical Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 135 142 leucine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 144 146 25 chemical Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 152 158 valine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 160 162 26 chemical Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 256 262 valine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 267 277 isoleucine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 278 290 replacements experimental_method Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 310 317 alanine residue_name Since the replacement of methionine at position 5 with alanine was beneficial, the additional hydrophobic amino acids isoleucine (24), leucine (25) and valine (26) were evaluated and an additional two-three fold improvement in binding was observed for the valine and isoleucine replacements in comparison with alanine. RESULTS 0 12 Introduction experimental_method Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 18 28 methionine residue_name Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 30 32 27 chemical Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 39 50 carboxamide chemical Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 52 54 28 chemical Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 59 61 29 chemical Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 75 77 14 residue_number Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 103 119 binding affinity evidence Introduction of a methionine (27) or a carboxamide (28 and 29) at position 14 was shown to improve the binding affinity of the lead peptide. RESULTS 60 78 binding affinities evidence In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 117 127 MBP fusion experimental_method In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 153 165 substitution experimental_method In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 169 175 valine residue_name In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 188 189 2 residue_number In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 195 205 tryptophan residue_name In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 207 209 22 chemical In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 249 257 affinity evidence In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 303 313 MBP fusion experimental_method In general, there was good agreement between the respective binding affinities of the synthesized peptides and their MBP fusion counterparts, except for substitution of valine at position 2 to a tryptophan (22), which resulted in a fivefold loss of affinity, for the free peptide when compared with the MBP fusion. RESULTS 52 55 SAR experimental_method Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 99 109 peptide 30 chemical Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 117 138 high affinity peptide chemical Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 140 143 HAP chemical Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 172 178 IL-17A protein Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 197 202 human species Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 233 237 IC50 evidence Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 289 294 phage experimental_method Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 295 304 peptide 1 chemical Combining the key amino-acid residues identified by SAR into a single peptide sequence resulted in peptide 30, named high affinity peptide (HAP), that was found to inhibit IL-17A signaling in a BJ human fibroblast cell assay with an IC50 of 17 nM, a more than 20-fold improvement over the phage peptide 1 (Table 2 and Supplementary Figure S2). RESULTS 78 81 HAP chemical We also examined the effect of removing the acetyl group at the N-terminus of HAP (which is present in all the peptides made, see Supplementary Material). RESULTS 4 13 un-capped protein_state The un-capped peptide (31) had an IC50 of 420 nM in the cell-based assay. RESULTS 14 26 peptide (31) chemical The un-capped peptide (31) had an IC50 of 420 nM in the cell-based assay. RESULTS 34 38 IC50 evidence The un-capped peptide (31) had an IC50 of 420 nM in the cell-based assay. RESULTS 56 72 cell-based assay experimental_method The un-capped peptide (31) had an IC50 of 420 nM in the cell-based assay. RESULTS 33 35 31 chemical The loss of cellular activity of 31 was most likely due to the degradation of the N-terminus of 31, since peptide 31 was shown to be able to bind to IL-17A with similar affinity as HAP itself. RESULTS 96 98 31 chemical The loss of cellular activity of 31 was most likely due to the degradation of the N-terminus of 31, since peptide 31 was shown to be able to bind to IL-17A with similar affinity as HAP itself. RESULTS 114 116 31 chemical The loss of cellular activity of 31 was most likely due to the degradation of the N-terminus of 31, since peptide 31 was shown to be able to bind to IL-17A with similar affinity as HAP itself. RESULTS 149 155 IL-17A protein The loss of cellular activity of 31 was most likely due to the degradation of the N-terminus of 31, since peptide 31 was shown to be able to bind to IL-17A with similar affinity as HAP itself. RESULTS 181 184 HAP chemical The loss of cellular activity of 31 was most likely due to the degradation of the N-terminus of 31, since peptide 31 was shown to be able to bind to IL-17A with similar affinity as HAP itself. RESULTS 52 68 antibody fusions experimental_method Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 73 81 uncapped protein_state Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 82 89 peptide chemical Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 136 146 removal of experimental_method Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 151 169 first 1-3 residues residue_range Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 229 243 peptides 32–34 chemical Furthermore, our previous work had reported that in antibody fusions the uncapped peptide was degraded under cell assay conditions with removal of the first 1-3 residues to inactive products with the same N-terminal sequences as peptides 32–34. RESULTS 14 19 32–34 chemical In this work, 32–34 are capped by protective acetyl group and reflect the same inactivity as reported. RESULTS 24 30 capped protein_state In this work, 32–34 are capped by protective acetyl group and reflect the same inactivity as reported. RESULTS 11 22 truncations experimental_method C-terminal truncations showed a more gradual reduction in activity (35–37; Table 2). RESULTS 68 73 35–37 chemical C-terminal truncations showed a more gradual reduction in activity (35–37; Table 2). RESULTS 6 17 deletion of experimental_method After deletion of three amino acids from the C-terminal end (37), the peptide is no longer active. RESULTS 18 35 three amino acids residue_range After deletion of three amino acids from the C-terminal end (37), the peptide is no longer active. RESULTS 61 63 37 chemical After deletion of three amino acids from the C-terminal end (37), the peptide is no longer active. RESULTS 16 19 HAP chemical Dimerization of HAP can further increase its potency RESULTS 27 33 IL-17A protein We reasoned that since the IL-17A protein is almost exclusively present in a dimeric form, dimerizing the IL-17A binding peptides could result in an improvement in binding affinity and inhibitory activity. RESULTS 77 84 dimeric oligomeric_state We reasoned that since the IL-17A protein is almost exclusively present in a dimeric form, dimerizing the IL-17A binding peptides could result in an improvement in binding affinity and inhibitory activity. RESULTS 91 101 dimerizing oligomeric_state We reasoned that since the IL-17A protein is almost exclusively present in a dimeric form, dimerizing the IL-17A binding peptides could result in an improvement in binding affinity and inhibitory activity. RESULTS 106 112 IL-17A protein We reasoned that since the IL-17A protein is almost exclusively present in a dimeric form, dimerizing the IL-17A binding peptides could result in an improvement in binding affinity and inhibitory activity. RESULTS 164 180 binding affinity evidence We reasoned that since the IL-17A protein is almost exclusively present in a dimeric form, dimerizing the IL-17A binding peptides could result in an improvement in binding affinity and inhibitory activity. RESULTS 0 10 Homodimers oligomeric_state Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 14 17 HAP chemical Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 50 69 polyethylene glycol chemical Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 71 74 PEG chemical Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 120 121 4 residue_number Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 123 124 7 residue_number Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 129 131 14 residue_number Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 175 196 alanine scan analysis experimental_method Homodimers of HAP were made through attachment of polyethylene glycol (PEG) spacers of different lengths at amino acids 4, 7 and 14, as these positions were identified in the alanine scan analysis as not contributing significantly to the activity, and at each N-terminus (Supplementary Table S2). RESULTS 34 50 pentafluoroester chemical Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 52 55 PFP chemical Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 99 102 PEG chemical Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 108 117 histidine residue_name Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 130 131 2 residue_number Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 140 146 lysine residue_name Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 159 161 15 residue_number Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 181 190 threonine residue_name Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 195 209 dimethyllysine residue_name Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 280 290 peptide 38 chemical Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 328 331 HAP chemical Due to the high reactivity of the pentafluoroester (PFP) group used as the activating group in the PEG, the histidine at position 2 and the lysine at position 15 were replaced with threonine and dimethyllysine respectively to prevent formation of side products, which resulted in peptide 38 that was comparable in activity with HAP. RESULTS 36 43 dimeric oligomeric_state This exercise revealed that several dimeric peptides with the longer PEG21 spacer were significantly more potent than the monomer peptide in the cell-based assay (Supplementary Table S2). RESULTS 44 52 peptides chemical This exercise revealed that several dimeric peptides with the longer PEG21 spacer were significantly more potent than the monomer peptide in the cell-based assay (Supplementary Table S2). RESULTS 69 74 PEG21 chemical This exercise revealed that several dimeric peptides with the longer PEG21 spacer were significantly more potent than the monomer peptide in the cell-based assay (Supplementary Table S2). RESULTS 122 129 monomer oligomeric_state This exercise revealed that several dimeric peptides with the longer PEG21 spacer were significantly more potent than the monomer peptide in the cell-based assay (Supplementary Table S2). RESULTS 145 161 cell-based assay experimental_method This exercise revealed that several dimeric peptides with the longer PEG21 spacer were significantly more potent than the monomer peptide in the cell-based assay (Supplementary Table S2). RESULTS 0 10 Peptide 45 chemical Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 12 21 dimerized oligomeric_state Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 42 47 PEG21 chemical Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 67 69 14 residue_number Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 145 149 IC50 evidence Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 232 239 monomer oligomeric_state Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 262 267 PEG21 chemical Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 286 288 14 residue_number Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 292 302 peptide 48 chemical Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 310 314 IC50 evidence Peptide 45, dimerized via attachment of a PEG21 spacer at position 14 (Supplementary Scheme S1 and Figure S3), was the most potent with cellular IC50 of 0.1 nM. This significant improvement in antagonism was not seen in the peptide monomer functionalized with a PEG21 group at position 14 as peptide 48 had an IC50 of 21 nM (Supplementary Scheme S2). RESULTS 36 43 dimeric oligomeric_state The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 44 54 peptide 45 chemical The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 59 62 HAP chemical The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 82 110 murine functional cell assay experimental_method The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 126 132 murine taxonomy_domain The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 133 139 IL-17A protein The species cross-reactivity of the dimeric peptide 45 and HAP were assessed in a murine functional cell assay using 15 ng/ml murine IL-17A. RESULTS 0 10 Peptide 45 chemical Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 23 31 receptor protein_type Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 43 49 murine taxonomy_domain Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 50 56 IL-17A protein Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 137 142 human species Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 143 149 IL-17A protein Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 151 155 IC50 evidence Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 167 171 IC50 evidence Peptide 45 blocked the receptor binding of murine IL-17A although with potency two orders of magnitude weaker than that observed against human IL-17A (IC50 = 41 nM vs IC50 = 0.1 nM, respectively). RESULTS 4 11 monomer oligomeric_state The monomer HAP was much weaker (IC50 >1 μM) in inhibiting murine IL-17A signaling (Supplementary Figure S4). RESULTS 12 15 HAP chemical The monomer HAP was much weaker (IC50 >1 μM) in inhibiting murine IL-17A signaling (Supplementary Figure S4). RESULTS 33 37 IC50 evidence The monomer HAP was much weaker (IC50 >1 μM) in inhibiting murine IL-17A signaling (Supplementary Figure S4). RESULTS 59 65 murine taxonomy_domain The monomer HAP was much weaker (IC50 >1 μM) in inhibiting murine IL-17A signaling (Supplementary Figure S4). RESULTS 66 72 IL-17A protein The monomer HAP was much weaker (IC50 >1 μM) in inhibiting murine IL-17A signaling (Supplementary Figure S4). RESULTS 13 20 dimeric oligomeric_state Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 21 31 peptide 45 chemical Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 57 60 HAP chemical Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 68 84 cell-based assay experimental_method Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 175 184 monomeric oligomeric_state Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 193 196 HAP chemical Although the dimeric peptide 45 is much more potent than HAP in the cell-based assay, in subsequent studies we decided to focus our efforts solely on characterizations of the monomeric peptide HAP in hopes to identify smaller peptide inhibitors containing the best minimal functional group. RESULTS 29 32 HAP chemical Orthogonal assays to confirm HAP antagonism RESULTS 43 46 HAP chemical To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 52 58 IL-17A protein To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 97 113 binding affinity evidence To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 131 146 kinetic profile evidence To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 153 178 Surface Plasmon Resonance experimental_method To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 180 183 SPR experimental_method To further characterize the interaction of HAP with IL-17A, we set out to determine its in vitro binding affinity, specificity and kinetic profile using Surface Plasmon Resonance (SPR) methods (Fig. 1A). RESULTS 0 3 HAP chemical HAP binds to immobilized human IL-17A homodimer tightly (Table 3). RESULTS 25 30 human species HAP binds to immobilized human IL-17A homodimer tightly (Table 3). RESULTS 31 37 IL-17A protein HAP binds to immobilized human IL-17A homodimer tightly (Table 3). RESULTS 38 47 homodimer oligomeric_state HAP binds to immobilized human IL-17A homodimer tightly (Table 3). RESULTS 23 31 affinity evidence It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 36 41 human species It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 42 50 IL-17A/F complex_assembly It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 51 62 heterodimer oligomeric_state It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 83 91 affinity evidence It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 96 101 mouse taxonomy_domain It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 102 108 IL-17A protein It has slightly weaker affinity for human IL-17A/F heterodimer and >10 fold weaker affinity for mouse IL-17A (Table 3). RESULTS 0 3 HAP chemical HAP does not show significant binding to immobilized human IL-17F homodimer or IL-17RA at concentrations up to 100 nM. RESULTS 53 58 human species HAP does not show significant binding to immobilized human IL-17F homodimer or IL-17RA at concentrations up to 100 nM. RESULTS 59 65 IL-17F protein HAP does not show significant binding to immobilized human IL-17F homodimer or IL-17RA at concentrations up to 100 nM. RESULTS 66 75 homodimer oligomeric_state HAP does not show significant binding to immobilized human IL-17F homodimer or IL-17RA at concentrations up to 100 nM. RESULTS 79 86 IL-17RA protein HAP does not show significant binding to immobilized human IL-17F homodimer or IL-17RA at concentrations up to 100 nM. RESULTS 52 57 human species Additionally, we investigated the antagonism of the human IL-17A/IL-17RA interaction by HAP using orthogonal methods including SPR and Förster resonance energy transfer (FRET) competition assays (Fig. 1B,C). RESULTS 58 72 IL-17A/IL-17RA complex_assembly Additionally, we investigated the antagonism of the human IL-17A/IL-17RA interaction by HAP using orthogonal methods including SPR and Förster resonance energy transfer (FRET) competition assays (Fig. 1B,C). RESULTS 88 91 HAP chemical Additionally, we investigated the antagonism of the human IL-17A/IL-17RA interaction by HAP using orthogonal methods including SPR and Förster resonance energy transfer (FRET) competition assays (Fig. 1B,C). RESULTS 127 130 SPR experimental_method Additionally, we investigated the antagonism of the human IL-17A/IL-17RA interaction by HAP using orthogonal methods including SPR and Förster resonance energy transfer (FRET) competition assays (Fig. 1B,C). RESULTS 135 194 Förster resonance energy transfer (FRET) competition assays experimental_method Additionally, we investigated the antagonism of the human IL-17A/IL-17RA interaction by HAP using orthogonal methods including SPR and Förster resonance energy transfer (FRET) competition assays (Fig. 1B,C). RESULTS 30 36 IL-17A protein In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 42 45 HAP chemical In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 80 86 IL-17A protein In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 90 101 immobilized protein_state In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 102 109 IL-17RA protein In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 130 134 IC50 evidence In both assays, incubation of IL-17A with HAP effectively blocks the binding of IL-17A to immobilized IL-17RA with similar sub-nM IC50 (Table 3). RESULTS 0 3 HAP chemical HAP blocks IL-17A signaling in a human primary cell assay RESULTS 11 17 IL-17A protein HAP blocks IL-17A signaling in a human primary cell assay RESULTS 33 38 human species HAP blocks IL-17A signaling in a human primary cell assay RESULTS 13 19 IL-17A protein While either IL-17A or TNF-α alone can stimulate the release of multiple inflammatory cytokines, when acting together they can synergistically enhance each other’s effects (Supplementary Figure S5). RESULTS 23 28 TNF-α protein While either IL-17A or TNF-α alone can stimulate the release of multiple inflammatory cytokines, when acting together they can synergistically enhance each other’s effects (Supplementary Figure S5). RESULTS 86 95 cytokines protein_type While either IL-17A or TNF-α alone can stimulate the release of multiple inflammatory cytokines, when acting together they can synergistically enhance each other’s effects (Supplementary Figure S5). RESULTS 31 37 IL-17A protein These integrative responses to IL-17A and TNF-α in human keratinocytes have been reported to account for key inflammatory pathogenic circuits in psoriasis. RESULTS 42 47 TNF-α protein These integrative responses to IL-17A and TNF-α in human keratinocytes have been reported to account for key inflammatory pathogenic circuits in psoriasis. RESULTS 51 56 human species These integrative responses to IL-17A and TNF-α in human keratinocytes have been reported to account for key inflammatory pathogenic circuits in psoriasis. RESULTS 24 27 HAP chemical Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 69 73 IL-8 protein_type Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 75 79 IL-6 protein_type Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 84 90 CCL-20 protein_type Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 102 107 human species Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 136 142 IL-17A protein Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 162 167 TNF-α protein Thus, we chose to study HAP’s efficacy in blocking the production of IL-8, IL-6 and CCL-20 by primary human keratinocytes stimulated by IL-17A in the presence of TNF-α, an assay which may be more disease-relevant. RESULTS 0 3 HAP chemical HAP inhibits the production of all three cytokines in a dose-dependent fashion (Fig. 1D). RESULTS 41 50 cytokines protein_type HAP inhibits the production of all three cytokines in a dose-dependent fashion (Fig. 1D). RESULTS 38 42 IL-8 protein_type Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 44 48 IL-6 protein_type Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 53 59 CCL-20 protein_type Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 74 79 TNF-α protein Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 107 110 HAP chemical Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 150 153 HAP chemical Significantly, the baseline levels of IL-8, IL-6 and CCL-20 stimulated by TNF-α alone are not inhibited by HAP, further indicating the selectivity of HAP (Fig. 1D). RESULTS 172 177 TNF-α protein Such pharmacological selectivity may be important to suppress inflammatory pathogenic circuits in psoriasis, while sparing the anti-infectious immune responses produced by TNF-α. RESULTS 20 24 IC50 evidence The relatively high IC50 values in this assay (Table 3) are probably due to the high IL-17A concentration (100 ng/ml) needed for detection of IL-6. RESULTS 85 91 IL-17A protein The relatively high IC50 values in this assay (Table 3) are probably due to the high IL-17A concentration (100 ng/ml) needed for detection of IL-6. RESULTS 142 146 IL-6 protein_type The relatively high IC50 values in this assay (Table 3) are probably due to the high IL-17A concentration (100 ng/ml) needed for detection of IL-6. RESULTS 34 40 IL-17A protein As a reference, a commercial anti-IL-17A antibody (R&D Systems) inhibits the production of IL-8 with an IC50 of 13(±6) nM (N = 3). RESULTS 41 49 antibody protein_type As a reference, a commercial anti-IL-17A antibody (R&D Systems) inhibits the production of IL-8 with an IC50 of 13(±6) nM (N = 3). RESULTS 91 95 IL-8 protein_type As a reference, a commercial anti-IL-17A antibody (R&D Systems) inhibits the production of IL-8 with an IC50 of 13(±6) nM (N = 3). RESULTS 104 108 IC50 evidence As a reference, a commercial anti-IL-17A antibody (R&D Systems) inhibits the production of IL-8 with an IC50 of 13(±6) nM (N = 3). RESULTS 12 16 IC50 evidence Indeed, the IC50 was 14(±9) nM (N = 12) for HAP inhibition of IL-8 production when only 5 ng/ml IL-17A was used in this assay. RESULTS 44 47 HAP chemical Indeed, the IC50 was 14(±9) nM (N = 12) for HAP inhibition of IL-8 production when only 5 ng/ml IL-17A was used in this assay. RESULTS 62 66 IL-8 protein_type Indeed, the IC50 was 14(±9) nM (N = 12) for HAP inhibition of IL-8 production when only 5 ng/ml IL-17A was used in this assay. RESULTS 96 102 IL-17A protein Indeed, the IC50 was 14(±9) nM (N = 12) for HAP inhibition of IL-8 production when only 5 ng/ml IL-17A was used in this assay. RESULTS 34 40 IL-17A protein In patients, the concentration of IL-17A in psoriatic lesions is reported to be 0.01 ng/ml, well below the EC50 (5–10ng/ml) of IL-17A induced IL-8 production in vitro. RESULTS 127 133 IL-17A protein In patients, the concentration of IL-17A in psoriatic lesions is reported to be 0.01 ng/ml, well below the EC50 (5–10ng/ml) of IL-17A induced IL-8 production in vitro. RESULTS 142 146 IL-8 protein_type In patients, the concentration of IL-17A in psoriatic lesions is reported to be 0.01 ng/ml, well below the EC50 (5–10ng/ml) of IL-17A induced IL-8 production in vitro. RESULTS 11 30 keratinocytes assay experimental_method Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 46 49 HAP chemical Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 59 65 IL-17A protein Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 77 81 IL-6 protein_type Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 99 104 human species Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 126 130 IC50 evidence Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 162 167 TNF-α protein Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 179 183 IL-6 protein_type Similar to keratinocytes assay results, while HAP inhibits IL-17A stimulated IL-6 production by BJ human fibroblast potently (IC50 of 17 nM), it does not inhibit TNF-α stimulated IL-6 production at concentrations up to 10 μM (Supplementary Figure S2). RESULTS 0 43 Crystallization and structure determination experimental_method Crystallization and structure determination RESULTS 10 32 crystallization trials experimental_method Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 44 62 co-crystallization experimental_method Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 69 76 soaking experimental_method Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 77 80 HAP chemical Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 96 99 apo protein_state Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 100 106 IL-17A protein Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 107 115 crystals evidence Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 138 148 IL-17A/HAP complex_assembly Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 157 165 crystals evidence Extensive crystallization trials, either by co-crystallization or by soaking HAP into preformed apo IL-17A crystals, failed to lead to an IL-17A/HAP complex crystals. RESULTS 18 21 HAP chemical We theorized that HAP binding induced large conformational changes in IL-17A that led to the difficulty of getting an IL-17A/HAP binary complex crystal. RESULTS 70 76 IL-17A protein We theorized that HAP binding induced large conformational changes in IL-17A that led to the difficulty of getting an IL-17A/HAP binary complex crystal. RESULTS 118 128 IL-17A/HAP complex_assembly We theorized that HAP binding induced large conformational changes in IL-17A that led to the difficulty of getting an IL-17A/HAP binary complex crystal. RESULTS 144 151 crystal evidence We theorized that HAP binding induced large conformational changes in IL-17A that led to the difficulty of getting an IL-17A/HAP binary complex crystal. RESULTS 20 28 antibody protein_type It is known that an antibody antigen-binding fragment (Fab) can be used as crystallization chaperones in crystallizing difficult targets. RESULTS 29 53 antigen-binding fragment structure_element It is known that an antibody antigen-binding fragment (Fab) can be used as crystallization chaperones in crystallizing difficult targets. RESULTS 55 58 Fab structure_element It is known that an antibody antigen-binding fragment (Fab) can be used as crystallization chaperones in crystallizing difficult targets. RESULTS 21 24 HAP chemical We hypothesized that HAP may target the N-terminal of IL-17A which is known to be more flexible than its C-terminal and conformational changes needed for HAP binding may be more likely there. RESULTS 54 60 IL-17A protein We hypothesized that HAP may target the N-terminal of IL-17A which is known to be more flexible than its C-terminal and conformational changes needed for HAP binding may be more likely there. RESULTS 154 157 HAP chemical We hypothesized that HAP may target the N-terminal of IL-17A which is known to be more flexible than its C-terminal and conformational changes needed for HAP binding may be more likely there. RESULTS 15 23 antibody protein_type We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 24 27 Fab structure_element We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 48 63 C-terminal half structure_element We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 67 73 IL-17A protein We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 95 105 IL-17A/Fab complex_assembly We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 114 131 crystal structure evidence We designed an antibody Fab known to target the C-terminal half of IL-17A based on a published IL-17A/Fab complex crystal structure, and produced it in HEK293 cells. RESULTS 6 15 SPR assay experimental_method In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 16 19 HAP chemical In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 29 32 Fab structure_element In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 54 60 IL-17A protein In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 92 110 binding affinities evidence In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 115 123 kinetics evidence In an SPR assay HAP and this Fab were able to co-bind IL-17A without large changes in their binding affinities and kinetics, confirming our hypothesis (Supplementary Figure S6). RESULTS 61 64 HAP chemical Furthermore, since it binds to an area far away from that of HAP (see below), this Fab should have minimum effects on HAP binding conformation. RESULTS 83 86 Fab structure_element Furthermore, since it binds to an area far away from that of HAP (see below), this Fab should have minimum effects on HAP binding conformation. RESULTS 118 121 HAP chemical Furthermore, since it binds to an area far away from that of HAP (see below), this Fab should have minimum effects on HAP binding conformation. RESULTS 0 8 Crystals evidence Crystals of Fab/IL-17A/HAP ternary complex were obtained readily in crystallization screens. RESULTS 12 26 Fab/IL-17A/HAP complex_assembly Crystals of Fab/IL-17A/HAP ternary complex were obtained readily in crystallization screens. RESULTS 68 91 crystallization screens experimental_method Crystals of Fab/IL-17A/HAP ternary complex were obtained readily in crystallization screens. RESULTS 0 15 Crystallization experimental_method Crystallization of IL-17A and its binding partners was accomplished using two forms of IL-17A. RESULTS 19 25 IL-17A protein Crystallization of IL-17A and its binding partners was accomplished using two forms of IL-17A. RESULTS 87 93 IL-17A protein Crystallization of IL-17A and its binding partners was accomplished using two forms of IL-17A. RESULTS 64 70 IL-17A protein These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 76 82 lacked protein_state These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 87 97 disordered protein_state These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 98 116 N-terminal peptide structure_element These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 123 134 full-length protein_state These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 147 155 cytokine protein_type These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 182 197 disulfide bonds ptm These were, respectively, a presumably more homogeneous form of IL-17A that lacked the disordered N-terminal peptide and a full-length form of the cytokine with a full complement of disulfide bonds. RESULTS 0 8 Crystals evidence Crystals of the Fab/truncated IL-17A/HAP complex diffracted to 2.2 Å, and the Fab/full length IL-17A/HAP complex diffracted to 3.0 Å (Supplementary Table S3). RESULTS 16 40 Fab/truncated IL-17A/HAP complex_assembly Crystals of the Fab/truncated IL-17A/HAP complex diffracted to 2.2 Å, and the Fab/full length IL-17A/HAP complex diffracted to 3.0 Å (Supplementary Table S3). RESULTS 78 104 Fab/full length IL-17A/HAP complex_assembly Crystals of the Fab/truncated IL-17A/HAP complex diffracted to 2.2 Å, and the Fab/full length IL-17A/HAP complex diffracted to 3.0 Å (Supplementary Table S3). RESULTS 5 15 structures evidence Both structures were solved by molecular replacement. RESULTS 31 52 molecular replacement experimental_method Both structures were solved by molecular replacement. RESULTS 15 27 crystallized experimental_method Both complexes crystallized in the space group of P321, with half the complex (1 Fab/1 IL-17A monomer/1 HAP) in the asymmetric unit. RESULTS 81 84 Fab structure_element Both complexes crystallized in the space group of P321, with half the complex (1 Fab/1 IL-17A monomer/1 HAP) in the asymmetric unit. RESULTS 87 93 IL-17A protein Both complexes crystallized in the space group of P321, with half the complex (1 Fab/1 IL-17A monomer/1 HAP) in the asymmetric unit. RESULTS 94 101 monomer oligomeric_state Both complexes crystallized in the space group of P321, with half the complex (1 Fab/1 IL-17A monomer/1 HAP) in the asymmetric unit. RESULTS 104 107 HAP chemical Both complexes crystallized in the space group of P321, with half the complex (1 Fab/1 IL-17A monomer/1 HAP) in the asymmetric unit. RESULTS 4 10 intact protein_state The intact complex can be generated by applying crystallographic 2-fold symmetry. RESULTS 0 18 Electron densities evidence Electron densities for HAP residues Ile1-Asn14 were readily interpretable with the exception of Lys15, which is disordered. RESULTS 23 26 HAP chemical Electron densities for HAP residues Ile1-Asn14 were readily interpretable with the exception of Lys15, which is disordered. RESULTS 36 46 Ile1-Asn14 residue_range Electron densities for HAP residues Ile1-Asn14 were readily interpretable with the exception of Lys15, which is disordered. RESULTS 96 101 Lys15 residue_name_number Electron densities for HAP residues Ile1-Asn14 were readily interpretable with the exception of Lys15, which is disordered. RESULTS 112 122 disordered protein_state Electron densities for HAP residues Ile1-Asn14 were readily interpretable with the exception of Lys15, which is disordered. RESULTS 34 51 complex structure evidence When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 67 78 full length protein_state When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 79 85 IL-17A protein When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 114 123 truncated protein_state When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 124 130 IL-17A protein When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 154 160 Cys106 residue_name_number When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 162 168 Ser106 residue_name_number When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 176 185 truncated protein_state When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 186 192 IL-17A protein When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 204 214 disordered protein_state When considering the protein, the complex structure containing the full length IL-17A is identical to that of the truncated IL-17A, with the exception of Cys106 (Ser106 in the truncated IL-17A), which is disordered. RESULTS 0 6 Cys106 residue_name_number Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 31 36 Cys10 residue_name_number Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 57 67 disordered protein_state Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 68 86 N-terminal peptide structure_element Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 94 105 full length protein_state Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 106 112 IL-17A protein Cys106 is covalently linked to Cys10 that resides in the disordered N-terminal peptide in the full length IL-17A. RESULTS 8 17 structure evidence Overall structure of Fab/IL-17A/HAP complex RESULTS 21 35 Fab/IL-17A/HAP complex_assembly Overall structure of Fab/IL-17A/HAP complex RESULTS 37 46 structure evidence In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 50 60 Fab/IL-17A complex_assembly In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 74 77 Fab structure_element In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 132 140 cytokine protein_type In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 141 146 dimer oligomeric_state In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 184 192 monomers oligomeric_state In a similar manner to the published structure of Fab/IL-17A complex, two Fab molecules bind symmetrically to the C-terminal of the cytokine dimer, interacting with epitopes from both monomers (Fig. 2A). RESULTS 14 17 HAP chemical Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 48 56 cytokine protein_type Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 57 62 dimer oligomeric_state Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 93 96 HAP chemical Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 131 137 IL-17A protein Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 138 146 monomers oligomeric_state Two copies of HAP bind to the N-terminal of the cytokine dimer, also symmetrically, and each HAP molecule also interacts with both IL-17A monomers (Fig. 2). RESULTS 31 42 Secukinumab chemical Based on disclosed epitopes of Secukinumab and Ixekizumab, HAP binds to IL-17A at an area that is also different from those of those two antibodies. RESULTS 47 57 Ixekizumab chemical Based on disclosed epitopes of Secukinumab and Ixekizumab, HAP binds to IL-17A at an area that is also different from those of those two antibodies. RESULTS 59 62 HAP chemical Based on disclosed epitopes of Secukinumab and Ixekizumab, HAP binds to IL-17A at an area that is also different from those of those two antibodies. RESULTS 72 78 IL-17A protein Based on disclosed epitopes of Secukinumab and Ixekizumab, HAP binds to IL-17A at an area that is also different from those of those two antibodies. RESULTS 137 147 antibodies protein_type Based on disclosed epitopes of Secukinumab and Ixekizumab, HAP binds to IL-17A at an area that is also different from those of those two antibodies. RESULTS 15 25 5 residues residue_range The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 29 32 HAP chemical The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 34 40 1IHVTI chemical The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 50 61 amphipathic protein_state The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 62 70 β-strand structure_element The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 92 102 β-strand 4 structure_element The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 110 116 IL-17A protein The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 117 124 monomer oligomeric_state The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 129 139 β-strand 0 structure_element The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 170 176 IL-17A protein The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 192 199 monomer oligomeric_state The N-terminal 5 residues of HAP, 1IHVTI, form an amphipathic β-strand that inserts between β-strand 4 of one IL-17A monomer and β-strand 0 (the first ordered peptide of IL-17A) of the second monomer. RESULTS 5 13 β-strand structure_element This β-strand is parallel to both strands 0 and 4 (Fig. 3B). RESULTS 34 49 strands 0 and 4 structure_element This β-strand is parallel to both strands 0 and 4 (Fig. 3B). RESULTS 0 9 Strands 0 structure_element Strands 0 of two IL-17A monomer are antiparallel, as appeared in other IL-17A structures. RESULTS 17 23 IL-17A protein Strands 0 of two IL-17A monomer are antiparallel, as appeared in other IL-17A structures. RESULTS 24 31 monomer oligomeric_state Strands 0 of two IL-17A monomer are antiparallel, as appeared in other IL-17A structures. RESULTS 71 77 IL-17A protein Strands 0 of two IL-17A monomer are antiparallel, as appeared in other IL-17A structures. RESULTS 78 88 structures evidence Strands 0 of two IL-17A monomer are antiparallel, as appeared in other IL-17A structures. RESULTS 15 25 8 residues residue_range The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 33 36 HAP chemical The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 61 70 structure evidence The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 72 81 7ADLWDWIN chemical The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 91 102 amphipathic protein_state The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 103 110 α-helix structure_element The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 139 145 IL-17A protein The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 146 153 monomer oligomeric_state The C-terminal 8 residues of the HAP that are ordered in the structure, 7ADLWDWIN, form an amphipathic α-helix interacting with the second IL-17A monomer. RESULTS 0 4 Pro6 residue_name_number Pro6 of HAP makes a transition between the N-terminal β-strand and the C-terminal α-helix of HAP. RESULTS 8 11 HAP chemical Pro6 of HAP makes a transition between the N-terminal β-strand and the C-terminal α-helix of HAP. RESULTS 54 62 β-strand structure_element Pro6 of HAP makes a transition between the N-terminal β-strand and the C-terminal α-helix of HAP. RESULTS 82 89 α-helix structure_element Pro6 of HAP makes a transition between the N-terminal β-strand and the C-terminal α-helix of HAP. RESULTS 93 96 HAP chemical Pro6 of HAP makes a transition between the N-terminal β-strand and the C-terminal α-helix of HAP. RESULTS 20 34 IL-17A/IL-17RA complex_assembly As a comparison, an IL-17A/IL-17RA complex structure (PDB code 4HSA) is also shown with IL-17A in the same orientation (Fig. 2C). RESULTS 35 52 complex structure evidence As a comparison, an IL-17A/IL-17RA complex structure (PDB code 4HSA) is also shown with IL-17A in the same orientation (Fig. 2C). RESULTS 88 94 IL-17A protein As a comparison, an IL-17A/IL-17RA complex structure (PDB code 4HSA) is also shown with IL-17A in the same orientation (Fig. 2C). RESULTS 24 30 IL-17A protein Inhibition mechanism of IL-17A signaling by HAP RESULTS 44 47 HAP chemical Inhibition mechanism of IL-17A signaling by HAP RESULTS 0 7 IL-17RA protein IL-17RA binds IL-17A at three regions on the IL-17A homodimer. RESULTS 14 20 IL-17A protein IL-17RA binds IL-17A at three regions on the IL-17A homodimer. RESULTS 45 51 IL-17A protein IL-17RA binds IL-17A at three regions on the IL-17A homodimer. RESULTS 52 61 homodimer oligomeric_state IL-17RA binds IL-17A at three regions on the IL-17A homodimer. RESULTS 0 3 HAP chemical HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 10 16 IL-17A protein HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 20 28 region I structure_element HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 30 38 Region I structure_element HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 76 93 β strands 0 and 4 structure_element HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 104 113 loops 1–2 structure_element HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 118 121 3–4 structure_element HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 125 131 IL-17A protein HAP binds IL-17A at region I. Region I is formed by residues at the ends of β strands 0 and 4, and from loops 1–2 and 3–4 of IL-17A (Fig. 2). RESULTS 26 34 region I structure_element Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 46 49 HAP chemical Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 90 97 IL-17RA protein Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 133 140 α-helix structure_element Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 144 147 HAP chemical Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 171 178 IL-17RA protein Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 194 200 IL-17A protein Conformational changes in region I induced by HAP binding alone may allosterically affect IL-17RA binding, but more importantly, the α-helix of HAP directly competes with IL-17RA for binding to IL-17A (Fig. 3). RESULTS 46 53 α helix structure_element The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 57 60 HAP chemical The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 65 71 IL-17A protein The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 80 85 Trp12 residue_name_number The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 89 92 HAP chemical The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 111 129 hydrophobic pocket site The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 133 139 IL-17A protein The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 169 175 Phe110 residue_name_number The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 177 182 Tyr62 residue_name_number The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 184 189 Pro59 residue_name_number The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 225 231 Arg101 residue_name_number The most significant interactions between the α helix of HAP and IL-17A involve Trp12 of HAP, which binds in a hydrophobic pocket in IL-17A formed by the side chains of Phe110, Tyr62, Pro59 and the hydrophobic portion of the Arg101 side chain (Fig. 3A). RESULTS 4 9 Trp12 residue_name_number The Trp12 side chain of HAP donates a hydrogen bond to the main chain oxygen of Pro69 of IL-17A. RESULTS 24 27 HAP chemical The Trp12 side chain of HAP donates a hydrogen bond to the main chain oxygen of Pro69 of IL-17A. RESULTS 38 51 hydrogen bond bond_interaction The Trp12 side chain of HAP donates a hydrogen bond to the main chain oxygen of Pro69 of IL-17A. RESULTS 80 85 Pro69 residue_name_number The Trp12 side chain of HAP donates a hydrogen bond to the main chain oxygen of Pro69 of IL-17A. RESULTS 89 95 IL-17A protein The Trp12 side chain of HAP donates a hydrogen bond to the main chain oxygen of Pro69 of IL-17A. RESULTS 23 29 Arg101 residue_name_number The positively charged Arg101 side chain of the IL-17A engages in a charge-helix dipole interaction with the main chain oxygen of Trp12. RESULTS 48 54 IL-17A protein The positively charged Arg101 side chain of the IL-17A engages in a charge-helix dipole interaction with the main chain oxygen of Trp12. RESULTS 68 99 charge-helix dipole interaction bond_interaction The positively charged Arg101 side chain of the IL-17A engages in a charge-helix dipole interaction with the main chain oxygen of Trp12. RESULTS 130 135 Trp12 residue_name_number The positively charged Arg101 side chain of the IL-17A engages in a charge-helix dipole interaction with the main chain oxygen of Trp12. RESULTS 14 18 Leu9 residue_name_number Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 23 28 Ile13 residue_name_number Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 36 39 HAP chemical Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 45 69 hydrophobic interactions bond_interaction Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 75 81 IL-17A protein Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 91 95 Asp8 residue_name_number Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 111 124 hydrogen bond bond_interaction Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 129 150 ion pair interactions bond_interaction Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 156 161 Tyr62 residue_name_number Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 166 172 Lys114 residue_name_number Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 176 182 IL-17A protein Additionally, Leu9 and Ile13 of the HAP have hydrophobic interactions with IL-17A, and the Asp8 side chain has hydrogen bond and ion pair interactions with Tyr62 and Lys114 of IL-17A, respectively. RESULTS 3 11 region I structure_element In region I, an IL-17RA peptide interacts with IL-17A in a very similar fashion to the α-helix of HAP. RESULTS 16 23 IL-17RA protein In region I, an IL-17RA peptide interacts with IL-17A in a very similar fashion to the α-helix of HAP. RESULTS 47 53 IL-17A protein In region I, an IL-17RA peptide interacts with IL-17A in a very similar fashion to the α-helix of HAP. RESULTS 87 94 α-helix structure_element In region I, an IL-17RA peptide interacts with IL-17A in a very similar fashion to the α-helix of HAP. RESULTS 98 101 HAP chemical In region I, an IL-17RA peptide interacts with IL-17A in a very similar fashion to the α-helix of HAP. RESULTS 4 11 IL-17RA protein The IL-17RA peptide has sequences of 27LDDSWI, and part of the peptide is also α-helical (Fig. 3B). RESULTS 37 45 27LDDSWI chemical The IL-17RA peptide has sequences of 27LDDSWI, and part of the peptide is also α-helical (Fig. 3B). RESULTS 79 88 α-helical structure_element The IL-17RA peptide has sequences of 27LDDSWI, and part of the peptide is also α-helical (Fig. 3B). RESULTS 0 4 Leu7 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 6 11 Trp31 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 16 21 Ile32 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 25 32 IL-17RA protein Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 83 89 IL-17A protein Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 93 97 Leu9 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 99 104 Trp12 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 109 114 Ile13 residue_name_number Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 118 121 HAP chemical Leu7, Trp31 and Ile32 of IL-17RA interact very similarly with the same residues of IL-17A as Leu9, Trp12 and Ile13 of HAP (Fig. 3B). RESULTS 19 26 α-helix structure_element In this sense, the α-helix of HAP with a sequence of 9LWDWI is a good mimetic of the 27LDDSWI peptide of IL-17RA. RESULTS 30 33 HAP chemical In this sense, the α-helix of HAP with a sequence of 9LWDWI is a good mimetic of the 27LDDSWI peptide of IL-17RA. RESULTS 53 59 9LWDWI chemical In this sense, the α-helix of HAP with a sequence of 9LWDWI is a good mimetic of the 27LDDSWI peptide of IL-17RA. RESULTS 85 93 27LDDSWI chemical In this sense, the α-helix of HAP with a sequence of 9LWDWI is a good mimetic of the 27LDDSWI peptide of IL-17RA. RESULTS 105 112 IL-17RA protein In this sense, the α-helix of HAP with a sequence of 9LWDWI is a good mimetic of the 27LDDSWI peptide of IL-17RA. RESULTS 4 12 β-strand structure_element The β-strand of HAP has no equivalent in IL-17RA. RESULTS 16 19 HAP chemical The β-strand of HAP has no equivalent in IL-17RA. RESULTS 41 48 IL-17RA protein The β-strand of HAP has no equivalent in IL-17RA. RESULTS 23 33 β-strand 0 structure_element However, it mimics the β-strand 0 of IL-17A. RESULTS 37 43 IL-17A protein However, it mimics the β-strand 0 of IL-17A. RESULTS 4 15 amphipathic protein_state The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 16 24 β-strand structure_element The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 28 31 HAP chemical The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 71 75 His2 residue_name_number The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 80 84 Thr4 residue_name_number The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 130 134 Ile1 residue_name_number The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 136 140 Val3 residue_name_number The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 145 149 Ile5 residue_name_number The amphipathic β-strand of HAP orients the hydrophilic side chains of His2 and Thr4 outwards, and the hydrophobic side chains of Ile1, Val3 and Ile5 inward (Fig. 3A). RESULTS 0 10 β-strand 0 structure_element β-strand 0 in IL-17A is also amphipathic with the sequence of 21TVMVNLNI. RESULTS 14 20 IL-17A protein β-strand 0 in IL-17A is also amphipathic with the sequence of 21TVMVNLNI. RESULTS 29 40 amphipathic protein_state β-strand 0 in IL-17A is also amphipathic with the sequence of 21TVMVNLNI. RESULTS 62 72 21TVMVNLNI chemical β-strand 0 in IL-17A is also amphipathic with the sequence of 21TVMVNLNI. RESULTS 7 13 IL-17A protein In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 14 24 structures evidence In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 43 53 β-strand 0 structure_element In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 93 98 Thr21 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 100 105 Asn25 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 110 115 Asn27 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 160 165 Val22 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 167 172 Val24 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 174 179 Leu26 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 184 189 Ile28 residue_name_number In all IL-17A structures obtained to date, β-strand 0 orients the hydrophilic side chains of Thr21, Asn25 and Asn27 outward, and the hydrophobic side chains of Val22, Val24, Leu26 and Ile28 inward. RESULTS 4 18 binding pocket site The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 38 43 Trp12 residue_name_number The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 47 50 HAP chemical The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 54 59 Trp31 residue_name_number The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 63 70 IL-17RA protein The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 92 95 apo protein_state The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 96 102 IL-17A protein The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 103 112 structure evidence The binding pocket occupied by either Trp12 of HAP or Trp31 of IL-17RA is not formed in the apo IL-17A structure (Fig. 3C). RESULTS 26 32 IL-17A protein Conformational changes of IL-17A are needed for both HAP and IL-17RA to bind to that region. RESULTS 53 56 HAP chemical Conformational changes of IL-17A are needed for both HAP and IL-17RA to bind to that region. RESULTS 61 68 IL-17RA protein Conformational changes of IL-17A are needed for both HAP and IL-17RA to bind to that region. RESULTS 17 20 HAP chemical Particularly for HAP, β-strands 0 have to shift out of the hydrophobic cleft formed by the main body of the IL-17A by as much as 10 Å between Cα atoms (Fig. 3C). RESULTS 22 33 β-strands 0 structure_element Particularly for HAP, β-strands 0 have to shift out of the hydrophobic cleft formed by the main body of the IL-17A by as much as 10 Å between Cα atoms (Fig. 3C). RESULTS 59 76 hydrophobic cleft site Particularly for HAP, β-strands 0 have to shift out of the hydrophobic cleft formed by the main body of the IL-17A by as much as 10 Å between Cα atoms (Fig. 3C). RESULTS 91 100 main body structure_element Particularly for HAP, β-strands 0 have to shift out of the hydrophobic cleft formed by the main body of the IL-17A by as much as 10 Å between Cα atoms (Fig. 3C). RESULTS 108 114 IL-17A protein Particularly for HAP, β-strands 0 have to shift out of the hydrophobic cleft formed by the main body of the IL-17A by as much as 10 Å between Cα atoms (Fig. 3C). RESULTS 19 22 apo protein_state Disruptions of the apo IL-17A structure by HAP binding are apparently compensated for by formation of the new interactions that involve almost the entire HAP molecule (Fig. 3B). RESULTS 23 29 IL-17A protein Disruptions of the apo IL-17A structure by HAP binding are apparently compensated for by formation of the new interactions that involve almost the entire HAP molecule (Fig. 3B). RESULTS 30 39 structure evidence Disruptions of the apo IL-17A structure by HAP binding are apparently compensated for by formation of the new interactions that involve almost the entire HAP molecule (Fig. 3B). RESULTS 43 46 HAP chemical Disruptions of the apo IL-17A structure by HAP binding are apparently compensated for by formation of the new interactions that involve almost the entire HAP molecule (Fig. 3B). RESULTS 154 157 HAP chemical Disruptions of the apo IL-17A structure by HAP binding are apparently compensated for by formation of the new interactions that involve almost the entire HAP molecule (Fig. 3B). RESULTS 33 36 SAR experimental_method Structure basis for the observed SAR of peptides RESULTS 4 14 IL-17A/HAP complex_assembly The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 15 32 complex structure evidence The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 79 82 SAR experimental_method The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 170 175 phage experimental_method The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 176 185 peptide 1 chemical The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 189 192 HAP chemical The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 197 199 45 chemical The IL-17A/HAP complex structure obtained is very consistent with the observed SAR of our identified peptide inhibitors, explaining well how the evolution of the initial phage peptide 1 to HAP and 45 improved its potency (Supplementary Figure S7). RESULTS 37 42 Trp12 residue_name_number The important interactions involving Trp12 of HAP explain the >90 times drop in potency of the W12A variant (6 vs 1, Table 1). RESULTS 46 49 HAP chemical The important interactions involving Trp12 of HAP explain the >90 times drop in potency of the W12A variant (6 vs 1, Table 1). RESULTS 95 99 W12A mutant The important interactions involving Trp12 of HAP explain the >90 times drop in potency of the W12A variant (6 vs 1, Table 1). RESULTS 4 15 amphipathic protein_state The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 30 33 HAP chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 34 42 β-strand structure_element The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 102 103 2 residue_number The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 108 109 4 residue_number The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 133 135 14 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 137 139 18 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 141 143 19 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 145 147 21 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 152 154 23 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 158 159 1 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 164 166 22 chemical The amphipathic nature of the HAP β-strand explains the preference of the hydrophilic residues at the 2 and 4 positions of peptides (14, 18, 19, 21 and 23 vs 1 and 22, Table 1). RESULTS 27 30 HAP chemical All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 47 54 β-sheet structure_element All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 60 76 β-stands 0 and 4 structure_element All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 80 86 IL-17A protein All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 107 117 removal of experimental_method All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 122 140 first 1–3 residues residue_range All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 177 180 HAP chemical All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 190 196 IL-17A protein All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 213 215 31 chemical All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 216 218 32 chemical All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 223 225 33 chemical All N-terminal residues of HAP are part of the β-sheet with β-stands 0 and 4 of IL-17A, which explains why removal of the first 1–3 residues completely abolishes the ability of HAP to block IL-17A cell signaling (31,32 and 33, Table 2). RESULTS 15 20 Asn14 residue_name_number The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 25 30 Lys15 residue_name_number The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 34 37 HAP chemical The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 85 91 IL-17A protein The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 173 184 truncations experimental_method The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 186 188 35 chemical The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 193 195 36 chemical The C-terminal Asn14 and Lys15 of HAP are not directly involved in interactions with IL-17A, and this is reflected in the gradual reduction in activity caused by C-terminal truncations (35 and 36, Table 2). RESULTS 13 20 monomer oligomeric_state Each peptide monomer in 45 may not necessarily be more potent than HAP, but two monomer peptides within the same molecule that can simultaneously bind to IL-17A can greatly improve its potency due to avidity effects. RESULTS 24 26 45 chemical Each peptide monomer in 45 may not necessarily be more potent than HAP, but two monomer peptides within the same molecule that can simultaneously bind to IL-17A can greatly improve its potency due to avidity effects. RESULTS 67 70 HAP chemical Each peptide monomer in 45 may not necessarily be more potent than HAP, but two monomer peptides within the same molecule that can simultaneously bind to IL-17A can greatly improve its potency due to avidity effects. RESULTS 80 87 monomer oligomeric_state Each peptide monomer in 45 may not necessarily be more potent than HAP, but two monomer peptides within the same molecule that can simultaneously bind to IL-17A can greatly improve its potency due to avidity effects. RESULTS 154 160 IL-17A protein Each peptide monomer in 45 may not necessarily be more potent than HAP, but two monomer peptides within the same molecule that can simultaneously bind to IL-17A can greatly improve its potency due to avidity effects. RESULTS 0 3 HAP chemical HAP targets region I of IL-17A, an area that has the least sequence conservation in IL-17 cytokines. RESULTS 12 20 region I structure_element HAP targets region I of IL-17A, an area that has the least sequence conservation in IL-17 cytokines. RESULTS 24 30 IL-17A protein HAP targets region I of IL-17A, an area that has the least sequence conservation in IL-17 cytokines. RESULTS 84 99 IL-17 cytokines protein_type HAP targets region I of IL-17A, an area that has the least sequence conservation in IL-17 cytokines. RESULTS 42 58 HAP binding site site This lack of sequence conservation in the HAP binding site explains the observed specificity of HAP binding to human IL-17A. RESULTS 96 99 HAP chemical This lack of sequence conservation in the HAP binding site explains the observed specificity of HAP binding to human IL-17A. RESULTS 111 116 human species This lack of sequence conservation in the HAP binding site explains the observed specificity of HAP binding to human IL-17A. RESULTS 117 123 IL-17A protein This lack of sequence conservation in the HAP binding site explains the observed specificity of HAP binding to human IL-17A. RESULTS 41 47 IL-17F protein For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 48 65 crystal structure evidence For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 93 99 pocket site For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 103 109 IL-17F protein For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 129 135 IL-17A protein For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 140 143 W12 residue_name_number For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 147 150 HAP chemical For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 184 197 Phe-Phe motif structure_element For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 227 233 IL-17F protein For example, inspection of the published IL-17F crystal structure (PDB code 1JPY) revealed a pocket of IL-17F similar to that of IL-17A for W12 of HAP binding, but it is occupied by a Phe-Phe motif at the N-terminal peptide of IL-17F. RESULTS 5 18 Phe-Phe motif structure_element This Phe-Phe motif is missing in IL-17A. RESULTS 22 29 missing protein_state This Phe-Phe motif is missing in IL-17A. RESULTS 33 39 IL-17A protein This Phe-Phe motif is missing in IL-17A. RESULTS 0 19 Sequence alignments experimental_method Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 28 33 human species Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 38 43 mouse taxonomy_domain Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 44 50 IL-17A protein Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 72 78 IL-17A protein Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 110 113 HAP chemical Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 145 153 strand 0 structure_element Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 157 163 IL-17A protein Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 200 208 β-strand structure_element Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 212 215 HAP chemical Sequence alignments between human and mouse IL-17A indicated that among IL-17A residues that interacting with HAP, majority differences occur in strand 0 of IL-17A which interacts with the N-terminal β-strand of HAP. RESULTS 3 8 human species In human IL-17A the sequences are 21TVMVNLNI, and in mouse they are 21NVKVNLKV. RESULTS 9 15 IL-17A protein In human IL-17A the sequences are 21TVMVNLNI, and in mouse they are 21NVKVNLKV. RESULTS 34 44 21TVMVNLNI chemical In human IL-17A the sequences are 21TVMVNLNI, and in mouse they are 21NVKVNLKV. RESULTS 53 58 mouse taxonomy_domain In human IL-17A the sequences are 21TVMVNLNI, and in mouse they are 21NVKVNLKV. RESULTS 68 78 21NVKVNLKV chemical In human IL-17A the sequences are 21TVMVNLNI, and in mouse they are 21NVKVNLKV. RESULTS 23 36 phage display experimental_method Using a combination of phage display and SAR we have discovered novel peptides that are IL-17A antagonists. DISCUSS 41 44 SAR experimental_method Using a combination of phage display and SAR we have discovered novel peptides that are IL-17A antagonists. DISCUSS 88 94 IL-17A protein Using a combination of phage display and SAR we have discovered novel peptides that are IL-17A antagonists. DISCUSS 23 26 HAP chemical One of those peptides, HAP, also shows activity in inhibiting the production of multiple inflammatory cytokines by primary human keratinocytes stimulated by IL-17A and TNF-α, a disease relevant-model. DISCUSS 102 111 cytokines protein_type One of those peptides, HAP, also shows activity in inhibiting the production of multiple inflammatory cytokines by primary human keratinocytes stimulated by IL-17A and TNF-α, a disease relevant-model. DISCUSS 123 128 human species One of those peptides, HAP, also shows activity in inhibiting the production of multiple inflammatory cytokines by primary human keratinocytes stimulated by IL-17A and TNF-α, a disease relevant-model. DISCUSS 157 163 IL-17A protein One of those peptides, HAP, also shows activity in inhibiting the production of multiple inflammatory cytokines by primary human keratinocytes stimulated by IL-17A and TNF-α, a disease relevant-model. DISCUSS 168 173 TNF-α protein One of those peptides, HAP, also shows activity in inhibiting the production of multiple inflammatory cytokines by primary human keratinocytes stimulated by IL-17A and TNF-α, a disease relevant-model. DISCUSS 13 23 determined experimental_method We have also determined the complex structure of IL-17A/HAP, which provides the structural basis for HAP’s antagonism to IL-17A signaling. DISCUSS 28 45 complex structure evidence We have also determined the complex structure of IL-17A/HAP, which provides the structural basis for HAP’s antagonism to IL-17A signaling. DISCUSS 49 59 IL-17A/HAP complex_assembly We have also determined the complex structure of IL-17A/HAP, which provides the structural basis for HAP’s antagonism to IL-17A signaling. DISCUSS 101 104 HAP chemical We have also determined the complex structure of IL-17A/HAP, which provides the structural basis for HAP’s antagonism to IL-17A signaling. DISCUSS 121 127 IL-17A protein We have also determined the complex structure of IL-17A/HAP, which provides the structural basis for HAP’s antagonism to IL-17A signaling. DISCUSS 7 13 IL-17A protein During IL-17A signaling, IL-17A binds to one copy of IL-17RA and one copy of IL-17RC. DISCUSS 25 31 IL-17A protein During IL-17A signaling, IL-17A binds to one copy of IL-17RA and one copy of IL-17RC. DISCUSS 53 60 IL-17RA protein During IL-17A signaling, IL-17A binds to one copy of IL-17RA and one copy of IL-17RC. DISCUSS 77 84 IL-17RC protein During IL-17A signaling, IL-17A binds to one copy of IL-17RA and one copy of IL-17RC. DISCUSS 6 9 apo protein_state Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 10 16 IL-17A protein Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 22 31 homodimer oligomeric_state Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 54 61 IL-17RA protein Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 105 111 IL-17A protein Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 112 117 dimer oligomeric_state Since apo IL-17A is a homodimer with 2 fold symmetry, IL-17RA potentially can bind to either face of the IL-17A dimer. DISCUSS 9 12 HAP chemical With two HAP molecules covering both faces of the IL-17A dimer, HAP can block IL-17RA approaching from either face. DISCUSS 50 56 IL-17A protein With two HAP molecules covering both faces of the IL-17A dimer, HAP can block IL-17RA approaching from either face. DISCUSS 57 62 dimer oligomeric_state With two HAP molecules covering both faces of the IL-17A dimer, HAP can block IL-17RA approaching from either face. DISCUSS 64 67 HAP chemical With two HAP molecules covering both faces of the IL-17A dimer, HAP can block IL-17RA approaching from either face. DISCUSS 78 85 IL-17RA protein With two HAP molecules covering both faces of the IL-17A dimer, HAP can block IL-17RA approaching from either face. DISCUSS 36 53 crystal structure evidence To form the 1:2 complex observed in crystal structure, it is important that there is no strong negative cooperativity in the binding of two HAP molecules. DISCUSS 140 143 HAP chemical To form the 1:2 complex observed in crystal structure, it is important that there is no strong negative cooperativity in the binding of two HAP molecules. DISCUSS 12 60 native electrospray ionization mass spectrometry experimental_method In fact, in native electrospray ionization mass spectrometry analysis only 1:2 IL-17A/HAP complex was observed even when IL-17A was in excess (Supplementary Figure S8), indicating a positive binding cooperativity that favors inhibition of IL-17RA binding by HAP. DISCUSS 79 89 IL-17A/HAP complex_assembly In fact, in native electrospray ionization mass spectrometry analysis only 1:2 IL-17A/HAP complex was observed even when IL-17A was in excess (Supplementary Figure S8), indicating a positive binding cooperativity that favors inhibition of IL-17RA binding by HAP. DISCUSS 121 127 IL-17A protein In fact, in native electrospray ionization mass spectrometry analysis only 1:2 IL-17A/HAP complex was observed even when IL-17A was in excess (Supplementary Figure S8), indicating a positive binding cooperativity that favors inhibition of IL-17RA binding by HAP. DISCUSS 239 246 IL-17RA protein In fact, in native electrospray ionization mass spectrometry analysis only 1:2 IL-17A/HAP complex was observed even when IL-17A was in excess (Supplementary Figure S8), indicating a positive binding cooperativity that favors inhibition of IL-17RA binding by HAP. DISCUSS 258 261 HAP chemical In fact, in native electrospray ionization mass spectrometry analysis only 1:2 IL-17A/HAP complex was observed even when IL-17A was in excess (Supplementary Figure S8), indicating a positive binding cooperativity that favors inhibition of IL-17RA binding by HAP. DISCUSS 0 3 HAP chemical HAP, with only 15 residues, can achieve almost the same binding affinity as the much larger IL-17RA molecule, indicating a more efficient way of binding to IL-17A. DISCUSS 15 26 15 residues residue_range HAP, with only 15 residues, can achieve almost the same binding affinity as the much larger IL-17RA molecule, indicating a more efficient way of binding to IL-17A. DISCUSS 56 72 binding affinity evidence HAP, with only 15 residues, can achieve almost the same binding affinity as the much larger IL-17RA molecule, indicating a more efficient way of binding to IL-17A. DISCUSS 92 99 IL-17RA protein HAP, with only 15 residues, can achieve almost the same binding affinity as the much larger IL-17RA molecule, indicating a more efficient way of binding to IL-17A. DISCUSS 156 162 IL-17A protein HAP, with only 15 residues, can achieve almost the same binding affinity as the much larger IL-17RA molecule, indicating a more efficient way of binding to IL-17A. DISCUSS 19 25 IL-17A protein The interaction of IL-17A with IL-17RA has an extensive interface, covering ~2,200 Å2 surface area of IL-17A. DISCUSS 31 38 IL-17RA protein The interaction of IL-17A with IL-17RA has an extensive interface, covering ~2,200 Å2 surface area of IL-17A. DISCUSS 56 65 interface site The interaction of IL-17A with IL-17RA has an extensive interface, covering ~2,200 Å2 surface area of IL-17A. DISCUSS 102 108 IL-17A protein The interaction of IL-17A with IL-17RA has an extensive interface, covering ~2,200 Å2 surface area of IL-17A. DISCUSS 39 71 IL-17A/IL-17RA binding interface site Due to the discontinuous nature of the IL-17A/IL-17RA binding interface, it is classified as having tertiary structural epitopes on both binding partners, and is therefore hard to target using small molecules. DISCUSS 15 18 HAP chemical Our studies of HAP demonstrated an uncommon mode of action for a peptide in inhibiting such a difficult protein-protein interaction target, and suggest further possible improvements in its binding potency. DISCUSS 29 32 HAP chemical One way of further improving HAP’s potency is by dimerization. DISCUSS 21 24 HAP chemical Homo-dimerization of HAP (45) achieved sub-nanomolar potency against human IL-17A in cell assay. DISCUSS 26 28 45 chemical Homo-dimerization of HAP (45) achieved sub-nanomolar potency against human IL-17A in cell assay. DISCUSS 69 74 human species Homo-dimerization of HAP (45) achieved sub-nanomolar potency against human IL-17A in cell assay. DISCUSS 75 81 IL-17A protein Homo-dimerization of HAP (45) achieved sub-nanomolar potency against human IL-17A in cell assay. DISCUSS 7 24 crystal structure evidence In the crystal structure, the distance between the carbonyl of Asn14 of one HAP molecule and the N-terminus of the second is only 15.7 Å, suggesting the potential for more potent dimeric peptides to be designed by using linkers of different lengths at different positions. DISCUSS 63 68 Asn14 residue_name_number In the crystal structure, the distance between the carbonyl of Asn14 of one HAP molecule and the N-terminus of the second is only 15.7 Å, suggesting the potential for more potent dimeric peptides to be designed by using linkers of different lengths at different positions. DISCUSS 76 79 HAP chemical In the crystal structure, the distance between the carbonyl of Asn14 of one HAP molecule and the N-terminus of the second is only 15.7 Å, suggesting the potential for more potent dimeric peptides to be designed by using linkers of different lengths at different positions. DISCUSS 179 186 dimeric oligomeric_state In the crystal structure, the distance between the carbonyl of Asn14 of one HAP molecule and the N-terminus of the second is only 15.7 Å, suggesting the potential for more potent dimeric peptides to be designed by using linkers of different lengths at different positions. DISCUSS 187 195 peptides chemical In the crystal structure, the distance between the carbonyl of Asn14 of one HAP molecule and the N-terminus of the second is only 15.7 Å, suggesting the potential for more potent dimeric peptides to be designed by using linkers of different lengths at different positions. DISCUSS 31 34 HAP chemical Another direction of improving HAP is by reducing its size. DISCUSS 23 40 crystal structure evidence As demonstrated by the crystal structure, binding of the α-helix of HAP should be sufficient for preventing IL-17RA binding to IL-17A. DISCUSS 57 64 α-helix structure_element As demonstrated by the crystal structure, binding of the α-helix of HAP should be sufficient for preventing IL-17RA binding to IL-17A. DISCUSS 68 71 HAP chemical As demonstrated by the crystal structure, binding of the α-helix of HAP should be sufficient for preventing IL-17RA binding to IL-17A. DISCUSS 108 115 IL-17RA protein As demonstrated by the crystal structure, binding of the α-helix of HAP should be sufficient for preventing IL-17RA binding to IL-17A. DISCUSS 127 133 IL-17A protein As demonstrated by the crystal structure, binding of the α-helix of HAP should be sufficient for preventing IL-17RA binding to IL-17A. DISCUSS 94 101 α-helix structure_element Theoretically, it is possible to design chemicals such as stapled α-helical peptides to block α-helix-mediated IL-17A/IL-17RA interactions. DISCUSS 111 125 IL-17A/IL-17RA complex_assembly Theoretically, it is possible to design chemicals such as stapled α-helical peptides to block α-helix-mediated IL-17A/IL-17RA interactions. DISCUSS 37 43 IL-17A protein In summary, these peptide-based anti-IL-17A modalities could be further developed as alternative therapeutic options to the reported monoclonal antibodies. DISCUSS 144 154 antibodies protein_type In summary, these peptide-based anti-IL-17A modalities could be further developed as alternative therapeutic options to the reported monoclonal antibodies. DISCUSS 67 73 IL-17A protein We are also very interested in finding non-peptidic small molecule IL-17A antagonists, and HAP can be used as an excellent tool peptide. DISCUSS 91 94 HAP chemical We are also very interested in finding non-peptidic small molecule IL-17A antagonists, and HAP can be used as an excellent tool peptide. DISCUSS 48 58 structures evidence The strategy utilized in generating the complex structures of HAP may also be useful for enabling structure based design of some known small molecule IL-17A antagonists. DISCUSS 62 65 HAP chemical The strategy utilized in generating the complex structures of HAP may also be useful for enabling structure based design of some known small molecule IL-17A antagonists. DISCUSS 11 14 HAP chemical Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 18 24 IL-17A protein Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 43 57 IL-17A/IL-17RA complex_assembly Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 74 77 SPR experimental_method Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 79 83 FRET experimental_method Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 88 105 cell-based assays experimental_method Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays. FIG 12 15 SPR experimental_method (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 16 27 sensorgrams evidence (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 39 42 HAP chemical (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 82 94 biotinylated protein_state (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 95 100 human species (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 101 107 IL-17A protein (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 164 196 single site binding model curves evidence (A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). FIG 20 22 ka evidence Kinetic parameters (ka, kd) were obtained by a global fit using three concentrations in triplicate. FIG 24 26 kd evidence Kinetic parameters (ka, kd) were obtained by a global fit using three concentrations in triplicate. FIG 0 2 KD evidence KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 40 42 KD evidence KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 45 47 kd evidence KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 48 50 ka evidence KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 56 59 HAP chemical KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 69 72 SPR experimental_method KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 86 92 IL-17A protein KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 104 115 immobilized protein_state KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 116 123 IL-17RA protein KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. FIG 96 102 IL-17A protein Data are mean and error bars of +/− standard deviation of three measurements. (C) Inhibition of IL-17A and IL-17RA binding by HAP measured by FRET assay. FIG 107 114 IL-17RA protein Data are mean and error bars of +/− standard deviation of three measurements. (C) Inhibition of IL-17A and IL-17RA binding by HAP measured by FRET assay. FIG 126 129 HAP chemical Data are mean and error bars of +/− standard deviation of three measurements. (C) Inhibition of IL-17A and IL-17RA binding by HAP measured by FRET assay. FIG 142 152 FRET assay experimental_method Data are mean and error bars of +/− standard deviation of three measurements. (C) Inhibition of IL-17A and IL-17RA binding by HAP measured by FRET assay. FIG 121 124 HAP chemical Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 167 171 IL-8 protein_type Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 185 189 IL-6 protein_type Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 204 210 CCL-20 protein_type Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 232 237 human species Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 297 303 IL-17A protein Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 317 322 TNF-α protein Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. FIG 0 3 HAP chemical HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). FIG 48 52 IL-6 protein_type HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). FIG 54 58 IL-8 protein_type HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). FIG 63 69 CCL-20 protein_type HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). FIG 93 98 TNF-α protein HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). FIG 8 17 structure evidence Overall structure of the Fab/IL-17A/HAP complex in ribbon presentation. FIG 25 39 Fab/IL-17A/HAP complex_assembly Overall structure of the Fab/IL-17A/HAP complex in ribbon presentation. FIG 4 7 HAP chemical Two HAP molecules are colored blue and red, and IL-17A monomers are colored ice blue and pink, respectively. FIG 48 54 IL-17A protein Two HAP molecules are colored blue and red, and IL-17A monomers are colored ice blue and pink, respectively. FIG 55 63 monomers oligomeric_state Two HAP molecules are colored blue and red, and IL-17A monomers are colored ice blue and pink, respectively. FIG 29 42 binding sites site (A) Overview of the distinct binding sites of Fab and HAP to IL-17A. FIG 46 49 Fab structure_element (A) Overview of the distinct binding sites of Fab and HAP to IL-17A. FIG 54 57 HAP chemical (A) Overview of the distinct binding sites of Fab and HAP to IL-17A. FIG 61 67 IL-17A protein (A) Overview of the distinct binding sites of Fab and HAP to IL-17A. FIG 25 35 IL-17A/HAP complex_assembly (B) Close-in view of the IL-17A/HAP structure. FIG 36 45 structure evidence (B) Close-in view of the IL-17A/HAP structure. FIG 0 6 IL-17A protein IL-17A β-strands are labelled. FIG 7 16 β-strands structure_element IL-17A β-strands are labelled. FIG 16 21 bound protein_state Each of the two bound HAP interacts with both monomers of the IL-17A dimer. FIG 22 25 HAP chemical Each of the two bound HAP interacts with both monomers of the IL-17A dimer. FIG 46 54 monomers oligomeric_state Each of the two bound HAP interacts with both monomers of the IL-17A dimer. FIG 62 68 IL-17A protein Each of the two bound HAP interacts with both monomers of the IL-17A dimer. FIG 69 74 dimer oligomeric_state Each of the two bound HAP interacts with both monomers of the IL-17A dimer. FIG 25 39 IL-17A/IL-17RA complex_assembly (C) As a comparison, the IL-17A/IL-17RA complex was shown with IL-17A in the same orientation. FIG 63 69 IL-17A protein (C) As a comparison, the IL-17A/IL-17RA complex was shown with IL-17A in the same orientation. FIG 21 45 IL-17A/IL-17RA interface site Three distinct areas IL-17A/IL-17RA interface are labeled. FIG 35 49 IL-17A/IL-17RA complex_assembly Mechanism of the inhibition of the IL-17A/IL-17RA interaction by HAP. FIG 65 68 HAP chemical Mechanism of the inhibition of the IL-17A/IL-17RA interaction by HAP. FIG 4 7 HAP chemical (A) HAP binds at region I of IL-17A. FIG 17 25 region I structure_element (A) HAP binds at region I of IL-17A. FIG 29 35 IL-17A protein (A) HAP binds at region I of IL-17A. FIG 0 6 IL-17A protein IL-17A dimer is in surface presentation (β-strands 0 shown as ribbons for clarity). FIG 7 12 dimer oligomeric_state IL-17A dimer is in surface presentation (β-strands 0 shown as ribbons for clarity). FIG 41 52 β-strands 0 structure_element IL-17A dimer is in surface presentation (β-strands 0 shown as ribbons for clarity). FIG 0 18 Polar interactions bond_interaction Polar interactions are shown in dashes. FIG 0 3 HAP chemical HAP residues as well as key IL-17A residues are labeled. FIG 28 34 IL-17A protein HAP residues as well as key IL-17A residues are labeled. FIG 19 22 HAP chemical For clarity, a few HAP residues are also shown in stick model with carbon atoms colored green, oxygen in red and nitrogen in blue. FIG 4 10 I-17RA protein (B) I-17RA (ribbon in gold) peptide Leu27-Ile32 binds to the same area as the HAP α-helix. FIG 36 47 Leu27-Ile32 residue_range (B) I-17RA (ribbon in gold) peptide Leu27-Ile32 binds to the same area as the HAP α-helix. FIG 78 81 HAP chemical (B) I-17RA (ribbon in gold) peptide Leu27-Ile32 binds to the same area as the HAP α-helix. FIG 82 89 α-helix structure_element (B) I-17RA (ribbon in gold) peptide Leu27-Ile32 binds to the same area as the HAP α-helix. FIG 0 5 Trp31 residue_name_number Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 9 16 IL-17RA protein Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 35 41 pocket site Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 45 51 IL-17A protein Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 55 60 Trp12 residue_name_number Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 64 67 HAP chemical Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 91 98 overlay experimental_method Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 108 111 HAP chemical Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 125 136 β-strands 0 structure_element Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 151 161 IL-17A/HAP complex_assembly Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 177 180 apo protein_state Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 181 187 IL-17A protein Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 188 197 structure evidence Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 225 233 region I structure_element Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 237 243 IL-17A protein Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 279 286 β-stand structure_element Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 291 298 α-helix structure_element Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 306 309 HAP chemical Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. FIG 16 34 Trp binding pocket site Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 39 42 W12 residue_name_number Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 46 49 HAP chemical Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 53 56 W31 residue_name_number Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 60 67 IL-17RA protein Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 86 89 apo protein_state Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 90 99 structure evidence Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure. FIG 0 26 ELISA competition activity experimental_method ELISA competition activity of peptide analogues of 1. TABLE