The O Bacteroidetes B-taxonomy_domain are O dominant O bacteria B-taxonomy_domain in O the O human B-species gut O that O are O responsible O for O the O digestion O of O the O complex B-chemical polysaccharides I-chemical that O constitute O “ O dietary O fiber O .” O Although O this O symbiotic O relationship O has O been O appreciated O for O decades O , O little O is O currently O known O about O how O Bacteroidetes B-taxonomy_domain seek O out O and O bind O plant B-taxonomy_domain cell O wall O polysaccharides B-chemical as O a O necessary O first O step O in O their O metabolism O . O Here O , O we O provide O the O first O biochemical B-experimental_method , I-experimental_method crystallographic I-experimental_method , I-experimental_method and I-experimental_method genetic I-experimental_method insight I-experimental_method into O how O two O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type from O the O complex O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O enable O recognition O and O uptake O of O this O ubiquitous O vegetable B-taxonomy_domain polysaccharide B-chemical . O More O importantly O , O this O makes O diet O a O tractable O way O to O manipulate O the O abundance O and O metabolic O output O of O the O microbiota B-taxonomy_domain toward O improved O human B-species health O . O The O archetypal O PUL B-gene - O encoded O system O is O the O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly ( O Sus B-complex_assembly ) O ( O Fig O . O 1B O ) O of O Bacteroides B-species thetaiotaomicron I-species . O The O location O of O SGBP B-protein - I-protein A I-protein / O B B-protein is O presented O in O this O work O ; O the O location O of O GH5 B-protein has O been O empirically O determined O , O and O the O enzymes O have O been O placed O based O upon O their O predicted O cellular O location O . O We O recently O reported O the O detailed O molecular O characterization O of O a O PUL B-gene that O confers O the O ability O of O the O human B-species gut O commensal O B B-species . I-species ovatus I-species ATCC I-species 8483 I-species to O grow O on O a O prominent O family O of O plant B-taxonomy_domain cell O wall O glycans B-chemical , O the O xyloglucans B-chemical ( O XyG B-chemical ). O As O the O Sus B-complex_assembly SGBPs B-protein_type remain O the O only O structurally O characterized O cohort O to O date O , O we O therefore O wondered O whether O such O glycan B-chemical binding O and O function O are O extended O to O other O PUL B-gene that O target O more O complex O and O heterogeneous O polysaccharides B-chemical , O such O as O XyG B-chemical . O These O data O extend O our O current O understanding O of O the O Sus O - O like O glycan B-chemical uptake O paradigm O within O the O Bacteroidetes B-taxonomy_domain and O reveals O how O the O complex O dietary O polysaccharide B-chemical xyloglucan B-chemical is O recognized O at O the O cell O surface O . O Similarly O , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyG B-chemical and O XyGO2 B-chemical with O approximately O equal O affinities B-evidence , O although O in O both O cases O , O Ka B-evidence values O were O nearly O 10 O - O fold O lower O than O those O for O SGBP B-protein - I-protein A I-protein . O Also O in O contrast O to O SGBP B-protein - I-protein A I-protein , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyGO1 B-chemical , O yet O the O affinity B-evidence for O this O minimal B-structure_element repeating I-structure_element unit I-structure_element was O poor O , O with O a O Ka B-evidence value O of O ca O . O 1 O order O of O magnitude O lower O than O for O XyG B-chemical and O XyGO2 B-chemical . O As O anticipated O by O sequence O similarity O , O the O high O - O resolution O tertiary O structure B-evidence of O apo B-protein_state - O SGBP B-protein - I-protein A I-protein ( O 1 O . O 36 O Å O , O Rwork B-evidence = O 14 O . O 7 O %, O Rfree B-evidence = O 17 O . O 4 O %, O residues O 28 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Table O 2 O ) O displays O the O canonical O “ B-structure_element SusD I-structure_element - I-structure_element like I-structure_element ” I-structure_element protein I-structure_element fold I-structure_element dominated O by O four O tetratrico B-structure_element - I-structure_element peptide I-structure_element repeat I-structure_element ( O TPR B-structure_element ) O motifs O that O cradle O the O rest O of O the O structure B-evidence ( O Fig O . O 4A O ). O Cocrystallization B-experimental_method of O SGBP B-protein - I-protein A I-protein with O XyGO2 B-chemical generated O a O substrate B-complex_assembly complex I-complex_assembly structure B-evidence ( O 2 O . O 3 O Å O , O Rwork B-evidence = O 21 O . O 8 O %, O Rfree B-evidence = O 24 O . O 8 O %, O residues O 36 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Fig O . O 4A O and O B O ; O Table O 2 O ) O that O revealed O the O distinct O binding B-site - I-site site I-site architecture O of O the O XyG B-protein_type binding I-protein_type protein I-protein_type . O Seven O of O the O eight O backbone O glucosyl B-chemical residues O of O XyGO2 B-chemical could O be O convincingly O modeled O in O the O ligand B-evidence electron I-evidence density I-evidence , O and O only O two O α B-chemical ( I-chemical 1 I-chemical → I-chemical 6 I-chemical )- I-chemical linked I-chemical xylosyl I-chemical residues O were O observed O ( O Fig O . O 4B O ; O cf O . O The O functional O importance O of O this O platform B-site is O underscored O by O the O observation O that O the O W82A B-mutant W283A B-mutant W306A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein A I-protein , O designated O SGBP B-mutant - I-mutant A I-mutant *, I-mutant is O completely B-protein_state devoid I-protein_state of I-protein_state XyG I-protein_state affinity I-protein_state ( O Table O 3 O ; O see O Fig O . O S4 O in O the O supplemental O material O ). O Protein O name O Ka B-evidence ΔG B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O ΔH B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O TΔS B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O Fold O changeb O M O − O 1 O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant ) O c O 4 O . O 9 O 9 O . O 1 O × O 104 O − O 6 O . O 8 O − O 6 O . O 3 O 0 O . O 5 O SGBP B-protein - I-protein A I-protein ( O W306 B-residue_name_number ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein B I-protein ( O 230 B-residue_range – I-residue_range 489 I-residue_range ) O 0 O . O 7 O ( O 8 O . O 6 O ± O 0 O . O 20 O ) O × O 104 O − O 6 O . O 7 O − O 14 O . O 9 O ± O 0 O . O 1 O − O 8 O . O 2 O SGBP B-protein - I-protein B I-protein ( O Y363A B-mutant ) O 19 O . O 7 O ( O 2 O . O 9 O ± O 0 O . O 10 O ) O × O 103 O − O 4 O . O 7 O − O 18 O . O 1 O ± O 0 O . O 1 O − O 13 O . O 3 O SGBP B-protein - I-protein B I-protein ( O W364A B-mutant ) O ND O Weak O Weak O Weak O Weak O SGBP B-protein - I-protein B I-protein ( O F414A B-mutant ) O 3 O . O 2 O ( O 1 O . O 80 O ± O 0 O . O 03 O ) O × O 104 O − O 5 O . O 8 O − O 11 O . O 4 O ± O 0 O . O 1 O − O 5 O . O 6 O Binding O thermodynamics O are O based O on O the O concentration O of O the O binding O unit O , O XyGO2 B-chemical . O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element display O similar O β B-structure_element - I-structure_element sandwich I-structure_element folds I-structure_element ; O domains O B B-structure_element ( O residues O 134 B-residue_range to I-residue_range 230 I-residue_range ) O and O C B-structure_element ( O residues O 231 B-residue_range to I-residue_range 313 I-residue_range ) O can O be O superimposed B-experimental_method onto O domain O A B-structure_element ( O residues O 34 B-residue_range to I-residue_range 133 I-residue_range ) O with O RMSDs B-evidence of O 1 O . O 1 O and O 1 O . O 2 O Å O , O respectively O , O for O 47 O atom O pairs O ( O 23 O % O and O 16 O % O sequence O identity O , O respectively O ). O While O there O is O no O substrate O - O complexed O structure O of O Bacova_04391 B-protein available O , O the O binding B-site site I-site is O predicted O to O include O W241 B-residue_name_number and O Y404 B-residue_name_number , O which O are O proximal O to O the O XyGO B-site binding I-site site I-site in O SGBP B-protein - I-protein B I-protein . O However O , O the O opposing B-protein_state , I-protein_state clamp I-protein_state - I-protein_state like I-protein_state arrangement I-protein_state of O these B-structure_element residues I-structure_element in O Bacova_04391 B-protein is O clearly O distinct O from O the O planar B-site surface I-site arrangement I-site of O the O residues B-structure_element that O interact O with O XyG B-chemical in O SGBP B-protein - I-protein B I-protein ( O described O below O ). O Inspection O of O the O tertiary O structure B-evidence indicates O that O domains O C B-structure_element and O D B-structure_element are O effectively O inseparable O , O with O a O contact O interface O of O 396 O Å2 O . O Despite O the O lack O of O sequence O and O structural O conservation O , O a O similarly O positioned O proline B-residue_name joins O the O Ig B-structure_element - I-structure_element like I-structure_element domains I-structure_element of O the O xylan O - O binding O Bacova_04391 B-protein and O the O starch B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type SusE B-protein and O SusF B-protein . O We O speculate O that O this O is O a O biologically O important O adaptation O that O serves O to O project O the O glycan B-site binding I-site site I-site of O these O proteins O far O from O the O membrane O surface O . O In O these O growth B-experimental_method experiments I-experimental_method , O overnight O cultures O of O strains O grown O on O minimal O medium O plus O glucose B-chemical were O back O - O diluted O 1 O : O 100 O - O fold O into O minimal O medium O containing O 5 O mg O / O ml O of O the O reported O carbohydrate B-chemical . O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O Growth O was O measured O over O time O in O minimal O medium O containing O ( O A O ) O XyG B-chemical , O ( O B O ) O XyGO2 B-chemical , O ( O C O ) O XyGO1 B-chemical , O ( O D O ) O glucose B-chemical , O and O ( O E O ) O xylose B-chemical . O In O panel O F O , O the O growth O rate O of O each O strain O on O the O five O carbon O sources O is O displayed O , O and O in O panel O G O , O the O normalized O lag B-evidence time I-evidence of O each O culture O , O relative O to O its O growth O on O glucose B-chemical , O is O displayed O . O Intriguingly O , O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O ( O ΔBacova_02650 B-mutant ) O ( O cf O . O Fig O . O 1B O ) O exhibited O a O minor O growth O defect O on O both O XyG B-chemical and O XyGO2 B-chemical , O with O rates O 84 O . O 6 O % O and O 93 O . O 9 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O . O However O , O growth O of O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O on O XyGO1 B-chemical was O 54 O . O 2 O % O the O rate O of O the O parental O strain O , O despite O the O fact O that O SGBP B-protein - I-protein B I-protein binds O this O substrate O ca O . O Taken O together O , O the O data O indicate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein functionally O complement O each O other O in O the O capture O of O XyG B-chemical polysaccharide B-chemical , O while O SGBP B-protein - I-protein B I-protein may O allow O B B-species . I-species ovatus I-species to O scavenge O smaller O XyGOs B-chemical liberated O by O other O gut O commensals O . O It O may O then O be O that O only O after O a O sufficient O amount O of O glycan B-chemical is O processed O and O imported O by O the O cell O is O XyGUL B-gene upregulated O and O exponential O growth O on O the O glycan B-chemical can O begin O . O Likewise O , O such O cognate O interactions O between O homologous O protein O pairs O such O as O SGBP B-protein - I-protein A I-protein and O its O TBDT B-protein_type may O underlie O our O observation O that O a O ΔSGBP B-mutant - I-mutant A I-mutant mutant B-protein_state cannot O grow O on O xyloglucan B-chemical . O Thus O , O understanding O glycan B-chemical capture O at O the O cell O surface O is O fundamental O to O explaining O , O and O eventually O predicting O , O how O the O carbohydrate O content O of O the O diet O shapes O the O gut O community O structure O as O well O as O its O causative O health O effects O . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O Our O observation O here O that O the O physical O presence O of O the O SusD B-protein homolog O SGBP B-protein - I-protein A I-protein , O independent O of O XyG B-chemical - O binding O ability O , O is O both O necessary O and O sufficient O for O XyG B-chemical utilization O further O supports O a O model O of O glycan B-chemical import O whereby O the O SusC B-protein_type - I-protein_type like I-protein_type TBDTs I-protein_type and O the O SusD B-protein_type - I-protein_type like I-protein_type SGBPs I-protein_type must O be O intimately O associated O to O support O glycan B-chemical uptake O ( O Fig O . O 1C O ). O A O molecular O understanding O of O glycan B-chemical uptake O by O human B-species gut O bacteria B-taxonomy_domain is O therefore O central O to O the O development O of O strategies O to O improve O human B-species health O through O manipulation O of O the O microbiota B-taxonomy_domain . O A O high B-chemical affinity I-chemical IL I-chemical - I-chemical 17A I-chemical peptide I-chemical antagonist I-chemical ( O HAP B-chemical ) O of O 15 B-residue_range residues I-residue_range was O identified O through O phage B-experimental_method - I-experimental_method display I-experimental_method screening I-experimental_method followed O by O saturation B-experimental_method mutagenesis I-experimental_method optimization I-experimental_method and O amino B-experimental_method acid I-experimental_method substitutions I-experimental_method . O The O family O of O IL B-protein_type - I-protein_type 17 I-protein_type cytokines I-protein_type and O receptors O consists O of O six O polypeptides O , O IL B-protein - I-protein 17A I-protein - I-protein F I-protein , O and O five O receptors O , O IL B-protein - I-protein 17RA I-protein - I-protein E I-protein . O IL B-protein - I-protein 17A I-protein is O secreted O from O activated O Th17 O cells O , O and O several O innate O immune O T O cell O types O including O macrophages O , O neutrophils O , O natural O killer O cells O , O and O dendritic O cells O . O There O has O been O active O research O in O identifying O orally O available O chemical O entities O that O would O functionally O antagonize O IL B-protein - I-protein 17A I-protein - O mediated O signaling O . O Since O IL B-protein - I-protein 17RA I-protein is O a O shared O receptor B-protein_type for O at O least O IL B-protein - I-protein 17A I-protein , O IL B-protein - I-protein 17F I-protein , O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17F I-complex_assembly and O IL B-protein - I-protein 17E I-protein , O we O chose O to O seek O IL B-protein - I-protein 17A I-protein - O specific O inhibitors O that O may O have O more O defined O pharmacological O responses O than O IL B-protein - I-protein 17RA I-protein inhibitors O . O Positive B-experimental_method phage I-experimental_method pools I-experimental_method were O then O sub B-experimental_method - I-experimental_method cloned I-experimental_method into O a O maltose B-experimental_method - I-experimental_method binding I-experimental_method protein I-experimental_method ( I-experimental_method MBP I-experimental_method ) I-experimental_method fusion I-experimental_method system I-experimental_method . O Sequences O identified O from O phage B-experimental_method clones I-experimental_method were O chemically B-experimental_method synthesized I-experimental_method ( O Supplementary O Table O 1 O ) O and O tested O for O inhibition O of O IL B-protein - I-protein 17A I-protein binding O to O IL B-protein - I-protein 17RA I-protein ( O Table O 1 O ). O In O particular O , O at O position O 5 B-residue_number ( O 13 B-chemical ), O substitution B-experimental_method of O methionine B-residue_name with O alanine B-residue_name resulted O in O a O seven O fold O improvement O in O potency O ( O 80 O nM O versus O 11 O nM O respectively O ). O Since O the O replacement B-experimental_method of O methionine B-residue_name at O position O 5 B-residue_number with O alanine B-residue_name was O beneficial O , O the O additional O hydrophobic O amino O acids O isoleucine B-residue_name ( O 24 B-chemical ), O leucine B-residue_name ( O 25 B-chemical ) O and O valine B-residue_name ( O 26 B-chemical ) O were O evaluated O and O an O additional O two O - O three O fold O improvement O in O binding O was O observed O for O the O valine B-residue_name and O isoleucine B-residue_name replacements B-experimental_method in O comparison O with O alanine B-residue_name . O Dimerization O of O HAP B-chemical can O further O increase O its O potency O Orthogonal O assays O to O confirm O HAP B-chemical antagonism O The O relatively O high O IC50 B-evidence values O in O this O assay O ( O Table O 3 O ) O are O probably O due O to O the O high O IL B-protein - I-protein 17A I-protein concentration O ( O 100 O ng O / O ml O ) O needed O for O detection O of O IL B-protein_type - I-protein_type 6 I-protein_type . O Crystallization B-experimental_method and I-experimental_method structure I-experimental_method determination I-experimental_method Crystals B-evidence of O the O Fab B-complex_assembly / I-complex_assembly truncated I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O diffracted O to O 2 O . O 2 O Å O , O and O the O Fab B-complex_assembly / I-complex_assembly full I-complex_assembly length I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O diffracted O to O 3 O . O 0 O Å O ( O Supplementary O Table O S3 O ). O Two O copies O of O HAP B-chemical bind O to O the O N O - O terminal O of O the O cytokine B-protein_type dimer B-oligomeric_state , O also O symmetrically O , O and O each O HAP B-chemical molecule O also O interacts O with O both O IL B-protein - I-protein 17A I-protein monomers B-oligomeric_state ( O Fig O . O 2 O ). O Inhibition O mechanism O of O IL B-protein - I-protein 17A I-protein signaling O by O HAP B-chemical Structure O basis O for O the O observed O SAR B-experimental_method of O peptides O The O C O - O terminal O Asn14 B-residue_name_number and O Lys15 B-residue_name_number of O HAP B-chemical are O not O directly O involved O in O interactions O with O IL B-protein - I-protein 17A I-protein , O and O this O is O reflected O in O the O gradual O reduction O in O activity O caused O by O C O - O terminal O truncations B-experimental_method ( O 35 B-chemical and O 36 B-chemical , O Table O 2 O ). O For O example O , O inspection O of O the O published O IL B-protein - I-protein 17F I-protein crystal B-evidence structure I-evidence ( O PDB O code O 1JPY O ) O revealed O a O pocket B-site of O IL B-protein - I-protein 17F I-protein similar O to O that O of O IL B-protein - I-protein 17A I-protein for O W12 B-residue_name_number of O HAP B-chemical binding O , O but O it O is O occupied O by O a O Phe B-structure_element - I-structure_element Phe I-structure_element motif I-structure_element at O the O N O - O terminal O peptide O of O IL B-protein - I-protein 17F I-protein . O We O have O also O determined B-experimental_method the O complex B-evidence structure I-evidence of O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly , O which O provides O the O structural O basis O for O HAP B-chemical ’ O s O antagonism O to O IL B-protein - I-protein 17A I-protein signaling O . O Since O apo B-protein_state IL B-protein - I-protein 17A I-protein is O a O homodimer B-oligomeric_state with O 2 O fold O symmetry O , O IL B-protein - I-protein 17RA I-protein potentially O can O bind O to O either O face O of O the O IL B-protein - I-protein 17A I-protein dimer B-oligomeric_state . O The O interaction O of O IL B-protein - I-protein 17A I-protein with O IL B-protein - I-protein 17RA I-protein has O an O extensive O interface B-site , O covering O ~ O 2 O , O 200 O Å2 O surface O area O of O IL B-protein - I-protein 17A I-protein . O One O way O of O further O improving O HAP B-chemical ’ O s O potency O is O by O dimerization O . O KD B-evidence determined O by O the O standard O equation O , O KD B-evidence = O kd B-evidence / O ka B-evidence . O ( O B O ) O HAP B-chemical inhibits O SPR B-experimental_method signaling O of O IL B-protein - I-protein 17A I-protein binding O to O immobilized B-protein_state IL B-protein - I-protein 17RA I-protein . O Overall O structure B-evidence of O the O Fab B-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly HAP I-complex_assembly complex O in O ribbon O presentation O . O ( O C O ) O As O a O comparison O , O the O IL B-complex_assembly - I-complex_assembly 17A I-complex_assembly / I-complex_assembly IL I-complex_assembly - I-complex_assembly 17RA I-complex_assembly complex O was O shown O with O IL B-protein - I-protein 17A I-protein in O the O same O orientation O . O ELISA B-experimental_method competition I-experimental_method activity I-experimental_method of O peptide O analogues O of O 1 O . O The O amount O of O NadA B-protein on O the O bacterial B-taxonomy_domain surface O is O of O direct O relevance O in O the O constant O battle O of O host O - O pathogen O interactions O : O it O influences O the O ability O of O the O pathogen O to O engage O human B-species cell O surface O - O exposed O receptors O and O , O conversely O , O the O bacterial B-taxonomy_domain susceptibility O to O the O antibody O - O mediated O immune O response O . O NadR B-protein also O mediates O ligand O - O dependent O regulation O of O many O other O meningococcal B-taxonomy_domain genes O , O for O example O the O highly O - O conserved O multiple O adhesin O family O ( O maf O ) O genes O , O which O encode O proteins O emerging O with O important O roles O in O host O - O pathogen O interactions O , O immune O evasion O and O niche O adaptation O . O The O abundance O of O surface O - O exposed O NadA B-protein is O regulated O by O the O ligand B-protein_type - I-protein_type responsive I-protein_type transcriptional I-protein_type repressor I-protein_type NadR B-protein . O Here O , O we O present O functional B-evidence , I-evidence biochemical I-evidence and I-evidence high I-evidence - I-evidence resolution I-evidence structural I-evidence data I-evidence on O NadR B-protein . O Our O studies O provide O detailed O insights O into O how O small O molecule O ligands O , O such O as O hydroxyphenylacetate B-chemical derivatives O , O found O in O relevant O host O niches O , O modulate O the O structure O and O activity O of O NadR B-protein , O by O ‘ O conformational O selection O ’ O of O inactive B-protein_state forms O . O The O DNA O - O binding O activity O of O NadR B-protein is O attenuated O in O vitro O upon O addition O of O various O hydroxyphenylacetate B-chemical ( O HPA B-chemical ) O derivatives O , O including O 4 B-chemical - I-chemical HPA I-chemical . O Moreover O , O these O findings O are O important O because O the O activity O of O NadR B-protein impacts O the O potential O coverage O provided O by O anti O - O NadA B-protein antibodies O elicited O by O the O Bexsero O vaccine O and O influences O host O - O bacteria B-taxonomy_domain interactions O that O contribute O to O meningococcal B-taxonomy_domain pathogenesis O . O In O analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method high I-experimental_method - I-experimental_method performance I-experimental_method liquid I-experimental_method chromatography I-experimental_method ( O SE B-experimental_method - I-experimental_method HPLC I-experimental_method ) O experiments O coupled O with O multi B-experimental_method - I-experimental_method angle I-experimental_method laser I-experimental_method light I-experimental_method scattering I-experimental_method ( O MALLS B-experimental_method ), O NadR B-protein presented O a O single O species O with O an O absolute O molecular O mass O of O 35 O kDa O ( O S1 O Fig O ). O ( O A O ) O Molecular O structures O of O 3 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 4 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O MW O 186 O . O 6 O ) O and O salicylic B-chemical acid I-chemical ( O MW O 160 O . O 1 O ). O ( O B O ) O DSC B-experimental_method profiles B-evidence , O colored O as O follows O : O apo B-protein_state - O NadR B-protein ( O violet O ), O NadR B-complex_assembly + I-complex_assembly salicylate I-complex_assembly ( O red O ), O NadR B-complex_assembly + I-complex_assembly 3 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ), O NadR B-complex_assembly + I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O blue O ), O NadR B-complex_assembly + I-complex_assembly 3Cl I-complex_assembly , I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O pink O ). O All O DSC B-experimental_method profiles B-evidence are O representative O of O triplicate O experiments O . O However O , O steady B-experimental_method - I-experimental_method state I-experimental_method SPR I-experimental_method analyses O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O allowed O determination O of O the O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O ( O Table O 1 O and O S2 O Fig O ). O The O interactions O of O 4 B-chemical - I-chemical HPA I-chemical and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical with O NadR B-protein exhibited O KD B-evidence values O of O 1 O . O 5 O mM O and O 1 O . O 1 O mM O , O respectively O . O To O fully O characterize O the O NadR B-protein / O HPA B-chemical interactions O , O we O sought O to O determine O crystal B-evidence structures I-evidence of O NadR B-protein in O ligand B-protein_state - I-protein_state bound I-protein_state ( O holo B-protein_state ) O and O ligand B-protein_state - I-protein_state free I-protein_state ( O apo B-protein_state ) O forms O . O The O map B-evidence is O contoured O at O 1σ O and O the O figure O was O prepared O with O a O density B-evidence mesh I-evidence carve O factor O of O 1 O . O 7 O , O using O Pymol O ( O www O . O pymol O . O org O ). O Only O the O mutation O L130K B-mutant has O a O noteworthy O effect O on O the O oligomeric O state O , O inducing O a O second O peak O with O a O longer O retention O time O and O a O second O peak O maximum O at O 18 O . O 6 O min O . O To O a O much O lesser O extent O , O the O L133K B-mutant mutation O also O appears O to O induce O a O ‘ O shoulder O ’ O to O the O main O peak O , O suggesting O very O weak O ability O to O disrupt O the O dimer B-oligomeric_state . O ( O D O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method / I-experimental_method MALLS I-experimental_method analyses O of O the O L130K B-mutant mutant B-protein_state , O shows O 20 O % O dimer B-oligomeric_state and O 80 O % O monomer B-oligomeric_state . O The O ligand O showed O a O different O position O and O orientation O compared O to O salicylate B-chemical complexed B-protein_state with I-protein_state MTH313 B-protein and O ST1710 B-protein ( O see O Discussion O ). O At O the O other O ‘ O end O ’ O of O the O ligand O , O the O 4 O - O hydroxyl O group O was O proximal O to O AspB36 B-residue_name_number , O with O which O it O may O establish O an O H B-bond_interaction - I-bond_interaction bond I-bond_interaction ( O see O bond O distances O in O Table O 3 O ). O The O water B-chemical molecule O observed O in O the O pocket O was O bound O by O the O carboxylate O group O and O the O side O chains O of O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number . O In O addition O to O the O H B-bond_interaction - I-bond_interaction bonds I-bond_interaction involving O the O carboxylate O and O hydroxyl O groups O of O 4 B-chemical - I-chemical HPA I-chemical , O binding O of O the O phenyl O moiety O appeared O to O be O stabilized O by O several O van B-bond_interaction der I-bond_interaction Waals I-bond_interaction ’ I-bond_interaction contacts I-bond_interaction , O particularly O those O involving O the O hydrophobic O side O chain O atoms O of O LeuB21 B-residue_name_number , O MetB22 B-residue_name_number , O PheB25 B-residue_name_number , O LeuB29 B-residue_name_number and O ValB111 B-residue_name_number ( O Fig O 4A O ). O The O presence O of O a O single O hydroxyl O group O at O position O 2 O , O as O in O 2 B-chemical - I-chemical HPA I-chemical , O rather O than O at O position O 4 O , O would O eliminate O the O possibility O of O favorable O interactions O with O AspB36 B-residue_name_number , O resulting O in O the O lack O of O NadR B-protein regulation O by O 2 B-chemical - I-chemical HPA I-chemical described O previously O . O Firstly O , O NadR B-protein is O expected O to O be O covalently O immobilized O on O the O sensor O chip O as O a O dimer B-oligomeric_state in O random O orientations O , O since O it O is O a O stable B-protein_state dimer B-oligomeric_state in O solution O and O has O sixteen O lysines B-residue_name well O - O distributed O around O its O surface O , O all O able O to O act O as O potential O sites O for O amine O coupling O to O the O chip O , O and O none O of O which O are O close O to O the O ligand B-site - I-site binding I-site pocket I-site . O Secondly O , O the O HPA B-chemical analytes O are O all O very O small O ( O MW O 150 O – O 170 O , O Fig O 1A O ) O and O therefore O are O expected O to O be O able O to O diffuse O readily O into O all O potential O binding B-site sites I-site , O irrespective O of O the O random O orientations O of O the O immobilized O NadR B-protein dimers B-oligomeric_state on O the O chip O . O The O crystallographic B-evidence data I-evidence , O supported O by O the O SPR B-experimental_method studies O of O binding B-evidence stoichiometry I-evidence , O revealed O the O lack O of O a O second O 4 B-chemical - I-chemical HPA I-chemical molecule O in O the O homodimer B-oligomeric_state , O suggesting O negative O co O - O operativity O , O a O phenomenon O previously O described O for O the O MTH313 B-protein / O salicylate B-chemical interaction O and O for O other O MarR B-protein_type family O proteins O . O To O explore O the O molecular O basis O of O asymmetry O in O holo B-protein_state - O NadR B-protein , O we O superposed B-experimental_method its O ligand B-protein_state - I-protein_state free I-protein_state monomer B-oligomeric_state ( O chain B-structure_element A I-structure_element ) O onto O the O ligand B-protein_state - I-protein_state occupied I-protein_state monomer B-oligomeric_state ( O chain B-structure_element B I-structure_element ). O However O , O since O residues O of O helix B-structure_element α6 B-structure_element were O not O directly O involved O in O ligand O binding O , O an O explanation O for O the O lack O of O 4 B-chemical - I-chemical HPA I-chemical in O monomer B-oligomeric_state A B-structure_element did O not O emerge O by O analyzing O only O these O backbone O atom O positions O , O suggesting O that O a O more O complex O series O of O allosteric O events O may O occur O . O Specifically O , O upon O analysis O with O the O CASTp B-experimental_method software O , O the O pocket B-site in O chain B-structure_element B I-structure_element containing O the O 4 B-chemical - I-chemical HPA I-chemical exhibited O a O total O volume O of O approximately O 370 O Å3 O , O while O the O pocket B-site in O chain B-structure_element A I-structure_element was O occupied O by O these O three O side O chains O that O adopted O ‘ O inward B-protein_state ’ O positions O and O thereby O divided O the O space O into O a O few O much O smaller O pockets O , O each O with O volume O < O 50 O Å3 O , O evidently O rendering O chain B-structure_element A I-structure_element unfavorable O for O ligand O binding O . O Although O more O comprehensive O NMR B-experimental_method experiments O and O full O chemical O shift O assignment O of O the O spectra B-evidence would O be O required O to O precisely O define O this O multi O - O state O behavior O , O the O NMR B-experimental_method data O clearly O demonstrate O that O NadR B-protein exhibits O conformational O flexibility O which O is O modulated O by O 4 B-chemical - I-chemical HPA I-chemical in O solution O . O ( O A O ) O The O holo B-protein_state - O homodimer B-oligomeric_state structure B-evidence is O shown O as O green O and O blue O cartoons O , O for O chain B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O , O while O the O two O homodimers B-oligomeric_state of O apo B-protein_state - O NadR B-protein are O both O cyan O and O pale O blue O for O chains O A B-structure_element / I-structure_element C I-structure_element and O B B-structure_element / I-structure_element D I-structure_element , O respectively O . O The O three O homodimers B-oligomeric_state ( O chains O AB B-structure_element holo B-protein_state , O AB B-structure_element apo B-protein_state , O and O CD B-structure_element apo B-protein_state ) O were O overlaid B-experimental_method by O structural B-experimental_method alignment I-experimental_method exclusively O of O all O heavy O atoms O in O residues O R64 B-residue_range - I-residue_range A77 I-residue_range ( O shown O in O red O , O with O side O chain O sticks O ) O of O chains O A B-structure_element holo B-protein_state , O A B-structure_element apo B-protein_state , O and O C B-structure_element apo B-protein_state , O belonging O to O helix B-structure_element α4 B-structure_element ( O left O ). O Thus O , O the O apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element presented O the O DNA B-structure_element - I-structure_element binding I-structure_element helices I-structure_element in O a O conformation O similar O to O that O observed O in O the O protein O : O DNA O complex O of O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly from O Bacillus B-species subtilis I-species ( O Fig O 8C O ). O This O mutagenesis B-experimental_method data O revealed O that O NadR B-protein residues O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number play O key O roles O in O the O ligand O - O mediated O regulation O of O NadR B-protein ; O they O are O each O involved O in O the O controlled O de O - O repression O of O the O nadA B-gene promoter O and O synthesis O of O NadA B-protein in O response O to O 4 B-chemical - I-chemical HPA I-chemical in O vivo O . O Given O the O importance O of O NadR B-protein - O mediated O regulation O of O NadA B-protein levels O in O the O contexts O of O meningococcal B-taxonomy_domain pathogenesis O , O we O sought O to O characterize O NadR B-protein , O and O its O interaction O with O ligands O , O at O atomic O resolution O . O ( O B O ) O A O structural B-experimental_method alignment I-experimental_method of O MTH313 B-protein chain B-structure_element A I-structure_element and O ST1710 B-protein ( O pink O ) O ( O Cα O rmsd B-evidence 2 O . O 3Å O ), O shows O that O they O bind O salicylate B-chemical in O equivalent O sites O ( O differing O by O only O ~ O 3Å O ) O and O with O the O same O orientation O . O While O some O flexibility O of O helix B-structure_element α4 B-structure_element was O also O observed O in O the O two O apo B-protein_state - O structures B-evidence , O concomitant O changes O in O the O dimer B-site interfaces I-site were O not O observed O , O possibly O due O to O the O absence B-protein_state of I-protein_state ligand I-protein_state . O The O latter O may O influence O the O surface O abundance O or O secretion O of O maf O proteins O , O an O emerging O class O of O highly B-protein_state conserved I-protein_state meningococcal B-taxonomy_domain putative O adhesins O and O toxins O with O many O important O roles O . O Further O work O is O required O to O investigate O how O the O two O different O promoter O types O influence O the O ligand O - O responsiveness O of O NadR B-protein during O bacterial B-taxonomy_domain infection O and O may O provide O insights O into O the O regulatory O mechanisms O occurring O during O these O host O - O pathogen O interactions O . O Structure O of O an O OhrR O - O ohrA B-gene operator O complex O reveals O the O DNA O binding O mechanism O of O the O MarR O family O Structural O determinant O for O inducing O RORgamma B-protein specific O inverse O agonism O triggered O by O a O synthetic O benzoxazinone B-chemical ligand O Our O goal O was O to O develop O a O RORγ B-protein specific O inverse B-protein_state agonist I-protein_state that O would O help O down O regulate O pro O - O inflammatory O gene O transcription O by O disrupting O the O protein O protein O interaction O with O coactivator O proteins O as O a O therapeutic O agent O . O Using O an O in B-experimental_method vivo I-experimental_method reporter I-experimental_method assay I-experimental_method , O we O show O that O the O inverse B-protein_state agonist I-protein_state BIO399 B-chemical displayed O specificity O for O RORγ B-protein over O ROR B-protein_type sub O - O family O members O α B-protein and O β B-protein . O The O synthetic O benzoxazinone B-chemical ligands O identified O in O our O FRET B-experimental_method assay I-experimental_method have O an O agonist B-protein_state ( O BIO592 B-chemical ) O or O inverse B-protein_state agonist I-protein_state ( O BIO399 B-chemical ) O effect O by O stabilizing O or O destabilizing O the O agonist B-protein_state conformation O of O RORγ B-protein . O Our O structural B-experimental_method investigation I-experimental_method of O the O BIO592 B-chemical agonist B-protein_state and O BIO399 B-chemical inverse B-protein_state agonist I-protein_state structures B-evidence identified O residue O Met358 B-residue_name_number on O RORγ B-protein as O the O trigger O for O RORγ B-protein specific O inverse O agonism O . O Retinoid B-protein - I-protein related I-protein orphan I-protein receptor I-protein gamma I-protein ( O RORγ B-protein ) O is O a O transcription B-protein_type factor I-protein_type belonging O to O a O sub O - O family O of O nuclear B-protein_type receptors I-protein_type that O includes O two O closely O related O members O RORα B-protein and O RORβ B-protein . O Here O we O present O the O identification O of O two O synthetic O benzoxazinone B-chemical RORγ B-protein ligands O , O a O weak O agonist B-protein_state BIO592 B-chemical ( O Fig O . O 1a O ) O and O an O inverse B-protein_state agonist I-protein_state BIO399 B-chemical ( O Fig O . O 1b O ) O which O were O identified O using O a O Fluorescence B-experimental_method Resonance I-experimental_method Energy I-experimental_method transfer I-experimental_method ( I-experimental_method FRET I-experimental_method ) I-experimental_method based I-experimental_method assay I-experimental_method that O monitored O coactivator O peptide O recruitment O . O Using O partial B-experimental_method proteolysis I-experimental_method in O combination O with O mass B-experimental_method spectrometry I-experimental_method analysis O we O demonstrate O that O the O AF2 B-structure_element helix I-structure_element of O RORγ B-protein destabilizes O upon O BIO399 B-chemical ( O inverse B-protein_state agonist I-protein_state ) O binding O . O Using O a O FRET B-experimental_method based I-experimental_method assay I-experimental_method we O discovered O agonist B-protein_state BIO592 B-chemical ( O Fig O . O 1a O ) O which O increased O the O coactivator O peptide O TRAP220 B-chemical recruitment O to O RORγ B-protein ( O EC50 B-evidence 0f O 58nM O and O Emax B-evidence of O 130 O %) O and O a O potent O inverse B-protein_state agonist I-protein_state BIO399 B-chemical ( O Fig O . O 1b O ) O which O inhibited O coactivator O recruitment O ( O IC50 B-evidence : O 4 O . O 7nM O ). O c O EBI96 B-chemical coactivator O peptide O bound B-protein_state in I-protein_state the O coactivator B-site pocket I-site of O RORγ B-protein Specific O proteolytic O positions O on O RORγ518 B-protein when O treated B-experimental_method with I-experimental_method Actinase B-protein E I-protein alone O ( O Green O ) O or O in O the O presence B-protein_state of I-protein_state BIO399 B-chemical ( O Red O ) O and O shared O proteolytic B-site sites I-site ( O Yellow O ) O Several O rounds O of O cocrystallization B-experimental_method attempts O with O RORγ518 B-protein or O other O RORγ B-protein AF2 B-structure_element helix I-structure_element containing O constructs O complexed B-protein_state with I-protein_state BIO399 B-chemical had O not O produced O crystals B-evidence . O We O reasoned O that O if O we O could O remove O the O unfolded B-protein_state AF2 B-structure_element helix I-structure_element using O proteolysis B-experimental_method we O could O produce O a O binary O complex O more O amenable O to O crystallization B-experimental_method . O The O aeRORγ493 B-complex_assembly / I-complex_assembly 4 I-complex_assembly BIO399 I-complex_assembly structure B-evidence diverged O at O the O c O - O terminal O end O of O Helix B-structure_element 11 I-structure_element from O the O RORγ518 B-complex_assembly BIO592 I-complex_assembly EBI96 I-complex_assembly structure B-evidence , O where O helix B-structure_element 11 I-structure_element unwinds O into O a O random O coil O after O residue O L475 B-residue_name_number . O BIO399 B-chemical binds O to O the O ligand B-site binding I-site site I-site of O RORγ B-protein adopting O a O collapsed B-protein_state conformation O as O seen O with O BIO592 B-chemical where O the O two O compounds O superimpose B-experimental_method with O an O RMSD B-evidence of O 0 O . O 72 O Å O ( O Fig O . O 5b O ). O BIO399 B-chemical and O Inverse B-protein_state agonist I-protein_state T0901317 B-chemical bind O in O a O collapsed B-protein_state conformation O distinct O from O other O RORγ B-protein Inverse O Agonists O Cocrystal B-evidence structures I-evidence However O , O the O inverse O agonism O trigger O of O BIO399 B-chemical , O residue O Met358 B-residue_name_number , O is O a O leucine B-residue_name in O both O RORα B-protein and O β B-protein . O The O Structural O Basis O of O Coenzyme B-chemical A I-chemical Recycling O in O a O Bacterial B-taxonomy_domain Organelle O The O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O compartmentalize O a O common O core O of O enzymes O to O metabolize O compounds O via O a O toxic O and O / O or O volatile O aldehyde B-chemical intermediate O . O Accordingly O , O PduL B-protein_type and O Pta B-protein_type exemplify O functional O , O but O not O structural O , O convergent O evolution O . O This O enzyme O , O PduL B-protein_type , O is O exclusively B-protein_state associated O with O organelles O called O bacterial B-taxonomy_domain microcompartments B-complex_assembly , O which O are O used O to O catabolize O various O compounds O . O The O aldehyde B-chemical is O subsequently O converted O into O an O acyl B-chemical - I-chemical CoA I-chemical by O aldehyde B-protein_type dehydrogenase I-protein_type , O which O uses O NAD B-chemical + I-chemical and O CoA B-chemical as O cofactors O . O NAD B-chemical + I-chemical is O recycled O via O alcohol B-protein_type dehydrogenase I-protein_type , O and O CoA B-chemical is O recycled O via O phosphotransacetylase B-protein_type ( O PTAC B-protein_type ) O ( O Fig O 1 O ). O They O can O also O work O in O the O reverse O direction O to O activate O acetate B-chemical to O the O CoA B-chemical - I-chemical thioester I-chemical . O The O canonical O PTAC B-protein_type , O Pta B-protein_type , O is O an O ancient O enzyme O found O in O some O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain , O and O widespread O among O the O bacteria B-taxonomy_domain ; O 90 O % O of O the O bacterial B-taxonomy_domain genomes O in O the O Integrated O Microbial O Genomes O database O contain O a O gene O encoding O the O PTA_PTB B-protein_type phosphotransacylase I-protein_type ( O Pfam O domain O PF01515 B-structure_element ). O The O primary O structure O of O PduL B-protein_type homologs O is O subdivided O into O two O PF06130 B-structure_element domains O , O each O roughly O 80 B-residue_range residues I-residue_range in I-residue_range length I-residue_range . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type Remarkably O , O after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 27 B-residue_range amino I-residue_range acids I-residue_range ), O most O of O the O sPduLΔEP B-mutant protein O was O in O the O soluble O fraction O upon O cell O lysis O . O A O CoA B-chemical cofactor O as O well O as O two O metal O ions O are O clearly O resolved O in O the O density B-evidence ( O for O omit B-evidence maps I-evidence of O CoA B-chemical see O S2 O Fig O ). O The O sequences O aligning O to O the O PF06130 B-structure_element domain O ( O determined O by O BLAST O ) O are O highlighted O in O red O and O blue O . O Distances O between O atom O centers O are O indicated O in O Å O . O ( O a O ) O Coenzyme B-chemical A I-chemical containing O , O ( O b O ) O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence . O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O phosphate B-chemical contacts O both O zinc B-chemical atoms O ( O Fig O 4b O ) O and O replaces O the O coordination O by O CoA B-chemical at O Zn1 B-chemical ; O the O coordination O for O Zn2 B-chemical changes O from O octahedral O with O three O bound O waters B-chemical to O tetrahedral O with O a O phosphate B-chemical ion O as O one O of O the O ligands O ( O Fig O 4b O ). O The O two O zinc B-chemical atoms O are O slightly O closer O together O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state form O ( O 5 O . O 8 O Å O vs O 6 O . O 3 O Å O ), O possibly O due O to O the O bridging O effect O of O the O phosphate B-chemical . O rPduL B-protein full B-protein_state length I-protein_state runs O as O Mw B-evidence = O 140 O . O 3 O kDa O +/− O 1 O . O 2 O % O and O Mn B-evidence = O 140 O . O 5 O kDa O +/− O 1 O . O 2 O %. O Moreover O , O the O PduL B-protein_type crystal B-evidence structures I-evidence offer O a O clue O as O to O how O required O cofactors O enter O the O BMC B-complex_assembly lumen O during O assembly O . O The O native O substrate O for O the O forward O reaction O of O rPduL B-protein and O pPduL B-protein , O propionyl B-chemical - I-chemical CoA I-chemical , O most O likely O binds O to O the O enzyme O in O the O same O way O at O the O observed O nucleotide B-chemical and O pantothenic B-chemical acid I-chemical moiety O , O but O the O propionyl O group O in O the O CoA B-chemical - I-chemical thioester I-chemical might O point O in O a O different O direction O . O Indeed O , O in O the O majority O of O PduLs B-protein_type encoded O in O pvm B-gene loci I-gene , O Gln77 B-residue_name_number is O substituted O by O either O a O Tyr B-residue_name or O Phe B-residue_name , O whereas O it O is O typically O a O Gln B-residue_name or O Glu B-residue_name in O PduLs B-protein_type in O all O other O BMC B-complex_assembly types O that O degrade O acetyl B-chemical - I-chemical or O propionyl B-chemical - I-chemical CoA I-chemical . O A O comparison B-experimental_method of O the O PduL B-protein_type active B-site site I-site to O that O of O the O functionally O identical O Pta B-protein_type suggests O that O the O two O enzymes O have O distinctly O different O mechanisms O . O The O two O high O - O resolution O crystal B-evidence structures I-evidence presented O here O will O serve O as O the O foundation O for O mechanistic O studies O on O this O noncanonical O PTAC B-protein_type enzyme O to O determine O how O the O dimetal B-site active I-site site I-site functions O to O catalyze O both O forward O and O reverse O reactions O . O There O could O be O some O intrinsic O biochemical O difference O between O the O two O enzymes O that O renders O PduL B-protein_type a O more O attractive O candidate O for O encapsulation O in O a O BMC B-complex_assembly — O for O example O , O PduL B-protein_type might O be O more O amenable O to O tight O packaging O , O or O is O better O suited O for O the O chemical O microenvironment O formed O within O the O lumen O of O the O BMC B-complex_assembly , O which O can O be O quite O different O from O the O cytosol O . O A O detailed O understanding O of O the O underlying O principles O governing O the O assembly O and O internal O structural O organization O of O BMCs B-complex_assembly is O a O requisite O for O synthetic O biologists O to O design O custom O nanoreactors O that O use O BMC B-complex_assembly architectures O as O a O template O . O Furthermore O , O given O the O growing O number O of O metabolosomes B-complex_assembly implicated O in O pathogenesis O , O the O PduL B-protein_type structure B-evidence will O be O useful O in O the O development O of O therapeutics O . O EctC B-protein forms O a O dimer B-oligomeric_state with O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state arrangement O , O both O in O solution O and O in O the O crystal B-evidence structure I-evidence . O We O show O for O the O first O time O that O ectoine B-protein_type synthase I-protein_type harbors O a O catalytically O important O metal B-chemical co O - O factor O ; O metal B-experimental_method depletion I-experimental_method and I-experimental_method reconstitution I-experimental_method experiments I-experimental_method suggest O that O EctC B-protein is O probably O an O iron B-protein_state - I-protein_state dependent I-protein_state enzyme O . O Structure B-experimental_method - I-experimental_method guided I-experimental_method site I-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method experiments O targeting O amino O acid O residues O that O are O evolutionarily B-protein_state highly I-protein_state conserved I-protein_state among O the O extended O EctC B-protein_type protein I-protein_type family I-protein_type , O including O those O forming O the O presumptive O iron B-site - I-site binding I-site site I-site , O were O conducted O to O functionally O analyze O the O properties O of O the O resulting O EctC B-protein variants O . O This O stereospecific O chemical O modification O of O ectoine B-chemical ( O Fig O 1 O ) O is O catalyzed O by O the O ectoine B-protein_type hydroxylase I-protein_type ( O EctD B-protein_type ) O ( O EC O 1 O . O 14 O . O 11 O ), O a O member O of O the O non B-protein_type - I-protein_type heme I-protein_type containing I-protein_type iron I-protein_type ( I-protein_type II I-protein_type ) I-protein_type and I-protein_type 2 I-protein_type - I-protein_type oxoglutarate I-protein_type - I-protein_type dependent I-protein_type dioxygenase I-protein_type superfamily I-protein_type . O Scheme O of O the O ectoine B-chemical and O 5 B-chemical - I-chemical hydroxyectoine I-chemical biosynthetic O pathway O . O The O EctC B-protein protein O forms O a O dimer B-oligomeric_state in O solution O and O our O structural B-experimental_method analysis I-experimental_method identifies O it O as O a O member O of O the O cupin B-protein_type superfamily I-protein_type . O ( O Sa B-species ) O EctC B-protein is O a O highly O salt O - O tolerant O enzyme O since O it O exhibited O substantial O enzyme O activity O even O at O NaCl B-chemical and O KCl B-chemical concentrations O of O 1 O M O in O the O assay O buffer O ( O S3c O and O S3d O Fig O ). O The O ectoine B-protein_type synthase I-protein_type is O a O metal B-protein_type - I-protein_type containing I-protein_type protein I-protein_type The O amino O acid O sequences O of O 20 O selected O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type are O compared O . O A O metal B-chemical cofactor O is O important O for O the O catalytic O activity O of O EctC B-protein To O address O these O questions O , O we O incubated B-experimental_method the O ( O Sa B-species ) O EctC B-protein enzyme O with B-experimental_method increasing I-experimental_method concentrations I-experimental_method of O the O metal B-chemical chelator O ethylene B-chemical - I-chemical diamine I-chemical - I-chemical tetraacetic I-chemical - I-chemical acid I-chemical ( O EDTA B-chemical ) O and O subsequently O assayed O ectoine B-protein_type synthase I-protein_type activity O . O The O EctC B-protein - O catalyzed O ring O - O closure O of O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical to O form O ectoine B-chemical exhibited O Michaelis B-experimental_method - I-experimental_method Menten I-experimental_method - I-experimental_method kinetics I-experimental_method with O an O apparent O Km B-evidence of O 4 O . O 9 O ± O 0 O . O 5 O mM O , O a O vmax B-evidence of O 25 O . O 0 O ± O 0 O . O 8 O U O / O mg O and O a O kcat B-evidence of O 7 O . O 2 O s O - O 1 O ( O S4a O Fig O ). O ( O Sa B-species ) O EctC B-protein catalyzed O this O reaction O with O Michaelis B-experimental_method - I-experimental_method Menten I-experimental_method - I-experimental_method kinetics I-experimental_method exhibiting O an O apparent O Km B-evidence of O 25 O . O 4 O ± O 2 O . O 9 O mM O , O a O vmax B-evidence of O 24 O . O 6 O ± O 1 O . O 0 O U O / O mg O and O a O kcat B-evidence 0 O . O 6 O s O - O 1 O ( O S4b O Fig O ). O However O , O two O crystal B-evidence forms I-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O in O the O absence B-protein_state of I-protein_state the O substrate O were O obtained O . O Overall O fold O of O the O ( O Sa B-species ) O EctC B-protein protein O The O β B-structure_element - I-structure_element strands I-structure_element are O numbered O β1 B-structure_element - I-structure_element β11 I-structure_element and O the O helices B-structure_element α B-structure_element - I-structure_element I I-structure_element to I-structure_element α I-structure_element - I-structure_element II I-structure_element . O The O entrance O to O the O active B-site site I-site of O the O ectoine B-protein_type synthase I-protein_type is O marked O . O ( O c O ) O Overlay B-experimental_method of O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O and O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structures B-evidence . O Hence O , O ( O Sa B-species ) O EctC B-protein adopts O an O overall O bowl O shape O in O which O one O side O is O opened O towards O the O solvent O ( O Fig O 4a O to O 4c O ). O The O formation O of O this O α B-structure_element - I-structure_element II I-structure_element helix I-structure_element induces O a O reorientation O and O shift O of O a O long O unstructured B-protein_state loop B-structure_element ( O as O observed O in O the O “ O open B-protein_state ” O structure B-evidence ) O connecting O β4 B-structure_element and O β6 B-structure_element , O resulting O in O the O formation O of O the O stable B-protein_state β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element as O observed O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O state O of O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 4a O ). O Both O the O SEC B-experimental_method analysis O and O the O HPLC B-experimental_method - I-experimental_method MALS I-experimental_method experiments O ( O S2b O Fig O ) O have O shown O that O the O ectoine B-protein_type synthase I-protein_type from O S B-species . I-species alaskensis I-species is O a O dimer B-oligomeric_state in O solution O . O The O crystal B-evidence structure I-evidence of O this O protein O reflects O this O quaternary O arrangement O . O As O calculated O with O PDBePISA B-experimental_method , O the O surface O area O buried O upon O dimer B-oligomeric_state formation O is O 1462 O Å2 O , O which O is O 20 O . O 5 O % O of O the O total O accessible O surface O of O a O monomer B-oligomeric_state of O this O protein O . O In O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence , O one O monomer B-oligomeric_state is O present O in O the O asymmetric O unit O . O We O therefore O inspected O the O crystal O packing B-experimental_method and O analyzed O the O monomer B-oligomeric_state - O monomer B-oligomeric_state interactions O with O symmetry O related O molecules O to O elucidate O whether O a O physiologically O relevant O dimer B-oligomeric_state could O be O deduced O from O this O crystal B-evidence form I-evidence as O well O . O These O additional O amino O acids O fold O into O a O small B-structure_element helix I-structure_element , O which O seals O the O open B-protein_state cavity B-site of O the O cupin B-structure_element - I-structure_element fold I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O ( O Fig O 4a O ). O As O a O result O , O the O newly O formed O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element is O reoriented O and O moved O by O 2 O . O 4 O Å O within O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence ( O Fig O 4a O to O 4c O ). O Therefore O the O sealing O of O the O cupin B-structure_element fold I-structure_element , O as O described O above O , O seem O to O have O an O indirect O influence O on O the O architecture O of O the O postulated O iron B-site - I-site binding I-site site I-site . O In O the O “ O open B-protein_state ” O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O , O this O interaction O does O not O occur O since O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number is O rotated O outwards O ( O Fig O 6a O and O 6b O ). O Hence O , O one O might O speculate O that O this O missing O interaction O might O be O responsible O for O the O flexibility O of O the O carboxy B-structure_element - I-structure_element terminus I-structure_element in O the O “ O open B-protein_state ” O ( O Sa B-species ) O EctC B-protein structure B-evidence and O consequently O results O in O less O well O defined O electron B-evidence density I-evidence in O this O region O . O These O distances O are O to O long O when O compared O to O other O iron B-site binding I-site sites I-site , O a O fact O that O might O be O caused O by O the O absence B-protein_state of I-protein_state the O proper O substrate O in O the O ( O Sa B-species ) O EctC B-protein crystal B-evidence structure I-evidence . O Since O both O the O refinement O and O the O distance O did O not O clearly O identify O an O iron B-chemical molecule O , O we O decided O to O conservatively O place O a O water B-chemical molecule O at O this O position O . O Only O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number is O slightly O rotated O inwards O in O the O “ O semi B-protein_state - I-protein_state closed I-protein_state ” O structure B-evidence , O most O likely O due O to O formation O of O β B-structure_element - I-structure_element strand I-structure_element β5 B-structure_element as O described O above O . O Taken O together O , O this O observations O indicate O , O that O the O architecture O of O the O presumptive O iron B-site - I-site binding I-site site I-site is O pre O - O set O for O the O binding O of O the O catalytically O important O metal B-chemical by O the O ectoine B-protein_type synthase I-protein_type . O This O is O in O contrast O to O the O high O - O resolution O “ O open B-protein_state ” O structure B-evidence of O the O ( O Sa B-species ) O EctC B-protein protein O where O no O additional O electron B-evidence density I-evidence was O observed O after O refinement O . O When O analyzing O the O interactions O of O this O compound O within O the O ( O Sa B-species ) O EctC B-protein protein O , O we O found O that O it O is O bound B-protein_state via O interactions O with O Trp B-residue_name_number - I-residue_name_number 21 I-residue_name_number and O Ser B-residue_name_number - I-residue_name_number 23 I-residue_name_number of O β B-structure_element - I-structure_element sheet I-structure_element β3 B-structure_element , O Thr B-residue_name_number - I-residue_name_number 40 I-residue_name_number located O in O β B-structure_element - I-structure_element sheet I-structure_element β4 B-structure_element , O and O Cys B-residue_name_number - I-residue_name_number 105 I-residue_name_number and O Phe B-residue_name_number - I-residue_name_number 107 I-residue_name_number , O which O are O both O part O of O β B-structure_element - I-structure_element sheet I-structure_element β11 B-structure_element . O As O described O above O , O the O side O chains O of O Glu B-residue_name_number - I-residue_name_number 57 I-residue_name_number , O Tyr B-residue_name_number - I-residue_name_number 85 I-residue_name_number , O and O His B-residue_name_number - I-residue_name_number 93 I-residue_name_number are O probably O involved O in O iron B-chemical binding O ( O Table O 1 O and O Fig O 6a O ). O However O , O the O Cys B-mutant - I-mutant 105 I-mutant / I-mutant Ala I-mutant variant B-protein_state was O practically O catalytically B-protein_state inactive I-protein_state while O largely O maintaining O its O iron B-chemical content O ( O Table O 1 O ). O We O observed O two O amino B-experimental_method acid I-experimental_method substitutions I-experimental_method that O simultaneously O strongly O affected O enzyme O activity O and O iron B-chemical content O ; O these O were O the O Tyr B-mutant - I-mutant 52 I-mutant / I-mutant Ala I-mutant and O the O His B-mutant - I-mutant 55 I-mutant / I-mutant Ala I-mutant ( O Sa B-species ) O EctC B-protein protein O variants O ( O Table O 1 O ). O The O carboxy B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O ( O Sa B-species ) O EctC B-protein protein O is O held O in O its O position O via O an O interaction O of O Glu B-residue_name_number - I-residue_name_number 115 I-residue_name_number with O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number , O where O His B-residue_name_number - I-residue_name_number 55 I-residue_name_number in O turn O interacts O with O Pro B-residue_name_number - I-residue_name_number 110 I-residue_name_number ( O Fig O 6a O and O 6b O ). O The O Glu B-mutant - I-mutant 115 I-mutant / I-mutant Ala I-mutant mutant B-protein_state possessed O wild B-protein_state - I-protein_state type I-protein_state levels O of O iron B-chemical , O whereas O the O iron B-chemical content O of O the O His B-mutant - I-mutant 55 I-mutant / I-mutant Ala I-mutant substitutions O dropped O to O 15 O % O of O the O wild B-protein_state - I-protein_state type I-protein_state level O ( O Table O 1 O ). O As O a O consequence O of O the O structural O relatedness O of O EctC B-protein and O RemF B-protein and O the O type O of O chemical O reaction O these O two O enzymes O catalyze O , O is O now O understandable O why O bona O fide O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type are O frequently O ( O mis O )- O annotated O in O microbial B-taxonomy_domain genome O sequences O as O “ O RemF B-protein_type - I-protein_type like I-protein_type ” O proteins O . O Except O for O some O cupin B-protein_type - I-protein_type related I-protein_type proteins I-protein_type that O seem O to O function O as O metallo B-protein_type - I-protein_type chaperones I-protein_type , O the O bound B-protein_state metal B-chemical is O typically O an O essential O part O of O the O active B-site sites I-site . O The O architecture O of O the O metal B-site center I-site of O ectoine B-protein_type synthase I-protein_type seems O to O be O subjected O to O considerable O evolutionary O constraints O . O This O set O of O data O and O the O fact O that O the O targeted O residues O are O strongly B-protein_state conserved I-protein_state among O EctC B-protein_type - I-protein_type type I-protein_type proteins I-protein_type ( O Fig O 2 O ) O is O consistent O with O their O potential O role O in O N B-chemical - I-chemical γ I-chemical - I-chemical ADABA I-chemical binding O or O enzyme O catalysis O . O Because O microbial B-taxonomy_domain ectoine B-chemical producers O can O colonize O ecological O niches O with O rather O different O physicochemical O attributes O , O it O seems O promising O to O exploit O this O considerable O biodiversity O to O identify O EctC B-protein_type proteins I-protein_type with O enhanced O protein O stability O . O Structural O basis O for O the O regulation O of O enzymatic O activity O of O Regnase B-protein - I-protein 1 I-protein by O domain O - O domain O interactions O Domain O structures B-evidence of O Regnase B-protein - I-protein 1 I-protein The O domain O structures B-evidence of O NTD B-structure_element , O ZF B-structure_element , O and O CTD B-structure_element were O determined O by O NMR B-experimental_method ( O Fig O . O 1b O , O d O , O e O ). O Based O on O the O decrease O in O the O free O RNA B-chemical fluorescence O band O , O we O evaluated O the O contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNA B-chemical binding O . O Contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNase B-protein_type activity O It O should O be O noted O that O NTD B-mutant - I-mutant PIN I-mutant ( I-mutant DDNN I-mutant )- I-mutant ZF I-mutant , O which O possesses O the O NTD B-structure_element but O lacks B-protein_state the O catalytic B-site residues I-site in O PIN B-structure_element , O completely O lost O all O RNase B-protein_type activity O ( O Fig O . O 1g O , O right O panel O ), O as O expected O , O confirming O that O the O RNase B-protein_type catalytic B-site center I-site is O located O in O the O PIN B-structure_element domain O . O By O comparison B-experimental_method with I-experimental_method the I-experimental_method elution I-experimental_method volume I-experimental_method of I-experimental_method standard I-experimental_method marker I-experimental_method proteins I-experimental_method , O the O PIN B-structure_element domain O was O assumed O to O be O in O equilibrium O between O a O monomer B-oligomeric_state and O a O dimer B-oligomeric_state in O solution O at O concentrations O in O the O 20 O – O 200 O μM O range O . O The O crystal B-evidence structure I-evidence of O the O PIN B-structure_element domain O has O been O determined O in O three O distinct O crystal B-evidence forms I-evidence with O a O space O group O of O P3121 O ( O form O I O in O this O study O and O PDB O ID O 3V33 O ), O P3221 O ( O form O II O in O this O study O ), O and O P41 O ( O PDB O ID O 3V32 O and O 3V34 O ), O respectively O . O Mutation B-experimental_method of O Arg215 B-residue_name_number , O whose O side O chain O faces O to O the O opposite O side O of O the O oligomeric B-site surface I-site , O to O Glu B-residue_name preserved O the O monomer B-oligomeric_state / O dimer B-oligomeric_state equilibrium O , O similar O to O the O wild B-protein_state type I-protein_state . O Therefore O , O we O concluded O that O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state PIN B-structure_element dimerization O , O together O with O the O NTD B-structure_element , O are O required O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O in O vitro O . O Likewise O , O upon O addition B-experimental_method of I-experimental_method the O PIN B-structure_element domain O , O NMR B-experimental_method signals O derived O from O R56 B-residue_name_number , O L58 B-residue_range - I-residue_range G59 I-residue_range , O and O V86 B-residue_range - I-residue_range H88 I-residue_range in O the O NTD B-structure_element exhibited O large O chemical O shift O changes O and O residues O D53 B-residue_name_number , O F55 B-residue_name_number , O K57 B-residue_name_number , O Y60 B-residue_range - I-residue_range S61 I-residue_range , O V68 B-residue_name_number , O T80 B-residue_range - I-residue_range G83 I-residue_range , O L85 B-residue_name_number , O and O G89 B-residue_name_number of O the O NTD B-structure_element as O well O as O side O chain O amide O signals O of O N79 B-residue_name_number exhibited O small O but O appreciable O chemical O shift O changes O ( O Fig O . O 3b O and O Supplementary O Fig O . O 5 O ). O The O importance O of O residues O W182 B-residue_name_number and O R183 B-residue_name_number can O readily O be O understood O in O terms O of O the O monomeric B-oligomeric_state PIN B-structure_element structure B-evidence as O they O are O located O near O to O the O RNase B-protein_type catalytic B-site site I-site ; O however O , O the O importance O of O residue O K184 B-residue_name_number , O which O points O away O from O the O active B-site site I-site is O more O easily O rationalized O in O terms O of O the O oligomeric O structure B-evidence , O in O which O the O “ O secondary O ” O chain O ’ O s O residue O K184 B-residue_name_number is O positioned O near O the O “ O primary B-protein_state ” I-protein_state chain O ’ O s O catalytic B-site site I-site ( O Fig O . O 4 O ). O It O should O be O noted O that O the O putative B-site - I-site RNA I-site binding I-site residues I-site K184 B-residue_name_number and O R214 B-residue_name_number are O unique O to O Regnase B-protein - I-protein 1 I-protein among O PIN B-structure_element domains O . O Molecular O mechanism O of O target O mRNA B-chemical cleavage O by O the O PIN B-structure_element dimer B-oligomeric_state Our O mutational B-experimental_method experiments I-experimental_method indicated O that O the O observed O dimer B-oligomeric_state is O functional O and O that O the O role O of O the O secondary B-protein_state PIN B-structure_element domain O is O to O position O Regnase B-protein - I-protein 1 I-protein - O unique O RNA B-site binding I-site residues I-site near O the O active B-site site I-site of O the O primary B-protein_state PIN B-structure_element domain O . O We O determined O the O individual O domain O structures B-evidence of O Regnase B-protein - I-protein 1 I-protein by O NMR B-experimental_method and O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Both O the O mouse B-taxonomy_domain and O human B-species PIN B-structure_element domains O form O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomers B-oligomeric_state in O three O distinct O crystal B-evidence forms I-evidence . O In O contrast O , O our O gel B-experimental_method filtration I-experimental_method data O , O mutational B-experimental_method analyses I-experimental_method , O and O NMR B-experimental_method spectra B-evidence all O indicate O that O the O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state in O solution O in O a O manner O similar O to O the O crystal B-evidence structure I-evidence . O Taken O together O , O this O suggests O that O the O NTD B-structure_element and O the O PIN B-structure_element domain O compete O for O a O common B-site binding I-site site I-site . O While O further O investigations O on O the O domain O - O domain O interactions O of O Regnase B-protein - I-protein 1 I-protein in O vivo O are O necessary O , O these O intramolecular O and O intermolecular O domain O interactions O of O Regnase B-protein - I-protein 1 I-protein appear O to O structurally O constrain O Regnase B-protein - I-protein 1activity I-protein , O which O , O in O turn O , O enables O tight O regulation O of O immune O responses O . O The O percentage O of O the O bound O IL B-protein_type - I-protein_type 6 I-protein_type was O calculated O based O on O the O fluorescence B-evidence intensities I-evidence of O the O free O IL B-protein_type - I-protein_type 6 I-protein_type quantified O in O ( O f O ). O ( O b O ) O Dimer B-oligomeric_state structure B-evidence of O the O PIN B-structure_element domain O . O Two O PIN B-structure_element molecules O in O the O crystal B-evidence were O colored O white O and O green O , O respectively O . O ( O a O ) O NMR B-experimental_method analyses I-experimental_method of O the O NTD B-structure_element - O binding O to O the O PIN B-structure_element domain O . O The O residues O with O significant O chemical O shift O changes O were O labeled O in O the O overlaid B-experimental_method spectra B-evidence ( O left O ) O and O colored O red O on O the O surface O and O ribbon O structure O of O the O PIN B-structure_element domain O ( O right O ). O The O NTD B-structure_element and O the O PIN B-structure_element domain O are O shown O in O cyan O and O white O , O respectively O . O Catalytic B-site residues I-site of O the O PIN B-structure_element domain O are O shown O in O sticks O , O and O the O residues O that O exhibited O significant B-evidence chemical I-evidence shift I-evidence changes I-evidence in O ( O a O , O b O ) O were O labeled O . O ( O b O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O basic O residue O mutants B-protein_state for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O The O mutations O whose O RNase B-protein_type activities O were O not O increased O in O the O presence B-protein_state of I-protein_state DDNN B-mutant mutant B-protein_state were O colored O in O blue O on O the O primary O PIN B-structure_element . O In O the O MEROPS O peptidase O database O , O clan B-protein_type CD I-protein_type contains O groups O ( O or O families O ) O of O cysteine B-protein_type peptidases I-protein_type that O share O some O highly B-protein_state conserved I-protein_state structural O elements O . O The O structure B-experimental_method was I-experimental_method analyzed I-experimental_method , O and O the O enzyme O was O biochemically B-experimental_method characterized I-experimental_method to O provide O the O first O structure O / O function O correlation O for O a O C11 B-protein_type peptidase I-protein_type . O The O crystal B-evidence structure I-evidence of O the O catalytically B-protein_state active I-protein_state form O of O PmC11 B-protein revealed O an O extended B-structure_element caspase I-structure_element - I-structure_element like I-structure_element α I-structure_element / I-structure_element β I-structure_element / I-structure_element α I-structure_element sandwich I-structure_element architecture O comprised O of O a O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O with O an O unusual O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ), O starting O at O Lys250 B-residue_name_number . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O His133 B-residue_name_number and O Cys179 B-residue_name_number were O found O at O locations O structurally O homologous O to O the O caspase B-protein_type catalytic B-site dyad I-site , O and O other O clan B-protein_type CD I-protein_type structures B-evidence , O at O the O C O termini O of O strands B-structure_element β5 B-structure_element and O β6 B-structure_element , O respectively O ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O C11 B-protein_type proteins O revealed O that O these O residues O are O highly B-protein_state conserved I-protein_state ( O data O not O shown O ). O B O , O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PmC11 B-protein . O Incubation B-experimental_method of O PmC11 B-protein at O 37 O ° O C O for O 16 O h O , O resulted O in O a O fully B-protein_state processed I-protein_state enzyme O that O remained O as O an O intact B-protein_state monomer B-oligomeric_state when O applied O to O a O size O - O exclusion O column O ( O Fig O . O 2B O ). O As O expected O , O PmC11 B-protein showed O no O activity O against O substrates O with O Pro B-residue_name or O Asp B-residue_name in O P1 B-residue_number but O was O active B-protein_state toward O substrates O with O a O basic O residue O in O P1 B-residue_number such O as O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical , O Z B-chemical - I-chemical GGR I-chemical - I-chemical AMC I-chemical , O and O BOC B-chemical - I-chemical VLK I-chemical - I-chemical AMC I-chemical . O The O rate O of O cleavage O was O ∼ O 3 O - O fold O greater O toward O the O single O Arg B-residue_name substrate O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical than O for O the O other O two O ( O Fig O . O 2F O ) O and O , O unexpectedly O , O PmC11 B-protein showed O no O activity O toward O BOC B-chemical - I-chemical K I-chemical - I-chemical AMC I-chemical . O These O results O confirm O that O PmC11 B-protein accepts O substrates O containing O Arg B-residue_name or O Lys B-residue_name in O P1 B-residue_number with O a O possible O preference O for O Arg B-residue_name . O Because O PmC11 B-protein recognizes O basic O substrates O , O the O tetrapeptide O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O tested O as O an O enzyme O inhibitor O and O was O found O to O inhibit B-protein_state both O the O autoprocessing B-ptm and O activity O of O PmC11 B-protein ( O Fig O . O 3A O ). O In O the O structure B-evidence of O PmC11 B-protein , O Asp207 B-residue_name_number resides O on O a O flexible O loop B-structure_element pointing O away O from O the O S1 B-site binding I-site pocket I-site ( O Fig O . O 3C O ). O The O position O and O orientation O of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O taken O from O superposition B-experimental_method of O the O PmC11 B-protein and O MALTI_P B-protein structures B-evidence and O indicates O the O presumed O active B-site site I-site of O PmC11 B-protein . O C O , O divalent O cations O do O not O increase O the O activity O of O PmC11 B-protein . O The O cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O the O presence O of O the O cations O Ca2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Cu2 B-chemical +, I-chemical Mg2 B-chemical +, I-chemical and O Fe3 B-chemical + I-chemical with O EGTA B-chemical as O a O negative O control O , O and O relative B-experimental_method fluorescence I-experimental_method measured I-experimental_method against I-experimental_method time I-experimental_method ( O min O ). O The O addition B-experimental_method of I-experimental_method cations I-experimental_method produced O no O improvement O in O activity O of O PmC11 B-protein when O compared O in O the O presence O of O EGTA B-chemical , O suggesting O that O PmC11 B-protein does O not O require O metal O ions O for O proteolytic O activity O . O Several O other O members O of O clan B-protein_type CD I-protein_type require O processing B-ptm for O full B-protein_state activation I-protein_state including O legumain B-protein , O gingipain B-protein - I-protein R I-protein , O MARTX B-protein - I-protein CPD I-protein , O and O the O effector B-protein_type caspases I-protein_type , O e O . O g O . O caspase B-protein - I-protein 7 I-protein . O The O caspases B-protein_type and O gingipain B-protein - I-protein R I-protein both O undergo O intermolecular B-ptm ( I-ptm trans I-ptm ) I-ptm cleavage I-ptm and O legumain B-protein and O MARTX B-protein - I-protein CPD I-protein are O reported O to O perform O intramolecular B-ptm ( I-ptm cis I-ptm ) I-ptm cleavage I-ptm . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O The O chemically O most O complex O modification O in O eukaryotic B-taxonomy_domain rRNA B-chemical is O the O conserved B-protein_state hypermodified B-protein_state nucleotide B-chemical N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical aminocarboxypropyl I-chemical - I-chemical pseudouridine I-chemical ( O m1acp3Ψ B-chemical ) O located O next O to O the O P B-site - I-site site I-site tRNA B-chemical on O the O small O subunit O 18S B-chemical rRNA I-chemical . O While O S B-chemical - I-chemical adenosylmethionine I-chemical was O identified O as O the O source O of O the O aminocarboxypropyl B-chemical ( O acp B-chemical ) O group O more O than O 40 O years O ago O the O enzyme O catalyzing O the O acp B-chemical transfer O remained O elusive O . O In O Saccharomyces B-species cerevisiae I-species 18S B-chemical rRNA I-chemical contains O four O base O methylations B-ptm , O two O acetylations B-ptm and O a O single O 3 B-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical ( O acp B-chemical ) O modification O , O whereas O six O base O methylations B-ptm are O present O in O the O 25S B-chemical rRNA I-chemical . O While O in O humans B-species the O 18S B-chemical rRNA I-chemical base O modifications O are O highly B-protein_state conserved I-protein_state , O only O three O of O the O yeast B-taxonomy_domain base O modifications O catalyzed O by O ScRrp8 B-protein / O HsNML B-protein , O ScRcm1 B-protein / O HsNSUN5 B-protein and O ScNop2 B-protein / O HsNSUN1 B-protein are O preserved O in O the O corresponding O human B-species 28S B-chemical rRNA I-chemical . O They O might O contribute O to O increased O RNA B-chemical stability O by O providing O additional O hydrogen B-bond_interaction bonds I-bond_interaction ( O pseudouridines B-chemical ), O improved O base B-bond_interaction stacking I-bond_interaction ( O pseudouridines B-chemical and O base B-ptm methylations I-ptm ) O or O an O increased O resistance O against O hydrolysis O ( O ribose B-ptm methylations I-ptm ). O Defects O of O rRNA B-chemical modification O enzymes O often O lead O to O disturbed O ribosome O biogenesis O or O functionally O impaired O ribosomes O , O although O the O lack O of O individual O rRNA B-chemical modifications O often O has O no O or O only O a O slight O influence O on O the O cell O . O The O asterisk O indicates O the O C1 O - O atom O labeled O in O the O 14C B-experimental_method - I-experimental_method incorporation I-experimental_method assay I-experimental_method . O ( O C O ) O 14C B-chemical - I-chemical acp I-chemical labeling O of O 18S B-chemical rRNAs I-chemical . O The O primer O extension O arrest O is O reduced O in O HTC116 O cells O transfected O with O siRNAs B-chemical 544 O and O 545 O . O As O previously O reported O this O shoulder O was O identified O by O ESI B-experimental_method - I-experimental_method MS I-experimental_method as O corresponding O to O m1acp3Ψ B-chemical . O Whereas O the O acp B-chemical labeling O of O 18S B-chemical rRNA I-chemical was O clearly O present O in O the O wild B-protein_state type I-protein_state strain O no O radioactive O labeling O could O be O observed O in O a O Δtsr3 B-mutant strain O ( O Figure O 1C O ). O Human B-species 18S B-chemical rRNA I-chemical has O also O been O shown O to O contain O m1acp3Ψ B-ptm in O the O 18S B-chemical rRNA I-chemical at O position O 1248 B-residue_number . O By O comparison O , O treating O cells O with O siRNA B-chemical 545 O , O which O only O reduced O the O TSR3 B-protein mRNA O to O 20 O %, O did O not O markedly O reduced O the O acp B-chemical signal O . O The O TSR3 B-protein gene O was O genetically O modified O at O its O native O locus O , O resulting O in O a O C O - O terminal O fusion B-protein_state of O Tsr3 B-protein with O a O 3xHA B-chemical epitope O expressed O by O the O native O promotor O in O yeast B-taxonomy_domain strain O CEN O . O BM258 O - O 5B O . O In O accordance O with O the O synthetic O sick O growth O phenotype O the O paromomycin B-chemical and O hygromycin B-chemical B I-chemical hypersensitivity O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombination O strain O ( O Figure O 2B O ). O Domain O characterization O of O yeast B-taxonomy_domain Tsr3 B-protein and O correlation O of O acp B-chemical modification O with O late O 18S B-chemical rRNA I-chemical processing O steps O . O ( O A O ) O Scheme O of O the O TSR3 B-protein gene O with O truncation O positions O in O the O open O reading O frame O . O The O loop B-structure_element connecting O β2 B-structure_element and O β3 B-structure_element contains O a O single O turn O of O a O 310 B-structure_element - I-structure_element helix I-structure_element . O Helices B-structure_element α1 B-structure_element and O α2 B-structure_element are O located O on O one O side O of O the O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element while O α3 B-structure_element packs O against O the O opposite O β B-structure_element - I-structure_element sheet I-structure_element surface O . O The O bound O S B-chemical - I-chemical adenosylmethionine I-chemical is O shown O in O a O stick O representation O and O colored O by O atom O type O . O The O color O coding O is O the O same O as O in O ( O A O ). O ( O C O ) O Structural B-experimental_method superposition I-experimental_method of O the O X B-evidence - I-evidence ray I-evidence structures I-evidence of O VdTsr3 B-protein in O the O SAM B-protein_state - I-protein_state bound I-protein_state state O ( O red O ) O and O SsTsr3 B-protein ( O blue O ) O in O the O apo B-protein_state state O . O In O comparison O to O Tsr3 B-protein the O central O β B-structure_element - I-structure_element sheet I-structure_element element I-structure_element of O Trm10 B-protein is O extended O by O one O additional O β B-structure_element - I-structure_element strand I-structure_element pairing O to O β2 B-structure_element . O Furthermore O , O the O trefoil B-structure_element knot I-structure_element of O Trm10 B-protein is O not O as O deep O as O that O of O Tsr3 B-protein ( O Figure O 4D O ). O W73 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O all O known O Tsr3 B-protein_type proteins I-protein_type , O whereas O A76 B-residue_name_number can O be O replaced O by O other O hydrophobic O amino B-chemical acids I-chemical . O ( O A O ) O Close O - O up O view O of O the O SAM B-site - I-site binding I-site pocket I-site of O VdTsr3 B-protein . O Bound B-protein_state SAM B-chemical was O modelled O based O on O the O X B-evidence - I-evidence ray I-evidence structure I-evidence of O the O Trm10 B-complex_assembly / I-complex_assembly SAH I-complex_assembly - O complex O ( O pdb4jwf O ). O A O red O arrow O indicates O the O SAM B-chemical methyl O group O . O ( O D O ) O Binding O of O SAM B-chemical analogs O to O SsTsr3 B-protein . O SsTsr3 B-protein bound B-protein_state SAM B-chemical with O a O KD B-evidence of O 6 O . O 5 O μM O , O which O is O similar O to O SAM B-evidence - I-evidence KD I-evidence ' I-evidence s I-evidence reported O for O several O SPOUT B-protein_type - I-protein_type class I-protein_type methyltransferases I-protein_type . O 5 B-chemical ′- I-chemical methylthioadenosin I-chemical — O the O reaction O product O after O the O acp B-chemical - O transfer O — O binds O only O ∼ O 2 O . O 5 O - O fold O weaker O ( O KD O = O 16 O . O 7 O μM O ) O compared O to O SAM B-chemical . O Mutations B-experimental_method of O the O corresponding O residue O in O SsTsr3 B-protein to O A B-residue_name ( O D63 B-residue_name_number ) O does O not O significantly O alter O the O SAM B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O protein O ( O KD B-evidence = O 11 O . O 0 O μM O ). O Analysis B-experimental_method of I-experimental_method the I-experimental_method electrostatic I-experimental_method surface I-experimental_method properties I-experimental_method of O VdTsr3 B-protein clearly O identified O positively B-site charged I-site surface I-site patches I-site in O the O vicinity O of O the O SAM B-site - I-site binding I-site site I-site suggesting O a O putative O RNA B-site - I-site binding I-site site I-site ( O Figure O 6A O ). O Its O negatively O charged O sulfate B-chemical group O might O mimic O an O RNA B-chemical backbone O phosphate O . O In O order O to O explore O the O RNA O - O ligand O specificity O of O Tsr3 B-protein we O titrated B-experimental_method SsTsr3 B-protein prepared O in O RNase B-protein_state - I-protein_state free I-protein_state form O with O 5 O ′- O fluoresceine B-chemical - O labeled O RNA B-chemical and O determined O the O affinity B-evidence by O fluorescence B-experimental_method anisotropy I-experimental_method measurements I-experimental_method . O A O single O stranded O oligoU B-chemical - I-chemical RNA I-chemical bound B-protein_state with O a O 10 O - O fold O - O reduced O affinity B-evidence ( O 6 O . O 0 O μM O ). O This O makes O it O unique O in O eukaryotic B-taxonomy_domain rRNA B-chemical modification O . O A O similar O modification O ( O acp3U B-chemical ) O was O identified O in O Haloferax B-species volcanii I-species and O corresponding O modified O nucleotides B-chemical were O also O shown O to O occur O in O other O archaea B-taxonomy_domain . O This O demonstrates O that O , O unlike O the O other O small O subunit O rRNA B-chemical base O modifications O , O the O acp B-chemical modification O is O required O for O efficient O pre B-chemical - I-chemical rRNA I-chemical processing O . O After O structural O changes O , O possibly O driven O by O GTP B-chemical hydrolysis O , O which O go O together O with O the O formation O of O the O decoding B-site site I-site , O the O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical becomes O accessible O for O Nob1 B-protein cleavage O at O site B-site D I-site . O This O also O involves O joining O of O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly and O 60S B-complex_assembly subunits I-complex_assembly to O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly particles I-complex_assembly in O a O translation O - O like O cycle O promoted O by O eIF5B B-protein . O Thus O , O the O acp B-chemical transfer O to O m1Ψ1191 B-residue_name_number occurs O during O the O step O at O which O Rio2 B-protein leaves O the O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly particle I-complex_assembly . O The O current O data O together O with O the O finding O that O acp B-chemical modification O takes O place O at O the O very O last O step O in O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunit I-complex_assembly maturation O indicate O that O the O acp B-chemical modification O probably O supports O the O formation O of O the O decoding B-site site I-site and O efficient O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical D B-site - I-site site I-site cleavage O . O Furthermore O , O our O structural B-evidence data I-evidence unravelled O how O the O regioselectivity O of O SAM B-chemical - O dependent O group O transfer O reactions O can O be O tuned O by O distinct O small O evolutionary O adaptions O of O the O ligand B-site binding I-site pocket I-site of O SAM B-protein_type - I-protein_type binding I-protein_type enzymes I-protein_type . O In O addition O , O our O crystallographic B-experimental_method analyses I-experimental_method revealed O that O YfiR B-protein binds O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical at O a O YfiB B-site - I-site binding I-site site I-site and O that O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical are O able O to O reduce O YfiBL43P B-mutant - O induced O biofilm O formation O . O An O increase O in O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical promotes O biofilm O formation O , O and O a O decrease O results O in O biofilm O degradation O ( O Boehm O et O al O .,; O Duerig O et O al O .,; O Hickman O et O al O .,; O Jenal O ,; O Romling O et O al O .,). O The O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O is O regulated O by O two O reciprocal O enzyme O systems O , O namely O , O diguanylate B-protein_type cyclases I-protein_type ( O DGCs B-protein_type ) O that O synthesize O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical and O phosphodiesterases B-protein_type ( O PDEs B-protein_type ) O that O hydrolyze O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ( O Kulasakara O et O al O .,; O Ross O et O al O .,; O Ross O et O al O .,). O Many O of O these O enzymes O are O multiple O - O domain O proteins O containing O a O variable O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element that O commonly O acts O as O a O signal O sensor O or O transduction O module O , O followed O by O the O relatively B-protein_state conserved I-protein_state GGDEF B-structure_element motif I-structure_element in O DGCs B-protein_type or O EAL B-structure_element / I-structure_element HD I-structure_element - I-structure_element GYP I-structure_element domains I-structure_element in O PDEs B-protein_type ( O Hengge O ,; O Navarro O et O al O .,; O Schirmer O and O Jenal O ,). O YfiN B-protein is O an O integral O inner O - O membrane O protein O with O two O potential O transmembrane B-structure_element helices I-structure_element , O a O periplasmic O Per B-structure_element - I-structure_element Arnt I-structure_element - I-structure_element Sim I-structure_element ( O PAS B-structure_element ) O domain O , O and O cytosolic O domains O containing O a O HAMP B-structure_element domain I-structure_element ( O mediate O input O - O output O signaling O in O histidine B-protein_type kinases I-protein_type , O adenylyl B-protein_type cyclases I-protein_type , O methyl B-protein_type - I-protein_type accepting I-protein_type chemotaxis I-protein_type proteins I-protein_type , O and O phosphatases B-protein_type ) O and O a O C O - O terminal O GGDEF B-structure_element domain I-structure_element indicating O a O DGC B-protein_type ’ O s O function O ( O Giardina O et O al O .,; O Malone O et O al O .,). O YfiN B-protein is O repressed B-protein_state by I-protein_state specific O interaction O between O its O periplasmic O PAS B-structure_element domain I-structure_element and O the O periplasmic O protein O YfiR B-protein ( O Malone O et O al O .,). O After O the O sequestration O of O YfiR B-protein by O YfiB B-protein , O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical produced O by O activated B-protein_state YfiN B-protein increases O the O biosynthesis O of O the O Pel B-chemical and O Psl B-chemical EPSs B-chemical , O resulting O in O the O appearance O of O the O SCV O phenotype O , O which O indicates O enhanced O biofilm O formation O ( O Malone O et O al O .,). O Recently O , O we O solved O the O crystal B-evidence structure I-evidence of O YfiR B-protein in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O , O revealing O breakage O / O formation O of O one O disulfide B-ptm bond I-ptm ( O Cys71 B-residue_name_number - O Cys110 B-residue_name_number ) O and O local O conformational O change O around O the O other O one O ( O Cys145 B-residue_name_number - O Cys152 B-residue_name_number ), O indicating O that O Cys145 B-residue_name_number - O Cys152 B-residue_name_number plays O an O important O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state . O The O dimerization O occurs O mainly O via O hydrophobic B-bond_interaction interactions I-bond_interaction formed O by O A37 B-residue_name_number and O I40 B-residue_name_number on O the O α1 B-structure_element helices I-structure_element , O L50 B-residue_name_number on O the O β1 B-structure_element strands I-structure_element , O and O W55 B-residue_name_number on O the O β2 B-structure_element strands I-structure_element of O both O molecules O , O making O a O hydrophobic B-site interacting I-site core I-site ( O Fig O . O 2A O – O C O ). O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state presents O a O Y B-protein_state shape I-protein_state . O Overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O and O the O conserved B-site surface I-site in O YfiR B-protein . O ( O A O ) O The O overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O . O Two O interacting O regions O are O highlighted O by O red O rectangles O . O ( O B O ) O Structural B-experimental_method superposition I-experimental_method of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O is O a O 2 O : O 2 O heterotetramer B-oligomeric_state ( O Fig O . O 3A O ) O in O which O the O YfiR B-protein dimer B-oligomeric_state is O clamped O by O two O separated O YfiBL43P B-mutant molecules O with O a O total O buried O surface O area O of O 3161 O . O 2 O Å2 O . O Additionally O , O three O hydrophobic B-site anchoring I-site sites I-site exist O in O region B-structure_element I I-structure_element . O The O residues O F48 B-residue_name_number and O W55 B-residue_name_number of O YfiB B-protein are O inserted O into O the O hydrophobic B-site cores I-site mainly O formed O by O the O main O chain O and O side O chain O carbon O atoms O of O residues O S57 B-residue_name_number / O Q88 B-residue_name_number / O A89 B-residue_name_number / O N90 B-residue_name_number and O R60 B-residue_name_number / O R175 B-residue_name_number / O H177 B-residue_name_number of O YfiR B-protein , O respectively O ; O and O F57 B-residue_name_number of O YfiB B-protein is O inserted O into O the O hydrophobic B-site pocket I-site formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O This O suggests O that O the O N O - O terminus O of O YfiB B-protein plays O an O important O role O in O forming O the O dimeric B-oligomeric_state YfiB B-protein in O solution O and O that O the O conformational O change O of O residue O L43 B-residue_name_number is O associated O with O the O stretch O of O the O N O - O terminus O and O opening O of O the O dimer B-oligomeric_state . O The O PG B-site - I-site binding I-site site I-site of O YfiB B-protein In O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O , O one O sulfate B-chemical ion O is O found O at O the O bottom O of O each O YfiBL43P B-mutant molecule O ( O Fig O . O 3A O ) O and O forms O a O strong O hydrogen B-bond_interaction bond I-bond_interaction with O D102 B-residue_name_number of O YfiBL43P B-mutant ( O Fig O . O 4A O and O 4C O ). O Moreover O , O a O water B-chemical molecule O was O found O to O bridge O the O sulfate B-chemical ion O and O the O side O chains O of O N67 B-residue_name_number and O D102 B-residue_name_number , O strengthening O the O hydrogen B-site bond I-site network I-site ( O Fig O . O 4C O ). O The O results O indicated O that O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiBL43P B-mutant is O 65 O . O 5 O μmol O / O L O , O which O is O about O 16 O - O fold O stronger O than O that O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein ( O Kd B-evidence = O 1 O . O 1 O mmol O / O L O ) O ( O Fig O . O 4E O – O F O ). O The O relative B-evidence optical I-evidence density I-evidence is O represented O as O curves O . O Wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein is O used O as O negative O control O . O Previous O studies O suggested O that O in O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O sequesters O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O inducing O the O diguanylate O cyclase O activity O of O YfiN B-protein to O allow O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiR B-protein , O indicating O that O YfiR B-protein forms O a O 2 O : O 2 O complex B-protein_state with I-protein_state YfiB B-protein via O a O region O composed O of O conserved O residues O . O Our O structural B-experimental_method data I-experimental_method analysis I-experimental_method shows O that O the O activated B-protein_state YfiB B-protein has O an O N B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element that O is O largely O altered O , O adopting O a O stretched B-protein_state conformation I-protein_state compared O with O the O compact B-protein_state conformation I-protein_state of O the O apo B-protein_state YfiB B-protein . O The O apo B-protein_state YfiB B-protein structure B-evidence constructed O beginning O at O residue O 34 B-residue_number has O a O compact B-protein_state conformation I-protein_state of O approximately O 45 O Å O in O length O . O In O this O model O , O in O response O to O a O particular O cell O stress O that O is O yet O to O be O identified O , O the O dimeric B-oligomeric_state YfiB B-protein is O activated B-protein_state from O a O compact B-protein_state , O inactive B-protein_state conformation B-protein_state to O a O stretched B-protein_state conformation I-protein_state , O which O possesses O increased O PG B-chemical binding O affinity O . O Homologs O of O the O YfiBNR B-complex_assembly system O are O functionally B-protein_state conserved I-protein_state in O P B-species . I-species aeruginosa I-species ( O Malone O et O al O .,; O Malone O et O al O .,), O E B-species . I-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O K B-species . I-species pneumonia I-species ( O Huertas O et O al O .,) O and O Y B-species . I-species pestis I-species ( O Ren O et O al O .,), O where O they O affect O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O and O biofilm O formation O . O High O - O resolution O structures B-evidence of O oligomers B-oligomeric_state formed O by O the O β B-protein - I-protein amyloid I-protein peptide I-protein Aβ B-protein are O needed O to O understand O the O molecular O basis O of O Alzheimer O ’ O s O disease O and O develop O therapies O . O Over O the O last O two O decades O the O role O of O Aβ B-protein oligomers B-oligomeric_state in O the O pathophysiology O of O Alzheimer O ’ O s O disease O has O begun O to O unfold O . O Aβ B-protein isolated O from O the O brains O of O young O plaque O - O free O Tg2576 O mice B-taxonomy_domain forms O a O mixture O of O low O molecular O weight O oligomers B-oligomeric_state . O Smaller O oligomers B-oligomeric_state with O molecular O weights O consistent O with O trimers B-oligomeric_state , O hexamers B-oligomeric_state , O and O nonamers B-oligomeric_state were O also O identified O within O the O mixture O of O low O molecular O weight O oligomers B-oligomeric_state . O A O type O of O large O oligomers B-oligomeric_state called O annular B-complex_assembly protofibrils I-complex_assembly ( O APFs B-complex_assembly ) O have O also O been O observed O in O the O brains O of O transgenic O mice B-taxonomy_domain and O isolated O from O the O brains O of O Alzheimer O ’ O s O patients O . O Lashuel O et O al O . O observed O APFs B-complex_assembly with O an O outer O diameter O that O ranged O from O 7 O – O 10 O nm O and O an O inner O diameter O that O ranged O from O 1 O . O 5 O – O 2 O nm O , O consistent O with O molecular O weights O of O 150 O – O 250 O kDa O . O Kayed O et O al O . O observed O APFs B-complex_assembly with O an O outer O diameter O that O ranged O from O 8 O – O 25 O nm O , O which O were O composed O of O small B-protein_state spherical I-protein_state Aβ B-protein oligomers B-oligomeric_state , O 3 O – O 5 O nm O in O diameter O . O Sequestering O Aβ B-protein within O the O affibody B-chemical prevents O its O fibrilization O and O reduces O its O neurotoxicity O , O providing O evidence O that O the O β B-structure_element - I-structure_element hairpin I-structure_element structure O may O contribute O to O the O ability O of O Aβ B-protein to O form O neurotoxic O oligomers B-oligomeric_state . O ( O A O ) O Cartoon O illustrating O the O design O of O peptides B-chemical 1 I-chemical and I-chemical 2 I-chemical and O their O relationship O to O an O Aβ17 B-protein – B-residue_range 36 I-residue_range β B-structure_element - I-structure_element hairpin I-structure_element . O Peptide B-mutant 2 I-mutant contains O a O methionine B-residue_name residue O at O position O 35 B-residue_number and O an O Aβ24 B-protein – B-residue_range 29 I-residue_range loop B-structure_element with O residues O 24 B-residue_number and O 29 B-residue_number ( O Val B-residue_name and O Gly B-residue_name ) O mutated B-experimental_method to O cysteine B-residue_name and O linked O by O a O disulfide B-ptm bond I-ptm ( O Figure O 1C O ). O To O address O this O issue O , O we O next O incorporated O a O disulfide B-ptm bond I-ptm between O residues O 24 B-residue_number and O 29 B-residue_number as O a O conformational O constraint O that O serves O as O a O surrogate O for O δOrn B-structure_element . O We O mutated B-experimental_method these O residues O because O they O occupy O the O same O position O as O the O δOrn B-structure_element that O connects O D23 B-residue_name_number and O A30 B-residue_name_number in O peptide B-mutant 1 I-mutant . O In O synthesizing O peptides B-mutant 2 I-mutant and I-mutant 4 I-mutant we O formed O the O disulfide B-ptm linkage I-ptm after O macrolactamization O and O deprotection O of O the O acid O - O labile O side O chain O protecting O groups O . O Crystal B-evidence diffraction I-evidence data I-evidence for O peptides B-mutant 4 I-mutant and I-mutant 2 I-mutant were O collected O in O - O house O with O a O Rigaku O MicroMax O 007HF O X O - O ray O diffractometer O at O 1 O . O 54 O Å O wavelength O . O Data O for O peptides B-mutant 4 I-mutant and I-mutant 2 I-mutant were O scaled O and O merged O using O XDS O . O X B-evidence - I-evidence ray I-evidence Crystallographic I-evidence Structure I-evidence of O Peptide B-mutant 2 I-mutant and O the O Oligomers B-oligomeric_state It O Forms O The O B B-evidence values I-evidence for O the O loops B-structure_element are O large O , O indicating O that O the O loops B-structure_element are O dynamic O and O not O well O ordered O . O Thus O , O the O differences O in O backbone O geometry O and O side O chain O rotamers O among O the O loops B-structure_element are O likely O of O little O significance O and O should O be O interpreted O with O caution O . O Like O peptide B-mutant 1 I-mutant , O peptide B-mutant 2 I-mutant forms O a O triangular B-protein_state trimer B-oligomeric_state , O and O four O trimers B-oligomeric_state assemble O to O form O a O dodecamer B-oligomeric_state . O In O the O higher O - O order O assembly O of O the O dodecamers B-oligomeric_state formed O by O peptide B-mutant 2 I-mutant a O new O structure B-evidence emerges O , O not O seen O in O peptide B-mutant 1 I-mutant , O an O annular B-site pore I-site consisting O of O five O dodecamers B-oligomeric_state . O The O trimer B-oligomeric_state maintains O all O of O the O same O stabilizing O contacts O as O those O of O peptide B-mutant 1 I-mutant . O In O the O crystal B-evidence lattice I-evidence , O each O F20 B-residue_name_number face O of O one O dodecamer B-oligomeric_state packs O against O an O F20 B-residue_name_number face O of O another O dodecamer B-oligomeric_state . O Jeffamine B-chemical M I-chemical - I-chemical 600 I-chemical is O a O polypropylene O glycol O derivative O with O a O 2 O - O methoxyethoxy O unit O at O one O end O and O a O 2 O - O aminopropyl O unit O at O the O other O end O . O Hydrophobic B-bond_interaction packing I-bond_interaction between O the O F20 B-residue_name_number faces O of O trimers B-oligomeric_state displayed O on O the O outer O surface O of O each O dodecamer B-oligomeric_state stabilizes O the O porelike O assembly O . O The O eclipsed B-protein_state interfaces B-site occur O between O dodecamers B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element , O 1 B-structure_element and I-structure_element 5 I-structure_element , O and O 3 B-structure_element and I-structure_element 4 I-structure_element , O as O shown O in O Figure O 5A O . O The O crystallographic B-evidence assembly I-evidence of O peptide B-mutant 2 I-mutant into O a O trimer B-oligomeric_state , O dodecamer B-oligomeric_state , O and O annular B-site pore I-site provides O a O model O for O the O assembly O of O the O full B-protein_state - I-protein_state length I-protein_state Aβ B-protein peptide O to O form O oligomers B-oligomeric_state . O In O this O model O Aβ B-protein folds O to O form O a O β B-structure_element - I-structure_element hairpin I-structure_element comprising O the O hydrophobic O central B-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element regions I-structure_element . O Three O β B-structure_element - I-structure_element hairpins I-structure_element assemble O to O form O a O trimer B-oligomeric_state , O and O four O trimers B-oligomeric_state assemble O to O form O a O dodecamer B-oligomeric_state . O The O model O put O forth O in O Figure O 6 O is O consistent O with O the O current O understanding O of O endogenous O Aβ B-protein oligomerization O and O explains O at O atomic O resolution O many O key O observations O about O Aβ B-protein oligomers B-oligomeric_state . O Fibrillar B-protein_state and O nonfibrillar B-protein_state oligomers B-oligomeric_state have O structurally O distinct O characteristics O , O which O are O reflected O in O their O reactivity O with O the O fibril O - O specific O OC O antibody O and O the O oligomer B-oligomeric_state - O specific O A11 O antibody O . O At O this O point O , O we O can O only O speculate O whether O the O trimer B-oligomeric_state and O dodecamer B-oligomeric_state formed O by O peptide B-mutant 2 I-mutant share O structural O similarities O to O Aβ B-protein trimers B-oligomeric_state and O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly , O as O little O is O known O about O the O structure B-evidence of O Aβ B-protein trimers B-oligomeric_state and O Aβ B-complex_assembly * I-complex_assembly 56 I-complex_assembly . O These O two O modes O of O assembly O might O reflect O a O dynamic O interaction O between O dodecamers B-oligomeric_state , O which O could O permit O assemblies O of O more O dodecamers B-oligomeric_state into O larger O annular B-site pores I-site . O Preliminary O attempts O to O study O these O species O by O SEC B-experimental_method and O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method have O not O provided O a O clear O measure O of O the O structures B-evidence formed O in O solution O . O Our O approach O of O constraining O Aβ17 B-protein – B-residue_range 36 I-residue_range into O a O β B-structure_element - I-structure_element hairpin I-structure_element conformation O and O blocking O aggregation O with O an O N O - O methyl O group O has O allowed O us O to O crystallize B-experimental_method a O large O fragment O of O what O is O generally O considered O to O be O an O uncrystallizable O peptide O . O Ligands O that O regulate O the O dynamics O and O stability O of O the O coactivator B-site ‐ I-site binding I-site site I-site in O the O C O ‐ O terminal O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element , O called O activation B-structure_element function I-structure_element ‐ I-structure_element 2 I-structure_element ( O AF B-structure_element ‐ I-structure_element 2 I-structure_element ), O showed O similar O activity O profiles O in O different O cell O types O . O Such O ligands O induced O breast O cancer O cell O proliferation O in O a O manner O that O was O predicted O by O the O canonical O recruitment O of O the O coactivators O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein and O induction O of O the O GREB1 B-protein proliferative O gene O . O For O example O , O selective O estrogen B-protein_type receptor I-protein_type modulators I-protein_type ( O SERMs B-protein_type ) O such O as O tamoxifen B-chemical ( O Nolvadex B-chemical ®; I-chemical AstraZeneca O ) O or O raloxifene B-chemical ( O Evista B-chemical ®; I-chemical Eli O Lilly O ) O ( O Fig O 1A O ) O block O the O ERα B-protein ‐ O mediated O proliferative O effects O of O the O native O estrogen B-chemical , O 17β B-chemical ‐ I-chemical estradiol I-chemical ( O E2 B-chemical ), O on O breast O cancer O cells O , O but O promote O beneficial O estrogenic O effects O on O bone O mineral O density O and O adverse O estrogenic O effects O such O as O uterine O proliferation O , O fatty O liver O , O or O stroke O ( O Frolik O et O al O , O 1996 O ; O Fisher O et O al O , O 1998 O ; O McDonnell O et O al O , O 2002 O ; O Jordan O , O 2003 O ). O E2 B-chemical ‐ O rings O are O numbered O A O ‐ O D O . O The O E O ‐ O ring O is O the O common O site O of O attachment O for O BSC O found O in O many O SERMS B-protein_type . O Linear O causality O model O for O ERα B-protein ‐ O mediated O cell O proliferation O . O AF B-structure_element ‐ I-structure_element 1 I-structure_element binds O a O separate O surface O on O these O coactivators O ( O Webb O et O al O , O 1998 O ; O Yi O et O al O , O 2015 O ). O However O , O ERα B-protein ‐ O mediated O proliferative O responses O vary O in O a O ligand O ‐ O dependent O manner O ( O Srinivasan O et O al O , O 2013 O ); O thus O , O it O is O not O known O whether O this O canonical O model O is O widely O applicable O across O diverse O ERα B-protein ligands O . O In O this O signaling O model O , O multiple O coregulator O binding O events O and O target O genes O ( O Won O Jeong O et O al O , O 2012 O ; O Nwachukwu O et O al O , O 2014 O ), O LBD B-structure_element conformation O , O nucleocytoplasmic O shuttling O , O the O occupancy O and O dynamics O of O DNA O binding O , O and O other O biophysical O features O could O contribute O independently O to O cell O proliferation O ( O Lickwar O et O al O , O 2012 O ). O To O test O these O signaling O models O , O we O profiled O a O diverse O library O of O ERα B-protein ligands O using O systems O biology O approaches O to O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method and O chemical B-experimental_method biology I-experimental_method ( O Srinivasan O et O al O , O 2013 O ), O including O a O series O of O quantitative O bioassays O for O ERα B-protein function O that O were O statistically O robust O and O reproducible O , O based O on O the O Z B-evidence ’‐ I-evidence statistic I-evidence ( O Fig O EV1A O and O B O ; O see O Materials O and O Methods O ). O Structure B-evidence of O the O E2 B-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBD B-structure_element in B-protein_state complex I-protein_state with I-protein_state an O NCOA2 B-protein peptide O of O ( O PDB O 1GWR O ). O In O cluster O 1 O , O the O first O three O comparisons O ( O rows O ) O showed O significant O positive O correlations O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O , O P B-evidence ≤ O 0 O . O 05 O ). O −, O significant O correlations O lost O upon O deletion O of O AB B-structure_element or O F B-structure_element domains O . O Tamoxifen B-chemical depends O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O its O cell O ‐ O specific O activity O ( O Sakamoto O et O al O , O 2002 O ); O therefore O , O we O asked O whether O cell O ‐ O specific O signaling O observed O here O is O due O to O a O similar O dependence O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O activity O ( O Fig O EV1 O ). O Thus O , O the O strength O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element signaling O does O not O determine O cell O ‐ O specific O signaling O . O Identifying O cell O ‐ O specific O signaling O clusters O in O ERα B-protein ligand O classes O The O side O chain O of O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O induces O cell O ‐ O specific O signaling O In O panel O ( O D O ), O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state activity O from O panel O ( O B O ) O is O shown O for O comparison O . O Thus O , O examining O the O correlated O patterns O of O ERα B-protein activity O within O each O scaffold O demonstrates O that O an O extended O side O chain O is O not O required O for O cell O ‐ O specific O signaling O . O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element or O F B-structure_element domain O altered O correlations O for O six O of O the O eight O scaffolds O in O this O cluster O ( O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O WAY B-chemical ‐ I-chemical D I-chemical , O WAY B-chemical dimer I-chemical , O and O cyclofenil B-chemical ‐ I-chemical ASC I-chemical ) O ( O Fig O 3D O lanes O 5 O – O 12 O ). O Thus O , O in O cluster O 2 O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element substantially O modulated O the O specificity O of O ligands O with O cell O ‐ O specific O activity O ( O Fig O 3D O lanes O 5 O – O 12 O ). O To O determine O whether O ligand O classes O control O expression O of O native O ERα B-protein target O genes O through O the O canonical O linear O signaling O pathway O , O we O performed O pairwise B-experimental_method linear I-experimental_method regression I-experimental_method analyses I-experimental_method using O ERα B-complex_assembly – I-complex_assembly NCOA1 I-complex_assembly / I-complex_assembly 2 I-complex_assembly / I-complex_assembly 3 I-complex_assembly interactions O in O M2H B-experimental_method assay I-experimental_method as O independent O predictors O of O GREB1 B-protein expression O ( O the O dependent O variable O ) O ( O Figs O EV1 O and O EV2A O , O F O – O H O ). O For O clusters O 2 O and O 3 O , O GREB1 B-protein activity O was O generally O not O predicted O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O . O However O , O ligand O ‐ O induced O GREB1 B-protein levels O were O generally O not O determined O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O 3E O lanes O 5 O – O 19 O ), O consistent O with O an O alternate O causality O model O ( O Fig O 1E O ). O Out O of O 11 O indirect O modulator O series O in O cluster O 2 O or O 3 O , O only O the O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical class O had O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O profiles O that O predicted O GREB1 B-protein levels O ( O Fig O 3E O lane O 12 O ). O With O the O OBHS B-chemical ‐ I-chemical N I-chemical compounds O , O NCOA3 B-protein and O GREB1 B-protein showed O near O perfect O prediction O of O proliferation O ( O Fig O EV3G O ), O with O unexplained O variance O similar O to O the O noise O in O the O assays O . O Out O of O 15 O ligand O series O in O these O clusters O , O only O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O induced O a O proliferative O response O that O was O predicted O by O GREB1 B-protein levels O , O which O were O not O determined O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O 3E O and O F O lane O 10 O ). O Similarly O , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O cyclofenil B-chemical ‐ I-chemical ASC I-chemical , O and O OBHS B-chemical ‐ I-chemical ASC I-chemical had O positively O correlated O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O and O GREB1 B-protein levels O , O but O none O of O these O activities O determined O their O proliferative O effects O ( O Fig O 3E O and O F O lanes O 11 O – O 12 O and O 18 O ). O NCOA3 B-protein occupancy O at O GREB1 B-protein is O statistically O robust O but O does O not O predict O transcriptional O activity O All O direct O modulator O and O two O indirect O modulator O scaffolds O ( O OBHS B-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical ) O lacked O ERβ O agonist O activity O . O ERα B-protein activity O of O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O Therefore O , O we O examined O another O 50 O LBD B-structure_element structures B-evidence containing O ligands O in O clusters O 2 O and O 3 O . O Ligands O in O cluster O 2 O and O cluster O 3 O showed O conformational O heterogeneity O in O parts O of O the O scaffold O that O were O directed O toward O multiple O regions O of O the O receptor O including O h3 B-structure_element , O h8 B-structure_element , O h11 B-structure_element , O h12 B-structure_element , O and O / O or O the O β B-structure_element ‐ I-structure_element sheets I-structure_element ( O Fig O EV5C O – O G O ). O Hierarchical B-experimental_method clustering I-experimental_method revealed O that O many O of O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O recapitulated O most O of O the O peptide O recruitment O and O dismissal O patterns O observed O with O E2 B-chemical ( O Fig O 6H O ). O Also O , O we O have O used O siRNA B-experimental_method screening I-experimental_method to O identify O a O number O of O coregulators O required O for O ERα B-protein ‐ O mediated O repression O of O the O IL O ‐ O 6 O gene O ( O Nwachukwu O et O al O , O 2014 O ). O Some O of O these O ligands O altered O the O shape O of O the O AF B-site ‐ I-site 2 I-site surface I-site by O perturbing O the O h3 B-site – I-site h12 I-site interface I-site , O thus O providing O a O route O to O new O SERM O ‐ O like O activity O profiles O by O combining O indirect O and O direct O modulation O of O receptor O structure O . O Incorporation O of O statistical O approaches O to O understand O relationships O between O structure O and O signaling O variables O moves O us O toward O predictive O models O for O complex O ERα B-protein ‐ O mediated O responses O such O as O in O vivo O uterine O proliferation O or O tumor O growth O , O and O more O generally O toward O structure O ‐ O based O design O for O other O allosteric O drug O targets O including O GPCRs B-protein_type and O other O nuclear B-protein_type receptors I-protein_type . O We O have O solved B-experimental_method the O structure B-evidence of O the O HR1 B-structure_element domain O of O TOCA1 B-protein , O providing O the O first O structural B-evidence data I-evidence for O this O protein O . O The O superfamily O can O be O divided O into O five O families O based O on O structural O and O functional O similarities O : O Ras B-protein_type , O Rho B-protein_type , O Rab B-protein_type , O Arf B-protein_type , O and O Ran B-protein_type . O These O regions O are O responsible O for O “ O sensing O ” O the O nucleotide O state O , O with O the O GTP B-protein_state - I-protein_state bound I-protein_state state O showing O greater O rigidity O and O the O GDP B-protein_state - I-protein_state bound I-protein_state state O adopting O a O more O relaxed O conformation O ( O reviewed O in O Ref O .). O A O number O of O RhoA B-protein and O Rac1 B-protein effector O proteins O , O including O the O formins O and O members O of O the O protein B-protein_type kinase I-protein_type C I-protein_type - I-protein_type related I-protein_type kinase I-protein_type ( O PRK B-protein_type ) O 6 B-protein_type family O , O along O with O Cdc42 B-protein effectors O , O including O the O Wiskott B-protein_type - I-protein_type Aldrich I-protein_type syndrome I-protein_type ( O WASP B-protein_type ) O family O and O the O transducer O of O Cdc42 B-protein_type - I-protein_type dependent I-protein_type actin I-protein_type assembly I-protein_type ( O TOCA B-protein_type ) O family O , O have O also O been O linked O to O the O pathways O that O govern O cytoskeletal O dynamics O . O Cdc42 B-protein effectors O , O TOCA1 B-protein and O the O ubiquitously O expressed O member O of O the O WASP B-protein_type family I-protein_type , O N B-protein - I-protein WASP I-protein , O have O been O implicated O in O the O regulation O of O actin O polymerization O downstream O of O Cdc42 B-protein and O phosphatidylinositol B-chemical 4 I-chemical , I-chemical 5 I-chemical - I-chemical bisphosphate I-chemical ( O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical ). O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O ; O B O and O C O , O competition B-experimental_method SPA I-experimental_method experiments O were O carried O out O with O the O indicated O concentrations O of O ACK B-protein GBD B-structure_element ( O B O ) O or O HR1 B-structure_element domain O ( O C O ) O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O either O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly or O full B-protein_state - I-protein_state length I-protein_state Cdc42Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O The O binding B-experimental_method experiments I-experimental_method were O repeated O with O full B-protein_state - I-protein_state length I-protein_state [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly , O but O the O affinity B-evidence of O the O HR1 B-structure_element domain O for O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein was O similar O to O its O affinity B-evidence for O truncated B-protein_state Cdc42 B-protein ( O Kd B-evidence ≈ O 5 O μm O ; O Fig O . O 1C O ). O Another O possible O explanation O for O the O low O affinities B-evidence observed O was O that O the O HR1 B-structure_element domain O alone B-protein_state is O not O sufficient O for O maximal O binding O of O the O TOCA B-protein_type proteins I-protein_type to O Cdc42 B-protein and O that O the O other O domains O are O required O . O Furthermore O , O both O BAR B-structure_element and O SH3 B-structure_element domains O have O been O implicated O in O interactions O with O small O G B-protein_type proteins I-protein_type ( O e O . O g O . O the O BAR B-structure_element domain O of O Arfaptin2 B-protein binds O to O Rac1 B-protein and O Arl1 B-protein ), O while O an O SH3 B-structure_element domain O mediates O the O interaction O between O Rac1 B-protein and O the O guanine B-protein nucleotide I-protein exchange I-protein factor I-protein , O β B-protein - I-protein PIX I-protein . O Full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O ΔSH3 B-mutant TOCA1 B-protein bound B-protein_state with O micromolar O affinity O ( O Fig O . O 2B O ), O in O a O similar O manner O to O the O isolated O HR1 B-structure_element domain O ( O Fig O . O 1A O ). O There O were O 1 O , O 845 O unambiguous O NOEs B-evidence and O 757 O ambiguous O NOEs B-evidence after O eight O iterations O . O A O sequence B-experimental_method alignment I-experimental_method illustrating O the O secondary O structure O elements O of O the O TOCA1 B-protein and O CIP4 B-protein HR1 B-structure_element domains O and O the O HR1a B-structure_element and O HR1b B-structure_element domains O from O PRK1 B-protein is O shown O in O Fig O . O 3B O . O A O series O of O 15N B-experimental_method HSQC I-experimental_method experiments O was O recorded O on O 15N B-chemical - O labeled B-protein_state TOCA1 B-protein HR1 B-structure_element domain O in O the O presence B-protein_state of I-protein_state increasing B-experimental_method concentrations I-experimental_method of O unlabeled B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly to O map O the O Cdc42 B-site - I-site binding I-site surface I-site . O B O , O CSPs B-experimental_method were O calculated O as O described O under O “ O Experimental O Procedures O ” O and O are O shown O for O backbone O and O side O chain O NH O groups O . O Residues O that O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein were O assigned O a O CSP B-experimental_method of O 0 O . O 2 O but O were O excluded O when O calculating O the O mean O CSP B-experimental_method and O are O indicated O with O open O bars O . O Residues O with O affected O side O chain O CSPs B-experimental_method derived O from O 13C B-experimental_method HSQCs I-experimental_method are O marked O with O green O asterisks O above O the O bars O . O The O corresponding O 15N B-experimental_method and O 13C B-experimental_method NMR I-experimental_method experiments O were O also O recorded O on O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly or O 15N B-chemical / O 13C B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly in O the O presence B-protein_state of I-protein_state unlabeled B-protein_state HR1 B-structure_element domain O . O A O , O the O 15N B-experimental_method HSQC I-experimental_method of O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly is O shown O in O its O free B-protein_state form I-protein_state ( O black O ) O and O in O the O presence B-protein_state of I-protein_state excess O TOCA1 B-protein HR1 B-structure_element domain O ( O 1 O : O 2 O . O 2 O , O red O ). O C O , O the O residues O with O significantly O affected O backbone O and O side O chain O groups O are O highlighted O on O an O NMR B-experimental_method structure B-evidence of O free B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ; O those O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O red O . O Residues O without O information O from O shift B-experimental_method mapping I-experimental_method are O colored O gray O . O HADDOCK B-experimental_method was O therefore O used O to O perform O rigid B-experimental_method body I-experimental_method docking I-experimental_method based O on O the O structures B-evidence of O free B-protein_state HR1 B-structure_element domain O and O Cdc42 B-protein and O ambiguous O interaction O restraints O derived O from O the O titration B-experimental_method experiments I-experimental_method described O above O . O Residues O equivalent O to O Rac1 B-protein and O RhoA B-protein contact B-site sites I-site but O that O are O invisible O in O free B-protein_state Cdc42 B-protein are O gray O . O D O , O regions O of O interest O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly domain O model O . O The O four O lowest O energy O structures B-evidence in O the O chosen O HADDOCK B-experimental_method cluster O are O shown O overlaid O , O with O the O residues O of O interest O shown O as O sticks O and O labeled O . O Lys B-residue_name_number - I-residue_name_number 16Cdc42 I-residue_name_number is O unlikely O to O be O a O contact O residue O because O it O is O involved O in O nucleotide O binding O , O but O the O others O may O represent O specific O Cdc42 B-complex_assembly - I-complex_assembly TOCA1 I-complex_assembly contacts O . O Cdc42 O is O shown O in O green O , O and O TOCA1 B-protein is O shown O in O purple O . O A O comparison O of O the O HSQC B-experimental_method experiments O recorded O on O 15N B-chemical - O Cdc42 B-protein alone B-protein_state , O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O or O both O , O shows O that O the O spectra B-evidence in O the O presence B-protein_state of I-protein_state N B-protein - I-protein WASP I-protein and O in O the O presence B-protein_state of I-protein_state both O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein HR1 B-structure_element are O identical O ( O Fig O . O 7C O ). O The O spectrum B-evidence when O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein were O equimolar O was O identical O to O that O of O the O free B-protein_state HR1 B-structure_element domain O , O whereas O the O spectrum B-evidence in O the O presence B-protein_state of I-protein_state 0 O . O 25 O eq O of O N B-protein - I-protein WASP I-protein was O intermediate O between O the O TOCA1 B-protein HR1 B-structure_element free B-protein_state and O complex B-protein_state spectra B-evidence ( O Fig O . O 7D O ). O Taken O together O , O the O data O in O Fig O . O 7 O , O C O and O D O , O indicate O unidirectional O competition O for O Cdc42 B-protein binding O in O which O the O N B-protein - I-protein WASP I-protein GBD B-structure_element displaces O TOCA1 B-protein HR1 B-structure_element but O not O vice O versa O . O The O GBD B-structure_element presumably O acts O as O a O dominant O negative O , O sequestering O endogenous O Cdc42 B-protein and O preventing O endogenous B-protein_state full B-protein_state - I-protein_state length I-protein_state N B-protein - I-protein WASP I-protein from O binding O and O becoming O activated O . O The O TOCA1 B-protein HR1 B-structure_element domain O alone B-protein_state is O sufficient O for O Cdc42 B-protein binding O in O vitro O , O yet O the O affinity B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O for O Cdc42 B-protein is O remarkably O low O ( O Kd B-evidence ≈ O 5 O μm O ). O The O polybasic O tract O within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O Cdc42 B-protein does O not O appear O to O be O required O for O binding O to O TOCA1 B-protein , O which O is O in O contrast O to O the O interaction O between O Rac1 B-protein and O the O HR1b B-structure_element domain O of O PRK1 B-protein but O more O similar O to O the O PRK1 B-protein HR1a B-structure_element - O RhoA B-protein interaction O . O The O equivalent O Arg B-residue_name in O Rac1 B-protein and O RhoA B-protein is O pointing O away O from O the O HR1 B-structure_element domains O of O PRK1 B-protein . O Furthermore O , O the O isolated B-experimental_method F B-structure_element - I-structure_element BAR I-structure_element domain O of O FBP17 B-protein has O been O shown O to O induce O membrane O tubulation O of O brain O liposomes O and O BAR B-structure_element domain O proteins O that O promote O tubulation O cluster O on O membranes O at O high O densities O . O A O substantial O body O of O data O has O illuminated O the O complex O regulation O of O WASP B-protein_type / I-protein_type N I-protein_type - I-protein_type WASP I-protein_type proteins I-protein_type , O and O current O evidence O suggests O that O these O allosteric O activation O mechanisms O and O oligomerization O combine O to O regulate O WASP B-protein_type activity O , O allowing O the O synchronization O and O integration O of O multiple O potential O activation O signals O ( O reviewed O in O Ref O .). O We O envisage O that O TOCA1 B-protein is O first O recruited O to O the O appropriate O membrane O in O response O to O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical via O its O F B-structure_element - I-structure_element BAR I-structure_element domain O , O where O the O local O increase O in O concentration O favors O F B-structure_element - I-structure_element BAR I-structure_element - O mediated O dimerization B-oligomeric_state of O TOCA1 B-protein . O TOCA1 B-protein can O then O recruit O N B-protein - I-protein WASP I-protein via O an O interaction O between O its O SH3 B-structure_element domain O and O the O N B-protein - I-protein WASP I-protein proline B-structure_element - I-structure_element rich I-structure_element region I-structure_element . O In O a O cellular O context O , O full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O N B-protein - I-protein WASP I-protein are O likely O to O have O similar O affinities B-evidence for O active B-protein_state Cdc42 B-protein , O but O in O the O unfolded B-protein_state , O active B-protein_state conformation O , O the O affinity B-evidence of O N B-protein - I-protein WASP I-protein for O Cdc42 B-protein dramatically O increases O . O Our O binding B-evidence data I-evidence suggest O that O TOCA1 B-protein HR1 B-structure_element binding O is O not O allosterically O regulated O , O and O our O NMR B-experimental_method data O , O along O with O the O high O stability B-protein_state of O TOCA1 B-protein HR1 B-structure_element , O suggest O that O there O is O no O widespread O conformational O change O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein . O As O full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O the O isolated B-protein_state HR1 B-structure_element domain O bind O Cdc42 B-protein with O similar O affinities O , O the O N B-protein - I-protein WASP I-protein - O Cdc42 B-protein interaction O will O be O favored O because O the O N B-protein - I-protein WASP I-protein GBD B-structure_element can O easily O outcompete O the O TOCA1 B-protein HR1 B-structure_element for O Cdc42 B-protein . O Potentially O , O the O TOCA1 B-protein - O Cdc42 B-protein interaction O functions O to O position O N B-protein - I-protein WASP I-protein and O Cdc42 B-protein such O that O they O are O poised O to O interact O with O high O affinity O . O There O is O an O advantage O to O such O an O effector O handover O , O in O that O N B-protein - I-protein WASP I-protein would O only O be O robustly O recruited O when O F B-structure_element - I-structure_element BAR I-structure_element domains O are O already O present O . O F O - O BAR O oligomerization O is O expected O to O occur O following O membrane O binding O , O but O a O single O monomer B-oligomeric_state is O shown O for O clarity O . O The O HR1TOCA1 B-structure_element - O Cdc42 O and O SH3TOCA1 B-structure_element - O N O - O WASP O interactions O position O Cdc42 B-protein and O N B-protein - I-protein WASP I-protein for O binding O . O Step O 4 O , O the O core O CRIB B-structure_element binds O with O high O affinity O while O the O region O C O - O terminal O to O the O CRIB B-structure_element displaces O the O TOCA1 B-protein HR1 B-structure_element domain O and O increases O the O affinity O of O the O N B-protein - I-protein WASP I-protein - O Cdc42 O interaction O further O . O WH1 O , O WASP B-structure_element homology I-structure_element 1 I-structure_element domain I-structure_element ; O PP B-structure_element , O proline B-structure_element - I-structure_element rich I-structure_element region I-structure_element ; O VCA B-structure_element , O verprolin B-structure_element homology I-structure_element , I-structure_element cofilin I-structure_element homology I-structure_element , I-structure_element acidic I-structure_element region I-structure_element . O We O envisage O a O complex O interplay O of O equilibria O between O free B-protein_state and O bound B-protein_state , O active B-protein_state and O inactive B-protein_state Cdc42 B-protein , O TOCA B-protein_type family I-protein_type , O and O WASP B-protein_type family O proteins O , O facilitating O a O tightly O spatially O and O temporally O regulated O pathway O requiring O numerous O simultaneous O events O in O order O to O achieve O appropriate O and O robust O activation O of O the O downstream O pathway O . O Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O catalyse O the O committed O step O in O fatty O - O acid O biosynthesis O : O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O They O are O important O regulatory O hubs O for O metabolic O control O and O relevant O drug O targets O for O the O treatment O of O the O metabolic O syndrome O and O cancer O . O Combining O the O yeast B-taxonomy_domain CD B-structure_element structure B-evidence with O intermediate O and O low O - O resolution O data O of O larger B-mutant fragments I-mutant up O to O intact B-protein_state ACCs B-protein_type provides O a O comprehensive O characterization O of O the O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type architecture O . O In O addition O to O the O canonical O ACC B-structure_element components I-structure_element , O eukaryotic B-taxonomy_domain ACCs B-protein_type contain O two O non B-protein_state - I-protein_state catalytic I-protein_state regions B-structure_element , O the O large O central B-structure_element domain I-structure_element ( O CD B-structure_element ) O and O the O BC B-structure_element – I-structure_element CT I-structure_element interaction I-structure_element domain I-structure_element ( O BT B-structure_element ). O The O function O of O this O domain O remains O poorly O characterized O , O although O phosphorylation B-ptm of O several O serine B-residue_name residues O in O the O CD B-structure_element regulates O ACC B-protein_type activity O . O Of O these O , O only O Ser1157 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain ACC B-protein_type and O aligns B-experimental_method to I-experimental_method Ser1216 B-residue_name_number in O human B-species ACC1 B-protein . O Integrating O these O data O with O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O and O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O observations O yield O a O comprehensive O representation O of O the O dynamic O structure O and O regulation O of O fungal B-taxonomy_domain ACC B-protein_type . O First O , O we O focused O on O structure B-experimental_method determination I-experimental_method of O the O 82 O - O kDa O CD B-structure_element . O Close O structural O homologues O could O not O be O found O for O the O CDN B-structure_element or O the O CDC B-structure_element domains O . O To O define O the O functional O state O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method ACC B-protein_type variants O , O we O employed O mass B-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O for O phosphorylation B-experimental_method site I-experimental_method detection I-experimental_method . O The O SceCD B-species structure B-evidence thus O authentically O represents O the O state O of O SceACC B-protein , O where O the O enzyme B-protein is O inhibited B-protein_state by O SNF1 B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm . O Each O of O the O four O CD B-structure_element domains O in O HsaBT B-mutant - I-mutant CD I-mutant individually O resembles O the O corresponding O SceCD B-species domain O ; O however O , O human B-species and O yeast B-taxonomy_domain CDs B-structure_element exhibit O distinct O overall O structures B-evidence . O In O agreement O with O their O tight O interaction O in O SceCD B-species , O the O relative O spatial O arrangement O of O CDL B-structure_element and O CDC1 B-structure_element is O preserved O in O HsaBT B-mutant - I-mutant CD I-mutant , O but O the O human B-species CDL B-structure_element / O CDC1 B-structure_element didomain O is O tilted O by O 30 O ° O based O on O a O superposition B-experimental_method of O human B-species and O yeast B-taxonomy_domain CDC2 B-structure_element ( O Supplementary O Fig O . O 1c O ). O It O resembles O the O BT B-structure_element of O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type ; O only O the O four O C O - O terminal O strands B-structure_element of I-structure_element the I-structure_element β I-structure_element - I-structure_element barrel I-structure_element are O slightly O tilted O . O The O absence B-protein_state of I-protein_state the O regulatory B-structure_element loop I-structure_element might O be O linked O to O the O less B-protein_state - I-protein_state restrained I-protein_state interface B-site of O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element and O altered O relative O orientations O of O these O domains B-structure_element . O To O further O obtain O insights O into O the O functional O architecture O of O fungal B-taxonomy_domain ACC B-protein_type , O we O characterized O larger B-mutant multidomain I-mutant fragments I-mutant up O to O the O intact B-protein_state enzymes B-protein . O No O crystals O diffracting O to O sufficient O resolution O were O obtained O for O larger B-mutant BC I-mutant - I-mutant containing I-mutant fragments I-mutant , O or O for O full B-protein_state - I-protein_state length I-protein_state Cth B-species or O SceACC B-protein . O However O , O molecular B-experimental_method replacement I-experimental_method did O not O reveal O a O unique O positioning O of O the O BC B-structure_element domain O . O Indeed O , O the O comparison O of O the O positioning O of O eight O instances O of O the O C O - O terminal O part O of O CD B-structure_element relative O to O CT B-structure_element in O crystal B-evidence structures I-evidence determined B-experimental_method here O , O reveals O flexible O interdomain O linking O ( O Fig O . O 3a O ). O Conformational O variability O in O the O CD B-structure_element thus O contributes O considerably O to O variations O in O the O spacing O between O the O BC B-structure_element and O CT B-structure_element domains O , O and O may O extend O to O distance O variations O beyond O the O mobility O range O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-structure_element . O SAXS B-experimental_method analysis O of O CthACC B-protein agrees O with O a O dimeric B-oligomeric_state state O and O an O elongated B-protein_state shape I-protein_state with O a O maximum O extent O of O 350 O Å O ( O Supplementary O Table O 1 O ). O The O flexibility O in O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element appears O substantially O larger O than O the O variations O observed O in O the O set O of O crystal B-evidence structures I-evidence . O The O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element binds O to O an O allosteric B-site site I-site at O the O interface B-site of O two O non B-protein_state - I-protein_state catalytic I-protein_state domains O and O restricts O conformational O freedom O at O several O hinges B-structure_element in O the O dynamic B-protein_state ACC B-protein_type . O ( O b O ) O Cartoon O representation O of O the O SceCD B-species crystal B-evidence structure I-evidence . O ( O c O ) O Superposition B-experimental_method of O CDC1 B-structure_element and O CDC2 B-structure_element reveals O highly B-protein_state conserved I-protein_state folds B-structure_element . O ( O d O ) O The O regulatory B-structure_element loop I-structure_element with O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O bound O into O a O crevice O between O CDC1 B-structure_element and O CDC2 B-structure_element , O the O conserved B-protein_state residues O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number coordinate O the O phosphoryl B-chemical - O group O . O The O range O of O hinge O bending O is O indicated O and O the O connection O points O between O CDC2 B-structure_element and O CT B-structure_element ( O blue O ) O as O well O as O between O CDC1 B-structure_element and O CDC2 B-structure_element ( O green O and O grey O ) O are O marked O as O spheres O . O The O connection O points O from O CDC1 B-structure_element to O CDC2 B-structure_element and O to O CDL B-structure_element are O represented O by O green O spheres O . O The O domains O are O labelled O and O the O distances O between O the O N O termini O of O CDN B-structure_element ( O spheres O ) O in O the O compared O structures O are O indicated O . O The O two O kinases O exhibit O nearly O identical O overall O architecture O , O with O both O kinases B-protein_type possessing O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrates I-protein_state . O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein display O a O sequence O identity O of O 44 O . O 9 O %, O and O belong O to O the O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type , O a O sub O - O family O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O However O , O the O function O of O XK B-protein - I-protein 1 I-protein ( O At2g21370 B-gene ) O inside O the O chloroplast O stroma O has O remained O unknown O . O Among O all O these O structural O elements O , O α4 B-structure_element / O α5 B-structure_element / O α11 B-structure_element / O α18 B-structure_element , O β3 B-structure_element / O β2 B-structure_element / O β1 B-structure_element / O β6 B-structure_element / O β19 B-structure_element / O β20 B-structure_element / O β17 B-structure_element and O α21 B-structure_element / O α32 B-structure_element form O three O patches O , O referred O to O as O A1 B-structure_element , O B1 B-structure_element and O A2 B-structure_element , O exhibiting O the O core B-structure_element region I-structure_element . O The O structures B-evidence most O closely O related O to O SePSK B-protein are O xylulose B-protein_type kinase I-protein_type , O glycerol B-protein_type kinase I-protein_type and O ribulose B-protein_type kinase I-protein_type , O implying O that O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein might O function O similarly O to O these O kinases B-protein_type . O To O further O identify O the O actual O substrate O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein , O five O different O sugar O molecules O , O including O D B-chemical - I-chemical ribulose I-chemical , O L B-chemical - I-chemical ribulose I-chemical , O D B-chemical - I-chemical xylulose I-chemical , O L B-chemical - I-chemical xylulose I-chemical and O Glycerol B-chemical , O were O used O in O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method . O While O the O ATP B-chemical hydrolysis O activity O of O SePSK B-protein greatly O increases O upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O DR B-chemical ). O ( O B O ) O The O ATP B-chemical hydrolysis O activity O of O SePSK B-protein with O addition O of O five O different O substrates O . O To O obtain O more O detailed O information O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein in B-protein_state complex I-protein_state with I-protein_state ATP B-chemical , O we O soaked B-experimental_method the O apo B-protein_state - O crystals B-evidence in O the O reservoir O adding O cofactor O ATP B-chemical , O and O obtained O the O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein bound B-protein_state with I-protein_state ATP B-chemical at O the O resolution O of O 2 O . O 3 O Å O and O 1 O . O 8 O Å O , O respectively O . O Thus O the O two O structures B-evidence were O named O ADP B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O ADP B-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O respectively O . O Structure B-evidence of O SePSK B-protein in B-protein_state complex I-protein_state with I-protein_state AMP B-chemical - I-chemical PNP I-chemical . O ( O A O ) O The O electron B-evidence density I-evidence of O AMP B-chemical - I-chemical PNP I-chemical . O The O AMP B-chemical - I-chemical PNP I-chemical is O depicted O as O sticks O with O its O ǀFoǀ B-evidence - I-evidence ǀFcǀ I-evidence map I-evidence contoured O at O 3 O σ O shown O as O cyan O mesh O . O ( O B O ) O The O AMP B-site - I-site PNP I-site binding I-site pocket I-site . O The O AMP B-chemical - I-chemical PNP I-chemical and O coordinated O residues O are O shown O as O sticks O . O The O potential O substrate B-site binding I-site site I-site in O SePSK B-protein The O RBL1 B-residue_name_number and O RBL2 B-residue_name_number are O depicted O as O sticks O . O ( O B O ) O Interaction O of O two O D B-chemical - I-chemical ribulose I-chemical molecules O ( O RBL1 B-residue_name_number and O RBL2 B-residue_name_number ) O with O SePSK B-protein . O The O RBL B-chemical molecules O ( O carbon O atoms O colored O yellow O ) O and O amino O acid O residues O of O SePSK B-protein ( O carbon O atoms O colored O green O ) O involved O in O RBL B-chemical interaction O are O shown O as O sticks O . O The O hydroxyl O group O of O Ser12 B-residue_name_number coordinates B-bond_interaction with I-bond_interaction O2 O of O RBL2 B-residue_name_number . O Structural B-experimental_method comparison I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O that O while O the O RBL1 B-site binding I-site pocket I-site is O conserved B-protein_state , O the O RBL2 B-site pocket I-site is O disrupted O in O AtXK B-protein - I-protein 1 I-protein structure B-evidence , O despite O the O fact O that O the O residues O interacting O with O RBL2 B-residue_name_number are O highly B-protein_state conserved I-protein_state between O the O two O proteins O . O In O the O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence , O a O 2 O . O 6 O Å O hydrogen B-bond_interaction bond I-bond_interaction is O present O between O RBL2 B-residue_name_number and O Ser12 B-residue_name_number ( O Fig O 4B O ), O while O in O the O AtXK B-protein - I-protein 1 I-protein structure B-evidence this O hydrogen B-bond_interaction bond I-bond_interaction with O the O corresponding O residue O ( O Ser22 B-residue_name_number ) O is O broken O . O This O change O might O be O the O reason O that O AtXK B-protein - I-protein 1 I-protein only O shows O limited O increasing O in O its O ATP B-chemical hydrolysis O ability O upon O adding O D B-chemical - I-chemical ribulose I-chemical as O a O substrate O after O comparing O with O SePSK B-protein ( O Fig O 2C O ). O The O results O showed O that O the O affinity B-evidence of O D8A B-mutant - O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical is O weaker O than O that O of O WT B-protein_state with O a O reduction O of O approx O . O This O distance O between O RBL2 B-residue_name_number and O AMP B-chemical - I-chemical PNP I-chemical - O γ O - O phosphate B-chemical is O close O enough O to O facilitate O phosphate B-chemical transferring O . O Together O , O our O superposition B-experimental_method results O provided O snapshots O of O the O conformational O changes O at O different O catalytic O stages O of O SePSK B-protein and O potentially O revealed O the O closed B-protein_state form O of O SePSK B-protein . O In O summary O , O our O structural B-experimental_method and I-experimental_method enzymatic I-experimental_method analyses I-experimental_method provide O evidence O that O SePSK B-protein shows O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type activity O , O and O exhibits O the O conserved O features O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Three O conserved B-site residues O in O SePSK B-protein were O identified O to O be O essential O for O this O function O . O We O now O present O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method 3D B-evidence reconstructions I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein , O and O an O improved B-evidence map I-evidence of O the O LdcI B-protein bound B-protein_state to I-protein_state the O LARA B-structure_element domain I-structure_element of O RavA B-protein , O at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O . O They O counteract O acid O stress O experienced O by O the O bacterium B-taxonomy_domain in O the O host O digestive O and O urinary O tract O , O and O in O particular O in O the O extremely O acidic O stomach O . O Monomers B-oligomeric_state tightly O associate O via O their O core B-structure_element domains I-structure_element into O 2 B-protein_state - I-protein_state fold I-protein_state symmetrical I-protein_state dimers B-oligomeric_state with O two O complete O active B-site sites I-site , O and O further O build O a O toroidal B-structure_element D5 I-structure_element - I-structure_element symmetrical I-structure_element structure I-structure_element held O by O the O wing B-structure_element and O core B-structure_element domain I-structure_element interactions O around O the O central B-structure_element pore I-structure_element , O with O the O CTDs B-structure_element at O the O periphery O . O This O allowed O us O to O make O a O pseudoatomic B-evidence model I-evidence of O the O whole O assembly O , O underpinned O by O a O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O ( O with O LARA B-structure_element standing O for O LdcI B-structure_element associating I-structure_element domain I-structure_element of I-structure_element RavA I-structure_element ), O and O to O identify O conformational O rearrangements O and O specific O elements O essential O for O complex O formation O . O The O main O determinants O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O assembly O appeared O to O be O the O N O - O terminal O loop B-structure_element of O the O LARA B-structure_element domain I-structure_element of O RavA B-protein and O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Finally O , O we O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O 22 O lysine B-protein_type decarboxylases I-protein_type from O Enterobacteriaceae B-taxonomy_domain containing O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O Significant O differences O between O these O pseudoatomic B-evidence models I-evidence can O be O interpreted O as O movements O between O specific O biological O states O of O the O proteins O as O described O below O . O Both O visual B-experimental_method inspection I-experimental_method ( O Fig O . O 2 O ) O and O RMSD B-experimental_method calculations I-experimental_method ( O Table O S2 O ) O show O that O globally O the O three O structures B-evidence at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O are O more O similar O to O each O other O than O to O the O structure O determined O at O high B-protein_state pH I-protein_state conditions O ( O LdcIi B-protein ). O The O core B-structure_element domain I-structure_element is O built O by O the O PLP B-structure_element - I-structure_element binding I-structure_element subdomain I-structure_element ( O PLP B-structure_element - I-structure_element SD I-structure_element , O residues O 184 B-residue_range – I-residue_range 417 I-residue_range ) O flanked O by O two O smaller O subdomains B-structure_element rich O in O partly B-protein_state disordered I-protein_state loops B-structure_element – O the O linker B-structure_element region I-structure_element ( O residues O 130 B-residue_range – I-residue_range 183 I-residue_range ) O and O the O subdomain B-structure_element 4 I-structure_element ( O residues O 418 B-residue_range – I-residue_range 563 I-residue_range ). O In O particular O , O transition O from O LdcIi B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly involves O ~ O 3 O . O 5 O Å O and O ~ O 4 O . O 5 O Å O shifts O away O from O the O 5 O - O fold O axis O in O the O active B-site site I-site α B-structure_element - I-structure_element helices I-structure_element spanning O residues O 218 B-residue_range – I-residue_range 232 I-residue_range and O 246 B-residue_range – I-residue_range 254 I-residue_range respectively O ( O Fig O . O 3C O – O E O ). O At O this O resolution O , O the O apo B-protein_state - O LdcIi B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly structures B-evidence ( O both O solved O at O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ) O appeared O indistinguishable O except O for O the O presence O of O ppGpp B-chemical ( O Fig O . O S11 O in O ref O . O ). O Yet O the O superposition B-experimental_method of O the O decamers B-oligomeric_state lays O bare O a O progressive O movement O of O the O CTD B-structure_element as O a O whole O upon O enzyme O activation O by O pH O and O the O binding O of O LARA B-structure_element . O On O the O contrary O , O introduction B-experimental_method of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein into O LdcC B-protein led O to O an O assembly O of O the O LdcCI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O . O ( O A O , O C O , O E O ) O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O A O ), O LdcIa B-protein ( O C O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ) O decamers B-oligomeric_state with O one O protomer B-oligomeric_state in O light O grey O . O Only O one O of O the O two O rings B-structure_element of O the O double B-structure_element toroid I-structure_element is O shown O for O clarity O . O Conformational O rearrangements O in O the O enzyme O active B-site site I-site . O ( O A O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcIa B-protein ( O purple O ) O and O LdcC B-protein ( O green O ) O monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ). O ( O B O ) O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element in O LdcIa B-protein and O LdcC B-protein enlarged O from O ( O A O , O C O ) O Exchanged O primary O sequences O ( O capital O letters O ) O and O their O immediate O vicinity O ( O lower O case O letters O ) O colored O as O in O ( O A O , O B O ), O with O the O corresponding O secondary O structure O elements O and O the O amino O acid O numbering O shown O . O ( O A O ) O Maximum B-evidence likelihood I-evidence tree I-evidence with O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O and O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O groups O highlighted O in O green O and O pink O , O respectively O . O Structural O basis O for O Mep2 B-protein_type ammonium B-protein_type transceptor I-protein_type activation O by O phosphorylation B-ptm Mep2 B-protein_type proteins I-protein_type are O fungal B-taxonomy_domain transceptors B-protein_type that O play O an O important O role O as O ammonium B-chemical sensors O in O fungal B-taxonomy_domain development O . O While O most O studies O have O focused O on O the O Saccharomyces B-species cerevisiae I-species transceptors B-protein_type for O phosphate B-chemical ( O Pho84 B-protein ), O amino B-chemical acids I-chemical ( O Gap1 B-protein ) O and O ammonium B-chemical ( O Mep2 B-protein ), O transceptors B-protein_type are O found O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain as O well O ( O for O example O , O the O mammalian B-taxonomy_domain SNAT2 B-protein amino B-protein_type - I-protein_type acid I-protein_type transporter I-protein_type and O the O GLUT2 B-protein glucose B-protein_type transporter I-protein_type ). O Of O these O , O only O Mep2 B-protein_type proteins I-protein_type function O as O ammonium B-chemical receptors O / O sensors O in O fungal B-taxonomy_domain development O . O In O bacteria B-taxonomy_domain , O amt B-gene genes O are O present O in O an O operon O with O glnK B-gene , O encoding O a O PII B-protein_type - I-protein_type like I-protein_type signal I-protein_type transduction I-protein_type class I-protein_type protein I-protein_type . O Under O conditions O of O nitrogen B-chemical limitation O , O GlnK B-protein_type becomes O uridylated B-protein_state , O blocking O its O ability O to O bind O and O inhibit O Amt B-protein_type proteins I-protein_type . O ( O root B-evidence mean I-evidence square I-evidence deviation I-evidence )= O 0 O . O 7 O Å O for O 434 O residues O ), O with O the O main O differences O confined O to O the O N O terminus O and O the O CTR B-structure_element ( O Fig O . O 1 O ). O The O N O termini O of O the O Mep2 B-protein_type proteins I-protein_type are O ∼ O 20 B-residue_range – I-residue_range 25 I-residue_range residues O longer O compared O with O their O bacterial B-taxonomy_domain counterparts O ( O Figs O 1 O and O 2 O ), O substantially O increasing O the O size O of O the O extracellular B-structure_element domain I-structure_element . O The O N O - O terminal O vestibule B-structure_element and O the O resulting O inter O - O monomer B-oligomeric_state interactions O likely O increase O the O stability O of O the O Mep2 B-protein trimer B-oligomeric_state , O in O support O of O data O for O plant B-taxonomy_domain AMT B-protein_type proteins I-protein_type . O The O head O group O of O Arg54 B-residue_name_number has O moved O ∼ O 11 O Å O relative O to O that O in O Amt B-protein - I-protein 1 I-protein , O whereas O the O shift O of O the O head O group O of O the O variable O Lys55 B-residue_name_number residue O is O almost O 20 O Å O . O The O side O chain O of O Lys56 B-residue_name_number in O the O basic B-protein_state motif B-structure_element points O in O an O opposite O direction O in O the O Mep2 B-protein structures B-evidence compared O with O that O of O , O for O example O , O Amt B-protein - I-protein 1 I-protein ( O Fig O . O 4 O ). O Significantly O , O this O is O also O true O for O ScMep2 B-protein , O which O was O crystallized B-experimental_method in O the O presence O of O 0 O . O 2 O M O ammonium B-chemical ions O ( O see O Methods O section O ). O In O Mep2 B-protein , O the O CTR B-structure_element has O moved O away O and O makes O relatively O few O contacts O with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type , O generating O a O more O elongated B-protein_state protein O ( O Figs O 1 O and O 4 O ). O These O residues O include O those O of O the O ‘ B-structure_element ExxGxD I-structure_element ' I-structure_element motif I-structure_element , O which O when O mutated B-experimental_method generate O inactive B-protein_state transporters B-protein_type . O In O Amt B-protein - I-protein 1 I-protein and O other O bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O these O CTR B-structure_element residues O interact O with O residues O within O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein O . O At O the O other O end O of O ICL3 B-structure_element , O the O backbone O carbonyl O groups O of O Gly172 B-residue_name_number and O Lys173 B-residue_name_number are O hydrogen B-bond_interaction bonded I-bond_interaction to O the O side O chain O of O Arg370 B-residue_name_number . O This O interaction O in O the O centre O of O the O protein O may O be O particularly O important O to O stabilize O the O open B-protein_state conformations O of O ammonium B-protein_type transporters I-protein_type . O Where O is O the O AI B-structure_element region I-structure_element and O the O Npr1 B-protein phosphorylation B-site site I-site located O ? O Our O structures B-evidence reveal O that O surprisingly O , O the O AI B-structure_element region I-structure_element is O folded O back O onto O the O CTR B-structure_element and O is O not O located O near O the O centre O of O the O trimer B-oligomeric_state as O expected O from O the O bacterial B-taxonomy_domain structures B-evidence ( O Fig O . O 4 O ). O The O AI B-structure_element regions I-structure_element have O very O similar O conformations O in O CaMep2 B-protein and O ScMep2 B-protein , O despite O considerable O differences O in O the O rest O of O the O CTR B-structure_element ( O Fig O . O 6 O ). O This O makes O sense O since O the O proteins O were O expressed O in O rich O medium O and O confirms O the O recent O suggestion O by O Boeckstaens O et O al O . O that O the O non B-protein_state - I-protein_state phosphorylated I-protein_state form O of O Mep2 B-protein corresponds O to O the O inactive B-protein_state state O . O The O peripheral O location O and O disorder B-protein_state of O the O CTR B-structure_element beyond O the O kinase B-site target I-site site I-site should O facilitate O the O phosphorylation B-ptm by O Npr1 B-protein . O Mep2 B-protein lacking B-protein_state the O AI B-structure_element region I-structure_element is O conformationally B-protein_state heterogeneous I-protein_state Density B-evidence for O ICL3 B-structure_element and O the O CTR B-structure_element beyond O residue O Arg415 B-residue_name_number is O missing O in O the O 442Δ B-mutant mutant B-protein_state , O and O the O density B-evidence for O the O other O ICLs B-structure_element including O ICL1 B-structure_element is O generally O poor O with O visible O parts O of O the O structure B-evidence having O high O B O - O factors O ( O Fig O . O 7 O ). O Why O then O does O this O mutant O appear O to O be O constitutively O active B-protein_state ? O We O propose O two O possibilities O . O The O latter O model O would O fit O well O with O the O NH3 B-chemical / O H B-chemical + I-chemical symport O model O in O which O the O proton O is O relayed O by O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O To O test O this O hypothesis O , O we O determined B-experimental_method the O structure B-evidence of O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state R452D B-mutant / I-mutant S453D I-mutant protein O ( O hereafter O termed O ‘ O DD B-mutant mutant I-mutant '), O using O data O to O a O resolution O of O 2 O . O 4 O Å O . O The O additional B-experimental_method mutation I-experimental_method of I-experimental_method the O arginine B-residue_name preceding O the O phosphorylation B-site site I-site was O introduced O ( O i O ) O to O increase O the O negative O charge O density O and O make O it O more O comparable O to O a O phosphate B-chemical at O neutral O pH O , O and O ( O ii O ) O to O further O destabilize O the O interactions O of O the O AI B-structure_element region I-structure_element with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type ( O Fig O . O 6 O ). O In O addition O , O residues O Glu420 B-residue_range - I-residue_range Leu423 I-residue_range including O Glu421 B-residue_name_number of O the O ExxGxD B-structure_element motif I-structure_element are O now O disordered B-protein_state ( O Fig O . O 8 O and O Supplementary O Fig O . O 3 O ). O The O protein O backbone O has O an O average O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence of O only O ∼ O 3 O Å O during O the O 200 O - O ns O simulation B-experimental_method , O indicating O that O the O protein O is O stable B-protein_state . O There O is O flexibility O in O the O side O chains O of O the O acidic O residues O so O that O they O are O able O to O form O stable B-protein_state hydrogen B-bond_interaction bonds I-bond_interaction with O Ser453 B-residue_name_number . O For O example O , O the O distance B-evidence between O the O Asp453 B-residue_name_number acidic O oxygens O and O the O Glu420 B-residue_name_number acidic O oxygens O increases O from O ∼ O 7 O to O > O 22 O Å O after O 200 O ns O simulations B-experimental_method , O and O thus O these O residues O are O not O interacting O . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O More O specifically O , O the O close O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element present O in O open B-protein_state transporters B-protein_type are O disrupted O , O causing O ICL3 B-structure_element to O move O outwards O and O block O the O channel B-site ( O Figs O 4 O and O 9a O ). O However O , O even O the O otherwise O highly O similar O Mep2 B-protein_type proteins I-protein_type of O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species have O different O structures B-evidence for O their O CTRs B-structure_element ( O Fig O . O 1 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O considerable O differences O between O structurally O resolved O CTR B-structure_element domains O means O that O the O exact O environment O of O T460 B-residue_name_number in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O also O not O known O ( O Supplementary O Fig O . O 6 O ). O ( O a O ) O The O triple B-mutant mepΔ I-mutant strain O ( O black O ) O and O triple O mepΔ O npr1Δ O strain O ( O grey O ) O containing O plasmids O expressing O WT B-protein_state and O variant B-mutant ScMep2 I-mutant were O grown B-experimental_method on I-experimental_method minimal I-experimental_method medium I-experimental_method containing O 1 O mM O ammonium B-chemical sulphate I-chemical . O The O numbering O is O for O CaMep2 B-protein . O Channel O closures O in O Mep2 B-protein . O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O residues O Tyr49 B-residue_name_number and O His342 B-residue_name_number is O shown O for O the O truncation B-protein_state mutant I-protein_state . O The O arrow O indicates O the O phosphorylation B-site site I-site . O Upon O phosphorylation B-ptm and O mimicked B-protein_state by O the O CaMep2 B-protein S453D B-mutant and O DD B-mutant mutants I-mutant ( O ii O ), O the O region O around O the O ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O results O in O the O CTR B-structure_element interacting O with O the O inward O - O moving O ICL3 B-structure_element , O opening O the O channel B-site ( O full O circle O ) O ( O iii O ). O Once O a O candidate O antibody B-protein_type is O identified O , O protein B-experimental_method engineering I-experimental_method is O usually O required O to O produce O a O molecule O with O the O right O biophysical O and O functional O properties O . O The O sequence O diversity O of O the O CDR B-structure_element regions I-structure_element presents O a O substantial O challenge O to O antibody B-protein_type modeling O . O In O contrast O to O CDRs B-structure_element L1 B-structure_element , O L2 B-structure_element , O L3 B-structure_element , O H1 B-structure_element and O H2 B-structure_element , O no O canonical O structures B-evidence have O been O observed O for O CDR B-structure_element H3 B-structure_element , O which O is O the O most O variable O in O length O and O amino O acid O sequence O . O Some O clustering O of O conformations O was O observed O for O the O shortest O lengths O ; O however O , O for O the O longer O loops B-structure_element , O only O the O portions O nearest O the O framework B-structure_element ( O torso B-structure_element , O stem B-structure_element or O anchor B-structure_element region I-structure_element ) O were O found O to O have O defined O conformations O . O Current O antibody B-protein_type modeling O approaches O take O advantage O of O the O most O recent O advances O in O homology B-experimental_method modeling I-experimental_method , O the O evolving O understanding O of O the O CDR B-structure_element canonical O structures B-evidence , O the O emerging O rules O for O CDR B-structure_element H3 B-structure_element modeling O and O the O growing O body O of O antibody B-protein_type structural O data O available O from O the O PDB O . O To O support O antibody B-protein_type engineering O and O therapeutic O development O efforts O , O a O phage B-experimental_method library I-experimental_method was O designed O and O constructed O based O on O a O limited O number O of O scaffolds O built O with O frequently O used O human B-species germ O - O line O IGV B-structure_element and O IGJ B-structure_element gene O segments O that O encode O antigen B-site combining I-site sites I-site suitable O for O recognition O of O peptides O and O proteins O . O Variations O occur O in O the O pH O ( O buffer O ) O and O the O additives O , O and O , O in O group O 3 O , O PEG B-chemical 3350 I-chemical is O the O precipitant O for O one O variants O while O ammonium B-chemical sulfate I-chemical is O the O precipitant O for O the O other O two O . O Apart O from O the O C O - O terminus O , O only O a O few O surface O residues O in O LC B-structure_element are O disordered B-protein_state . O The O HCs B-structure_element feature O the O largest O number O of O disordered B-protein_state residues O , O with O the O lower O resolution O structures B-evidence having O the O most O . O CDR B-structure_element H1 B-structure_element and O CDR B-structure_element H2 B-structure_element also O show O some O degree O of O disorder B-protein_state , O but O to O a O lesser O extent O . O Three O of O the O HCs B-structure_element , O H3 B-mutant - I-mutant 23 I-mutant , O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O have O the O same O canonical O structure O , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 1 I-mutant , O and O the O backbone O conformations O are O tightly O clustered O for O each O set O of O Fab B-structure_element structures B-evidence as O reflected O in O the O rmsd B-evidence values I-evidence ( O Fig O . O 1B O - O D O ). O Each O of O the O 4 O HCs B-structure_element adopts O only O one O canonical O structure O regardless O of O the O pairing O LC B-structure_element . O Germlines O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant have O the O same O canonical O structure O assignment O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 1 I-mutant , O H3 B-mutant - I-mutant 23 I-mutant has O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 2 I-mutant , O and O H3 B-mutant - I-mutant 53 I-mutant has O H2 B-mutant - I-mutant 9 I-mutant - I-mutant 3 I-mutant . O Germlines O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant are O unique O in O the O human B-species repertoire O in O having O an O Ala B-residue_name at O position O 71 B-residue_number that O leaves O enough O space O for O H B-structure_element - O Pro52a B-residue_name_number to O pack O deeper O against O CDR B-structure_element H4 B-structure_element so O that O the O following O residues O 53 B-residue_number and O 54 B-residue_number point O toward O the O putative O antigen O . O However O , O there O is O a O significant O shift O of O the O CDR B-structure_element as O a O rigid O body O when O the O 2 O sets O are O superimposed B-experimental_method . O Germline O H1 B-mutant - I-mutant 69 I-mutant has O Ala B-residue_name at O position O 33 B-residue_number whereas O in O H5 B-mutant - I-mutant 51 I-mutant position O 33 B-residue_number is O occupied O by O a O bulky O Trp B-residue_name , O which O stacks O against O H B-structure_element - O Tyr52 B-residue_name_number and O drives O CDR B-structure_element H2 B-structure_element away O from O the O center O . O For O the O remaining O 2 O , O L3 B-mutant - I-mutant 20 I-mutant has O 2 O different O assignments O , O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant and O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O while O L4 B-mutant - I-mutant 1 I-mutant has O a O single O assignment O , O L1 B-mutant - I-mutant 17 I-mutant - I-mutant 1 I-mutant . O L3 B-mutant - I-mutant 20 I-mutant is O the O most O variable O in O CDR B-structure_element L1 B-structure_element among O the O 4 O germlines O as O indicated O by O an O rmsd B-evidence of O 0 O . O 54 O Å O ( O Fig O . O 3C O ). O The O third O structure O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O CDR B-structure_element L1 B-structure_element as O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O which O deviates O from O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant at O residues O 29 B-residue_range - I-residue_range 32 I-residue_range , O i O . O e O ., O at O the O site O of O insertion O with O respect O to O the O 11 B-residue_range - I-residue_range residue I-residue_range CDR B-structure_element . O The O fourth O member O of O the O set O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O was O crystallized B-experimental_method with O 2 O Fabs B-structure_element in O the O asymmetric O unit O . O As O mentioned O earlier O , O all O 16 O Fabs B-structure_element have O the O same O CDR B-structure_element H3 B-structure_element , O for O which O the O amino O acid O sequence O is O derived O from O the O anti O - O CCL2 O antibody B-protein_type CNTO B-chemical 888 I-chemical . O The O variations O in O CDR B-structure_element H3 B-structure_element conformation O are O illustrated O in O Fig O . O 6 O for O the O 18 O Fab B-structure_element structures B-evidence that O have O ordered O backbone O atoms O . O ( O B O ) O The O “ O extended B-protein_state ” O CDR B-structure_element H3 B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly with O green O carbon O atoms O and O yellow O dashed O lines O connecting O the O H O - O bond O pairs O for O Asp101 B-residue_name_number OD1 O and O OD2 O and O Trp103 B-residue_name_number NE1 O . O The O remaining O 8 O Fabs B-structure_element can O be O grouped O into O 5 O different O conformational O classes O . O Position O 43 B-residue_number may O be O alternatively O occupied O by O Ser B-residue_name , O Val B-residue_name or O Pro B-residue_name ( O as O in O L4 B-mutant - I-mutant 1 I-mutant ), O but O the O hydrophobic B-bond_interaction interaction I-bond_interaction with O H B-structure_element - O Tyr91 B-residue_name_number is O preserved O . O In O most O of O the O structures B-evidence , O it O has O the O χ2 B-evidence angle O of O ∼ O 80 O °, O while O the O ring O is O flipped O over O ( O χ2 B-evidence = O − O 100 O °) O in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly : I-complex_assembly 11 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O In O fact O , O the O parameter O values O for O the O set O of O 16 O Fabs B-structure_element are O in O the O middle O of O the O distribution O observed O for O 351 O non O - O redundant O antibody B-protein_type structures B-evidence determined O at O 3 O . O 0 O Å O resolution O or O better O . O An O illustration O of O the O difference O in O tilt O angle O for O 2 O pairs O of O variants O by O the O superposition B-experimental_method of O the O VH B-structure_element domains O of O ( O A O ) O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly on O that O of O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ( O the O VL B-structure_element domain O is O off O by O a O rigid O - O body O roatation O of O 10 O . O 5 O °) O and O ( O B O ) O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly on O that O of O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ( O the O VL B-structure_element domain O is O off O by O a O rigid O - O body O roatation O of O 1 O . O 6 O °). O One O of O the O 2 O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O its O CDR B-structure_element H3 B-structure_element in O the O ‘ O extended B-protein_state ’ O conformation O ; O the O other O structure O has O it O in O the O ‘ O kinked B-protein_state ’ O conformation O . O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly buried O surface O area O and O complementarity O Residues O in O CDR B-structure_element H3 B-structure_element are O missing O : O YGE B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O GIY B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O This O is O the O first O report O of O a O systematic B-experimental_method structural I-experimental_method investigation I-experimental_method of O a O phage B-experimental_method germline I-experimental_method library I-experimental_method . O The O 16 O Fab B-structure_element structures B-evidence offer O a O unique O look O at O all O pairings O of O 4 O different O HCs B-structure_element ( O H1 B-mutant - I-mutant 69 I-mutant , O H3 B-mutant - I-mutant 23 I-mutant , O H3 B-mutant - I-mutant 53 I-mutant , O and O H5 B-mutant - I-mutant 51 I-mutant ) O and O 4 O different O LCs B-structure_element ( O L1 B-mutant - I-mutant 39 I-mutant , O L3 B-mutant - I-mutant 11 I-mutant , O L3 B-mutant - I-mutant 20 I-mutant and O L4 B-mutant - I-mutant 1 I-mutant ), O all O with O the O same O CDR B-structure_element H3 B-structure_element . O Having O all O 16 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairs O with O the O same O CDR B-structure_element H3 B-structure_element provides O some O insights O into O why O molecular O modeling O efforts O of O CDR B-structure_element H3 B-structure_element have O proven O so O difficult O . O Thus O , O it O is O likely O that O the O CDR B-structure_element H3 B-structure_element conformation O is O dependent O upon O 2 O dominating O factors O : O 1 O ) O amino O acid O sequence O ; O and O 2 O ) O VH B-structure_element and O VL B-structure_element context O . O This O subset O also O has O 2 O structures B-evidence with O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O The O same O variability O is O observed O for O the O sets O of O variants O composed O of O one O LC B-structure_element paired O with O each O of O the O 4 O HCs B-structure_element . O As O noted O in O the O Results O section O , O the O 2 O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O are O outliers O in O terms O of O the O tilt B-evidence angle I-evidence ; O at O the O same O time O , O both O have O the O smallest O VH B-site : I-site VL I-site interface I-site . O Other O germlines O have O bulky O residues O , O Tyr B-residue_name , O Arg B-residue_name and O Trp B-residue_name , O at O these O positions O , O whereas O L1 B-mutant - I-mutant 39 I-mutant has O Ser B-residue_name and O Thr B-residue_name . O A O more O compact B-protein_state CDR B-structure_element L3 B-structure_element may O be O beneficial O in O this O situation O . O Yet O , O for O the O 2 O antibodies B-protein_type , O the O total O gain O in O stability O merits O the O domain O repacking O . O Quite O unexpectedly O , O 2 O of O the O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O have O the O ‘ O extended B-protein_state ’ O stem B-structure_element region I-structure_element differing O from O the O other O 14 O that O have O a O ‘ O kinked B-protein_state ’ O stem B-structure_element region I-structure_element . O From O this O point O of O view O , O a O novel O approach O to O design O combinatorial O antibody B-protein_type libraries O would O be O to O cover O the O range O of O CDR B-structure_element conformations O that O may O not O necessarily O coincide O with O the O germline O usage O in O the O human B-species repertoire O . O This O study O resulted O in O a O series O of O snapshots O depicting O the O various O folding O states O of O Im7 B-protein while O bound B-protein_state to I-protein_state Spy B-protein . O Recent O advances O in O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O NMR B-experimental_method spectroscopy I-experimental_method continue O to O improve O our O ability O to O analyze O biomolecules O that O exist O in O multiple O conformations O . O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method has O historically O provided O valuable O information O on O small O - O scale O conformational O changes O , O but O observing O large O - O amplitude O heterogeneous O conformational O changes O often O falls O beyond O the O reach O of O current O crystallographic O techniques O . O However O , O modeling O of O the O substrate O in O the O complex O proved O to O be O a O substantial O challenge O , O as O the O electron B-evidence density I-evidence of O the O substrate O was O discontinuous O and O fragmented O . O To O determine O the O structure B-evidence of O the O substrate O portion O of O these O Spy B-protein : O substrate O complexes O , O we O conceived O of O an O approach O that O we O term O READ B-experimental_method , O for O Residual B-experimental_method Electron I-experimental_method and I-experimental_method Anomalous I-experimental_method Density I-experimental_method . O Its O strong O anomalous B-evidence scattering I-evidence allowed O us O to O track O the O positions O of O these O individual O Im76 B-mutant - I-mutant 45 I-mutant residues O one O at O a O time O , O potentially O even O if O the O residue O was O found O in O several O locations O in O the O same O crystal B-evidence . O Together O , O these O results O indicated O that O the O Im7 B-protein substrate O binds O Spy B-protein in O multiple O conformations O . O To O generate O an O accurate O depiction O of O the O chaperone B-protein_type - O substrate O interactions O , O we O devised O a O selection O protocol O based O on O a O sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method procedure O employed O in O NMR B-experimental_method spectroscopy I-experimental_method . O The O coarse B-experimental_method - I-experimental_method grained I-experimental_method simulations I-experimental_method are O based O on O a O single O - O residue O resolution O model O for O protein O folding O and O were O extended O here O to O describe O Spy B-complex_assembly - I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly binding O events O ( O Online O Methods O ). O To O accomplish O this O task O , O we O generated O a O compressed O version O of O the O experimental O 2mFo B-evidence − I-evidence DFc I-evidence electron I-evidence density I-evidence map I-evidence for O use O in O the O selection O . O We O constructed O a O contact B-evidence map I-evidence of O the O complex O , O which O shows O the O frequency O of O interactions O for O chaperone B-protein_type - O substrate O residue O pairs O ( O Fig O . O 4 O ). O The O Spy B-site - I-site contacting I-site residues I-site comprise O a O mixture O of O charged O , O polar O , O and O hydrophobic O residues O . O Once O the O substrate O begins O to O fold O within O this O protected O environment O , O it O progressively O buries O its O own O hydrophobic O residues O , O and O its O interactions O with O the O chaperone B-protein_type shift O towards O becoming O more O electrostatic O . O Residues O Asp32 B-residue_name_number and O Asp35 B-residue_name_number are O close O to O each O other O in O the O folded B-protein_state state O of O Im7 B-protein . O This O proximity O likely O causes O electrostatic O repulsion O that O destabilizes O Im7 B-protein ’ O s O native B-protein_state state O . O In O conjunction O with O our O bound B-protein_state Im76 B-mutant - I-mutant 45 I-mutant ensemble B-evidence , O these O mutants O now O allowed O us O to O investigate O structural O features O important O to O chaperone B-protein_type function O . O Despite O extensive O studies O , O exactly O how O complex O chaperone B-protein_type machines O help O proteins O fold O remains O controversial O . O Heterogeneous O dynamic O complexes O or O disordered B-protein_state regions O of O single O proteins O , O once O considered O solely O approachable O by O NMR B-experimental_method spectroscopy I-experimental_method , O can O now O be O visualized O through O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Flowchart O of O the O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method process O . O ( O a O ) O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly contact B-evidence map I-evidence projected O onto O the O bound B-protein_state Spy B-protein dimer B-oligomeric_state ( O above O ) O and O Im76 B-mutant - I-mutant 45 I-mutant ( O below O ) O structures B-evidence . O ( O a O ) O Overlay B-experimental_method of O apo B-protein_state Spy B-protein ( O PDB O ID O : O 3O39 O , O gray O ) O and O bound B-protein_state Spy B-protein ( O green O ). O ( O b O ) O Overlay B-experimental_method of O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state Im76 B-mutant - I-mutant 45 I-mutant ( O green O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state Im7 B-protein L18A B-mutant L19 B-mutant AL13A I-mutant ( O blue O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state WT B-protein_state Im7 B-protein ( O yellow O ), O and O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state casein B-chemical ( O salmon O ). O ( O c O ) O Competition B-experimental_method assay I-experimental_method showing O Im76 B-mutant - I-mutant 45 I-mutant competes O with O Im7 B-protein L18A B-mutant L19A B-mutant L37A B-mutant H40W B-mutant for O the O same O binding B-site site I-site on O Spy B-protein ( O further O substrate B-experimental_method competition I-experimental_method assays I-experimental_method are O shown O in O Supplementary O Fig O . O 8 O ). O ( O b O ) O F115 B-residue_name_number and O L32 B-residue_name_number tether O Spy B-protein ’ O s O linker B-structure_element region I-structure_element to O its O cradle B-site , O decreasing O Spy B-protein activity O by O limiting O linker B-structure_element region I-structure_element flexibility O . O Despite O a O long O history O of O physiological O and O functional O studies O , O the O molecular O mechanism O of O NCX B-protein_type has O been O elusive O , O owing O to O the O lack O of O structural O information O . O In O this O study O , O we O set O out O to O determine O the O structures B-evidence of O outward B-protein_state - I-protein_state facing I-protein_state wild B-protein_state - I-protein_state type I-protein_state NCX_Mj B-protein in B-protein_state complex I-protein_state with I-protein_state Na B-chemical +, I-chemical Ca2 B-chemical + I-chemical and O Sr2 B-chemical +, I-chemical at O various O concentrations O . O Extracellular O Na B-chemical + I-chemical binding O To O conclusively O clarify O this O assignment O , O we O first O set O out O to O examine O the O Na B-chemical + I-chemical occupancy O of O these O sites O without O Ca2 B-chemical +. I-chemical X B-experimental_method - I-experimental_method ray I-experimental_method diffraction I-experimental_method of O these O soaked O crystals B-evidence revealed O a O Na B-chemical +- I-chemical dependent O variation O in O the O electron B-evidence - I-evidence density I-evidence distribution I-evidence at O sites O Sext B-site , O SCa B-site and O Sint B-site , O indicating O a O Na B-chemical + I-chemical occupancy O change O ( O Fig O . O 1c O ). O Indeed O , O two O observations O indicate O that O a O water B-chemical molecule O rather O than O a O Na B-chemical + I-chemical ion O occupies O Smid B-site , O as O was O predicted O in O a O recent O simulation B-experimental_method study O . O When O Na B-chemical + I-chemical binds O to O Sext B-site at O high B-protein_state concentrations O , O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O TM7 B-structure_element is O bent O into O two O short B-structure_element helices I-structure_element , O TM7a B-structure_element and O TM7b B-structure_element ( O Fig O . O 2a O ). O TM7b B-structure_element occludes O the O four O central B-site binding I-site sites I-site from O the O external O solution O , O with O the O backbone O carbonyl O of O Ala206 B-residue_name_number coordinating B-bond_interaction the O Na B-chemical + I-chemical ion O ( O Fig O . O 2b O - O d O ). O Extracellular O Ca2 B-chemical + I-chemical and O Sr2 B-chemical + I-chemical binding O and O their O competition O with O Na B-chemical + I-chemical Binding O of O Ca2 B-chemical + I-chemical to O both O sites O simultaneously O is O highly O improbable O due O to O their O close O proximity O , O and O at O least O one O water B-chemical molecule O can O be O discerned O coordinating B-bond_interaction the O ion O ( O Fig O . O 3b O ). O Indeed O , O in O most O NCX B-protein_type proteins O Asp240 B-residue_name_number is O substituted B-experimental_method by O Asn B-residue_name , O which O would O likely O weaken O or O abrogate O Ca2 B-chemical + I-chemical binding O to O Smid B-site . O Although O the O binding B-site sites I-site are O thus O fully B-protein_state accessible I-protein_state to O the O external O solution O ( O Fig O . O 3e O ), O the O lack O of O electron B-evidence density I-evidence therein O indicates O no O ions O or O ordered O solvent O molecules O . O Such O interpretation O would O be O consistent O with O the O computer B-experimental_method simulations I-experimental_method reported O below O . O That O secondary B-protein_type - I-protein_type active I-protein_type transporters I-protein_type are O able O to O harness O an O electrochemical O gradient O of O one O substrate O to O power O the O uphill O transport O of O another O relies O on O a O seemingly O simple O principle O : O they O must O not O transition O between O outward B-protein_state - I-protein_state and O inward B-protein_state - I-protein_state open I-protein_state conformations O unless O in O two O precise O substrate O occupancy O states O . O As O it O happens O , O the O results O confirm O that O the O structures B-evidence now O available O are O representing O interconverting O states O of O the O functional O cycle O of O NCX_Mj B-protein , O while O revealing O how O the O alternating O - O access O mechanism O is O controlled O by O the O ion O - O occupancy O state O . O This O distortion O occludes O Sext B-site from O the O exterior O ( O Fig O . O 4d O , O 4h O - O i O ) O and O appears O to O be O induced O by O the O Na B-chemical + I-chemical ion O itself O , O which O pulls O the O carbonyl O group O of O A206 B-residue_name_number into O its O coordination O sphere O ( O Fig O . O 4g O ). O When O all O Na B-site + I-site sites I-site are O occupied O , O the O global O free B-evidence - I-evidence energy I-evidence minimum I-evidence corresponds O to O a O conformation O in O which O the O ions O are O maximally O coordinated O by O the O protein O ( O Fig O . O 5a O , O 5c O ); O TM7ab B-structure_element is O bent O and O packs O closely O with O TM2 B-structure_element and O TM3 B-structure_element , O and O so O the O binding B-site sites I-site are O occluded O from O the O solvent O ( O Fig O . O 5b O ). O The O Na B-chemical + I-chemical ion O at O Sext B-site remains O fully B-protein_state coordinated I-protein_state , O but O an O ordered O water B-chemical molecule O now O mediates O its O interaction O with O A206 B-residue_name_number : O O O , O relieving O the O strain O on O the O F202 B-residue_name_number : O O O – O A206 B-residue_name_number : O N O hydrogen B-bond_interaction - I-bond_interaction bond I-bond_interaction ( O Fig O . O 5c O ). O Interestingly O , O this O doubly O occupied O state O can O also O access O conformations O in O which O the O second O aqueous B-site channel I-site mentioned O above O , O i O . O e O . O leading O to O SCa B-site between O TM7 B-structure_element and O TM2 B-structure_element and O over O the O gating B-structure_element helices I-structure_element TM1 B-structure_element and O TM6 B-structure_element , O also O becomes O open B-protein_state ( O Fig O . O 5b O - O c O ). O This O processivity O is O logical O since O three O Na B-chemical + I-chemical ions O are O involved O , O but O also O implies O that O in O the O Ca2 B-protein_state +- I-protein_state bound I-protein_state state O , O which O includes O a O single O ion O , O the O transporter B-protein_type ought O to O be O able O to O access O all O three O major O conformations O , O i O . O e O . O the O outward B-protein_state - I-protein_state open I-protein_state state O , O in O order O to O release O ( O or O re O - O bind O ) O Ca2 B-chemical +, I-chemical but O also O the O occluded B-protein_state conformation O , O and O thus O the O semi B-protein_state - I-protein_state open I-protein_state intermediate O , O in O order O to O transition O to O the O inward B-protein_state - I-protein_state open I-protein_state state O . O By O contrast O , O occupancy O by O H B-chemical +, I-chemical which O as O mentioned O are O not O transported O , O might O be O compatible O with O a O semi B-protein_state - I-protein_state open I-protein_state state O as O well O as O with O the O fully B-protein_state open I-protein_state conformation O , O but O should O not O be O conducive O to O occlusion O . O This O occluded B-protein_state conformation O , O which O is O a O necessary O intermediate O between O the O outward B-protein_state and O inward B-protein_state - I-protein_state open I-protein_state states O , O and O which O entails O the O internal O dehydration B-protein_state of O the O protein O , O is O only O attainable O upon O complete B-protein_state occupancy I-protein_state of O the O binding B-site sites I-site . O The O most O apparent O of O these O changes O involves O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O TM7 B-structure_element ( O TM7ab B-structure_element ); O together O with O more O subtle O displacements O in O TM2 B-structure_element and O TM3 B-structure_element , O this O change O in O TM7ab B-structure_element correlates O with O the O opening O and O closing O of O two O distinct O aqueous B-site channels I-site leading O into O the O ion B-site - I-site binding I-site sites I-site from O the O extracellular O solution O . O The O striking O quantitative O agreement O between O the O ion B-evidence - I-evidence binding I-evidence affinities I-evidence inferred O from O our O crystallographic B-experimental_method titrations I-experimental_method and O the O Km B-evidence and O K1 B-evidence / I-evidence 2 I-evidence values I-evidence previously O deduced O from O functional B-experimental_method assays I-experimental_method has O been O discussed O above O . O Specifically O , O our O crystal B-experimental_method titrations I-experimental_method suggest O that O , O during O forward O Na B-chemical +/ I-chemical Ca2 B-chemical + I-chemical exchange O , O sites O Sint B-site and O SCa B-site , O which O Ca2 B-chemical + I-chemical and O Na B-chemical + I-chemical compete O for O , O can O be O grouped O into O one O ; O Na B-chemical + I-chemical binding O to O these O sites O does O not O require O high O Na B-chemical + I-chemical concentrations O , O and O two O Na B-chemical + I-chemical ions O along O with O a O water B-chemical molecule O ( O at O Smid B-site ) O are O sufficient O to O displace O Ca2 B-chemical +, I-chemical explaining O the O Hill B-evidence coefficient I-evidence of O ~ O 2 O for O Na B-chemical +- I-chemical dependent O inhibition O of O Ca2 B-chemical + I-chemical fluxes O . O No O significant O changes O were O observed O in O the O side O - O chains O involved O in O ion O or O water B-chemical coordination O at O the O SCa B-site , O Sint B-site and O Smid B-site sites O . O The O vacant O Sext B-site site O in O the O structure B-evidence at O low B-protein_state Na B-chemical + I-chemical concentration O is O indicated O with O a O white O sphere O . O ( O d O ) O Extracellular O solvent O accessibility O of O the O ion B-site binding I-site sites I-site in O the O structures B-evidence at O high B-protein_state and O low B-protein_state [ O Na B-chemical +]. I-chemical Putative O solvent B-site channels I-site are O represented O as O light O - O purple O surfaces O . O Residues O involved O in O Sr2 B-chemical + I-chemical coordination O are O labeled O . O ( O b O ) O Ca2 B-chemical + I-chemical ( O tanned O spheres O ) O binds O either O to O SCa B-site or O Smid B-site in O crystals B-experimental_method titrated I-experimental_method with O 10 O mM O Ca2 B-chemical + I-chemical and O 2 O . O 5 O mM O Na B-chemical + I-chemical ( O see O also O Supplementary O Fig O . O 2 O ). O Approximate O distances O between O TM2 B-structure_element , O TM3 B-structure_element and O TM7 B-structure_element are O indicated O in O Å O . O ( O e O ) O Close O - O up O of O the O ion B-site - I-site binding I-site region I-site in O the O partially B-protein_state Na I-protein_state +- I-protein_state occupied I-protein_state state O . O The O water B-evidence - I-evidence density I-evidence maps I-evidence in O ( O b O ) O are O shown O here O as O a O grey O mesh O . O An O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element recognizes O the O 3 B-site ′ I-site splice I-site site I-site signal O Initially O U2AF65 B-protein recognizes O the O Py B-chemical - I-chemical tract I-chemical splice B-site site I-site signal O . O As O such O , O the O molecular O mechanisms O for O Py B-chemical - I-chemical tract I-chemical recognition O by O the O intact B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element remained O unknown O . O We O use O single B-experimental_method - I-experimental_method molecule I-experimental_method Förster I-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method ( O smFRET B-experimental_method ) O to O characterize O the O conformational B-evidence dynamics I-evidence of O this O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element during O Py B-chemical - I-chemical tract I-chemical recognition O . O The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element associate O with O the O Py B-chemical tract I-chemical in O a O parallel B-protein_state , O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O ( O shown O for O representative O structure O iv O in O Fig O . O 2b O , O c O ; O Supplementary O Movie O 1 O ). O An O extended B-protein_state conformation I-protein_state of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element traverses O across O the O α B-structure_element - I-structure_element helical I-structure_element surface I-structure_element of O RRM1 B-structure_element and O the O central O β B-structure_element - I-structure_element strands I-structure_element of O RRM2 B-structure_element and O is O well O defined O in O the O electron B-evidence density I-evidence ( O Fig O . O 2b O ). O Both O RRM1 B-structure_element / O RRM2 B-structure_element extensions B-structure_element and O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element of O U2AF651 B-mutant , I-mutant 2L I-mutant directly O recognize O the O bound B-protein_state oligonucleotide B-chemical . O Based O on O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence , O we O originally O hypothesized O that O the O U2AF65 B-protein RRMs B-structure_element would O bind O the O minimal B-protein_state seven O nucleotides B-chemical observed O in O these O structures B-evidence . O Surprisingly O , O the O RRM2 B-structure_element extension I-structure_element / O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element contribute O new O central O nucleotide B-site - I-site binding I-site sites I-site near O the O RRM1 B-site / I-site RRM2 I-site junction I-site and O the O RRM1 B-structure_element extension I-structure_element recognizes O the O 3 O ′- O terminal O nucleotide B-chemical ( O Fig O . O 2c O ; O Supplementary O Movie O 1 O ). O Qualitatively O , O a O subset O of O the O U2AF651 B-site , I-site 2L I-site - I-site nucleotide I-site - I-site binding I-site sites I-site ( O sites B-site 1 I-site – I-site 3 I-site and O 7 B-site – I-site 9 I-site ) O share O similar O locations O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Figs O 2c O , O d O and O 3 O ). O Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O This O nucleotide B-chemical twists O to O face O away O from O the O U2AF65 B-protein linker B-structure_element and O instead O inserts O the O rU6 B-residue_name_number - O uracil B-residue_name into O a O sandwich O between O the O β2 B-structure_element / I-structure_element β3 I-structure_element loops I-structure_element of O RRM1 B-structure_element and O RRM2 B-structure_element . O The O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element of O the O U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element directly O contact O the O bound B-protein_state Py B-chemical tract I-chemical . O Consequently O , O the O U2AF651 B-protein_state , I-protein_state 2L I-protein_state - I-protein_state bound I-protein_state rU2 B-residue_name_number - O O4 O and O - O N3H O form O dual O hydrogen B-bond_interaction bonds I-bond_interaction with O the O K329 B-residue_name_number backbone O atoms O ( O Fig O . O 3a O ), O rather O than O a O single O hydrogen B-bond_interaction bond I-bond_interaction with O the O K329 B-residue_name_number side O chain O as O in O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence ( O Supplementary O Fig O . O 3b O ). O The O adjacent O R146 B-residue_name_number guanidinium O group O donates O hydrogen B-bond_interaction bonds I-bond_interaction to O the O 3 O ′- O terminal O ribose B-chemical - O O2 O ′ O and O O3 O ′ O atoms O , O where O it O could O form O a O salt B-bond_interaction bridge I-bond_interaction with O a O phospho O - O diester O group O in O the O context O of O a O longer O pre B-chemical - I-chemical mRNA I-chemical . O We O compare B-experimental_method U2AF65 B-protein interactions O with O uracil B-residue_name relative O to O cytosine B-residue_name pyrimidines B-chemical at O the O ninth B-site binding I-site site I-site in O Fig O . O 3g O , O h O and O the O Supplementary O Discussion O . O At O the O RNA B-chemical surface O , O the O key O V254 B-residue_name_number that O recognizes O the O fifth B-residue_number uracil B-residue_name is O secured O via O hydrophobic B-bond_interaction contacts I-bond_interaction between O its O side O chain O and O the O β B-structure_element - I-structure_element sheet I-structure_element surface I-structure_element of O RRM2 B-structure_element , O chiefly O the O consensus O RNP1 B-structure_element - O F304 B-residue_name_number residue O that O stacks B-bond_interaction with O the O fourth B-residue_number uracil B-residue_name ( O Fig O . O 4a O , O lower O left O ). O However O , O the O resulting O decrease O in O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Gly I-mutant mutant B-protein_state relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein was O not O significant O ( O Fig O . O 4b O ). O In O parallel O , O we O replaced B-experimental_method five O linker B-structure_element residues I-structure_element ( O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number and O P255 B-residue_name_number ) O at O the O fifth B-site nucleotide I-site - I-site binding I-site site I-site with O glycines B-residue_name ( O 5Gly B-mutant ) O and O also O found O that O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 5Gly I-mutant mutant B-protein_state likewise O decreased O only O slightly O relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein . O Importance O of O U2AF65 B-complex_assembly – I-complex_assembly RNA I-complex_assembly contacts O for O pre B-chemical - I-chemical mRNA I-chemical splicing O To O complement O the O static O portraits O of O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence that O we O had O determined O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O we O used O smFRET B-experimental_method to O characterize O the O probability B-evidence distribution I-evidence functions I-evidence and O time O dependence O of O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O solution O . O Double O - O cysteine B-residue_name variant B-protein_state of O U2AF651 B-mutant , I-mutant 2 I-mutant was O modified B-experimental_method with O equimolar O amount O of O Cy3 B-chemical and O Cy5 B-chemical . O Only O traces B-evidence that O showed O single O photobleaching O events O for O both O donor O and O acceptor O dyes O and O anti O - O correlated O changes O in O acceptor O and O donor O fluorescence O were O included O in O smFRET B-experimental_method data O analysis O . O The O double O - O labelled O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O tethered B-protein_state to O a O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical resin I-chemical . O However O , O the O presence O of O repetitive O fluctuations O between O particular O FRET B-evidence values I-evidence supports O the O hypothesis O that O RNA B-protein_state - I-protein_state free I-protein_state U2AF65 B-protein samples O several O distinct O conformations O . O This O result O is O consistent O with O the O broad O ensembles O of O extended B-protein_state solution O conformations O that O best O fit O the O SAXS B-experimental_method data O collected O for O U2AF651 B-mutant , I-mutant 2 I-mutant as O well O as O for O a O longer O construct O ( O residues O 136 B-residue_range – I-residue_range 347 I-residue_range ). O We O next O used O smFRET B-experimental_method to O probe O the O conformational O selection O of O distinct O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O following O association O of O U2AF65 B-protein with O the O AdML B-gene Py B-chemical - I-chemical tract I-chemical prototype O . O To O assess O the O possible O contributions O of O RNA B-protein_state - I-protein_state free I-protein_state conformations O of O U2AF65 B-protein and O / O or O structural O heterogeneity O introduced O by O tethering B-experimental_method of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O slide O to O the O observed O distribution B-evidence of I-evidence FRET I-evidence values I-evidence , O we O reversed B-experimental_method the I-experimental_method immobilization I-experimental_method scheme I-experimental_method . O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O The O inter B-evidence - I-evidence fluorophore I-evidence distances I-evidence derived O from O the O observed O 0 O . O 45 O FRET B-evidence state I-evidence agree O with O the O distances O between O the O α O - O carbon O atoms O of O the O respective O residues O in O the O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical . O Hidden B-experimental_method Markov I-experimental_method modelling I-experimental_method analysis I-experimental_method of O smFRET B-experimental_method traces B-evidence suggests O that O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant can O sample O at O least O two O other O conformations O corresponding O to O ∼ O 0 O . O 7 O – O 0 O . O 8 O and O ∼ O 0 O . O 3 O FRET B-evidence values I-evidence in O addition O to O the O predominant O conformation O corresponding O to O the O 0 O . O 45 O FRET B-evidence state I-evidence . O Truncation B-experimental_method of O U2AF65 B-protein to O the O core B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element reduces O its O RNA B-evidence affinity I-evidence by O 100 O - O fold O . O As O such O , O we O suggest O that O the O MDS O - O relevant O U2AF65 B-protein mutations O contribute O to O MDS O progression O indirectly O , O by O destabilizing O a O relevant O conformation O of O the O conjoined O U2AF35 B-protein subunit O rather O than O affecting O U2AF65 B-protein functions O in O RNA B-chemical binding O or O spliceosome B-complex_assembly recruitment O per O se O . O An O increased O prevalence O of O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence following O U2AF65 B-protein – O RNA B-chemical binding O , O coupled O with O the O apparent O absence B-protein_state of I-protein_state transitions O in O many O ∼ O 0 O . O 45 O - O value O single O molecule O traces B-evidence ( O for O example O , O Fig O . O 6e O ), O suggests O a O population O shift O in O which O RNA B-chemical binds O to O ( O and O draws O the O equilibrium O towards O ) O a O pre B-protein_state - I-protein_state configured I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element proximity O that O most O often O corresponds O to O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O Examples O of O ‘ O extended B-protein_state conformational O selection O ' O during O ligand O binding O have O been O characterized O for O a O growing O number O of O macromolecules O ( O for O example O , O adenylate B-protein_type kinase I-protein_type , O LAO B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O poly B-protein_type - I-protein_type ubiquitin I-protein_type , O maltose B-protein_type - I-protein_type binding I-protein_type protein I-protein_type and O the O preQ1 B-protein_type riboswitch I-protein_type , O among O others O ). O These O transitions O could O correspond O to O rearrangement O from O the O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O U2AF65 B-protein conformation O in O which O the O RNA B-site - I-site binding I-site surface I-site of O only O a O single B-protein_state RRM B-structure_element is O exposed O and O available O for O RNA O binding O , O to O the O structural O state O seen O in O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence . O The O finding O that O U2AF65 B-protein recognizes O a O nine O base O pair O Py B-chemical tract I-chemical contributes O to O an O elusive O ‘ O code O ' O for O predicting O splicing O patterns O from O primary O sequences O in O the O post O - O genomic O era O ( O reviewed O in O ref O .). O ( O b O ) O Comparison O of O the O apparent O equilibrium B-evidence affinities I-evidence of O various O U2AF65 B-protein constructs O for O binding O the O prototypical O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O for O binding O the O AdML B-gene 13mer O are O as O follows O : O flU2AF65 B-protein , O 30 O ± O 3 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 35 O ± O 6 O nM O ; O U2AF651 B-mutant , I-mutant 2 I-mutant , O 3 O , O 600 O ± O 300 O nM O . O ( O c O ) O Comparison O of O the O RNA B-evidence sequence I-evidence specificities I-evidence of O flU2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant constructs O binding O C B-structure_element - I-structure_element rich I-structure_element Py B-chemical tracts I-chemical with O 4U O ' O s O embedded O in O either O the O 5 O ′- O ( O light O grey O fill O ) O or O 3 O ′- O ( O dark O grey O fill O ) O regions O . O The O purified O protein O and O average B-evidence fitted I-evidence fluorescence I-evidence anisotropy I-evidence RNA I-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 1 O . O ( O b O ) O Stereo O views O of O a O ‘ O kicked O ' O 2 B-evidence | I-evidence Fo I-evidence |−| I-evidence Fc I-evidence | I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N O - O and O C O - O terminal O residues O ( O blue O ) O or O bound O oligonucleotide B-chemical of O a O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure O ( O structure O iv O , O bound B-protein_state to I-protein_state 5 O ′-( O P O ) O rUrUrUdUrUrU O ( O BrdU O ) O dUrC O ) O ( O magenta O ). O BrdU B-chemical , O 5 B-chemical - I-chemical bromo I-chemical - I-chemical deoxy I-chemical - I-chemical uridine I-chemical ; O d B-chemical , O deoxy B-chemical - I-chemical ribose I-chemical ; O P B-chemical -, I-chemical 5 B-chemical ′- I-chemical phosphorylation I-chemical ; O r B-chemical , O ribose B-chemical . O The O U2AF65 B-protein linker B-structure_element / O RRM B-structure_element and O inter O - O RRM B-structure_element interactions O . O RNA O binding O stabilizes O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O of O U2AF65 B-protein RRMs B-structure_element . O Additional O traces B-evidence for O untethered B-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O are O shown O in O Supplementary O Fig O . O 7c O , O d O . O Histograms B-evidence ( O d O , O f O , O h O , O j O ) O show O the O distribution B-evidence of I-evidence FRET I-evidence values I-evidence in O RNA B-protein_state - I-protein_state free I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O d O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O f O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O h O ) O and O adenosine O - O interrupted O RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O j O ). O A O surface O representation O of O U2AF651 B-mutant , I-mutant 2L I-mutant is O shown O bound B-protein_state to I-protein_state nine O nucleotides B-chemical ( O nt O ); O the O relative O distances O and O juxtaposition O of O the O branch B-site point I-site sequence I-site ( O BPS B-site ) O and O consensus O AG B-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site are O unknown O . O ( O b O ) O Following O binding O to O the O Py B-chemical - I-chemical tract I-chemical RNA I-chemical , O a O conformation O corresponding O to O high B-evidence FRET I-evidence and O consistent O with O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state apo B-protein_state - O U2AF65 B-protein model O resulting O from O PRE B-experimental_method / O NMR B-experimental_method characterization O ( O PDB O ID O 2YH0 O ) O often O transitions O to O a O conformation O corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence , O which O is O consistent O with O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state RRMs B-structure_element such O as O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Over O a O large O dose O range O , O the O RNA B-chemical was O found O to O be O far O less O susceptible O to O radiation O - O induced O chemical O changes O than O the O protein O . O Dose O is O defined O as O the O absorbed O energy O per O unit O mass O of O crystal O in O grays O ( O Gy O ; O 1 O Gy O = O 1 O J O kg O − O 1 O ), O and O is O the O metric O against O which O damage O progression O should O be O monitored O during O MX B-experimental_method data O collection O , O as O opposed O to O time O . O There O are O a O number O of O cases O where O SRD O manifestations O have O compromised O the O biological O information O extracted O from O MX B-experimental_method - I-experimental_method determined I-experimental_method structures B-evidence at O much O lower O doses O than O the O recommended O 30 O MGy O limit O , O leading O to O false O structural O interpretations O of O protein O mechanisms O . O The O investigation O of O naturally O forming O nucleoprotein O complexes O circumvents O the O inherent O challenges O in O making O controlled O comparisons O of O damage O mechanisms O between O protein O and O nucleic O acids O crystallized B-experimental_method separately O . O Recently O , O for O a O well O characterized O bacterial B-taxonomy_domain protein O – O DNA B-chemical complex O ( O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly ; O PDB O entry O 3clc O ; O resolution O 2 O . O 8 O Å O ; O McGeehan O et O al O ., O 2008 O ) O it O was O concluded O that O over O a O wide O dose O range O ( O 2 O . O 1 O – O 44 O . O 6 O MGy O ) O the O protein O was O far O more O susceptible O to O SRD O than O the O DNA B-chemical within O the O crystal B-evidence ( O Bury O et O al O ., O 2015 O ). O Three O acidic O residues O ( O Glu36 B-residue_name_number , O Asp39 B-residue_name_number and O Glu42 B-residue_name_number ) O are O involved O in O RNA B-chemical interactions O within O each O of O the O 11 O TRAP B-complex_assembly ring B-structure_element subunits B-structure_element , O and O Fig O . O 5 O ▸ O shows O their O density B-evidence changes I-evidence with O increasing O dose O . O Salt B-bond_interaction - I-bond_interaction bridge I-bond_interaction interactions O have O previously O been O suggested O to O reduce O the O glutamate B-residue_name decarboxylation O rate O within O the O large O (∼ O 62 O . O 4 O kDa O ) O myrosinase B-protein_type protein O structure B-evidence ( O Burmeister O , O 2000 O ). O The O extended O aliphatic O Lys37 B-residue_name_number side O chain O stacks O against O the O nearby O G1 B-residue_name_number base O , O making O a O series O of O nonpolar B-bond_interaction contacts I-bond_interaction within O each O RNA B-site - I-site binding I-site interface I-site . O Representative O Phe32 B-residue_name_number and O Lys37 B-residue_name_number atoms O were O selected O to O illustrate O these O trends O . O Our O method O ­ O ology O , O which O eliminated O tedious O and O error O - O prone O visual O inspection O , O permitted O the O determination O on O a O per O - O atom O basis O of O the O most O damaged O sites O , O as O characterized O by O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence between O successive O data O sets O collected O from O the O same O crystal B-evidence . O Both O Glu36 B-residue_name_number and O Asp39 B-residue_name_number bind O directly O to O RNA B-chemical , O each O through O two O hydrogen B-bond_interaction bonds I-bond_interaction to O guanine B-chemical bases O ( O G3 B-residue_name_number and O G1 B-residue_name_number , O respectively O ). O Observations O of O lower O protein O radiation O - O sensitivity O in O DNA B-protein_state - I-protein_state bound I-protein_state forms O have O been O recorded O in O solution O at O RT O at O much O lower O doses O (∼ O 1 O kGy O ) O than O those O used O for O typical O MX B-experimental_method experiments O [ O e O . O g O . O an O oestrogen O response O element O – O receptor O complex O ( O Stísová O et O al O ., O 2006 O ) O and O a O DNA B-protein_type glycosylase I-protein_type and O its O abasic B-site DNA I-site target I-site site I-site ( O Gillard O et O al O ., O 2004 O )]. O However O , O in O the O current O MX B-experimental_method study O at O 100 O K O , O the O main O damaging O species O are O believed O to O be O migrating O LEEs O and O holes O produced O directly O within O the O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly components O or O in O closely O associated O solvent O . O RNA B-chemical is O shown O is O yellow O . O ( O b O ) O Average O D O loss O for O each O residue O / O nucleotide O type O with O respect O to O the O DWD B-evidence ( O diffraction B-evidence - I-evidence weighted I-evidence dose I-evidence ; O Zeldin O , O Brock O ­ O hauser O et O al O ., O 2013 O ). O Residues O have O been O grouped O by O amino O - O acid O number O , O and O split O into O bound B-protein_state and O nonbound B-protein_state groupings O , O with O each O bar O representing O the O mean O calculated O over O 11 O equivalent O atoms O around O a O TRAP B-complex_assembly ring B-structure_element . O The O three O best O - O characterized O MAPK B-protein_type signalling O pathways O are O mediated O by O the O kinases B-protein_type extracellular B-protein_type signal I-protein_type - I-protein_type regulated I-protein_type kinase I-protein_type ( O ERK B-protein_type ), O c B-protein_type - I-protein_type Jun I-protein_type N I-protein_type - I-protein_type terminal I-protein_type kinase I-protein_type ( O JNK B-protein_type ) O and O p38 B-protein_type . O The O ERK B-protein_type pathway O is O activated O by O various O mitogens O and O phorbol O esters O , O whereas O the O JNK B-protein_type and O p38 B-protein_type pathways O are O stimulated O mainly O by O environmental O stress O and O inflammatory O cytokines B-protein_type . O MKPs B-protein_type constitute O a O group O of O DUSPs B-protein_type that O are O characterized O by O their O ability O to O dephosphorylate O both O phosphotyrosine B-residue_name and O phosphoserine B-residue_name / O phospho B-residue_name - I-residue_name threonine I-residue_name residues O within O a O substrate O . O Biochemical B-experimental_method and I-experimental_method modelling I-experimental_method studies I-experimental_method further O demonstrate O that O the O molecular O interactions O mediate O this O key O element O for O substrate O recognition O are O highly O conserved O among O all O MKP B-protein_type - I-protein_type family I-protein_type members I-protein_type . O In O mammalian B-taxonomy_domain cells O , O the O MKP B-protein_type subfamily I-protein_type includes O 10 O distinct O catalytically B-protein_state active I-protein_state MKPs B-protein_type . O Figure O 2b O shows O the O variation B-evidence of I-evidence initial I-evidence rates I-evidence of O the O MKP7ΔC304 B-mutant and O MKP7 B-protein - O CD B-structure_element - O catalysed O reaction O with O the O concentration O of O phospho B-protein_state - O JNK1 B-protein . O Because O the O concentrations O of O MKP7 B-protein and O pJNK1 B-protein_state were O comparable O in O the O reaction O , O the O assumption O that O the O free O - O substrate O concentration O is O equal O to O the O total O substrate O concentration O is O not O valid O . O To O further O confirm O the O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly - I-complex_assembly CD I-complex_assembly interaction O , O we O performed O a O pull B-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method using O the O purified O proteins O . O The O catalytic B-structure_element domain I-structure_element of O MKP7 B-protein interacts O with O JNK1 B-protein through O a O contiguous O surface O area O that O is O remote O from O the O active B-site site I-site . O The O active B-site site I-site of O MKP7 B-protein consists O of O the O phosphate B-structure_element - I-structure_element binding I-structure_element loop I-structure_element ( O P B-structure_element - I-structure_element loop I-structure_element , O Cys244 B-residue_name_number - O Leu245 B-residue_name_number - O Ala246 B-residue_name_number - O Gly247 B-residue_name_number - O Ile248 B-residue_name_number - O Ser249 B-residue_name_number - O Arg250 B-residue_name_number ), O and O Asp213 B-residue_name_number in O the O general B-structure_element acid I-structure_element loop I-structure_element ( O Fig O . O 3b O and O Supplementary O Fig O . O 1b O ). O The O side O chain O of O strictly B-protein_state conserved I-protein_state Arg250 B-residue_name_number is O oriented O towards O the O negatively O charged O chloride B-chemical , O similar O to O the O canonical O phosphate B-structure_element - I-structure_element coordinating I-structure_element conformation I-structure_element . O In O the O complex O , O MKP7 B-protein - O CD B-structure_element and O JNK1 B-protein form O extensive O protein O – O protein O interactions O involving O the O C B-structure_element - I-structure_element terminal I-structure_element helices I-structure_element of O MKP7 B-protein - O CD B-structure_element and O C B-structure_element - I-structure_element lobe I-structure_element of O JNK1 B-protein ( O Fig O . O 3d O , O e O ). O Mutation B-experimental_method of O Leu288 B-residue_name_number markedly O reduced O its O solubility O when O expressed O in O Escherichia B-species coli I-species , O resulting O in O the O insoluble O aggregation O of O the O mutant B-protein_state protein O . O The O small O pNPP B-chemical molecule O binds O directly O at O the O enzyme O active B-site site I-site and O can O be O used O to O probe O the O reaction O mechanism O of O protein B-protein_type phosphatases I-protein_type . O Biochemical O results O suggested O that O the O affinity O and O specificity O between O KAP B-protein and O CDK2 B-protein results O from O the O recognition B-site site I-site comprising O CDK2 B-protein residues O from O the O αG B-structure_element helix I-structure_element and O L14 B-structure_element loop I-structure_element and O the O N B-structure_element - I-structure_element terminal I-structure_element helical I-structure_element region I-structure_element of O KAP B-protein ( O Fig O . O 5b O ). O Structural B-experimental_method analysis I-experimental_method and O sequence B-experimental_method alignment I-experimental_method reveal O that O one O of O the O few O differences O between O MKP7 B-protein - O CD B-structure_element and O KAP B-protein in O the O substrate B-site - I-site binding I-site region I-site is O the O presence O of O the O motif O FNFL B-structure_element in O MKP7 B-protein - O CD B-structure_element , O which O corresponds O to O IKQY B-structure_element in O KAP B-protein ( O Fig O . O 5c O ). O Parallel O experiments O showed O clearly O that O the O D B-structure_element - I-structure_element motif I-structure_element mutants B-protein_state ( O R56A B-mutant / O R57A B-mutant and O V63A B-mutant / O I65A B-mutant ) O dephosphorylated B-protein_state JNK B-protein_type as O did O the O wild B-protein_state type I-protein_state under O the O same O conditions O , O further O confirming O that O the O MKP7 B-protein - O KBD B-structure_element is O not O required O for O the O JNK B-protein_type inactivation O in O vivo O . O Consistent O with O the O in O vitro O data O , O the O level O of O phosphorylated B-protein_state JNK B-protein_type was O not O or O little O altered O in O MKP7 B-protein FXF B-structure_element - I-structure_element motif I-structure_element mutants B-protein_state ( O F285D B-mutant , O F287D B-mutant and O L288D B-mutant )- O transfected O cells O , O and O the O MKP7 B-protein D268A B-mutant and O N286A B-mutant mutants B-protein_state retained O the O ability O to O reduce O the O phosphorylation O levels O of O JNK B-protein_type . O In O agreement O with O the O in B-experimental_method vitro I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method results O , O the O mutants B-protein_state D229A B-mutant , O W234D B-mutant and O Y259D B-mutant were O not O co O - O precipitated O with O MKP7 B-protein , O and O the O I231D B-mutant mutant B-protein_state had O only O little O effect O on O the O JNK1 B-complex_assembly – I-complex_assembly MKP7 I-complex_assembly interaction O ( O Fig O . O 6d O and O Supplementary O Fig O . O 3a O ). O Moreover O , O treatment O of O cells O expressing O MKP7 B-protein - O KBD B-structure_element mutants B-protein_state ( O R56A B-mutant / O R57A B-mutant and O V63A B-mutant / O I65A B-mutant ) O decreased O the O apoptosis O rates O to O a O similar O extent O as O MKP7 B-protein wild B-protein_state type I-protein_state did O . O MKP5 B-protein belongs O to O the O same O subfamily O as O MKP7 B-protein . O In O contrast O to O p38α B-protein substrate O , O deletion B-experimental_method of I-experimental_method the O MKP5 B-protein - O KBD B-structure_element had O little O effects O on O the O kinetic O parameters O for O the O JNK1 B-protein dephosphorylation O , O indicating O that O the O KBD B-structure_element of O MKP5 B-protein is O not O required O for O the O JNK1 B-protein dephosphorylation O ( O Fig O . O 7b O ). O As O shown O in O Fig O . O 7f O , O the O T432A B-mutant and O L449F B-mutant MKP5 B-protein mutant B-protein_state showed O little O or O no O difference O in O phosphatase O activity O , O whereas O the O other O mutants B-protein_state showed O reduced O specific O activities O of O MKP5 B-protein . O As O in O the O case O of O MKP7 B-protein , O all O the O mutants B-protein_state , O except O F451D B-mutant / I-mutant A I-mutant , O showed O no O pNPPase B-protein_type activity O changes O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state MKP5 B-protein - O CD B-structure_element ( O Fig O . O 7g O ), O and O the O point B-experimental_method mutations I-experimental_method in O JNK1 B-protein also O reduced O the O binding B-evidence affinity I-evidence of O MKP5 B-protein - O CD B-structure_element for O JNK1 B-protein ( O Fig O . O 7h O ). O This O is O consistent O with O the O experimental O observation O showing O that O JNK1 B-protein binds O to O MKP7 B-protein - O CD B-structure_element much O more O tightly O than O MKP5 B-protein - O CD B-structure_element ( O Km O value O of O MKP5 B-protein - O CD B-structure_element for O pJNK1 B-protein_state substrate O is O ∼ O 20 O - O fold O higher O than O that O of O MKP7 B-protein - O CD B-structure_element ). O The O MAPKs B-protein_type p38 B-protein_type , O ERK B-protein_type and O JNK B-protein_type , O are O central O to O evolutionarily O conserved O signalling O pathways O that O are O present O in O all O eukaryotic B-taxonomy_domain cells O . O Each O MAPK B-protein_type cascade O is O activated O in O response O to O a O diverse O array O of O extracellular O signals O and O culminates O in O the O dual B-ptm - I-ptm phosphorylation I-ptm of O a O threonine B-residue_name and O a O tyrosine B-residue_name residue O in O the O MAPK B-structure_element - I-structure_element activation I-structure_element loop I-structure_element . O This O structure B-evidence reveals O an O FXF B-site - I-site docking I-site interaction I-site mode I-site between O MAPK B-protein_type and O MKP B-protein_type . O When O MKP7 B-protein is O bound B-protein_state to I-protein_state JIP B-protein - I-protein 1 I-protein , O it O reduces O JNK B-protein_type activation O , O leading O to O reduced O phosphorylation O of O the O JNK B-protein_type target O c B-protein_type - I-protein_type Jun I-protein_type . O The O colour O scheme O is O the O same O in O the O following O figures O unless O indicated O otherwise O . O ( O b O ) O Plots B-evidence of I-evidence initial I-evidence velocity I-evidence of O the O MKP7 B-protein - O catalysed O reaction O versus O phospho B-ptm - O JNK1 B-protein concentration O . O The O top O panel O shows O the O relative O affinities B-evidence of O MKP7 B-protein - O CD B-structure_element and O MKP7 B-protein - O KBD B-structure_element to O JNK1 B-protein , O with O the O affinity B-evidence of O MKP7 B-protein - O CD B-structure_element defined O as O 100 O %; O the O middle O panel O is O the O electrophoretic O pattern O of O MKP7 B-protein and O JNK1 B-protein after O GST B-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method . O Blue O dashed O lines O represent O polar B-bond_interaction interactions I-bond_interaction . O The O CDK2 B-protein is O shown O in O surface O representation O coloured O according O to O the O electrostatic O potential O ( O positive O , O blue O ; O negative O , O red O ). O Residues O of O MKP7 B-protein - O CD B-structure_element involved O in O JNK1 B-protein recognition O are O indicated O by O cyan O asterisks O , O and O the O conserved B-protein_state FXF B-structure_element - I-structure_element motif I-structure_element is O highlighted O in O cyan O . O The O secondary O structure O assignments O of O MKP7 B-protein - O CD B-structure_element and O KAP B-protein are O shown O above O and O below O each O sequence O . O Shown O is O a O typical O immunoblot O for O phosphorylated B-protein_state JNK B-protein_type from O three O independent O experiments O . O The O results O using O Annexin B-chemical - I-chemical V I-chemical stain O for O membrane O phosphatidylserine O eversion O , O combined O with O propidium B-chemical iodide I-chemical ( O PI B-chemical ) O uptake O to O evaluate O cells O whose O membranes O had O been O compromised O . O The O solid O lines O are O best O - O fitting O results O according O to O the O Michaelis O – O Menten O equation O with O Km B-evidence and O kcat B-evidence values O indicated O . O ( O d O ) O Gel B-experimental_method filtration I-experimental_method analysis I-experimental_method for O interaction O of O JNK1 B-protein with O MKP5 B-protein - O CD B-structure_element and O MKP5 B-protein - O KBD B-structure_element . O ( O e O ) O GST B-experimental_method - I-experimental_method mediated I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method for O interaction O of O JNK1 B-protein with O MKP5 B-protein - O CD B-structure_element and O MKP5 B-protein - O KBD B-structure_element . O The O panels O are O arranged O the O same O as O in O Fig O . O 2d O . O ( O f O ) O Effects O of O mutations B-experimental_method in O MKP5 B-protein - O CD B-structure_element on O the O JNK1 B-protein dephosphorylation O ( O mean O ± O s O . O e O . O m O ., O n O = O 3 O ). O ( O g O ) O Effects O of O mutations B-experimental_method in O MKP5 B-protein - O CD B-structure_element on O the O pNPP B-chemical hydrolysis O reaction O ( O mean O ± O s O . O e O . O m O ., O n O = O 3 O ). O The O HAESA B-protein ectodomain B-structure_element folds O into O a O superhelical B-structure_element assembly I-structure_element of O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element . O The O HAESA B-protein ectodomain B-structure_element is O shown O in O blue O ( O in O surface O representation O ), O the O glycan B-chemical structures O are O shown O in O yellow O . O Residues O mediating O hydrophobic B-bond_interaction interactions I-bond_interaction with O the O IDA B-chemical peptide I-chemical are O highlighted O in O blue O , O residues O contributing O to O hydrogen B-bond_interaction bond I-bond_interaction interactions I-bond_interaction and O / O or O salt B-bond_interaction bridges I-bond_interaction are O shown O in O red O . O The O alignment O includes O a O secondary O structure O assignment O calculated O with O the O program O DSSP O and O colored O according O to O Figure O 1 O , O with O the O N O - O and O C O - O terminal O caps B-structure_element and O the O 21 O LRR B-structure_element motifs I-structure_element indicated O in O orange O and O blue O , O respectively O . O Void O ( O V0 O ) O volume O and O total O volume O ( O Vt O ) O are O shown O , O together O with O elution O volumes O for O molecular O mass O standards O ( O A O , O Thyroglobulin B-protein , O 669 O , O 000 O Da O ; O B O , O Ferritin B-protein , O 440 O , O 00 O Da O , O C O , O Aldolase B-protein , O 158 O , O 000 O Da O ; O D O , O Conalbumin B-protein , O 75 O , O 000 O Da O ; O E O , O Ovalbumin B-protein , O 44 O , O 000 O Da O ; O F O , O Carbonic B-protein anhydrase I-protein , O 29 O , O 000 O Da O ). O Mutant B-protein_state ( O m O ) O versions O , O which O carry O point B-experimental_method mutations I-experimental_method in O their O active B-site sites I-site ( O Asp837HAESA B-mutant → I-mutant Asn I-mutant , O Asp447SERK1 B-mutant → I-mutant Asn I-mutant ) O possess O no O autophosphorylation O activity O ( O lanes O 2 O + O 4 O ). O We O next O determined O crystal B-evidence structures I-evidence of O the O apo B-protein_state HAESA B-protein ectodomain B-structure_element and O of O a O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O , O at O 1 O . O 74 O and O 1 O . O 86 O Å O resolution O , O respectively O ( O Figure O 1C O ; O Figure O 1 O — O figure O supplement O 1B O – O D O ; O Tables O 1 O , O 2 O ). O We O next O tested O if O HAESA B-protein binds O other O IDA B-chemical peptide I-chemical family I-chemical members I-chemical . O Notably O , O HAESA B-protein can O discriminate O between O IDLs B-protein_type and O functionally B-protein_state unrelated I-protein_state dodecamer B-structure_element peptides B-chemical with O Hyp B-ptm modifications I-ptm , O such O as O CLV3 B-protein ( O Figures O 2D O , O 7 O ). O Our O experiments O suggest O that O among O the O SERK B-protein_type family I-protein_type members I-protein_type , O SERK1 B-protein is O a O positive O regulator O of O floral O abscission O . O We O thus O focused O on O analyzing O the O contribution O of O SERK1 B-protein to O HAESA B-protein ligand O sensing O and O receptor O activation O . O Our O calorimetry B-experimental_method experiments O now O reveal O that O SERKs B-protein_type may O render O HAESA B-protein , O and O potentially O other O receptor B-protein_type kinases I-protein_type , O competent O for O high O - O affinity O sensing O of O their O cognate O ligands O . O Together O , O our O genetic B-experimental_method and I-experimental_method biochemical I-experimental_method experiments I-experimental_method implicate O SERK1 B-protein as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type in O the O Arabidopsis B-taxonomy_domain abscission O zone O . O The O conformational O change O in O the O C O - O terminal O LRRs B-structure_element and O capping B-structure_element domain I-structure_element is O indicated O by O an O arrow O . O ( O C O ) O SERK1 B-protein forms O an O integral O part O of O the O receptor O ' O s O peptide B-site binding I-site pocket I-site . O The O SERK1 B-protein ectodomain B-structure_element interacts O with O the O IDA B-site peptide I-site binding I-site site I-site using O a O loop B-structure_element region I-structure_element ( O residues O 51 B-residue_range - I-residue_range 59SERK1 I-residue_range ) O from O its O N O - O terminal O cap B-structure_element ( O Figure O 4A O , O C O ). O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O 15 O out O of O 15 O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain , O 0 O out O of O 15 O Col O - O 0 O plants B-taxonomy_domain and O 0 O out O of O 15 O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state plants B-taxonomy_domain , O showed O an O enlarged O abscission O zone O , O respectively O ( O 3 O independent O lines O were O analyzed O ). O In O contrast O , O over B-experimental_method - I-experimental_method expression I-experimental_method of O the O IDA B-mutant Lys66IDA I-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state mutant I-protein_state significantly O delays O floral O abscission O when O compared O to O wild B-protein_state - I-protein_state type I-protein_state control O plants B-taxonomy_domain , O suggesting O that O the O mutant B-protein_state IDA B-chemical peptide I-chemical has O reduced O activity O in O planta B-taxonomy_domain ( O Figure O 5C O – O E O ). O For O a O rapidly O growing O number O of O plant B-taxonomy_domain signaling O pathways O , O SERK B-protein_type proteins I-protein_type act O as O these O essential O co B-protein_type - I-protein_type receptors I-protein_type (; O ). O The O central O Hyp B-residue_name residue O in O IDA B-protein is O found O buried O in O the O HAESA B-protein peptide B-site binding I-site surface I-site and O thus O this O post O - O translational O modification O may O regulate O IDA B-protein bioactivity O . O In O our O quantitative B-experimental_method biochemical I-experimental_method assays I-experimental_method , O the O presence B-protein_state of I-protein_state SERK1 B-protein dramatically O increases O the O HAESA B-protein binding O specificity O and O affinity O for O IDA B-protein . O It O is O of O note O that O our O reported O binding B-evidence affinities I-evidence for O IDA B-protein and O SERK1 B-protein have O been O measured O using O synthetic B-protein_state peptides B-chemical and O the O isolated B-experimental_method HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element , O and O thus O might O differ O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state , O membrane B-protein_state - I-protein_state embedded I-protein_state signaling O complex O . O ( O B O ) O View O of O the O inner O surface O of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element ( O PDB O - O ID O 4lsc O , O surface O representation O , O in O gray O ). O Structure B-experimental_method - I-experimental_method guided I-experimental_method multiple I-experimental_method sequence I-experimental_method alignment I-experimental_method of O IDA B-protein and O IDA B-chemical - I-chemical like I-chemical peptides I-chemical with O other O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type , O including O CLAVATA3 B-protein_type – I-protein_type EMBRYO I-protein_type SURROUNDING I-protein_type REGION I-protein_type - I-protein_type RELATED I-protein_type ( O CLV3 B-protein_type / I-protein_type CLE I-protein_type ), O ROOT B-protein_type GROWTH I-protein_type FACTOR I-protein_type – I-protein_type GOLVEN I-protein_type ( O RGF B-protein_type / I-protein_type GLV I-protein_type ), O PRECURSOR B-protein_type GENE I-protein_type PROPEP1 I-protein_type ( O PEP1 B-protein_type ) O from O Arabidopsis B-species thaliana I-species . O It O is O interesting O to O note O , O that O CLEs B-protein_type in O their O mature B-protein_state form I-protein_state are O also O hydroxyprolinated B-protein_state dodecamers B-structure_element , O which O bind O to O a O surface B-site area I-site in O the O BARELY B-protein_type ANY I-protein_type MERISTEM I-protein_type 1 I-protein_type receptor I-protein_type that O would O correspond O to O part O of O the O IDA B-site binding I-site cleft I-site in O HAESA B-protein . O The O structures B-evidence suggest O a O trajectory O of O IRES B-site translocation O , O required O for O translation O initiation B-protein_state , O and O provide O an O unprecedented O view O of O eEF2 B-protein dynamics O . O To O initiate O translation O , O a O structured B-protein_state IRES B-site RNA B-chemical interacts O with O the O 40S B-complex_assembly subunit B-structure_element or O the O 80S B-complex_assembly ribosome I-complex_assembly , O resulting O in O precise O positioning O of O the O downstream O start O codon O in O the O small B-protein_state 40S B-complex_assembly subunit B-structure_element . O The O canonical O scenario O of O cap O - O dependent O and O IRES B-site - O dependent O initiation O involves O positioning O of O the O AUG O start O codon O and O the O initiator O tRNAMet B-chemical in O the O ribosomal O peptidyl B-site - I-site tRNA I-site ( I-site P I-site ) I-site site I-site , O facilitated O by O interaction O with O initiation B-protein_type factors I-protein_type . O The O codon B-structure_element - I-structure_element anticodon I-structure_element - I-structure_element like I-structure_element helix I-structure_element of O PKI B-structure_element is O stabilized O by O interactions O with O the O universally B-protein_state conserved I-protein_state decoding B-site - I-site center I-site nucleotides O G577 B-residue_name_number , O A1755 B-residue_name_number and O A1756 B-residue_name_number ( O G530 B-residue_name_number , O A1492 B-residue_name_number and O A1493 B-residue_name_number in O E B-species . I-species coli I-species 16S O ribosomal O RNA B-chemical , O or O rRNA B-chemical ). O How O this O non O - O canonical O initiation B-protein_state complex O transitions O to O the O elongation O step O is O not O fully O understood O . O Translocation O of O 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly involves O two O major O large O - O scale O ribosome B-complex_assembly rearrangements O ( O Figure O 1 O — O figure O supplement O 1 O ) O ( O reviewed O in O ). O Concurrently O , O the O deacyl B-chemical - I-chemical tRNA I-chemical interacts O with O the O P B-site site I-site of O the O small B-structure_element subunit I-structure_element and O the O E B-site site I-site of O the O large B-structure_element subunit I-structure_element ( O P B-protein_state / I-protein_state E I-protein_state hybrid I-protein_state state O ). O Binding O of O EF B-protein - I-protein G I-protein next O to O the O A B-site site I-site and O reverse O rotation O of O the O small B-structure_element subunit I-structure_element results O in O translocation O of O both O ASLs B-structure_element on O the O small B-structure_element subunit I-structure_element . O Structures B-evidence of O the O 70S B-complex_assembly • I-complex_assembly EF I-complex_assembly - I-complex_assembly G I-complex_assembly complex O bound B-protein_state with I-protein_state two O nearly B-protein_state translocated I-protein_state tRNAs B-chemical , O exhibit O a O large O 18 O ° O to O 21 O ° O head B-structure_element swivel O in O a O mid B-protein_state - I-protein_state rotated I-protein_state subunit B-structure_element , O whereas O no O head B-structure_element swivel O is O observed O in O the O fully B-protein_state rotated I-protein_state pre B-protein_state - I-protein_state translocation I-protein_state or O in O the O non B-protein_state - I-protein_state rotated I-protein_state post B-protein_state - I-protein_state translocation I-protein_state 70S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly EF I-complex_assembly - I-complex_assembly G I-complex_assembly structures B-evidence . O The O head B-structure_element swivel O was O proposed O to O facilitate O transition O of O the O tRNA B-chemical from O the O P B-site to I-site E I-site site I-site by O widening O a O constriction B-site between O these O sites O on O the O 30S B-complex_assembly subunit B-structure_element . O This O widening O allows O the O ASL B-structure_element to O sample O positions O between O the O P B-site and I-site E I-site sites I-site . O ( O a O ) O Structures B-evidence of O bacterial B-taxonomy_domain 70S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly translocation O complexes O , O ordered O according O to O the O position O of O the O translocating O A B-site -> I-site P I-site tRNA B-chemical ( O orange O ). O The O large O ribosomal O subunit B-structure_element is O shown O in O cyan O ; O the O small B-structure_element subunit I-structure_element in O light O yellow O ( O head B-structure_element ) O and O wheat O - O yellow O ( O body B-structure_element ), O elongation B-protein factor I-protein G I-protein ( O EF B-protein - I-protein G I-protein ) O is O shown O in O green O . O Nucleotides O C1274 B-residue_name_number , O U1191 B-residue_name_number of O the O 40S B-complex_assembly head B-structure_element and O G904 B-residue_name_number of O the O platform B-structure_element ( O corresponding O to O C1054 B-residue_name_number , O G966 B-residue_name_number and O G693 B-residue_name_number in O E B-species . I-species coli I-species 16S B-chemical rRNA I-chemical ) O are O shown O in O black O to O denote O the O A B-site , I-site P I-site and I-site E I-site sites I-site , O respectively O . O Subsequent O 3D B-experimental_method classification I-experimental_method using O a O 2D B-evidence mask I-evidence comprising O PKI B-structure_element and O domain O IV B-structure_element of O eEF2 B-protein yielded O 5 O ' O purified O ' O classes O representing O Structures B-evidence I I-evidence through I-evidence V I-evidence . O Sub B-experimental_method - I-experimental_method classification I-experimental_method of O each O class O did O not O yield O additional O classes O , O but O helped O improve O density B-evidence in O the O PKI B-structure_element region O of O class O III O ( O estimated O resolution O and O percentage O of O particles B-experimental_method in O the O sub B-experimental_method - I-experimental_method classified I-experimental_method reconstruction B-evidence are O shown O in O parentheses O ). O Cryo B-experimental_method - I-experimental_method EM I-experimental_method structures B-evidence of O the O 80S B-complex_assembly • I-complex_assembly TSV I-complex_assembly IRES I-complex_assembly bound B-protein_state with I-protein_state eEF2 B-complex_assembly • I-complex_assembly GDP I-complex_assembly • I-complex_assembly sordarin I-complex_assembly . O ( O a O ) O Structures B-evidence I I-evidence through I-evidence V I-evidence . O In O all O panels O , O the O large B-structure_element ribosomal I-structure_element subunit I-structure_element is O shown O in O cyan O ; O the O small B-structure_element subunit I-structure_element in O light O yellow O ( O head B-structure_element ) O and O wheat O - O yellow O ( O body B-structure_element ); O the O TSV B-species IRES B-site in O red O , O eEF2 B-protein in O green O . O We O sought O to O address O the O following O questions O by O structural B-experimental_method visualization I-experimental_method of O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly • I-complex_assembly eEF2 I-complex_assembly translocation O complexes O : O ( O 1 O ) O How O does O a O large O IRES B-site RNA B-chemical move O through O the O restricted O intersubunit O space O , O bringing O PKI B-structure_element from O the O A B-site to I-site P I-site site I-site of O the O small B-structure_element subunit I-structure_element ? O ( O 2 O ) O How O does O eEF2 B-protein mediate O IRES B-site translocation O ? O ( O 3 O ) O Does O IRES B-site translocation O involve O large O rearrangements O in O the O ribosome B-complex_assembly , O similar O to O tRNA B-chemical translocation O ? O ( O 4 O ) O What O , O if O any O , O is O the O mechanistic O role O of O 40S B-complex_assembly head B-structure_element rotation O in O IRES B-site translocation O ? O Maximum B-experimental_method - I-experimental_method likelihood I-experimental_method classification I-experimental_method using O FREALIGN B-experimental_method identified O five O IRES B-protein_state - I-protein_state eEF2 I-protein_state - I-protein_state bound I-protein_state ribosome B-complex_assembly structures B-evidence within O a O single O sample O ( O Figures O 1 O and O 2 O ). O The O structures B-evidence differ O in O the O positions O and O conformations O of O ribosomal O subunits O ( O Figures O 1b O and O 2 O ), O IRES B-site RNA B-chemical ( O Figures O 3 O and O 4 O ) O and O eEF2 B-protein ( O Figures O 5 O and O 6 O ). O 18S B-chemical ribosomal I-chemical RNA I-chemical is O shown O and O ribosomal O proteins O are O omitted O for O clarity O . O The O superpositions B-experimental_method of O structures B-evidence were O performed O by O structural B-experimental_method alignments I-experimental_method of O the O 18S B-chemical ribosomal I-chemical RNAs I-chemical excluding O the O head B-structure_element region O ( O nt O 1150 B-residue_range – I-residue_range 1620 I-residue_range ). O Structure B-evidence IV I-evidence adopts O a O slightly B-protein_state rotated I-protein_state conformation O (~ O 1 O °). O 40S B-complex_assembly head B-structure_element swivel O Comparison O of O the O TSV B-species IRES B-site and O eEF2 B-protein positions O in O Structures B-evidence I I-evidence through I-evidence V I-evidence . O In O all O panels O , O superpositions B-experimental_method were O obtained O by O structural B-experimental_method alignments I-experimental_method of O the O 18S B-chemical rRNAs I-chemical . O Ribosomal O proteins O of O the O initiation B-protein_state state O are O shown O in O gray O for O comparison O . O Loop B-structure_element 1 I-structure_element . I-structure_element 1 I-structure_element and O stem B-structure_element loops I-structure_element 4 I-structure_element and I-structure_element 5 I-structure_element of O the O IRES B-site are O labeled O . O Positions O of O tRNAs B-chemical and O the O TSV B-species IRES B-site relative O to O the O A B-structure_element - I-structure_element site I-structure_element finger I-structure_element ( O blue O , O nt O 1008 B-residue_range – I-residue_range 1043 I-residue_range of O 25S B-chemical rRNA I-chemical ) O and O the O P B-site site I-site of O the O large B-structure_element subunit I-structure_element , O comprising O helix B-structure_element 84 I-structure_element of O 25S B-chemical rRNA I-chemical ( O nt O . O Structures B-evidence of O 80S B-complex_assembly • I-complex_assembly IRES I-complex_assembly complexes O in O the O absence B-protein_state of I-protein_state eEF2 B-protein ( O INIT B-complex_assembly ; O PDB O 3J6Y O ,) O and O in O the O presence B-protein_state of I-protein_state eEF2 B-protein ( O this O work O ) O are O shown O in O the O lower O row O and O labeled O . O Interactions O of O the O TSV B-species IRES B-site with O uL5 B-protein and O eL42 B-protein . O Pseudoknots O and O stem B-structure_element loops I-structure_element are O labeled O and O colored O as O in O ( O a O ). O The O L1 B-structure_element . I-structure_element 1 I-structure_element region I-structure_element remains O in O contact O with O the O L1 B-structure_element stalk I-structure_element ( O Figure O 3 O — O figure O supplement O 3 O ). O As O such O , O the O transition O from O the O initiation B-protein_state state O to O Structure B-evidence I I-evidence involves O repositioning O of O SL3 B-structure_element around O the O A B-structure_element - I-structure_element site I-structure_element finger I-structure_element , O resembling O the O transition O between O the O pre B-protein_state - I-protein_state translocation I-protein_state A B-site / I-site P I-site and O A B-site / I-site P I-site * I-site tRNA B-chemical . O Another O local O rearrangement O concerns O loop B-structure_element 3 I-structure_element , O also O known O as O the O variable B-structure_element loop I-structure_element region I-structure_element , O which O connects O the O ASL B-structure_element - I-structure_element and I-structure_element mRNA I-structure_element - I-structure_element like I-structure_element parts I-structure_element of O PKI B-structure_element . O The O interaction O of O loop B-structure_element 3 I-structure_element backbone O with O uS7 B-protein resembles O that O of O the O anticodon B-structure_element - I-structure_element stem I-structure_element loop I-structure_element of O E B-site - I-site site I-site tRNA B-chemical in O the O post B-protein_state - I-protein_state translocation I-protein_state 80S B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly structure B-evidence ( O Figure O 3 O — O figure O supplement O 5 O ). O Ordering O of O loop B-structure_element 3 I-structure_element suggests O that O this O flexible O region O contributes O to O the O stabilization O of O the O PKI B-structure_element domain O in O the O post B-protein_state - I-protein_state translocation I-protein_state state O . O ( O c O ) O Comparison O of O conformations O of O eEF2 B-complex_assembly • I-complex_assembly sordarin I-complex_assembly in O Structure B-evidence I I-evidence ( O light O green O ) O with O those O of O free B-protein_state apo B-protein_state - O eEF2 B-protein ( O magenta O ) O and O eEF2 B-complex_assembly • I-complex_assembly sordarin I-complex_assembly ( O teal O ). O Superposition B-experimental_method was O obtained O by O structural B-experimental_method alignment I-experimental_method of O the O 25S B-chemical rRNAs I-chemical . O ( O e O ) O Comparison O of O the O GTP B-protein_state - I-protein_state like I-protein_state conformation O of O eEF2 B-complex_assembly • I-complex_assembly GDP I-complex_assembly in O Structure B-evidence I I-evidence ( O light O green O ) O with O those O of O 70S B-protein_state - I-protein_state bound I-protein_state elongation B-protein_type factors I-protein_type EF B-complex_assembly - I-complex_assembly Tu I-complex_assembly • I-complex_assembly GDPCP I-complex_assembly ( O teal O ) O and O EF B-complex_assembly - I-complex_assembly G I-complex_assembly • I-complex_assembly GDP I-complex_assembly • I-complex_assembly fusidic I-complex_assembly acid I-complex_assembly ( O magenta O ; O fusidic O acid O not O shown O ). O ( O f O ) O Cryo B-experimental_method - I-experimental_method EM I-experimental_method density B-evidence showing O guanosine B-chemical diphosphate I-chemical bound B-protein_state in I-protein_state the O GTPase B-site center I-site ( O green O ) O next O to O the O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element of O 25S B-chemical rRNA I-chemical ( O cyan O ) O of O Structure B-evidence II I-evidence . O ( O g O ) O Comparison O of O the O sordarin B-site - I-site binding I-site sites I-site in O the O ribosome B-protein_state - I-protein_state bound I-protein_state ( O light O green O ; O Structure B-evidence II I-evidence ) O and O isolated O eEF2 B-protein ( O teal O ). O The O sarcin B-structure_element - I-structure_element ricin I-structure_element loop I-structure_element interacts O with O the O GTP B-site - I-site binding I-site site I-site of O eEF2 B-protein ( O Figures O 5d O and O f O ). O ( O a O ) O eEF2 B-protein ( O green O ) O interacts O only O with O the O body B-structure_element in O Structure B-evidence I I-evidence ( O eEF2 B-protein domains O are O labeled O with O roman O numerals O in O white O ), O and O with O both O the O head B-structure_element and O body B-structure_element in O Structures B-evidence II I-evidence through I-evidence V I-evidence . O Colors O are O as O in O Figure O 1 O , O except O for O the O 40S B-complex_assembly structural O elements O that O contact O eEF2 B-protein , O which O are O labeled O and O shown O in O purple O . O ( O b O ) O Entry O of O eEF2 B-protein into O the O 40S B-complex_assembly A B-site site I-site , O from O Structure B-evidence I I-evidence through I-evidence V I-evidence . O Distances O to O the O A B-site - I-site site I-site accommodated O eEF2 B-protein ( O Structure B-evidence V I-evidence ) O are O shown O . O Because O eEF2 B-protein is O rigidly O attached O to O the O 60S B-complex_assembly subunit B-structure_element and O does O not O undergo O large O inter O - O subunit B-structure_element rearrangements O , O gradual O entry O of O domain O IV B-structure_element into O the O A B-site site I-site between O Structures B-evidence I I-evidence and I-evidence V I-evidence is O due O to O 40S B-complex_assembly subunit B-structure_element rotation O and O head B-structure_element swivel O . O In O the O latter O , O PKI B-structure_element is O stabilized O by O interactions O with O the O universally B-protein_state conserved I-protein_state decoding B-site - I-site center I-site nucleotides O G577 B-residue_name_number , O A1755 B-residue_name_number and O A1756 B-residue_name_number (' O body B-structure_element A B-site site I-site '), O as O in O the O A B-site - I-site site I-site tRNA B-protein_state bound I-protein_state complexes O . O Domain O IV B-structure_element is O partially O engaged O with O the O body B-structure_element A B-site site I-site . O The O trimethylamino O end O of O Diph699 B-ptm packs O over O A1756 B-residue_name_number ( O Figure O 7 O ). O In O translational B-protein_type GTPases I-protein_type , O switch B-structure_element loops I-structure_element I I-structure_element and I-structure_element II I-structure_element are O involved O in O the O GTPase B-protein_type activity O ( O reviewed O in O ). O Next O to O GDP B-chemical , O the O C O - O terminal O part O of O the O switch B-structure_element loop I-structure_element ( O aa O 61 B-residue_range – I-residue_range 67 I-residue_range ) O adopts O a O helical B-protein_state fold I-protein_state . O The O decoding B-site center I-site residues O A1755 B-residue_name_number and O A1756 B-residue_name_number are O rearranged O to O pack O inside O helix B-structure_element 44 I-structure_element , O making O room O for O eEF2 B-protein . O This O conformation O of O decoding B-site center I-site residues O is O also O observed O in O the O absence B-protein_state of I-protein_state A B-site - I-site site I-site ligands O . O Structure B-evidence III I-evidence represents O a O highly B-protein_state bent I-protein_state IRES B-site with O PKI B-structure_element captured O between O the O head B-structure_element A B-site and I-site P I-site sites I-site Among O the O five O structures B-evidence , O the O PKI B-structure_element domain O is O least O ordered O in O Structure B-evidence III I-evidence and O lacks O density B-evidence for O SL3 B-structure_element . O Unwinding O of O the O 40S B-complex_assembly head B-structure_element also O positions O the O head B-structure_element A B-site site I-site closer O to O the O body B-structure_element A B-site site I-site . O Four O views O ( O scenes O ) O are O shown O : O ( O 1 O ) O A O view O down O the O intersubunit O space O , O with O the O head B-structure_element of O the O 40S B-complex_assembly subunit B-structure_element oriented O toward O a O viewer O , O as O in O Figure O 1a O ; O ( O 2 O ) O A O view O at O the O solvent O side O of O the O 40S B-complex_assembly subunit B-structure_element , O with O the O 40S B-complex_assembly head B-structure_element shown O at O the O top O , O as O in O Figure O 2 O — O figure O supplement O 1 O ; O ( O 3 O ) O A O view O down O at O the O subunit O interface O of O the O 40S B-complex_assembly subunit B-structure_element ; O ( O 4 O ) O A O close O - O up O view O of O the O decoding B-site center I-site ( O A B-site site I-site ) O and O the O P B-site site I-site , O as O in O Figure O 2g O . O Each O scene O is O shown O twice O . O Our O structures B-evidence reveal O previously O unseen O intermediate O states O of O eEF2 B-protein or O EF B-protein - I-protein G I-protein engagement O with O the O A B-site site I-site , O providing O the O structural O basis O for O the O mechanism O of O translocase B-protein_type action O . O In O the O first O sub O - O step O ( O Structures B-evidence I I-evidence to I-evidence IV I-evidence ), O the O hind B-structure_element end I-structure_element advances O from O the O A B-site to I-site the I-site P I-site site I-site and O approaches O the O front B-structure_element end I-structure_element , O which O remains O attached O to O the O 40S B-complex_assembly surface O . O Upon O translocation O , O the O GCU O start O codon O is O positioned O in O the O A B-site site I-site ( O Structure B-evidence V I-evidence ), O ready O for O interaction O with O Ala B-chemical - I-chemical tRNAAla I-chemical upon O eEF2 B-protein departure O . O Recent O studies O have O shown O that O in O some O cases O a O fraction O of O IGR B-structure_element IRES B-site - O driven O translation O results O from O an O alternative O reading O frame O , O which O is O shifted O by O one O nucleotide O relative O to O the O normal O ORF B-structure_element . O In O our O structures B-evidence , O the O IRES B-site presents O to O the O decoding B-site center I-site a O pre B-protein_state - I-protein_state translocated I-protein_state or O fully B-protein_state translocated I-protein_state ORF B-structure_element , O rather O than O a O + O 1 O ( O more O translocated O ) O ORF B-structure_element , O suggesting O that O eEF2 B-protein does O not O induce O a O highly O populated O fraction O of O + O 1 O shifted O IRES B-site mRNAs B-chemical . O This O is O consistent O with O the O observations O that O the O intergenic O IRESs B-site are O prone O to O reverse O translocation O . O In O the O initiation B-protein_state state O , O the O IRES B-site resembles O a O pre B-protein_state - I-protein_state translocation I-protein_state 2tRNA B-complex_assembly • I-complex_assembly mRNA I-complex_assembly complex O reduced O to O the O A B-site / I-site P I-site - O tRNA B-chemical anticodon B-structure_element - I-structure_element stem I-structure_element loop I-structure_element and O elbow B-structure_element in O the O A B-site site I-site and O the O P B-site / I-site E I-site - O tRNA B-chemical elbow B-structure_element contacting O the O L1 B-structure_element stalk I-structure_element . O Because O the O anticodon B-structure_element - I-structure_element stem I-structure_element loop I-structure_element of O the O A B-site - O tRNA B-chemical is O sufficient O for O translocation O completion O , O we O ascribe O the O meta O - O stability O of O the O post B-protein_state - I-protein_state translocation I-protein_state IRES B-site to O the O absence B-protein_state of I-protein_state the O P B-site / I-site E I-site - O tRNA B-chemical elements O , O either O the O ASL B-structure_element or O the O acceptor O arm O , O or O both O . O Translocases B-protein_type are O efficient O enzymes O . O EF B-protein - I-protein G I-protein enhances O the O translocation O rate O by O several O orders O of O magnitude O , O aided O by O an O additional O 2 O - O to O 50 O - O fold O boost O from O GTP B-chemical hydrolysis O . O Due O to O the O lack O of O structures B-evidence of O translocation O intermediates O , O the O mechanistic O role O of O eEF2 B-protein / O EF B-protein - I-protein G I-protein is O not O fully O understood O . O The O unlocking O model O of O the O ribosome B-complex_assembly • I-complex_assembly 2tRNA I-complex_assembly • I-complex_assembly mRNA I-complex_assembly pre B-protein_state - I-protein_state translocation I-protein_state complex O has O been O proposed O decades O ago O and O functional O requirement O of O the O translocase B-protein_type in O this O process O has O been O implicated O . O This O destabilization O allows O PKI B-structure_element to O detach O from O the O body B-structure_element A B-site site I-site upon O spontaneous O reverse O 40S B-complex_assembly body B-structure_element rotation O , O while O maintaining O interactions O with O the O head B-structure_element A B-site site I-site . O In O the O fully B-protein_state - I-protein_state rotated I-protein_state pre B-protein_state - I-protein_state translocation I-protein_state - O like O Structure B-evidence I I-evidence , O an O additional O interaction O exists O . O We O propose O that O the O shift O of O domain O III B-structure_element by O uS12 B-protein initiates O intra O - O domain O rearrangements O in O eEF2 B-protein , O which O unstack O the O β B-structure_element - I-structure_element platform I-structure_element of O domain O III B-structure_element from O that O of O domain O V B-structure_element . O This O would O result O in O a O conformation O characteristic O of O free B-protein_state eEF2 B-protein and O EF B-protein - I-protein G I-protein in O which O the O β B-structure_element - I-structure_element platforms I-structure_element are O nearly O perpendicular O . O Sordarin B-chemical is O a O potent O antifungal O antibiotic O that O inhibits O translation O . O Although O our O complex O was O assembled O using O eEF2 B-complex_assembly • I-complex_assembly GTP I-complex_assembly , O density B-evidence maps I-evidence clearly O show O GDP B-chemical and O Mg2 B-chemical + I-chemical in O each O structure B-evidence ( O Figure O 5g O ). O In O all O five O structures B-evidence , O sordarin B-chemical is O bound B-protein_state between O domains O III B-structure_element and O V B-structure_element of O eEF2 B-protein , O stabilized O by O hydrophobic B-bond_interaction interactions I-bond_interaction identical O to O those O in O the O isolated B-protein_state eEF2 B-complex_assembly • I-complex_assembly sordarin I-complex_assembly complex O ( O Figures O 5g O and O h O ). O Implications O for O tRNA B-chemical and O mRNA B-chemical translocation O during O translation O First O , O we O propose O that O tRNA B-chemical and O IRES B-site translocations O occur O via O the O same O general O trajectory O . O This O is O consistent O with O the O idea O of O a O rather O flat O energy O landscape O of O translocation O , O suggested O by O recent O work O that O measured O mechanical O work O produced O by O the O ribosome B-complex_assembly during O translocation O . O We O note O that O four O of O our O near O - O atomic O resolution O maps B-evidence comprised O ~ O 30 O , O 000 O particles B-experimental_method each O , O the O minimum O number O required O for O a O near B-evidence - I-evidence atomic I-evidence - I-evidence resolution I-evidence reconstruction I-evidence of O the O ribosome B-complex_assembly . O This O difference O likely O accounts O for O the O inefficient O translocation O of O the O IRES B-site , O which O is O difficult O to O stabilize O in O the O post B-protein_state - I-protein_state translocation I-protein_state state O and O therefore O is O prone O to O reverse O translocation O . O The O uniformity O of O ribosome B-complex_assembly dynamics O underscores O the O idea O that O translocation O is O an O inherent O and O structurally O - O optimized O property O of O the O ribosome B-complex_assembly , O supported O also O by O translocation O activity O in O the O absence B-protein_state of I-protein_state the O elongation B-protein_type factor I-protein_type . O Our O current O understanding O of O macromolecular O machines O , O such O as O the O ribosome B-complex_assembly , O is O often O limited O by O a O gap O between O biophysical B-experimental_method / I-experimental_method biochemical I-experimental_method studies I-experimental_method and O structural B-experimental_method studies I-experimental_method . O For O example O , O Förster B-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method can O provide O insight O into O the O macromolecular O dynamics O of O an O assembly O at O the O single O - O molecule O level O but O is O limited O to O specifically O labeled O locations O within O the O assembly O . O The O classification O , O which O followed O an O initial O alignment O of O all O particles B-experimental_method to O a O single O reference O , O required O about O 130 O , O 000 O CPU O hours O or O about O five O to O six O full O days O on O a O 1000 O - O CPU O cluster O . O The O N O - O terminal O propeptides B-structure_element protecting O the O active B-site - I-site site I-site threonines B-residue_name are O autocatalytically B-ptm released O only O on O completion O of O assembly O . O This O mechanism O , O however O , O cannot O explain O autocatalytic B-ptm precursor I-ptm processing I-ptm because O in O the O immature B-protein_state active B-site sites I-site , O Thr1N B-residue_name_number is O part O of O the O peptide O bond O with O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number the O bond O that O needs O to O be O hydrolysed O . O Inactivation O of O proteasome B-complex_assembly subunits B-protein by O T1A B-mutant mutations B-experimental_method Sequencing B-experimental_method of I-experimental_method the I-experimental_method plasmids I-experimental_method , O testing O them O in O both O published O yeast B-taxonomy_domain strain O backgrounds O and O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method revealed O that O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state is O viable O , O but O suffers O from O a O marked O growth O defect O that O requires O extended O incubation O of O 4 O – O 5 O days O for O initial O colony O formation O ( O Table O 1 O and O Supplementary O Methods O ). O For O subunit O β1 B-protein , O this O process O was O previously O inferred O to O require O that O the O propeptide B-structure_element residue O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O subunit O precursor O occupies O the O S1 B-site specificity I-site pocket I-site of O the O substrate B-site - I-site binding I-site channel I-site formed O by O amino O acid O 45 B-residue_number ( O for O details O see O Supplementary O Note O 2 O ). O Here O we O again O analysed O the O β1 B-mutant - I-mutant T1A I-mutant mutant B-protein_state crystallographically B-experimental_method but O in O addition O determined O the O structures B-evidence of O the O β2 B-mutant - I-mutant T1A I-mutant single O and O β1 B-mutant - I-mutant T1A I-mutant - I-mutant β2 I-mutant - I-mutant T1A I-mutant double O mutants O ( O Protein O Data O Bank O ( O PDB O ) O entry O codes O are O provided O in O Supplementary O Table O 1 O ). O Instead O , O the O plasticity O of O the O β5 B-protein S1 B-site pocket I-site caused O by O the O rotational O flexibility O of O Met45 B-residue_name_number might O prevent O stable O accommodation O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O the O S1 B-site site I-site and O thus O also O promote O its O immediate O release O after O autolysis B-ptm . O Structural B-experimental_method analyses I-experimental_method revealed O that O the O propeptides B-structure_element of O all O mutant B-protein_state yCPs B-complex_assembly shared O residual O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence densities I-evidence . O By O contrast O , O the O prosegments B-structure_element of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutants O were O significantly O better O resolved O in O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence yet O not O at O full O occupancy O ( O Supplementary O Fig O . O 4b O , O c O and O Supplementary O Table O 1 O ), O suggesting O that O the O natural O propeptide B-structure_element bearing O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O most O favourable O . O This O result O proves O that O the O naturally O occurring O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element does O not O stably O fit O into O the O S1 B-site site I-site . O Bearing O in O mind O that O in O contrast O to O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β2 B-protein , O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O subunit O β1 B-protein is O not B-protein_state conserved I-protein_state among O species O ( O Supplementary O Fig O . O 3a O ), O we O created B-experimental_method a O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant proteasome B-complex_assembly mutant B-protein_state . O However O , O in O the O immature B-protein_state particle B-complex_assembly Thr1NH2 B-residue_name_number is O blocked O by O the O propeptide B-structure_element and O cannot O activate O Thr1Oγ B-residue_name_number . O Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen B-bond_interaction - I-bond_interaction bonding I-bond_interaction distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O This O water B-chemical hydrogen B-bond_interaction bonds I-bond_interaction also O to O Arg19O B-residue_name_number (∼ O 3 O . O 0 O Å O ) O and O Asp17Oδ B-residue_name_number (∼ O 3 O . O 0 O Å O ), O and O thereby O presumably O enables O residual O activity O of O the O mutant B-protein_state . O The O ChT O - O L O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical in O trans B-protein_state CP B-complex_assembly towards O the O canonical O β5 B-protein model O substrates O N B-chemical - I-chemical succinyl I-chemical - I-chemical Leu I-chemical - I-chemical Leu I-chemical - I-chemical Val I-chemical - I-chemical Tyr I-chemical - I-chemical 7 I-chemical - I-chemical amino I-chemical - I-chemical 4 I-chemical - I-chemical methylcoumarin I-chemical ( O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical ) O and O carboxybenzyl B-chemical - I-chemical Gly I-chemical - I-chemical Gly I-chemical - I-chemical Leu I-chemical - I-chemical para I-chemical - I-chemical nitroanilide I-chemical ( O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical ) O was O severely O reduced O ( O Supplementary O Fig O . O 6b O ), O confirming O that O Asp17 B-residue_name_number is O of O fundamental O importance O for O the O catalytic O activity O of O the O mature B-protein_state proteasome B-complex_assembly . O Strikingly O , O although O the O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state with O the O propeptide B-structure_element expressed B-experimental_method in O cis B-protein_state and O in O trans B-protein_state looked O similar O , O there O was O a O pronounced O difference O in O their O growth O phenotypes O observed O ( O Supplementary O Fig O . O 6a O and O Supplementary O Fig O . O 7b O ). O The O β5 B-mutant - I-mutant D166N I-mutant pp B-chemical cis B-protein_state yeast B-taxonomy_domain mutant B-protein_state is O significantly O impaired O in O growth O and O its O ChT O - O L O activity O is O drastically O reduced O ( O Supplementary O Fig O . O 6a O , O b O and O Table O 1 O ). O The O hydrogen B-bond_interaction bonds I-bond_interaction involving O Ser169OH B-residue_name_number are O intact O and O may O account O for O residual O substrate O turnover O . O Together O , O these O observations O suggest O that O efficient O peptide O - O bond O hydrolysis O requires O that O Lys33NH2 B-residue_name_number hydrogen B-bond_interaction bonds I-bond_interaction to O the O active O site O nucleophile O . O Activity B-experimental_method assays I-experimental_method with O the O β5 B-protein - O specific O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical demonstrated O that O the O ChT O - O L O activity O of O the O T1S B-mutant mutant B-protein_state is O reduced O by O 40 O – O 45 O % O compared O with O WT B-protein_state proteasomes B-complex_assembly depending O on O the O incubation O temperature O ( O Fig O . O 4b O and O Supplementary O Fig O . O 9c O ). O Compared O with O Thr1Oγ B-residue_name_number in O WT B-protein_state CP B-complex_assembly structures B-evidence , O Ser1Oγ B-residue_name_number is O rotated O by O 60 O °. O In O addition O , O they O prevent O irreversible O inactivation O of O the O Thr1 B-residue_name_number N O terminus O by O N B-ptm - I-ptm acetylation I-ptm . O However O , O removal B-experimental_method of I-experimental_method the O β5 B-protein prosegment B-structure_element or O any O interference O with O its O cleavage O causes O severe O phenotypic O defects O . O On O the O basis O of O the O numerous O CP B-complex_assembly : I-complex_assembly ligand I-complex_assembly complexes O solved O during O the O past O 18 O years O and O in O the O current O study O , O we O provide O a O revised O interpretation O of O proteasome B-complex_assembly active B-site - I-site site I-site architecture I-site . O We O propose O a O catalytic B-site triad I-site for O the O active B-site site I-site of O the O CP B-complex_assembly consisting O of O residues O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number , O which O are O conserved O among O all O proteolytically O active O eukaryotic B-taxonomy_domain , O bacterial B-taxonomy_domain and O archaeal B-taxonomy_domain proteasome B-complex_assembly subunits O . O Cleavage O of O the O scissile O peptide O bond O requires O protonation O of O the O emerging O free O amine O , O and O in O the O proteasome B-complex_assembly , O the O Thr1 B-residue_name_number amine O group O is O likely O to O assume O this O function O . O Analogously O , O Thr1NH3 B-residue_name_number + O might O promote O the O bivalent O reaction O mode O of O epoxyketone O inhibitors O by O protonating O the O epoxide O moiety O to O create O a O positively O charged O trivalent O oxygen O atom O that O is O subsequently O nucleophilically O attacked O by O Thr1NH2 B-residue_name_number . O The O residues O Ser129 B-residue_name_number and O Asp166 B-residue_name_number are O expected O to O increase O the O pKa O value O of O Thr1N B-residue_name_number , O thereby O favouring O its O charged O state O . O Consistent O with O playing O an O essential O role O in O proton O shuttling O , O the O mutation B-experimental_method D166A B-mutant prevents O autolysis B-ptm of O the O archaeal B-taxonomy_domain CP B-complex_assembly and O the O exchange B-experimental_method D166N B-mutant impairs O catalytic O activity O of O the O yeast B-taxonomy_domain CP B-complex_assembly about O 60 O %. O While O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number are O required O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O side O chain O , O Ser129OH B-residue_name_number and O Asp166OH B-residue_name_number serve O to O protonate O the O N O - O terminal O amine O group O of O Thr1 B-residue_name_number . O Structural B-evidence analyses I-evidence support O these O findings O with O the O T1S B-mutant mutant B-protein_state and O provide O an O explanation O for O the O strict B-protein_state use I-protein_state of I-protein_state Thr B-residue_name residues O in O proteasomes B-complex_assembly . O Notably O , O proteolytically B-protein_state active I-protein_state proteasome B-complex_assembly subunits O from O archaea B-taxonomy_domain , O yeast B-taxonomy_domain and O mammals B-taxonomy_domain , O including O constitutive O , O immuno O - O and O thymoproteasome O subunits O , O either O encode O Thr B-residue_name or O Ile B-residue_name at O position O 3 B-residue_number , O indicating O the O importance O of O the O Cγ O for O fixing O the O position O of O the O nucleophilic O Thr1 B-residue_name_number . O The O major O determinant O of O the O S1 B-site specificity I-site pocket I-site , O residue O 45 B-residue_number , O is O depicted O . O Note O the O tight O conformation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number before O propeptide B-structure_element removal O ( O G B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number turn O ; O cyan O double O arrow O ) O compared O with O the O relaxed O , O processed B-protein_state WT B-protein_state active B-site - I-site site I-site Thr1 B-residue_name_number ( O red O double O arrow O ). O The O black O arrow O indicates O the O attack O of O Thr1Oγ B-residue_name_number onto O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number While O residue O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O β1 B-protein and O β2 B-protein prosegments B-structure_element fit O the O S1 B-site pocket I-site , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element occupies O the O S2 B-site pocket I-site . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site , O but O only O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O of O β2 B-protein forms O a O hydrogen B-bond_interaction bridge I-bond_interaction to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O ( O black O dashed O line O ). O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O matured B-protein_state β2 B-protein active B-site site I-site , O the O WT B-protein_state β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant mutant B-protein_state propeptide B-structure_element . O The O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen B-bond_interaction bonds I-bond_interaction with O Ser129Oγ B-residue_name_number , O the O carbonyl O oxygen O of O residue O 168 B-residue_number , O Ser169Oγ B-residue_name_number and O Asp166Oδ B-residue_name_number . O ( O b O ) O The O orientations O of O the O active B-site - I-site site I-site residues I-site involved O in O hydrogen B-bond_interaction bonding I-bond_interaction are O strictly B-protein_state conserved I-protein_state in O each O proteolytic B-site centre I-site , O as O shown O by O superposition B-experimental_method of O the O β B-protein subunits I-protein . O In O the O latter O , O a O water B-chemical molecule O ( O red O sphere O ) O is O found O at O the O position O where O in O the O WT B-protein_state structure O the O side O chain O amine O group O of O Lys33 B-residue_name_number is O located O . O Note O , O the O strong O interaction O with O the O water B-chemical molecule O causes O a O minor O shift O of O Thr1 B-residue_name_number , O while O all O other O active B-site - I-site site I-site residues I-site remain O in O place O . O The O charged O Thr1 B-residue_name_number N O terminus O may O engage O in O the O orientation O of O the O amide O moiety O and O donate O a O proton O to O the O emerging O N O terminus O of O the O C O - O terminal O cleavage O product O . O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence ( O blue O mesh O ) O for O Ser1 B-residue_name_number ( O brown O ) O and O the O covalently O bound O ligands O ( O green O ; O only O the O P1 B-site site I-site ( O Leu1 B-residue_name_number ) O is O shown O ) O are O contoured O at O 1σ O . O The O Taf14 B-protein YEATS B-structure_element domain I-structure_element is O a O reader O of O histone B-protein_type crotonylation B-ptm Owing O to O some O differences O in O their O genomic O distribution O , O the O crotonyllysine B-residue_name and O acetyllysine B-residue_name ( O Kac B-residue_name ) O modifications O have O been O linked O to O distinct O functional O outcomes O . O A O recent O survey O of O bromodomains B-structure_element ( O BDs B-structure_element ) O demonstrates O that O only O one O BD B-structure_element associates O very O weakly O with O a O crotonylated B-protein_state peptide O , O however O it O binds O more O tightly O to O acetylated B-protein_state peptides O , O inferring O that O bromodomains B-structure_element do O not O possess O physiologically O relevant O crotonyllysine B-residue_name binding O activity O . O The O most O striking O feature O of O the O crotonyllysine B-residue_name recognition O mechanism O is O the O unique O coordination O of O crotonylated B-protein_state lysine B-residue_name residue O . O The O π B-bond_interaction bond I-bond_interaction conjugation O of O the O crotonyl B-chemical group O gives O rise O to O a O dipole O moment O of O the O alkene O moiety O , O resulting O in O a O partial O positive O charge O on O the O β O - O carbon O ( O Cβ O ) O and O a O partial O negative O charge O on O the O α O - O carbon O ( O Cα O ). O The O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O for O the O Taf14 B-complex_assembly YEATS I-complex_assembly - I-complex_assembly H3K9cr5 I-complex_assembly - I-complex_assembly 13 I-complex_assembly complex O was O found O to O be O 9 O . O 5 O μM O , O as O measured O by O fluorescence B-experimental_method spectroscopy I-experimental_method ( O Supplementary O Fig O . O 2c O ). O Towards O this O end O , O we O probed O extracts O derived O from O yeast B-taxonomy_domain cells O in O which O major O yeast B-taxonomy_domain HATs B-protein_type ( O HAT1 B-protein , O Gcn5 B-protein , O and O Rtt109 B-protein ) O or O HDACs B-protein_type ( O Rpd3 B-protein , O Hos1 B-protein , O and O Hos2 B-protein ) O were O deleted B-experimental_method . O In O contrast O , O binding O of O H3K9ac B-protein_type resulted O in O an O intermediate O exchange O , O which O is O characteristic O of O a O weaker O association O . O The O preference O for O H3K9cr B-protein_type over O H3K9ac B-protein_type , O H3K9pr B-protein_type and O H3K9bu B-protein_type was O supported O by O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method titration I-experimental_method experiments I-experimental_method . O H3K9cr B-protein_type is O a O selective O target O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element Cellular O homeostasis O requires O correct O delivery O of O cell B-protein_type - I-protein_type surface I-protein_type receptor I-protein_type proteins O ( O cargo O ) O to O their O target O subcellular O compartments O . O The O adapter B-protein_type proteins I-protein_type Tom1 B-protein and O Tollip B-protein are O involved O in O sorting O of O ubiquitinated B-ptm cargo O in O endosomal O compartments O . O Recruitment O of O Tom1 B-protein to O the O endosomal O compartments O is O mediated O by O its O GAT B-structure_element domain O ’ O s O association O to O Tollip B-protein ’ O s O Tom1 B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O TBD B-structure_element ). O Subject O area O Biology O More O specific O subject O area O Structural O biology O Type O of O data O Table O , O text O file O , O graph O , O figures O How O data O was O acquired O Circular B-experimental_method dichroism I-experimental_method and O NMR B-experimental_method . O Analysis O of O the O far B-experimental_method - I-experimental_method UV I-experimental_method circular I-experimental_method dichroism I-experimental_method ( O CD B-experimental_method ) O spectrum B-evidence of O the O Tom B-protein 1 I-protein GAT B-structure_element domain O ( O Fig O . O 1 O ) O predicts O 58 O . O 7 O % O α B-structure_element - I-structure_element helix I-structure_element , O 3 O % O β B-structure_element - I-structure_element strand I-structure_element , O 15 O . O 5 O % O turn O , O and O 22 O . O 8 O % O disordered O regions O . O Helices O are O shown O in O orange O , O whereas O loops O are O colored O in O green O . O ( O B O ) O Ribbon O illustration O of O the O Tom1 B-protein GAT B-structure_element domain O . O deviations O were O obtained O by O superimposing B-experimental_method residues O 215 B-residue_range – I-residue_range 309 I-residue_range of O Tom1 B-protein GAT B-structure_element among O 10 O lowest O energy O refined O structures B-evidence . O PGRMC1 B-protein is O a O member O of O the O membrane B-protein_type - I-protein_type associated I-protein_type progesterone I-protein_type receptor I-protein_type ( O MAPR B-protein_type ) O family O with O a O cytochrome B-structure_element b5 I-structure_element - I-structure_element like I-structure_element haem B-site - I-site binding I-site region I-site , O and O is O known O to O be O highly B-protein_state expressed I-protein_state in O various O types O of O cancers O . O These O histidines B-residue_name are O missing B-protein_state in O PGRMC1 B-protein , O and O the O haem B-chemical iron B-chemical is O five B-bond_interaction - I-bond_interaction coordinated I-bond_interaction by I-bond_interaction Tyr113 B-residue_name_number ( O Y113 B-residue_name_number ) O alone B-protein_state ( O Fig O . O 1b O and O Supplementary O Fig O . O 3 O ). O However O , O at O the O interfaces B-site of O the O other O possible O dimeric B-oligomeric_state structures B-evidence ( O Supplementary O Fig O . O 6a O , O chain O A O – O A O ″; O cyan O and O chain O A O – O B O ; O violet O ), O no O significant O difference O was O observed O . O It O should O be O noted O that O a O disulfide B-ptm bond I-ptm between O two O Cys129 B-residue_name_number residues O is O observed O in O the O crystal B-evidence of O PGRMC1 B-protein ( O Fig O . O 1a O ), O while O Cys129 B-residue_name_number is O not B-protein_state conserved I-protein_state among O the O MAPR B-protein_type family O proteins O ( O Supplementary O Fig O . O 5a O ). O The O current O analytical O data O confirmed O that O apo B-protein_state - O PGRMC1 B-protein monomer B-oligomeric_state converts O into O dimer B-oligomeric_state by O binding O to O haem B-chemical in O solution O ( O Table O 2 O ). O Furthermore O , O the O UV B-evidence - I-evidence visible I-evidence spectrum I-evidence of O the O wild B-protein_state type I-protein_state PGRMC1 B-protein was O the O same O as O that O of O the O C129S B-mutant mutant B-protein_state of O PGRMC1 B-protein , O and O the O R B-evidence / I-evidence Z I-evidence ratio I-evidence determined O by O the O intensities O between O the O Soret O band O ( O 394 O nm O ) O peak O and O the O 274 O - O nm O peak O showed O that O these O proteins O were O fully B-protein_state loaded I-protein_state with I-protein_state haem B-chemical ( O Supplementary O Fig O . O 12 O ). O To O examine O the O inhibitory O effects O of O CO B-chemical on O haem B-chemical - O mediated O PGRMC1 B-protein dimerization B-oligomeric_state , O SV B-experimental_method - I-experimental_method AUC I-experimental_method analysis O was O carried O out O . O By O binding O with O haem B-chemical ( O binding O Kd B-evidence = O 50 O nmol O l O − O 1 O ), O PGRMC1 B-protein forms O a O stable B-protein_state dimer B-oligomeric_state ( O dimerization B-oligomeric_state Kd B-evidence << O 3 O . O 5 O μmol O l O − O 1 O ) O through O stacking B-bond_interaction of O the O two O open O surfaces B-site of O the O five O - O coordinated O haem B-chemical molecules O in O each O monomer B-oligomeric_state . O While O proliferation O of O HCT116 O cells O was O not O affected O by O knocking B-experimental_method down I-experimental_method PGRMC1 B-protein , O PGRMC1 B-mutant - I-mutant KD I-mutant cells O were O more O sensitive O to O the O EGFR B-protein_type inhibitor O erlotinib B-chemical than O control O HCT116 O cells O , O and O the O knockdown O effect O was O reversed O by O co B-experimental_method - I-experimental_method expression I-experimental_method of O shRNA B-protein_state - I-protein_state resistant I-protein_state wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein but O not O of O the O Y113F B-mutant mutant B-protein_state ( O Fig O . O 5b O ). O Furthermore O , O PGRMC1 B-mutant - I-mutant KD I-mutant inhibited O spheroid O formation O of O HCT116 O cells O in O culture O , O and O this O inhibition O was O reversed O by O co B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein but O not O of O the O Y113F B-mutant mutant B-protein_state ( O Fig O . O 5c O and O Supplementary O Fig O . O 18 O ). O The O Kd B-evidence value O of O PGRMC1 B-protein binding O to O CYP51 B-protein was O in O a O micromolar O range O and O comparable O with O those O of O other O haem B-chemical proteins O , O such O as O cytochrome B-protein P450 I-protein reductase I-protein and O neuroglobin B-protein / O Gαi1 B-protein ( O ref O .), O suggesting O that O haem B-chemical - O dependent O PGRMC1 B-protein interaction O with O CYP51 B-protein is O biologically O relevant O . O In O this O study O , O we O showed O that O PGRMC1 B-protein dimerizes B-oligomeric_state by O stacking B-bond_interaction interactions I-bond_interaction of O haem B-chemical molecules O from O each O monomer B-oligomeric_state . O In O the O current O study O , O the O Y113 B-residue_name_number residue O plays O a O crucial O role O for O the O haem B-chemical - O dependent O dimerization B-oligomeric_state of O PGRMC1 B-protein and O resultant O regulation O of O cancer O proliferation O and O chemoresistance O ( O Figs O 5c O and O 6e O ). O Since O the O Y113 B-residue_name_number residue O is O involved O in O the O putative O consensus B-structure_element motif I-structure_element of O phosphorylation B-ptm by O tyrosine B-protein_type kinases I-protein_type such O as O Abl B-protein_type and O Lck B-protein_type , O we O investigated O whether O phosphorylated B-protein_state Y113 B-residue_name_number is O present O in O HCT116 O cells O by O ESI B-experimental_method - I-experimental_method MS I-experimental_method analysis O . O We O showed O that O the O haem B-chemical - O mediated O dimer B-oligomeric_state of O PGRMC1 B-protein enables O interaction O with O different O subclasses O of O cytochromes B-protein_type P450 I-protein_type ( O CYP B-protein_type ) O ( O Fig O . O 6 O ). O On O the O other O hand O , O Oda O et O al O . O reported O that O PGRMC1 B-protein had O no O effect O to O CYP2E1 B-protein and O CYP3A4 B-protein activities O in O HepG2 O cell O . O Besides O the O regulatory O roles O of O PGRMC1 B-protein / O Sigma B-protein - I-protein 2 I-protein receptor O in O proliferation O and O chemoresistance O in O cancer O cells O ( O ref O .), O recent O reports O show O that O PGRMC1 B-protein is O able O to O bind O to O amyloid B-protein beta I-protein oligomer B-oligomeric_state to O enhance O its O neurotoxicity O . O Alzheimer O ' O s O therapeutics O targeting O amyloid O beta O 1 O - O 42 O oligomers O II O : O Sigma O - O 2 O / O PGRMC1 O receptors O mediate O Abeta O 42 O oligomer B-oligomeric_state binding O and O synaptotoxicity O X B-evidence - I-evidence ray I-evidence crystal I-evidence structure I-evidence of O PGRMC1 B-protein . O ( O a O ) O Structure O of O the O PGRMC1 B-protein dimer B-oligomeric_state formed O through O stacked O haems B-chemical . O ( O b O ) O SV B-experimental_method - I-experimental_method AUC I-experimental_method analyses O of O the O wt B-protein_state - O PGRMC1 B-protein and O the O C129S B-mutant mutant B-protein_state ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ) O in O the O presence B-protein_state or O absence B-protein_state of I-protein_state haem B-chemical . O ( O f O ) O HCT116 O cells O expressing O control O shRNA B-chemical or O those O knocking B-experimental_method down I-experimental_method PGRMC1 B-protein ( O PGRMC1 B-mutant - I-mutant KD I-mutant ) O were O treated O with O EGF B-protein_type or O left O untreated O , O and O components O of O the O EGFR B-protein_type signaling O pathway O were O detected O by O Western B-experimental_method blotting I-experimental_method . O Stable O PGRMC1 B-mutant - I-mutant knockdown I-mutant ( O PGRMC1 B-mutant - I-mutant KD I-mutant ) O HCT116 O cells O were O transiently B-experimental_method transfected I-experimental_method with O the O shRNA B-protein_state - I-protein_state resistant I-protein_state expression B-experimental_method vector I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state PGRMC1 B-protein ( O wt B-protein_state ) O or O the O Y113F B-mutant mutant B-protein_state ( O Y113F B-mutant ). O ( O b O ) O Erlotinib B-chemical was O added O to O HCT116 O ( O control O ) O cells O , O PGRMC1 B-mutant - I-mutant KD I-mutant cells O or O PGRMC1 B-mutant - I-mutant KD I-mutant cells O expressing O shRNA B-protein_state - I-protein_state resistant I-protein_state PGRMC1 B-protein wt B-protein_state or O Y113F B-mutant , O and O cell O viability O was O examined O by O MTT B-experimental_method assay I-experimental_method . O The O graph O represents O mean O ± O s O . O e O . O of O each O spheroid O size O . O * B-evidence P I-evidence < O 0 O . O 01 O using O ANOVA B-experimental_method with O Fischer B-experimental_method ' I-experimental_method s I-experimental_method LSD I-experimental_method test I-experimental_method . O Haem B-chemical - O dependent O PGRMC1 B-protein dimerization B-oligomeric_state enhances O tumour O chemoresistance O through O interaction O with O cytochromes B-protein_type P450 I-protein_type . O ( O a O , O b O ) O FLAG O - O PGRMC1 B-protein wild B-protein_state - I-protein_state type I-protein_state ( O wt B-protein_state ) O and O Y113F B-mutant mutant B-protein_state proteins O ( O a O . O a O . O 44 B-residue_range – I-residue_range 195 I-residue_range ), O in O either O apo B-protein_state or O haem B-protein_state - I-protein_state bound I-protein_state form O , O were O incubated B-experimental_method with O CYP1A2 B-protein ( O a O ) O or O CYP3A4 B-protein ( O b O ) O and O immunoprecipitated B-experimental_method with O anti O - O FLAG O antibody O - O conjugated O beads O . O Schematic O diagram O for O the O regulation O of O PGRMC1 B-protein functions O . O Differences O in O molecular O weights O of O the O wild O - O type O ( O wt O ; O a O ) O and O the O C129S B-mutant mutant O ( O b O ) O PGRMC1 O proteins O in O the O absence O ( O apo O form O ) O or O the O presence O of O haem O ( O haem O - O bound O form O ). O Hotspot O autoimmune O T B-protein_type cell I-protein_type receptor I-protein_type binding O underlies O pathogen O and O insulin B-chemical peptide O cross O - O reactivity O Both O MHC B-complex_assembly and O peptide B-chemical have O also O been O shown O to O undergo O structural O changes O upon O TCR B-complex_assembly binding O , O mediating O an O induced O fit O between O the O TCR B-complex_assembly and O pMHC B-complex_assembly . O We O recently O reported O that O the O 1E6 O human B-species CD8 O + O T O cell O clone O — O which O mediates O the O destruction O of O β O cells O through O the O recognition O of O a O major O , O HLA B-protein - I-protein A I-protein * I-protein 0201 I-protein – O restricted O , O preproinsulin B-protein signal B-structure_element peptide I-structure_element ( O ALWGPDPAAA15 B-chemical – I-chemical 24 I-chemical ) O — O can O recognize O upwards O of O 1 O million O different O peptides O . O This O first O experimental O evidence O of O a O high O level O of O CD8 O + O T O cell O cross O - O reactivity O in O a O human B-species autoimmune O disease O system O hinted O toward O molecular O mimicry O by O a O more O potent O pathogenic O peptide O as O a O potential O mechanism O leading O to O β O cell O destruction O . O These O APLs B-chemical differed O from O the O natural O preproinsulin B-protein peptide O by O up O to O 7 O of O 10 O residues O . O Two O of O these O peptides O , O MVWGPDPLYV B-chemical and O RQFGPDWIVA B-chemical ( O bold O text O signifies O amino O acids O that O are O different O from O the O index O preproinsulin B-protein – O derived O sequence O ), O are O contained O within O the O proteomes O of O the O human B-species pathogens O Bacteroides B-species fragilis I-species / I-species thetaiotaomicron I-species and O Clostridium B-species asparagiforme I-species , O respectively O . O The O low O number O of O contacts O between O the O 2 O molecules O most O likely O contributed O to O the O weak O binding B-evidence affinity I-evidence of O the O interaction O . O Although O the O 1E6 B-complex_assembly TCR I-complex_assembly formed O a O similar O overall O interaction O with O each O APL B-chemical , O the O stabilization O between O the O TCR B-complex_assembly and O the O GPD B-structure_element motif I-structure_element enabled O fine O differences O in O the O contact B-site network I-site with O both O the O peptide B-chemical and O MHC B-site surface I-site that O allowed O discrimination O between O each O ligand O ( O Figure O 5 O ). O These O data O demonstrated O that O the O unligated B-protein_state structure B-evidence of O the O 1E6 B-complex_assembly TCR I-complex_assembly was O virtually O identical O to O its O ligated B-protein_state counterparts O . O Thus O , O we O performed O an O in O - O depth O thermodynamic B-experimental_method analysis I-experimental_method of O 6 O of O the O ligands O under O investigation O ( O Figure O 8 O and O Supplemental O Table O 3 O ). O However O , O there O was O a O clear O switch O in O entropy B-evidence between O the O weaker O - O affinity B-evidence and O stronger O - O affinity B-evidence ligands O , O indicated O by O a O strong O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence value I-evidence between O entropy B-evidence and O affinity B-evidence ( O Pearson B-evidence ’ I-evidence s I-evidence correlation I-evidence value I-evidence 0 O . O 93 O , O P B-evidence = O 0 O . O 007 O ). O We O searched O a O database O of O over O 1 O , O 924 O , O 572 O unique O decamer O peptides B-chemical from O the O proteome O of O viral B-taxonomy_domain pathogens O that O are O known O , O or O strongly O suspected O , O to O infect O humans B-species . O This O notion O is O attractive O because O the O CDR B-structure_element loops I-structure_element , O which O form O the O TCR B-site antigen I-site - I-site binding I-site site I-site , O are O usually O the O most O flexible O part O of O the O TCR B-complex_assembly and O have O the O ability O to O mold O around O differently O shaped O ligands O . O This O motif O was O conserved B-protein_state in O at O least O 2 O potential O foreign O peptides O , O originating O from O Herpes B-species simplex I-species virus I-species and O Pseudomonas B-species aeruginosa I-species , O enabling O TCR B-complex_assembly recognition O of O foreign O epitopes O . O We O have O previously O demonstrated O the O importance O of O the O GPD B-structure_element motif I-structure_element using O a O peptide B-experimental_method library I-experimental_method scan I-experimental_method , O as O well O as O a O CPL B-experimental_method scan I-experimental_method approach O . O These O results O challenge O the O notion O that O the O most O potent O peptide O antigens O exhibit O the O greatest O pMHC B-complex_assembly stability O and O have O implications O for O the O design O of O anchor O residue O – O modified O heteroclitic O peptides O for O vaccination O . O These O parameters O aligned O well O with O structural B-evidence data I-evidence , O demonstrating O that O TCRs B-complex_assembly engaged O pMHC B-complex_assembly using O an O induced O fit O binding O mode O . O These O differences O were O consistent O with O a O greater O degree O of O movement O between O the O unligated B-protein_state and O ligated B-protein_state pMHCs B-complex_assembly for O the O weaker O ligands O , O suggesting O a O greater O requirement O for O disorder O - O to O - O order O changes O during O TCR B-complex_assembly binding O . O Indeed O , O we O found O over O 50 O decamer O peptides O from O the O proteome O of O likely O , O or O known O , O human B-species viral B-taxonomy_domain pathogens O alone O that O contained O both O the O conserved B-protein_state central O GPD B-structure_element motif I-structure_element and O anchor B-structure_element residues I-structure_element at O positions O 2 B-residue_number and O 10 B-residue_number that O would O enable O binding O to O HLA B-protein - I-protein A I-protein * I-protein 02 I-protein : I-protein 01 I-protein . O ( O K O ) O Effective B-evidence 2D I-evidence affinity I-evidence plotted O against O 1 O / O EC50 B-evidence showing O Pearson B-experimental_method ’ I-experimental_method s I-experimental_method coefficient I-experimental_method analysis I-experimental_method ( O r B-evidence ) O and O P B-evidence value I-evidence . O ( O A O ) O Superposition B-experimental_method of O the O 1E6 B-complex_assembly TCR I-complex_assembly ( O multicolored O illustration O ) O in B-protein_state complex I-protein_state with I-protein_state all O 7 O APLs B-chemical ( O multicolored O sticks O ) O and O the O A2 B-chemical - I-chemical ALWGPDPAAA I-chemical ligand O using O the O HLA B-protein - I-protein A I-protein * I-protein 0201 I-protein ( O gray O illustration O ) O molecule O to O align B-experimental_method all O of O the O structures B-evidence . O The O MHCα1 B-complex_assembly helix B-structure_element is O shown O in O gray O illustrations O . O ( O A O ) O A2 B-chemical - I-chemical MVWGPDPLYV I-chemical ( O black O sticks O ). O