Despite O displaying O similar O affinities B-evidence for O XyG B-chemical , O reverse B-experimental_method - I-experimental_method genetic I-experimental_method analysis I-experimental_method reveals O that O SGBP B-protein - I-protein B I-protein is O only O required O for O the O efficient O capture O of O smaller O oligosaccharides B-chemical , O whereas O the O presence O of O SGBP B-protein - I-protein A I-protein is O more O critical O than O its O carbohydrate B-chemical - O binding O ability O for O growth O on O XyG B-chemical . O Together O , O these O data O demonstrate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein play O complementary O , O specialized O roles O in O carbohydrate B-chemical capture O by O B B-species . I-species ovatus I-species and O elaborate O a O model O of O how O vegetable B-taxonomy_domain xyloglucans B-chemical are O accessed O by O the O Bacteroidetes B-taxonomy_domain . O The O human B-species gut O bacteria B-taxonomy_domain Bacteroidetes B-taxonomy_domain share O a O profound O capacity O for O dietary O glycan B-chemical degradation O , O with O many O species O containing O > O 250 O predicted O carbohydrate O - O active O enzymes O ( O CAZymes O ), O compared O to O 50 O to O 100 O within O many O Firmicutes B-taxonomy_domain and O only O 17 O in O the O human B-species genome O devoted O toward O carbohydrate O utilization O . O The O archetypal O PUL B-gene - O encoded O system O is O the O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly ( O Sus B-complex_assembly ) O ( O Fig O . O 1B O ) O of O Bacteroides B-species thetaiotaomicron I-species . O We O describe O here O the O detailed O functional B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O the O noncatalytic B-protein_state SGBPs B-protein_type encoded O by O Bacova_02651 B-gene and O Bacova_02650 B-gene of O the O XyGUL B-gene , O here O referred O to O as O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O to O elucidate O their O molecular O roles O in O carbohydrate O acquisition O in O vivo O . O Immunofluorescence B-experimental_method of O formaldehyde O - O fixed O , O nonpermeabilized O cells O grown O in O minimal O medium O with O XyG B-chemical as O the O sole O carbon O source O to O induce O XyGUL B-gene expression O , O reveals O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O presented O on O the O cell O surface O by O N O - O terminal O lipidation B-ptm , O as O predicted O by O signal O peptide O analysis O with O SignalP O ( O Fig O . O 2 O ). O Neither O SGBP B-protein_type recognized O galactomannan B-chemical ( O GGM B-chemical ), O starch B-chemical , O carboxymethylcellulose B-chemical , O or O mucin B-chemical ( O see O Fig O . O S1 O in O the O supplemental O material O ). O Affinity B-experimental_method electrophoresis I-experimental_method ( O 10 O % O acrylamide O ) O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein with O BSA B-protein as O a O control O protein O . O All O samples O were O loaded O on O the O same O gel O next O to O the O BSA B-protein controls O ; O thin O black O lines O indicate O where O intervening O lanes O were O removed O from O the O final O image O for O both O space O and O clarity O . O SGBP B-protein - I-protein A I-protein is O a O SusD B-protein homolog O with O an O extensive O glycan B-site - I-site binding I-site platform I-site . O It O is O particularly O notable O that O although O the O location O of O the O ligand B-site - I-site binding I-site site I-site is O conserved B-protein_state between O SGBP B-protein - I-protein A I-protein and O SusD B-protein , O that O of O SGBP B-protein - I-protein A I-protein displays O an O ~ O 29 O - O Å O - O long O aromatic B-site platform I-site to O accommodate O the O extended O , O linear O XyG B-chemical chain O ( O see O reference O for O a O review O of O XyG B-chemical secondary O structure O ), O versus O the O shorter O , O ~ O 18 O - O Å O - O long O , O site B-site within O SusD B-protein that O complements O the O helical O conformation O of O amylose B-chemical ( O Fig O . O 4C O and O D O ). O Seven O of O the O eight O backbone O glucosyl B-chemical residues O of O XyGO2 B-chemical could O be O convincingly O modeled O in O the O ligand B-evidence electron I-evidence density I-evidence , O and O only O two O α B-chemical ( I-chemical 1 I-chemical → I-chemical 6 I-chemical )- I-chemical linked I-chemical xylosyl I-chemical residues O were O observed O ( O Fig O . O 4B O ; O cf O . O Three O aromatic O residues O — O W82 B-residue_name_number , O W283 B-residue_name_number , O W306 B-residue_name_number — O comprise O the O flat B-site platform I-site that O stacks O along O the O naturally O twisted O β B-chemical - I-chemical glucan I-chemical backbone O ( O Fig O . O 4E O ). O The O functional O importance O of O this O platform B-site is O underscored O by O the O observation O that O the O W82A B-mutant W283A B-mutant W306A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein A I-protein , O designated O SGBP B-mutant - I-mutant A I-mutant *, I-mutant is O completely B-protein_state devoid I-protein_state of I-protein_state XyG I-protein_state affinity I-protein_state ( O Table O 3 O ; O see O Fig O . O S4 O in O the O supplemental O material O ). O Multimodular O structure O of O SGBP B-protein - I-protein B I-protein ( O Bacova_02650 B-gene ). O ( O A O ) O Full B-protein_state - I-protein_state length I-protein_state structure B-evidence of O SGBP B-protein - I-protein B I-protein , O color O coded O by O domain O as O indicated O . O An O omit B-evidence map I-evidence ( O 2σ O ) O for O XyGO2 B-chemical is O displayed O to O highlight O the O location O of O the O glycan B-site - I-site binding I-site site I-site . O ( O D O ) O Close O - O up O omit B-evidence map I-evidence for O the O XyGO2 B-chemical ligand O , O contoured O at O 2σ O . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein B I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O XyG B-chemical binds B-protein_state to I-protein_state domain O D B-structure_element of O SGBP B-protein - I-protein B I-protein at O the O concave B-site interface I-site of O the O top O β B-structure_element - I-structure_element sheet I-structure_element , O with O binding O mediated O by O loops B-structure_element connecting O the O β B-structure_element - I-structure_element strands I-structure_element . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O Solid O bars O indicate O conditions O that O are O not O statistically O significant O from O the O WT B-protein_state Δtdk B-mutant cultures O grown O on O the O indicated O carbohydrate B-chemical , O while O open O bars O indicate O a O P O value O of O < O 0 O . O 005 O compared O to O the O WT B-protein_state Δtdk B-mutant strain O . O In O previous O studies O , O we O observed O that O carbohydrate B-chemical binding O by O SusD B-protein enhanced O the O sensitivity O of O the O cells O to O limiting O concentrations O of O malto O - O oligosaccharides O by O several O orders O of O magnitude O , O such O that O the O addition O of O 0 O . O 5 O g O / O liter O maltose B-chemical was O required O to O restore O growth O of O the O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O on O starch B-chemical , O which O nonetheless O occurred O following O an O extended O lag B-evidence phase I-evidence . O As O such O , O the O data O suggest O that O SGBP B-protein - I-protein A I-protein can O compensate O for O the O loss O of O function O of O SGBP B-protein - I-protein B I-protein on O longer O oligo B-chemical - I-chemical and I-chemical polysaccharides I-chemical , O while O SGBP B-protein - I-protein B I-protein may O adapt O the O cell O to O recognize O smaller O oligosaccharides B-chemical efficiently O . O Presumably O without O glycan B-chemical binding O by O the O SGBPs B-protein_type , O the O GH5 B-protein protein O cannot O efficiently O process O xyloglucan B-chemical , O and O / O or O the O lack O of O SGBP B-protein_type function O prevents O efficient O capture O and O import O of O the O processed O oligosaccharides B-chemical . O However O , O unlike O the O Sus B-complex_assembly , O in O which O elimination B-experimental_method of I-experimental_method SusE B-protein and O SusF B-protein does O not O affect O growth O on O starch B-chemical , O SGBP B-protein - I-protein B I-protein appears O to O have O a O dedicated O role O in O growth O on O small O xylogluco B-chemical - I-chemical oligosaccharides I-chemical . O Thus O , O understanding O glycan B-chemical capture O at O the O cell O surface O is O fundamental O to O explaining O , O and O eventually O predicting O , O how O the O carbohydrate O content O of O the O diet O shapes O the O gut O community O structure O as O well O as O its O causative O health O effects O . O Yet O , O a O number O of O questions O remain O regarding O the O molecular O interplay O of O SGBPs B-protein_type with O their O cotranscribed O cohort O of O glycoside B-protein_type hydrolases I-protein_type and O TonB B-protein_type - I-protein_type dependent I-protein_type transporters I-protein_type . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O Thus O , O the O strict O dependence O on O a O SusD B-protein_type - I-protein_type like I-protein_type SGBP I-protein_type for O glycan B-chemical uptake O in O the O Bacteroidetes B-taxonomy_domain may O be O variable O and O substrate O dependent O . O Such O is O the O case O for O XyGUL B-gene from O related O Bacteroides B-taxonomy_domain species O , O which O may O encode O either O one O or O two O of O these O predicted O SGBPs B-protein_type , O and O these O proteins O vary O considerably O in O length O . O It O is O therefore O important O to O understand O the O mechanisms O which O regulate O nadA B-gene expression O levels O , O which O are O predominantly O controlled O by O the O transcriptional B-protein_type regulator I-protein_type NadR B-protein ( O Neisseria B-protein adhesin I-protein A I-protein Regulator I-protein ) O both O in O vitro O and O in O vivo O . O These O findings O shed O light O on O the O regulation O of O NadR B-protein , O a O key O MarR B-protein_type - O family O virulence O factor O of O this O important O human B-species pathogen O . O The O ‘ O Reverse B-experimental_method Vaccinology I-experimental_method ’ O approach O was O pioneered O to O identify O antigens O for O a O protein O - O based O vaccine O against O serogroup B-species B I-species Neisseria I-species meningitidis I-species ( O MenB B-species ), O a O human B-species pathogen O causing O potentially O - O fatal O sepsis O and O invasive O meningococcal B-taxonomy_domain disease O . O Indeed O , O Reverse B-experimental_method Vaccinology I-experimental_method identified O Neisseria B-protein adhesin I-protein A I-protein ( O NadA B-protein ), O a O surface O - O exposed O protein O involved O in O epithelial O cell O invasion O and O found O in O ~ O 30 O % O of O clinical O isolates O . O Although O additional O factors O influence O nadA B-gene expression O , O we O focused O on O its O regulation O by O NadR B-protein , O the O major O mediator O of O NadA B-protein phase O variable O expression O . O Stability O of O NadR B-protein is O increased O by O small O molecule O ligands O . O The O interactions O of O 4 B-chemical - I-chemical HPA I-chemical and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical with O NadR B-protein exhibited O KD B-evidence values O of O 1 O . O 5 O mM O and O 1 O . O 1 O mM O , O respectively O . O The O structure B-evidence of O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O was O determined O at O 2 O . O 3 O Å O resolution O using O a O combination O of O the O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method dispersion I-experimental_method ( O SAD B-experimental_method ) O and O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O methods O , O and O was O refined O to O R B-evidence work I-evidence / I-evidence R I-evidence free I-evidence values O of O 20 O . O 9 O / O 26 O . O 0 O % O ( O Table O 2 O ). O Despite O numerous O attempts O , O we O were O unable O to O obtain O high O - O quality O crystals B-evidence of O NadR B-protein complexed B-protein_state with I-protein_state 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O 3 B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O 3 B-chemical - I-chemical HPA I-chemical or O DNA O targets O . O However O , O it O was O eventually O possible O to O crystallize B-experimental_method apo B-protein_state - O NadR B-protein , O and O the O structure B-evidence was O determined O at O 2 O . O 7 O Å O resolution O by O MR B-experimental_method methods O using O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O as O the O search O model O . O Interestingly O , O in O the O α4 B-structure_element - I-structure_element β2 I-structure_element region I-structure_element , O the O stretch O of O residues O from O R64 B-residue_range - I-residue_range R91 I-residue_range presents O seven O positively O - O charged O side O chains O , O all O available O for O potential O interactions O with O DNA B-chemical . O The O crystal B-evidence structure I-evidence of O NadR B-protein in B-protein_state complex I-protein_state with I-protein_state 4 B-chemical - I-chemical HPA I-chemical . O It O is O notable O that O L130 B-residue_name_number is O usually O present O as O Leu B-residue_name , O or O an O alternative O bulky O hydrophobic O amino O acid O ( O e O . O g O . O Phe B-residue_name , O Val B-residue_name ), O in O many O MarR B-protein_type family O proteins O , O suggesting O a O conserved B-protein_state role O in O stabilizing O the O dimer B-site interface I-site . O ( O C O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method analyses O of O all O mutant B-protein_state forms O of O NadR B-protein are O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O protein O . O To O a O much O lesser O extent O , O the O L133K B-mutant mutation O also O appears O to O induce O a O ‘ O shoulder O ’ O to O the O main O peak O , O suggesting O very O weak O ability O to O disrupt O the O dimer B-oligomeric_state . O ( O D O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method / I-experimental_method MALLS I-experimental_method analyses O of O the O L130K B-mutant mutant B-protein_state , O shows O 20 O % O dimer B-oligomeric_state and O 80 O % O monomer B-oligomeric_state . O A O water B-chemical molecule O is O shown O by O the O red O sphere O . O The O entire O set O of O residues O making O H O - O bonds O or O non O - O bonded O contacts O with O 4 B-chemical - I-chemical HPA I-chemical is O as O follows O : O SerA9 B-residue_name_number , O AsnA11 B-residue_name_number , O LeuB21 B-residue_name_number , O MetB22 B-residue_name_number , O PheB25 B-residue_name_number , O LeuB29 B-residue_name_number , O AspB36 B-residue_name_number , O TrpB39 B-residue_name_number , O ArgB43 B-residue_name_number , O ValB111 B-residue_name_number and O TyrB115 B-residue_name_number ( O automated O analysis O performed O using O PDBsum B-experimental_method and O verified O manually O ). O Side O chains O mediating O hydrophobic O interactions O are O shown O in O orange O . O ( O B O ) O A O model O was O prepared O to O visualize O putative O interactions O of O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O pink O ) O with O NadR B-protein , O revealing O the O potential O for O additional O contacts O ( O dashed O lines O ) O of O the O chloro O moiety O ( O green O stick O ) O with O LeuB29 B-residue_name_number and O AspB36 B-residue_name_number . O The O presence O of O a O single O hydroxyl O group O at O position O 2 O , O as O in O 2 B-chemical - I-chemical HPA I-chemical , O rather O than O at O position O 4 O , O would O eliminate O the O possibility O of O favorable O interactions O with O AspB36 B-residue_name_number , O resulting O in O the O lack O of O NadR B-protein regulation O by O 2 B-chemical - I-chemical HPA I-chemical described O previously O . O Analysis O of O the O pockets B-site reveals O the O molecular O basis O for O asymmetric O binding O and O stoichiometry O In O these O crystals B-evidence , O the O ArgA43 B-residue_name_number side O chain O showed O two O alternate O conformations O , O modelled O with O 50 O % O occupancy O in O each O state O , O as O indicated O by O the O two O ‘ O mirrored O ’ O arrows O . O The O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectrum B-evidence of O apo B-protein_state - O NadR B-protein , O acquired O at O 25 O ° O C O , O displayed O approximately O 140 O distinct O peaks O ( O Fig O 6A O ), O most O of O which O correspond O to O backbone O amide O N O - O H O groups O . O ( O B O , O C O ) O Overlay B-experimental_method of O selected O regions O of O the O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence acquired O at O 25 O ° O C O of O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O red O ) O superimposed B-experimental_method with O the O spectra B-evidence acquired O at O 10 O ° O C O of O apo B-protein_state - O NadR B-protein ( O blue O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ). O Most O notably O , O the O position O of O the O DNA B-chemical - O binding O helix B-structure_element α4 B-structure_element shifted O by O as O much O as O 6 O Å O ( O Fig O 8B O ). O For O clarity O , O only O the O α4 B-structure_element helices I-structure_element are O shown O in O panels O ( O B O ) O and O ( O C O ). O ( O D O ) O Upon O comparison O with O the O experimentally O - O determined O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly structure B-evidence ( O grey O ), O the O α4 B-structure_element helix I-structure_element of O holo B-protein_state - O NadR B-protein ( O blue O ) O is O shifted O ~ O 8Å O out O of O the O major O groove O . O Specifically O , O in O addition O to O the O different O inter B-evidence - I-evidence helical I-evidence translational I-evidence distances I-evidence , O the O α4 B-structure_element helices I-structure_element in O the O holo B-protein_state - O NadR B-protein homodimer B-oligomeric_state were O also O reoriented O , O resulting O in O movement O of O α4 B-structure_element out O of O the O major O groove O , O by O up O to O 8Å O , O and O presumably O preventing O efficient O DNA B-chemical binding O in O the O presence O of O 4 B-chemical - I-chemical HPA I-chemical ( O Fig O 8D O ). O Firstly O , O we O confirmed O that O NadR B-protein is O dimeric B-oligomeric_state in O solution O and O demonstrated O that O it O retains O its O dimeric B-oligomeric_state state O in O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical , O indicating O that O induction O of O a O monomeric B-oligomeric_state status O is O not O the O manner O by O which O 4 B-chemical - I-chemical HPA I-chemical regulates O NadR B-protein . O These O observations O were O in O agreement O with O ( O i O ) O a O previous O study O of O NadR B-protein performed O using O SEC B-experimental_method and O mass B-experimental_method spectrometry I-experimental_method , O and O ( O ii O ) O crystallographic B-experimental_method studies I-experimental_method showing O that O several O MarR B-protein_type homologues O are O dimeric B-oligomeric_state . O Although O these O NadR B-protein / O HPA O interactions O appeared O rather O weak O , O their O distinct O affinities O and O specificities O matched O their O in O vitro O effects O and O their O biological O relevance O appears O similar O to O previous O proposals O that O certain O small O molecules O , O including O some O antibiotics O , O in O the O millimolar O concentration O range O may O be O broad O inhibitors O of O MarR B-protein_type family O proteins O . O Structural B-experimental_method analyses I-experimental_method suggested O that O ‘ O inward B-protein_state ’ O side O chain O positions O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O especially O Arg43 B-residue_name_number precluded O binding O of O a O second O ligand O molecule O . O Such O a O mechanism O indicates O negative O cooperativity O , O which O may O enhance O the O ligand O - O responsiveness O of O NadR B-protein . O Comparisons O of O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O with O available O MarR B-protein_type family O / O salicylate B-chemical complexes O revealed O that O 4 B-chemical - I-chemical HPA I-chemical has O a O previously O unobserved O binding O mode O . O Ultimately O , O knowledge O of O the O ligand O - O dependent O activity O of O NadR B-protein will O continue O to O deepen O our O understanding O of O nadA B-gene expression O levels O , O which O influence O meningococcal B-taxonomy_domain pathogenesis O . O The O structure O of O NMB1585 B-protein , O a O MarR O - O family O regulator O from O Neisseria O meningitidis O The O PduL B-protein_type structure B-evidence , O in O the O context O of O the O catalytic O core O , O completes O our O understanding O of O the O structural O basis O of O cofactor O recycling O in O the O metabolosome B-complex_assembly lumen O . O The O phosphotransacylase B-protein_type ( O Pta B-protein_type ) O enzyme O catalyzes O the O conversion O between O acyl B-chemical - I-chemical CoA I-chemical and O acyl B-chemical - I-chemical phosphate I-chemical . O We O solved B-experimental_method the O structure B-evidence of O this O convergent B-protein_state phosphotransacylase B-protein_type and O show O that O it O is O completely O structurally O different O from O Pta B-protein_type , O including O its O active B-site site I-site architecture O . O Bacterial B-taxonomy_domain Microcompartments B-complex_assembly ( O BMCs B-complex_assembly ) O are O organelles O that O encapsulate O enzymes O for O sequential O biochemical O reactions O within O a O protein O shell B-structure_element . O The O vitamin B-complex_assembly B12 I-complex_assembly - I-complex_assembly dependent I-complex_assembly propanediol I-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly PDU I-complex_assembly ) I-complex_assembly BMC I-complex_assembly was O one O of O the O first O functionally O characterized O catabolic B-protein_state BMCs B-complex_assembly ; O subsequently O , O other O types O have O been O implicated O in O the O degradation O of O ethanolamine B-chemical , O choline B-chemical , O fucose B-chemical , O rhamnose B-chemical , O and O ethanol B-chemical , O all O of O which O produce O different O aldehyde B-chemical intermediates O ( O Table O 1 O ). O These O two O cofactors O are O relatively O large O , O and O their O diffusion O across O the O protein B-structure_element shell I-structure_element is O thought O to O be O restricted O , O necessitating O their O regeneration O within O the O BMC B-complex_assembly lumen O . O Both O enzymes O are O , O however O , O not O restricted O to O fermentative B-taxonomy_domain organisms I-taxonomy_domain . O Reaction O 2 O : O acetyl B-chemical phosphate I-chemical + O ADP B-chemical ←→ O acetate B-chemical + O ATP B-chemical ( O Ack B-protein_type ) O As O a O member O of O the O core O biochemical O machinery O of O functionally O diverse O aldehyde B-protein_state - I-protein_state oxidizing I-protein_state metabolosomes B-complex_assembly , O PduL B-protein_type must O have O a O certain O level O of O substrate O plasticity O ( O see O Table O 1 O ) O that O is O not O required O of O Pta B-protein_type , O which O has O generally O been O observed O to O prefer O acetyl B-chemical - I-chemical CoA I-chemical . O PduL B-protein_type from O the O PDU B-complex_assembly BMC I-complex_assembly of O Salmonella B-species enterica I-species favors O propionyl B-chemical - I-chemical CoA I-chemical over O acetyl B-chemical - I-chemical CoA I-chemical , O and O it O is O likely O that O PduL B-protein_type orthologs O in O functionally O diverse O BMCs B-complex_assembly would O have O substrate O preferences O for O other O CoA B-chemical derivatives O . O Of O the O three O common O metabolosome B-complex_assembly core O enzymes O , O crystal B-evidence structures I-evidence are O available O for O both O the O alcohol B-protein_type and I-protein_type aldehyde I-protein_type dehydrogenases I-protein_type . O No O available O protein O structures O contain O the O PF06130 B-structure_element domain O , O and O homology B-experimental_method searches I-experimental_method using O the O primary O structure O of O PduL B-protein_type do O not O return O any O significant O results O that O would O allow O prediction O of O the O structure B-evidence . O Metal B-site coordination I-site residues I-site are O highlighted O in O light O blue O and O CoA B-site contacting I-site residues I-site in O magenta O , O residues O contacting O the O CoA B-chemical of O the O other O chain O are O also O outlined O . O We O were O able O to O fit O all O of O the O primary O structure O of O PduLΔEP B-mutant into O the O electron B-evidence density I-evidence with O the O exception O of O three O amino O acids O at O the O N O - O terminus O and O two O amino O acids O at O the O C O - O terminus O ( O Fig O 2a O ); O the O model O is O of O excellent O quality O ( O Table O 2 O ). O This O β B-structure_element - I-structure_element sheet I-structure_element is O involved O in O contacts O between O the O two O domains O and O forms O a O lid O over O the O active B-site site I-site . O Primary O structure O conservation O of O the O PduL B-protein_type protein O family O . O The O interface B-site between O the O two O chains O buries O 882 O Å2 O per O monomer B-oligomeric_state and O is O mainly O formed O by O α B-structure_element - I-structure_element helices I-structure_element 2 I-structure_element and I-structure_element 4 I-structure_element and O parts O of O β B-structure_element - I-structure_element sheets I-structure_element 12 I-structure_element and I-structure_element 14 I-structure_element , O as O well O as O a O π O – O π O stacking O of O the O adenine B-chemical moiety O of O CoA B-chemical with O Phe116 B-residue_name_number of O the O adjacent O chain O ( O Fig O 4c O ). O The O peripheral O helices B-structure_element and O the O short B-structure_element antiparallel I-structure_element β3 I-structure_element – I-structure_element 4 I-structure_element sheet I-structure_element mediate O most O of O the O crystal O contacts O . O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O BMC B-complex_assembly shell B-structure_element not O only O sequesters O specific O enzymes O but O also O their O cofactors O , O thereby O establishing O a O private O cofactor O pool O dedicated O to O the O encapsulated O reactions O . O In O catabolic B-protein_state BMCs B-complex_assembly , O CoA B-chemical and O NAD B-chemical + I-chemical must O be O continually O recycled O within O the O organelle O ( O Fig O 1 O ). O The O Tertiary O Structure O of O PduL B-protein_type Is O Formed O by O Discontinuous O Segments O of O Primary O Structure O In O contrast O to O PduL B-protein_type , O there O is O only O one O barrel B-structure_element present O in O ethylbenzene B-protein_type dehydrogenase I-protein_type , O and O there O is O no O comparable O active B-site site I-site arrangement O . O EP B-structure_element - O mediated O oligomerization O has O been O observed O for O the O signature O and O core O BMC B-complex_assembly enzymes O ; O for O example O , O full B-protein_state - I-protein_state length I-protein_state propanediol B-protein_type dehydratase I-protein_type and O ethanolamine B-protein_type ammonia I-protein_type - I-protein_type lyase I-protein_type ( O signature O enzymes O for O PDU B-complex_assembly and O EUT B-complex_assembly BMCs I-complex_assembly ) O subunits O are O also O insoluble O , O but O become O soluble O upon O removal O of O the O predicted O EP B-structure_element . O This O propensity O of O the O EP B-structure_element to O cause O proteins O to O form O complexes O ( O Fig O 5 O ) O might O not O be O a O coincidence O , O but O could O be O a O necessary O step O in O the O assembly O of O BMCs B-complex_assembly . O There O is O a O pocket B-site nearby O the O active B-site site I-site between O the O well B-protein_state - I-protein_state conserved I-protein_state residues O Ser45 B-residue_name_number and O Ala154 B-residue_name_number , O which O could O accommodate O the O propionyl O group O ( O S6 O Fig O ). O The O catalytic O mechanism O of O Pta B-protein_type involves O the O abstraction O of O a O thiol O hydrogen O by O an O aspartate B-residue_name residue O , O resulting O in O the O nucleophilic O attack O of O thiolate O upon O the O carbonyl O carbon O of O acetyl B-chemical - I-chemical phosphate I-chemical , O oriented O by O an O arginine B-residue_name and O stabilized O by O a O serine B-residue_name — O there O are O no O metals O involved O . O These O observations O strongly O suggest O that O an O acidic B-protein_state residue B-structure_element is O not O directly O involved O in O catalysis O by O PduL B-protein_type . O Instead O , O the O dimetal B-site active I-site site I-site of O PduL B-protein_type may O create O a O nucleophile O from O one O of O the O hydroxyl O groups O on O free O phosphate B-chemical to O attack O the O carbonyl O carbon O of O the O thioester O bond O of O an O acyl B-chemical - I-chemical CoA I-chemical . O In O the O reverse O direction O , O the O metal O ion O ( O s O ) O could O stabilize O the O thiolate O anion O that O would O attack O the O carbonyl O carbon O of O an O acyl B-chemical - I-chemical phosphate I-chemical ; O a O similar O mechanism O has O been O described O for O phosphatases B-protein_type where O hydroxyl O groups O or O hydroxide O ions O can O act O as O a O base O when O coordinated O by O a O dimetal B-site active I-site site I-site . O Alternatively O , O Arg103 B-residue_name_number might O act O as O a O base O to O render O the O phosphate B-chemical more O nucleophilic O . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O We O have O observed O the O oligomeric O state O differences O of O PduL B-protein_type to O correlate O with O the O presence O of O an O EP B-structure_element , O providing O new O insight O into O the O function O of O this O sequence O extension O in O BMC B-complex_assembly assembly O . O Moreover O , O our O results O suggest O a O means O for O Coenzyme B-chemical A I-chemical incorporation O during O metabolosome B-complex_assembly biogenesis O . O A O detailed O understanding O of O the O underlying O principles O governing O the O assembly O and O internal O structural O organization O of O BMCs B-complex_assembly is O a O requisite O for O synthetic O biologists O to O design O custom O nanoreactors O that O use O BMC B-complex_assembly architectures O as O a O template O . O We O found O that O the O NTD B-structure_element associates O with O the O PIN B-structure_element domain O and O significantly O enhances O its O RNase B-protein_type activity O . O The O structure B-evidence combined O with O functional O analyses O revealed O that O four O catalytically O important O Asp B-residue_name residues O form O the O catalytic B-site center I-site and O stabilize O Mg2 B-chemical + I-chemical binding O that O is O crucial O for O RNase B-protein_type activity O . O The O NTD B-structure_element and O CTD B-structure_element are O both O composed O of O three O α B-structure_element helices I-structure_element , O and O structurally O resemble O ubiquitin B-protein conjugating I-protein enzyme I-protein E2 I-protein K I-protein ( O PDB O ID O : O 3K9O O ) O and O ubiquitin B-protein associated I-protein protein I-protein 1 I-protein ( O PDB O ID O : O 4AE4 O ), O respectively O , O according O to O the O Dali B-experimental_method server I-experimental_method . O Based O on O the O decrease O in O the O free O RNA B-chemical fluorescence O band O , O we O evaluated O the O contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNA B-chemical binding O . O Contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNase B-protein_type activity O On O the O other O hand O , O single B-experimental_method mutations I-experimental_method of O side O chains O involved O in O the O PIN B-structure_element – O PIN B-structure_element oligomeric O interaction O resulted O in O monomer B-oligomeric_state formation O , O judging O from O gel B-experimental_method filtration I-experimental_method ( O Fig O . O 2a O , O b O ). O The O spectra B-evidence indicate O that O the O dimer B-site interface I-site of O the O wild B-protein_state type I-protein_state PIN B-structure_element domain O were O significantly O broadened O compared O to O the O monomeric B-oligomeric_state mutants B-protein_state ( O Supplementary O Fig O . O 4 O ). O These O results O indicate O that O the O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state in O solution O similar O to O the O crystal B-evidence structure I-evidence . O These O results O clearly O indicate O a O direct O interaction O between O the O PIN B-structure_element domain O and O the O NTD B-structure_element . O The O K184A B-mutant , O R215A B-mutant , O and O R220A B-mutant mutants B-protein_state moderately O but O significantly O decreased O the O cleavage O activity O for O both O target O mRNAs B-chemical . O The O importance O of O residues O W182 B-residue_name_number and O R183 B-residue_name_number can O readily O be O understood O in O terms O of O the O monomeric B-oligomeric_state PIN B-structure_element structure B-evidence as O they O are O located O near O to O the O RNase B-protein_type catalytic B-site site I-site ; O however O , O the O importance O of O residue O K184 B-residue_name_number , O which O points O away O from O the O active B-site site I-site is O more O easily O rationalized O in O terms O of O the O oligomeric O structure B-evidence , O in O which O the O “ O secondary O ” O chain O ’ O s O residue O K184 B-residue_name_number is O positioned O near O the O “ O primary B-protein_state ” I-protein_state chain O ’ O s O catalytic B-site site I-site ( O Fig O . O 4 O ). O Our O NMR B-experimental_method experiments O confirmed O direct O binding O of O the O ZF B-structure_element domain O to O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical with O a O Kd B-evidence of O 10 O ± O 1 O . O 1 O μM O . O Furthermore O , O an O in B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method assay I-experimental_method indicated O that O Regnase B-protein - I-protein 1 I-protein containing O the O ZF B-structure_element domain O enhanced O target O mRNA B-chemical - O binding O , O but O the O protein O - O RNA B-chemical complex O remained O in O the O bottom O of O the O well O without O entering O into O the O polyacrylamide O gel O . O These O results O indicate O that O Regnase B-protein - I-protein 1 I-protein directly O binds O to O RNA B-chemical and O precipitates O under O such O experimental O conditions O . O Moreover O , O we O found O that O the O NTD B-structure_element associates O with O the O oligomeric B-site surface I-site of O the O primary B-protein_state PIN B-structure_element , O docking O to O a O helix B-structure_element that O harbors O its O catalytic B-site residues I-site ( O Figs O 2b O and O 3a O ). O While O further O analyses O are O necessary O to O prove O this O point O , O our O preliminary O docking B-experimental_method and I-experimental_method molecular I-experimental_method dynamics I-experimental_method simulations I-experimental_method indicate O that O NTD B-structure_element - O binding O rearranges O the O catalytic B-site residues I-site of O the O PIN B-structure_element domain O toward O an O active B-protein_state conformation O suitable O for O binding O Mg2 B-chemical +. I-chemical The O docking B-experimental_method result O revealed O multiple O RNA B-chemical binding O modes O that O satisfied O the O experimental O results O in O vitro O ( O Supplementary O Fig O . O 7c O , O d O ), O however O , O it O should O be O noted O that O , O in O vivo O , O there O would O likely O be O many O other O RNA B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type that O would O protect O loop B-structure_element regions O from O cleavage O by O Regnase B-protein - I-protein 1 I-protein . O The O overall O model O of O regulation O of O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O through O domain O - O domain O interactions O in O vitro O is O summarized O in O Fig O . O 6 O . O In O the O absence B-protein_state of I-protein_state target O mRNA B-chemical , O the O PIN B-structure_element domain O forms O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomers B-oligomeric_state at O high O concentration O . O A O fully B-protein_state active I-protein_state catalytic B-site center I-site can O be O formed O only O when O the O NTD B-structure_element associates O with O the O oligomer B-oligomeric_state surface O of O the O PIN B-structure_element domain O , O which O terminates O the O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state formation O in O one O direction O ( O primary B-protein_state PIN B-structure_element ), O and O forms O a O functional B-protein_state dimer B-oligomeric_state together O with O the O neighboring O PIN B-structure_element ( O secondary B-protein_state PIN B-structure_element ). O Catalytic B-protein_state Asp B-residue_name residues O were O shown O in O sticks O . O Three O Cys B-residue_name residues O and O one O His B-residue_name residue O responsible O for O Zn2 O +- O binding O were O shown O in O sticks O . O ( O f O ) O In B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method binding I-experimental_method assay I-experimental_method between O Regnase B-protein - I-protein 1 I-protein and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O Catalytic B-site residues I-site and O mutated O residues O were O shown O in O sticks O . O The O residues O with O significant O chemical O shift O changes O were O labeled O in O the O overlaid B-experimental_method spectra B-evidence ( O left O ) O and O colored O red O on O the O surface O and O ribbon O structure O of O the O PIN B-structure_element domain O ( O right O ). O ( O b O ) O NMR B-experimental_method analyses I-experimental_method of O the O PIN B-structure_element - O binding O to O the O NTD B-structure_element . O Critical O residues O in O the O PIN B-structure_element domain O for O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein . O ( O b O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O basic O residue O mutants B-protein_state for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O Schematic O representation O of O regulation O of O the O Regnase B-protein - I-protein 1 I-protein catalytic O activity O through O the O domain O - O domain O interactions O . O Ribosomal B-chemical RNA I-chemical modifications O have O been O suggested O to O optimize O ribosome O function O , O although O in O most O cases O this O remains O to O be O clearly O established O . O Most O modified O rRNA B-chemical nucleotides B-chemical cluster O in O the O vicinity O of O the O decoding B-site or O the O peptidyl B-site transferase I-site center I-site , O suggesting O an O influence O on O ribosome O functionality O and O stability O . O Both O the O methyl O and O the O acp O group O are O derived O from O S B-chemical - I-chemical adenosylmethionine I-chemical ( O SAM B-chemical ), O but O the O enzyme O responsible O for O acp B-chemical modification O remained O elusive O for O more O than O 40 O years O . O Tsr3 B-protein is O necessary O for O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical in O yeast B-taxonomy_domain and O human B-species . O ( O A O ) O Hypermodified B-protein_state nucleotide B-chemical m1acp3Ψ B-chemical is O synthesized O in O three O steps O : O pseudouridylation B-ptm catalyzed O by O snoRNP35 B-complex_assembly , O N1 B-ptm - I-ptm methylation I-ptm catalyzed O by O methyltransferase B-protein_type Nep1 B-protein and O N3 O - O acp B-chemical modification O catalyzed O by O Tsr3 B-protein . O The O asterisk O indicates O the O C1 O - O atom O labeled O in O the O 14C B-experimental_method - I-experimental_method incorporation I-experimental_method assay I-experimental_method . O ( O C O ) O 14C B-chemical - I-chemical acp I-chemical labeling O of O 18S B-chemical rRNAs I-chemical . O Upper O lanes O show O the O ethidium B-chemical bromide I-chemical staining O of O the O 18S B-chemical rRNAs I-chemical for O quantification O . O The O primer O extension O stop O at O nucleotide O 1191 B-residue_number is O missing O exclusively O in O Δtsr3 B-mutant mutants O and O Δtsr3 B-mutant Δsnr35 I-mutant recombinants O . O The O efficiency O of O siRNA B-chemical mediated O HsTSR3 B-protein repression O correlates O with O the O primer B-evidence extension I-evidence signals I-evidence ( O see O Supplementary O Figure O S2A O ). O During O the O biosynthesis O of O wybutosine B-chemical , O a O tricyclic O nucleoside B-chemical present O in O eukaryotic B-taxonomy_domain and O archaeal B-taxonomy_domain phenylalanine B-chemical tRNA B-chemical , O Tyw2 B-protein ( O Trm12 B-protein in O yeast B-taxonomy_domain ) O transfers O an O acp B-chemical group O from O SAM B-chemical to O an O acidic O carbon O atom O . O Archaeal B-taxonomy_domain Tyw2 B-protein has O a O structure B-evidence very O similar O to O Rossmann B-protein_type - I-protein_type fold I-protein_type ( I-protein_type class I-protein_type I I-protein_type ) I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type , O but O its O distinctive O SAM B-site - I-site binding I-site mode I-site enables O the O transfer O of O the O acp B-chemical group O instead O of O the O methyl O group O of O the O cofactor O . O In O a O recent O bioinformatic O study O , O the O uncharacterized O yeast B-taxonomy_domain gene O YOR006c B-gene was O predicted O to O be O involved O in O ribosome O biogenesis O . O On O this O basis O , O YOR006C B-gene was O renamed O ‘ O Twenty B-protein S I-protein rRNA I-protein accumulation I-protein 3 I-protein ′ O ( O TSR3 B-protein ). O However O , O its O function O remained O unclear O although O recently O a O putative O nuclease O function O during O 18S B-chemical rRNA I-chemical maturation O was O predicted O . O Whereas O the O acp B-chemical labeling O of O 18S B-chemical rRNA I-chemical was O clearly O present O in O the O wild B-protein_state type I-protein_state strain O no O radioactive O labeling O could O be O observed O in O a O Δtsr3 B-mutant strain O ( O Figure O 1C O ). O No O radioactive O labeling O was O detected O in O the O 18S B-mutant U1191A I-mutant mutant B-protein_state which O served O as O a O control O for O the O specificity O of O the O 14C B-chemical - I-chemical aminocarboxypropyl I-chemical incorporation O . O The O Tsr3 B-protein protein O is O highly B-protein_state conserved I-protein_state in O yeast B-taxonomy_domain and O humans B-species ( O 50 O % O identity O ). O Human B-species 18S B-chemical rRNA I-chemical has O also O been O shown O to O contain O m1acp3Ψ B-ptm in O the O 18S B-chemical rRNA I-chemical at O position O 1248 B-residue_number . O By O comparison O , O treating O cells O with O siRNA B-chemical 545 O , O which O only O reduced O the O TSR3 B-protein mRNA O to O 20 O %, O did O not O markedly O reduced O the O acp B-chemical signal O . O ( O D O ) O Cytoplasmic O localization O of O yeast B-taxonomy_domain Tsr3 B-protein shown O by O fluorescence B-experimental_method microscopy I-experimental_method of O GFP B-mutant - I-mutant fused I-mutant Tsr3 I-mutant . O From O left O to O right O : O differential B-experimental_method interference I-experimental_method contrast I-experimental_method ( O DIC B-experimental_method ), O green O fluorescence O of O GFP B-mutant - I-mutant Tsr3 I-mutant , O red O fluorescence O of O Nop56 B-mutant - I-mutant mRFP I-mutant as O nucleolar O marker O , O and O merge O of O GFP B-mutant - I-mutant Tsr3 I-mutant / O Nop56 B-mutant - I-mutant mRFP I-mutant with O DIC B-experimental_method . O ( O E O ) O Elution B-evidence profile I-evidence ( O A254 O ) O after O sucrose B-experimental_method gradient I-experimental_method separation I-experimental_method of O yeast B-taxonomy_domain ribosomal B-complex_assembly subunits I-complex_assembly and O polysomes B-complex_assembly ( O upper O part O ) O and O western B-experimental_method blot I-experimental_method analysis O of O 3xHA B-chemical tagged O Tsr3 B-protein ( O Tsr3 B-mutant - I-mutant 3xHA I-mutant ) O after O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method separation O of O polysome O profile O fractions O taken O every O 20 O s O ( O lower O part O ). O The O TSR3 B-protein gene O was O genetically O modified O at O its O native O locus O , O resulting O in O a O C O - O terminal O fusion B-protein_state of O Tsr3 B-protein with O a O 3xHA B-chemical epitope O expressed O by O the O native O promotor O in O yeast B-taxonomy_domain strain O CEN O . O BM258 O - O 5B O . O Similar O to O a O temperature O - O sensitive O nep1 B-gene mutant B-protein_state , O the O Δtsr3 B-mutant deletion O caused O hypersensitivity O to O paromomycin B-chemical and O , O to O a O lesser O extent O , O to O hygromycin B-chemical B I-chemical ( O Figure O 2B O ), O but O not O to O G418 B-chemical or O cycloheximide B-chemical ( O data O not O shown O ). O This O agrees O with O previous O biochemical O data O suggesting O that O the O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical occurs O late O during O 40S B-complex_assembly subunit O biogenesis O in O the O cytoplasm O , O and O makes O an O additional O nuclear O localization O as O reported O in O a O previous O large O - O scale O analysis O unlikely O . O Such O distribution B-evidence on I-evidence a I-evidence density I-evidence gradient I-evidence suggests O that O Tsr3 B-protein only O interacts O transiently O with O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly , O which O presumably O explains O why O it O was O not O characterized O in O pre B-experimental_method - I-experimental_method ribosome I-experimental_method affinity I-experimental_method purifications I-experimental_method . O Structure B-evidence of O Tsr3 B-protein Domain O characterization O of O yeast B-taxonomy_domain Tsr3 B-protein and O correlation O of O acp B-chemical modification O with O late O 18S B-chemical rRNA I-chemical processing O steps O . O ( O A O ) O Scheme O of O the O TSR3 B-protein gene O with O truncation O positions O in O the O open O reading O frame O . O A O weak O 20S B-chemical rRNA I-chemical signal O , O indicating O normal O processing O , O is O observed O for O Tsr3 B-protein fragment O 46 B-residue_range – I-residue_range 270 I-residue_range ( O highlighted O in O a O box O ) O showing O its O functionality O . O The O bound O S B-chemical - I-chemical adenosylmethionine I-chemical is O shown O in O a O stick O representation O and O colored O by O atom O type O . O The O color O coding O is O the O same O as O in O ( O A O ). O ( O C O ) O Structural B-experimental_method superposition I-experimental_method of O the O X B-evidence - I-evidence ray I-evidence structures I-evidence of O VdTsr3 B-protein in O the O SAM B-protein_state - I-protein_state bound I-protein_state state O ( O red O ) O and O SsTsr3 B-protein ( O blue O ) O in O the O apo B-protein_state state O . O The O closest O structural O homolog O identified O in O a O DALI B-experimental_method search I-experimental_method is O the O tRNA B-protein_type methyltransferase I-protein_type Trm10 B-protein ( O DALI B-evidence Z I-evidence - I-evidence score I-evidence 6 O . O 8 O ) O which O methylates O the O N1 O nitrogen O of O G9 B-residue_name_number / O A9 B-residue_name_number in O many O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain tRNAs B-chemical by O using O SAM B-chemical as O the O methyl O group O donor O . O In O comparison O to O Tsr3 B-protein the O central O β B-structure_element - I-structure_element sheet I-structure_element element I-structure_element of O Trm10 B-protein is O extended O by O one O additional O β B-structure_element - I-structure_element strand I-structure_element pairing O to O β2 B-structure_element . O However O , O there O are O no O structural O similarities O between O Tsr3 B-protein and O Tyw2 B-protein , O which O contains O an O all B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O a O different O topology O and O no O knot B-structure_element structure I-structure_element . O Furthermore O , O the O adenine B-chemical base O of O SAM B-chemical is O involved O in O hydrophobic O packing O interactions O with O the O side O chains O of O L45 B-residue_name_number ( O β3 B-structure_element ), O P47 B-residue_name_number and O W73 B-residue_name_number ( O α3 B-structure_element ) O in O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element as O well O as O with O L93 B-residue_name_number , O L110 B-residue_name_number ( O both O in O the O loop B-structure_element connecting O β5 B-structure_element and O α4 B-structure_element ) O and O A115 B-residue_name_number ( O α5 B-structure_element ) O in O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O The O ribose B-chemical 2 O ′ O and O 3 O ′ O hydroxyl O groups O of O SAM B-chemical are O hydrogen O bonded O to O the O backbone O carbonyl O group O of O I69 B-residue_name_number . O Most O importantly O , O the O methyl O group O of O SAM B-chemical is O buried O in O a O hydrophobic B-site pocket I-site formed O by O the O sidechains O of O W73 B-residue_name_number and O A76 B-residue_name_number both O located O in O α3 B-structure_element ( O Figure O 5A O and O B O ). O Consequently O , O the O accessibility O of O this O methyl O group O for O a O nucleophilic O attack O is O strongly O reduced O in O comparison O with O RNA B-protein_type - I-protein_type methyltransferases I-protein_type such O as O Trm10 B-protein ( O Figure O 5B O , O C O ). O In O contrast O , O the O acp B-chemical side O chain O of O SAM B-chemical is O accessible O for O reactions O in O the O Tsr3 B-protein_state - I-protein_state bound I-protein_state state O ( O Figure O 5B O ). O ( O E O ) O Binding O of O 14C B-chemical - I-chemical labeled I-chemical SAM I-chemical to O SsTsr3 B-protein . O 5 B-chemical ′- I-chemical methylthioadenosin I-chemical — O the O reaction O product O after O the O acp B-chemical - O transfer O — O binds O only O ∼ O 2 O . O 5 O - O fold O weaker O ( O KD O = O 16 O . O 7 O μM O ) O compared O to O SAM B-chemical . O On O the O other O hand O , O the O loss O of O hydrogen O bonds O between O the O acp B-chemical sidechain O carboxylate O group O and O the O protein O appears O to O be O thermodynamically O less O important O but O these O hydrogen O bonds O might O play O a O crucial O role O for O the O proper O orientation O of O the O cofactor O side O chain O in O the O substrate B-site binding I-site pocket I-site . O Mutations B-experimental_method of O the O corresponding O residue O in O SsTsr3 B-protein to O A B-residue_name ( O D63 B-residue_name_number ) O does O not O significantly O alter O the O SAM B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O protein O ( O KD B-evidence = O 11 O . O 0 O μM O ). O Helix B-structure_element α1 B-structure_element contains O two O more O positively O charged O amino O acids O K17 B-residue_name_number and O R25 B-residue_name_number as O does O the O loop B-structure_element preceding O it O ( O R9 B-residue_name_number ). O Also O shown O in O stick O representation O is O a O negatively O charged O MES B-chemical ion O . O Conserved B-protein_state basic O amino B-chemical acids I-chemical are O labeled O . O ( O B O ) O Comparison O of O the O secondary O structures O of O helix B-structure_element 31 I-structure_element from O the O small O ribosomal O subunit O rRNAs B-chemical in O S B-species . I-species cerevisiae I-species and O S B-species . I-species solfataricus I-species with O the O location O of O the O hypermodified B-protein_state nucleotide B-chemical indicated O in O red O . O As O shown O here O TSR3 B-protein encodes O the O transferase O catalyzing O the O acp B-chemical modification O as O the O last O step O in O the O biosynthesis O of O m1acp3Ψ B-chemical in O yeast B-taxonomy_domain and O human B-species cells O . O Similar O to O the O structurally O unrelated O Rossmann B-protein_type - I-protein_type fold I-protein_type Tyw2 I-protein_type acp I-protein_type transferase I-protein_type , O the O SAM B-chemical methyl O group O of O Tsr3 B-protein is O bound O in O an O inaccessible O hydrophobic B-site pocket I-site whereas O the O acp B-chemical side O chain O becomes O accessible O for O a O nucleophilic O attack O by O the O N3 O of O pseudouridine B-chemical . O Thus O , O additional O examples O for O acp B-protein_type transferase I-protein_type enzymes O might O be O found O with O similarities O to O other O structural O classes O of O methyltransferases B-protein_type . O These O data O and O the O finding O that O a O missing O acp B-chemical modification O hinders O pre B-chemical - I-chemical 20S I-chemical rRNA I-chemical processing O , O suggest O that O the O acp B-chemical modification O together O with O the O release O of O Rio2 B-protein promotes O the O formation O of O the O decoding B-site site I-site and O thus O D B-site - I-site site I-site cleavage O by O Nob1 B-protein . O Therefore O , O Rio2 B-protein either O blocks O the O access O of O Tsr3 B-protein to O helix B-structure_element 31 I-structure_element , O and O acp B-chemical modification O can O only O occur O after O Rio2 B-protein is O released O , O or O the O acp B-chemical modification O of O m1Ψ1191 B-residue_name_number and O putative O subsequent O conformational O changes O of O 20S B-chemical rRNA I-chemical weaken O the O binding O of O Rio2 B-protein to O helix B-structure_element 31 I-structure_element and O support O its O release O from O the O pre B-chemical - I-chemical rRNA I-chemical . O Presence O of O a O hypermodified B-protein_state nucleotide O in O HeLa O cell O 18 O S O and O Saccharomyces O carlsbergensis O 17 O S O ribosomal O RNAs O Crystal B-evidence Structure I-evidence and O Activity B-experimental_method Studies I-experimental_method of O the O C11 B-protein_type Cysteine B-protein_type Peptidase I-protein_type from O Parabacteroides B-species merdae I-species in O the O Human B-species Gut O Microbiome O * O Collectively O , O these O data O provide O insights O into O the O mechanism O and O activity O of O PmC11 B-protein and O a O detailed O framework O for O studies O on O C11 B-protein_type peptidases I-protein_type from O other O phylogenetic O kingdoms O . O Interestingly O , O little O is O known O about O the O structure O or O function O of O the O C11 B-protein_type proteins O , O despite O their O widespread O distribution O and O its O archetypal O member O , O clostripain B-protein from O Clostridium B-species histolyticum I-species , O first O reported O in O the O literature O in O 1938 O . O As O part O of O an O ongoing O project O to O characterize O commensal O bacteria B-taxonomy_domain in O the O microbiome O that O inhabit O the O human B-species gut O , O the O structure B-evidence of O C11 B-protein_type peptidase I-protein_type , O PmC11 B-protein , O from O Parabacteroides B-species merdae I-species was O determined O using O the O Joint O Center O for O Structural O Genomics O ( O JCSG O ) O 4 O HTP O structural O biology O pipeline O . O The O structure B-experimental_method was I-experimental_method analyzed I-experimental_method , O and O the O enzyme O was O biochemically B-experimental_method characterized I-experimental_method to O provide O the O first O structure O / O function O correlation O for O a O C11 B-protein_type peptidase I-protein_type . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O B O , O topology O diagram O of O PmC11 B-protein colored O as O in O A O except O that O additional O ( O non O - O core O ) O β B-structure_element - I-structure_element strands I-structure_element are O in O yellow O . O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O C11 B-protein_type proteins O revealed O that O these O residues O are O highly B-protein_state conserved I-protein_state ( O data O not O shown O ). O PmC11 O migrates O as O a O monomer B-oligomeric_state with O a O molecular O mass O around O 41 O kDa O calculated O from O protein O standards O of O known O molecular O weights O . O Km O and O Vmax B-evidence of O PmC11 B-protein and O K147A B-mutant mutant O were O determined O by O monitoring O change O in O the O fluorescence O corresponding O to O AMC O release O from O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical . O G O , O electrostatic O surface O potential O of O PmC11 B-protein shown O in O a O similar O orientation O , O where O blue O and O red O denote O positively O and O negatively O charged O surface O potential O , O respectively O , O contoured O at O ± O 5 O kT O / O e O . O Purification B-experimental_method of O recombinant O PmC11 B-protein ( O molecular O mass O = O 42 O . O 6 O kDa O ) O revealed O partial O processing O into O two O cleavage O products O of O 26 O . O 4 O and O 16 O . O 2 O kDa O , O related O to O the O observed O cleavage B-ptm at O Lys147 B-residue_name_number in O the O crystal B-evidence structure I-evidence ( O Fig O . O 2A O ). O Moreover O , O the O C O - O terminal O side O of O the O cleavage B-site site I-site resides O near O the O catalytic B-site dyad I-site with O Ala148 B-residue_name_number being O 4 O . O 5 O and O 5 O . O 7 O Å O from O His133 B-residue_name_number and O Cys179 B-residue_name_number , O respectively O . O However O , O this O loop B-structure_element has O been O shown O to O be O important O for O substrate O binding O in O clan B-protein_type CD I-protein_type and O this O residue O could O easily O rotate O and O be O involved O in O substrate O binding O in O PmC11 B-protein . O In O support O of O these O findings O , O EGTA B-chemical did O not O inhibit O PmC11 B-protein suggesting O that O , O unlike O clostripain B-protein , O PmC11 B-protein does O not O require O Ca2 B-chemical + I-chemical or O other O divalent O cations O , O for O activity O . O This O is O also O the O case O in O PmC11 B-protein , O although O the O cleavage B-ptm loop B-structure_element is O structurally O different O to O that O found O in O the O caspases B-protein_type and O follows O the O catalytic B-protein_state His B-residue_name ( O Fig O . O 1A O ), O as O opposed O to O the O Cys B-residue_name in O the O caspases B-protein_type . O All O other O clan B-protein_type CD I-protein_type members I-protein_type requiring O cleavage B-ptm for O full B-protein_state activation I-protein_state do O so O at O sites B-site external O to O their O central O sheets B-structure_element . O Indeed O , O insights O gained O from O an O analysis O of O the O PmC11 B-protein structure B-evidence revealed O the O identity O of O the O Trypanosoma B-species brucei I-species PNT1 B-protein protein O as O a O C11 B-protein_type cysteine I-protein_type peptidase I-protein_type with O an O essential O role O in O organelle O replication O . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O More O recently O , O this O system O was O also O reported O in O other O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain , O such O as O Escherichia B-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O Klebsiella B-species pneumonia I-species ( O Huertas O et O al O .,) O and O Yersinia B-species pestis I-species ( O Ren O et O al O .,). O In O addition O , O quorum O sensing O - O related O dephosphorylation O of O the O PAS B-structure_element domain I-structure_element of O YfiN B-protein may O also O be O involved O in O the O regulation O ( O Ueda O and O Wood O ,; O Xu O et O al O .,). O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state . O Each O crystal O form O contains O three O different O dimeric B-oligomeric_state types O of O YfiB B-protein , O two O of O which O are O present O in O both O , O suggesting O that O the O rest O of O the O dimeric B-oligomeric_state types O may O result O from O crystal O packing O . O The O residues O proposed O to O contribute O to O YfiB B-protein activation O are O illustrated O in O sticks O . O The O key O residues O in O apo B-protein_state YfiB B-protein are O shown O in O red O and O those O in O YfiBL43P B-mutant are O shown O in O blue O . O ( O D O ) O Close O - O up O views O showing O interactions O in O regions B-structure_element I I-structure_element and I-structure_element II I-structure_element . O This O suggests O that O the O N O - O terminus O of O YfiB B-protein plays O an O important O role O in O forming O the O dimeric B-oligomeric_state YfiB B-protein in O solution O and O that O the O conformational O change O of O residue O L43 B-residue_name_number is O associated O with O the O stretch O of O the O N O - O terminus O and O opening O of O the O dimer B-oligomeric_state . O ( O C O ) O Close O - O up O view O showing O the O key O residues O of O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant interacting O with O a O sulfate B-chemical ion O . O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O ; O the O sulfate B-chemical ion O , O in O green O ; O and O the O water B-chemical molecule O , O in O yellow O . O ( O D O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O key O residues O are O shown O in O stick O . O Previous O homology B-experimental_method modeling I-experimental_method studies O suggested O that O YfiB B-protein contains O a O Pal B-site - I-site like I-site PG I-site - I-site binding I-site site I-site ( O Parsons O et O al O .,), O and O the O mutation B-experimental_method of I-experimental_method two I-experimental_method residues I-experimental_method at O this O site O , O D102 B-residue_name_number and O G105 B-residue_name_number , O reduces O the O ability O for O biofilm O formation O and O surface O attachment O ( O Malone O et O al O .,). O Moreover O , O a O water B-chemical molecule O was O found O to O bridge O the O sulfate B-chemical ion O and O the O side O chains O of O N67 B-residue_name_number and O D102 B-residue_name_number , O strengthening O the O hydrogen B-site bond I-site network I-site ( O Fig O . O 4C O ). O Previous O studies O indicated O that O YfiR B-protein constitutes O a O YfiB B-protein - O independent O sensing O device O that O can O activate O YfiN B-protein in O response O to O the O redox O status O of O the O periplasm O , O and O we O have O reported O YfiR B-protein structures B-evidence in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O earlier O , O revealing O that O the O Cys145 B-residue_name_number - O Cys152 B-residue_name_number disulfide B-ptm bond I-ptm plays O an O essential O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O In O E B-species . I-species coli I-species , O mutants O with O decreased O tryptophan B-chemical synthesis O show O greater O biofilm O formation O , O and O matured O biofilm O is O degraded O by O L B-chemical - I-chemical tryptophan I-chemical addition O ( O Shimazaki O et O al O .,). O Previous O studies O suggested O that O in O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O sequesters O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O inducing O the O diguanylate O cyclase O activity O of O YfiN B-protein to O allow O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O Our O structural B-experimental_method data I-experimental_method analysis I-experimental_method shows O that O the O activated B-protein_state YfiB B-protein has O an O N B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element that O is O largely O altered O , O adopting O a O stretched B-protein_state conformation I-protein_state compared O with O the O compact B-protein_state conformation I-protein_state of O the O apo B-protein_state YfiB B-protein . O The O apo B-protein_state YfiB B-protein structure B-evidence constructed O beginning O at O residue O 34 B-residue_number has O a O compact B-protein_state conformation I-protein_state of O approximately O 45 O Å O in O length O . O By O contrast O , O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant ( O residues O 44 B-residue_range – I-residue_range 168 I-residue_range ) O has O a O stretched B-protein_state conformation I-protein_state of O approximately O 55 O Å O in O length O . O This O allows O the O C B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O reach O , O bind O and O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state . O The O YfiBNR B-complex_assembly system O provides O a O good O example O of O a O delicate O homeostatic O system O that O integrates O multiple O signals O to O regulate O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O . O Predictive O features O of O ligand O ‐ O specific O signaling O through O the O estrogen B-protein_type receptor I-protein_type E2 B-chemical ‐ O rings O are O numbered O A O ‐ O D O . O The O E O ‐ O ring O is O the O common O site O of O attachment O for O BSC O found O in O many O SERMS B-protein_type . O ERα B-protein domain O organization O lettered O , O A O ‐ O F O . O DBD B-structure_element , O DNA B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O LBD B-structure_element , O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O AF B-structure_element , O activation B-structure_element function I-structure_element In O the O canonical O model O of O the O ERα B-protein signaling O pathway O ( O Fig O 1C O ), O E2 B-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein forms O a O homodimer B-oligomeric_state that O binds O DNA O at O estrogen B-site ‐ I-site response I-site elements I-site ( O EREs B-site ), O recruits O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein ( O Metivier O et O al O , O 2003 O ; O Johnson O & O O O ' O Malley O , O 2012 O ), O and O activates O the O GREB1 B-protein gene O , O which O is O required O for O proliferation O of O ERα B-protein ‐ O positive O breast O cancer O cells O ( O Ghosh O et O al O , O 2000 O ; O Rae O et O al O , O 2005 O ; O Deschenes O et O al O , O 2007 O ; O Liu O et O al O , O 2012 O ; O Srinivasan O et O al O , O 2013 O ). O We O also O determined B-experimental_method the O structures B-evidence of O 76 O distinct O ERα B-protein LBD B-structure_element complexes O bound B-protein_state to I-protein_state different O ligand O types O , O which O allowed O us O to O understand O how O diverse O ligand O scaffolds O distort O the O active B-protein_state conformation O of O the O ERα B-protein LBD B-structure_element . O Our O findings O here O indicate O that O specific O structural O perturbations O can O be O tied O to O ligand O ‐ O selective O domain O usage O and O signaling O patterns O , O thus O providing O a O framework O for O structure O ‐ O based O design O of O improved O breast O cancer O therapeutics O , O and O understanding O the O different O phenotypic O effects O of O environmental O estrogens B-chemical . O Structural O details O of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state the O indicated O ligands O . O To O this O end O , O we O compared O the O average O ligand O ‐ O induced O GREB1 B-protein mRNA O levels O in O MCF O ‐ O 7 O cells O and O 3 B-experimental_method × I-experimental_method ERE I-experimental_method ‐ I-experimental_method Luc I-experimental_method reporter O gene O activity O in O Ishikawa O endometrial O cancer O cells O ( O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method ) O or O in O HepG2 O cells O transfected O with O wild B-protein_state ‐ I-protein_state type I-protein_state ERα B-protein ( O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state ) O ( O Figs O 3A O and O EV2A O – O C O ). O Direct O modulators O showed O significant O differences O in O average O activity O between O cell O types O except O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O , O which O had O similar O low O agonist O activities O in O the O three O cell O types O . O Significant O sensitivity O to O AB B-structure_element domain O deletion O was O determined O by O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method ( O n O = O number O of O ligands O per O scaffold O in O Fig O 2 O ). O −, O significant O correlations O lost O upon O deletion O of O AB B-structure_element or O F B-structure_element domains O . O Identifying O cell O ‐ O specific O signaling O clusters O in O ERα B-protein ligand O classes O OBHS B-chemical analogs O showed O an O average O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔAB I-mutant activity O of O 3 O . O 2 O % O ± O 3 O ( O mean O + O SEM O ) O relative O to O E2 B-chemical . O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element or O F B-structure_element domain O altered O correlations O for O six O of O the O eight O scaffolds O in O this O cluster O ( O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O WAY B-chemical ‐ I-chemical D I-chemical , O WAY B-chemical dimer I-chemical , O and O cyclofenil B-chemical ‐ I-chemical ASC I-chemical ) O ( O Fig O 3D O lanes O 5 O – O 12 O ). O These O results O suggest O that O compounds O that O show O cell O ‐ O specific O signaling O do O not O activate O GREB1 B-protein , O or O use O coactivators O other O than O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein to O control O GREB1 B-protein expression O ( O Fig O 1E O ). O For O ligands O that O show O cell O ‐ O specific O signaling O , O ERα B-protein ‐ O mediated O recruitment O of O other O coregulators O and O activation O of O other O target O genes O likely O determine O their O proliferative O effects O on O MCF O ‐ O 7 O cells O . O At O this O time O point O , O other O WAY B-chemical ‐ I-chemical C I-chemical analogs O also O induced O recruitment O of O NCOA3 B-protein at O this O site O to O varying O degrees O ( O Fig O 4B O ). O The O Z B-evidence ’ I-evidence for O this O assay O was O 0 O . O 6 O , O showing O statistical O robustness O ( O see O Materials O and O Methods O ). O For O most O scaffolds O , O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ O and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O were O not O correlated O , O except O for O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O , O which O showed O moderate O but O significant O correlations O ( O Fig O EV4A O ). O ERβ B-protein activity O is O not O an O independent O predictor O of O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O ERβ B-protein activity O in O HepG2 O cells O rarely O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O Data O information O : O The O r O 2 O and O P B-evidence values I-evidence for O the O indicated O correlations O are O shown O in O both O panels O . O * O Significant O positive O correlation O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O , O P B-evidence ‐ I-evidence value I-evidence ) O Remarkably O , O these O individual O inter B-evidence ‐ I-evidence atomic I-evidence distances I-evidence showed O a O ligand O class O ‐ O specific O ability O to O significantly O predict O proliferative O effects O ( O Fig O 5E O and O F O ), O demonstrating O the O feasibility O of O developing O a O minimal O set O of O activity O predictors O from O crystal B-evidence structures I-evidence . O ERα B-protein LBD B-structure_element structures B-evidence bound B-protein_state to I-protein_state 4 O distinct O WAY B-chemical ‐ I-chemical C I-chemical analogs O were O superposed B-experimental_method ( O PDB O 4 O IU7 O , O 4IV4 O , O 4IVW O , O 4IW6 O ) O ( O see O Datasets O EV1 O and O EV2 O ). O Crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state ligands O with O cell O ‐ O specific O activities O were O superposed B-experimental_method . O Ligands O in O cluster O 2 O and O cluster O 3 O showed O conformational O heterogeneity O in O parts O of O the O scaffold O that O were O directed O toward O multiple O regions O of O the O receptor O including O h3 B-structure_element , O h8 B-structure_element , O h11 B-structure_element , O h12 B-structure_element , O and O / O or O the O β B-structure_element ‐ I-structure_element sheets I-structure_element ( O Fig O EV5C O – O G O ). O Thus O , O cell O ‐ O specific O activity O can O stem O from O perturbation O of O the O AF B-site ‐ I-site 2 I-site surface I-site without O an O extended O side O chain O , O which O presumably O alters O the O receptor O – O coregulator O interaction O profile O . O The O h3 B-site – I-site h12 I-site interface I-site ( O circled O ) O at O AF B-structure_element ‐ I-structure_element 2 I-structure_element ( O pink O ) O was O expanded O in O panels O ( O B O , O C O ). O Average O ( O mean O + O SEM O ) O α B-evidence ‐ I-evidence carbon I-evidence distance I-evidence measured O from O h3 B-structure_element Thr347 B-residue_name_number to O h11 B-structure_element Leu525 B-residue_name_number of O A B-protein_state ‐ I-protein_state CD I-protein_state ‐, I-protein_state 2 I-protein_state , I-protein_state 5 I-protein_state ‐ I-protein_state DTP I-protein_state ‐, I-protein_state and I-protein_state 3 I-protein_state , I-protein_state 4 I-protein_state ‐ I-protein_state DTPD I-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBDs B-structure_element . O Ligands O in O these O classes O altered O the O shape O of O AF B-structure_element ‐ I-structure_element 2 I-structure_element to O affect O coregulator O preferences O . O It O is O noteworthy O that O regulation O of O h12 B-structure_element dynamics O indirectly O through O h11 B-structure_element can O virtually O abolish O AF B-structure_element ‐ I-structure_element 2 I-structure_element activity O , O and O yet O still O drive O robust O transcriptional O activity O through O AF B-structure_element ‐ I-structure_element 1 I-structure_element , O as O demonstrated O with O the O OBHS B-chemical series O . O If O we O calculated O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence matrices I-evidence containing O 4 O , O 000 O atoms O per O structure O × O 76 O ligand O – O receptor O complexes O , O we O would O have O 3 O × O 105 O predictions O . O We O have O identified O atomic B-evidence vectors I-evidence for O the O OBHS B-chemical ‐ I-chemical N I-chemical and O triaryl B-chemical ‐ I-chemical ethylene I-chemical classes O that O predict O ligand O response O ( O Fig O 5E O and O F O ). O TOCA1 B-protein binding O to O Cdc42 B-protein leads O to O actin O rearrangements O , O which O are O thought O to O be O involved O in O processes O such O as O endocytosis O , O filopodia O formation O , O and O cell O migration O . O These O molecular O switches O cycle O between O active B-protein_state , O GTP B-protein_state - I-protein_state bound I-protein_state , O and O inactive B-protein_state , O GDP B-protein_state - I-protein_state bound I-protein_state , O states O with O the O help O of O auxiliary O proteins O . O N B-protein - I-protein WASP I-protein exists O in O an O autoinhibited B-protein_state conformation I-protein_state , O which O is O released O upon O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical and O Cdc42 B-protein binding O or O by O other O factors O , O such O as O phosphorylation O . O The O F B-structure_element - I-structure_element BAR I-structure_element domain O is O a O known O dimerization O , O membrane O - O binding O , O and O membrane O - O deforming O module O found O in O a O number O of O cell O signaling O proteins O . O These O HR1 B-structure_element domains O , O however O , O show O specificity O for O Cdc42 B-protein , O rather O than O RhoA B-protein or O Rac1 B-protein . O Here O , O we O present O the O solution B-experimental_method NMR I-experimental_method structure B-evidence of O the O HR1 B-structure_element domain O of O TOCA1 B-protein , O providing O the O first O structural B-evidence data I-evidence for O this O protein O . O The O HR1 B-structure_element domains O from O the O PRK B-protein_type family I-protein_type bind O their O G B-protein_type protein I-protein_type partners O with O a O high O affinity O , O exhibiting O a O range O of O submicromolar O dissociation B-evidence constants I-evidence ( O Kd B-evidence ) O as O low O as O 26 O nm O . O This O region O comprises O the O complete O HR1 B-structure_element domain O based O on O secondary O structure O predictions O and O sequence B-experimental_method alignments I-experimental_method with O another O TOCA B-protein_type family I-protein_type member O , O CIP4 B-protein , O whose O structure B-evidence has O been O determined O . O The O interaction O between O [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly and O a O C O - O terminally O His B-protein_state - I-protein_state tagged I-protein_state TOCA1 B-protein HR1 B-structure_element domain O construct O was O investigated O using O SPA B-experimental_method . O The O affinity B-evidence was O therefore O determined O using O competition B-experimental_method SPAs I-experimental_method . O Competition O of O GST B-mutant - I-mutant ACK I-mutant GBD B-structure_element bound B-protein_state to I-protein_state [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly by O free B-protein_state ACK B-protein GBD B-structure_element was O used O as O a O control O and O to O establish O the O value O of O background O counts O when O Cdc42 B-protein is O fully O displaced O . O Indeed O , O GST B-experimental_method pull I-experimental_method - I-experimental_method downs I-experimental_method performed O with O in O vitro O translated O human B-species TOCA1 B-protein fragments O had O suggested O that O residues O N O - O terminal O to O the O HR1 B-structure_element domain O may O be O required O to O stabilize O the O HR1 B-structure_element domain O structure O . O Furthermore O , O both O BAR B-structure_element and O SH3 B-structure_element domains O have O been O implicated O in O interactions O with O small O G B-protein_type proteins I-protein_type ( O e O . O g O . O the O BAR B-structure_element domain O of O Arfaptin2 B-protein binds O to O Rac1 B-protein and O Arl1 B-protein ), O while O an O SH3 B-structure_element domain O mediates O the O interaction O between O Rac1 B-protein and O the O guanine B-protein nucleotide I-protein exchange I-protein factor I-protein , O β B-protein - I-protein PIX I-protein . O The O structure B-evidence closest O to O the O mean O is O shown O in O Fig O . O 3A O . O C O , O a O close O - O up O of O the O N O - O terminal O region O of O TOCA1 B-protein HR1 B-structure_element , O indicating O some O of O the O NOEs B-evidence defining O its O position O with O respect O to O the O two O α B-structure_element - I-structure_element helices I-structure_element . O In O the O HR1a B-structure_element domain O of O PRK1 B-protein , O a O region O N O - O terminal O to O helix B-structure_element 1 I-structure_element forms O a O short B-structure_element α I-structure_element - I-structure_element helix I-structure_element , O which O packs O against O both O helices O of O the O HR1 B-structure_element domain O . O B O , O CSPs B-experimental_method were O calculated O as O described O under O “ O Experimental O Procedures O ” O and O are O shown O for O backbone O and O side O chain O NH O groups O . O The O mean O CSP B-experimental_method is O marked O with O a O red O line O . O Residues O with O significantly O affected O backbone O and O side O chain O groups O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O red O . O A O close O - O up O of O the O binding B-site region I-site is O shown O , O with O affected O side O chain O heavy O atoms O shown O as O sticks O . O D O , O the O G B-site protein I-site - I-site binding I-site region I-site is O marked O in O red O onto O structures B-evidence of O the O HR1 B-structure_element domains O as O indicated O . O These O switch B-site regions I-site become O visible O in O Cdc42 B-protein and O other O small O G B-protein_type protein I-protein_type · O effector O complexes O due O to O a O decrease O in O conformational O freedom O upon O complex O formation O . O This O suggests O that O the O switch B-site regions I-site are O not O rigidified O in O the O HR1 B-structure_element complex O and O are O still O in O conformational O exchange O . O The O orientation O of O the O HR1 B-structure_element domain O with O respect O to O Cdc42 B-protein cannot O be O definitively O concluded O in O the O absence O of O unambiguous O distance O restraints O ; O hence O , O HADDOCK B-experimental_method produced O a O set O of O models O in O which O the O HR1 B-structure_element domain O contacts O the O same O surface O on O Cdc42 B-protein but O is O in O various O orientations O with O respect O to O Cdc42 B-protein . O A O representative O model O from O this O cluster O is O shown O in O Fig O . O 6A O alongside O the O Rac1 B-complex_assembly - I-complex_assembly HR1b I-complex_assembly structure B-evidence ( O PDB O code O 2RMK O ) O in O Fig O . O 6B O . O C O , O sequence B-experimental_method alignment I-experimental_method of O RhoA B-protein , O Cdc42 B-protein and O Rac1 B-protein . O Some O of O these O can O be O rationalized O ; O for O example O , O Thr B-residue_name_number - I-residue_name_number 24Cdc42 I-residue_name_number , O Leu B-residue_name_number - I-residue_name_number 160Cdc42 I-residue_name_number , O and O Lys B-residue_name_number - I-residue_name_number 163Cdc42 I-residue_name_number all O pack O behind O switch B-site I I-site and O are O likely O to O be O affected O by O conformational O changes O within O the O switch B-site , O while O Glu B-residue_name_number - I-residue_name_number 95Cdc42 I-residue_name_number and O Lys B-residue_name_number - I-residue_name_number 96Cdc42 I-residue_name_number are O in O the O helix B-structure_element behind O switch B-site II I-site . O Lys B-residue_name_number - I-residue_name_number 16Cdc42 I-residue_name_number is O unlikely O to O be O a O contact O residue O because O it O is O involved O in O nucleotide O binding O , O but O the O others O may O represent O specific O Cdc42 B-complex_assembly - I-complex_assembly TOCA1 I-complex_assembly contacts O . O Competition O between O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein Interestingly O , O the O presence B-protein_state of I-protein_state the O TOCA1 B-protein HR1 B-structure_element would O not O prevent O the O core O CRIB B-structure_element of O WASP B-protein from O binding O to O Cdc42 B-protein , O although O the O regions O C O - O terminal O to O the O CRIB B-structure_element that O are O required O for O high O affinity O binding O of O WASP B-protein would O interfere O sterically O with O the O TOCA1 B-protein HR1 B-structure_element . O These O data O indicate O that O the O HR1 B-structure_element domain O is O displaced O from O Cdc42 B-protein by O N B-protein - I-protein WASP I-protein and O that O a O ternary O complex O comprising O TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O and O Cdc42 B-protein is O not O formed O . O To O extend O these O studies O to O a O more O complex O system O and O to O assess O the O ability O of O TOCA1 B-protein HR1 B-structure_element to O compete O with O full B-protein_state - I-protein_state length I-protein_state N B-protein - I-protein WASP I-protein , O pyrene B-experimental_method actin I-experimental_method assays I-experimental_method were O employed O . O Actin B-protein_type polymerization O triggered O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O has O previously O been O shown O to O depend O on O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein . O The O Cdc42 B-protein - O TOCA1 B-protein Interaction O The O TOCA1 B-protein HR1 B-structure_element domain O alone B-protein_state is O sufficient O for O Cdc42 B-protein binding O in O vitro O , O yet O the O affinity B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O for O Cdc42 B-protein is O remarkably O low O ( O Kd B-evidence ≈ O 5 O μm O ). O The O TOCA1 B-protein HR1 B-structure_element domain O is O a O left O - O handed O coiled B-structure_element - I-structure_element coil I-structure_element comparable O with O other O known O HR1 B-structure_element domains O . O This O region O is O distant O from O the O G B-site protein I-site - I-site binding I-site interface I-site of O the O HR1 B-structure_element domains O , O so O the O structural O differences O may O relate O to O the O structure O and O regulation O of O these O domains O rather O than O their O G B-protein_type protein I-protein_type interactions O . O The O interhelical B-structure_element loops I-structure_element of O TOCA1 B-protein and O CIP4 B-protein differ O from O the O same O region O in O the O HR1 B-structure_element domains O of O PRK1 B-protein in O that O they O are O longer O and O contain O two O short O stretches O of O 310 B-structure_element - I-structure_element helix I-structure_element . O In O free B-protein_state TOCA1 B-protein , O the O side O chains O of O the O interhelical B-structure_element region I-structure_element make O extensive O contacts O with O residues O in O helix B-structure_element 1 I-structure_element . O Arg B-residue_name_number - I-residue_name_number 68Cdc42 I-residue_name_number of O switch B-site II I-site is O positioned O close O to O Glu B-residue_name_number - I-residue_name_number 395TOCA1 I-residue_name_number ( O Fig O . O 6D O ), O suggesting O a O direct O electrostatic O contact O between O switch B-site II I-site of O Cdc42 B-protein and O helix B-structure_element 2 I-structure_element of O the O HR1 B-structure_element domain O . O The O solution B-evidence structure I-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O presented O here O , O along O with O the O model O of O the O HR1TOCA1 B-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly complex O is O consistent O with O a O conserved O mode O of O binding O across O the O known O HR1 B-structure_element domain O - O Rho O family O interactions O , O despite O their O differing O affinities O . O We O have O previously O postulated O that O the O inherent O flexibility O of O HR1 B-structure_element domains O contributes O to O their O ability O to O bind O to O different O Rho B-protein_type family I-protein_type G I-protein_type proteins I-protein_type , O with O Rho O - O binding O HR1 B-structure_element domains O displaying O increased O flexibility O , O reflected O in O their O lower O melting B-evidence temperatures I-evidence ( O Tm B-evidence ) O and O Rac B-protein_type binders O being O more O rigid O . O Cdc42 B-protein - O HR1TOCA1 B-structure_element binding O would O then O be O favorable O , O as O long O as O coincident O activation O of O Cdc42 B-protein had O occurred O , O leading O to O stabilization O of O TOCA1 B-protein at O the O membrane O and O downstream O activation O of O N B-protein - I-protein WASP I-protein . O TOCA1 B-protein can O then O recruit O N B-protein - I-protein WASP I-protein via O an O interaction O between O its O SH3 B-structure_element domain O and O the O N B-protein - I-protein WASP I-protein proline B-structure_element - I-structure_element rich I-structure_element region I-structure_element . O It O may O therefore O be O envisaged O that O WIP B-protein and O TOCA1 B-protein exert O opposing O allosteric O effects O on O N B-protein - I-protein WASP I-protein , O with O TOCA1 B-protein favoring O the O unfolded B-protein_state , O active B-protein_state conformation O of O N B-protein - I-protein WASP I-protein and O increasing O its O affinity O for O Cdc42 B-protein . O Our O binding B-evidence data I-evidence suggest O that O TOCA1 B-protein HR1 B-structure_element binding O is O not O allosterically O regulated O , O and O our O NMR B-experimental_method data O , O along O with O the O high O stability B-protein_state of O TOCA1 B-protein HR1 B-structure_element , O suggest O that O there O is O no O widespread O conformational O change O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein . O Furthermore O , O TOCA1 B-protein is O required O for O Cdc42 B-protein - O mediated O activation O of O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly , O implying O that O it O may O not O be O possible O for O Cdc42 B-protein to O bind O and O activate O N B-protein - I-protein WASP I-protein prior O to O TOCA1 B-protein - O Cdc42 B-protein binding O . O There O is O an O advantage O to O such O an O effector O handover O , O in O that O N B-protein - I-protein WASP I-protein would O only O be O robustly O recruited O when O F B-structure_element - I-structure_element BAR I-structure_element domains O are O already O present O . O The O lysine B-residue_name residues O thought O to O be O involved O in O an O electrostatic O steering O mechanism O in O WASP B-protein - O Cdc42 B-protein binding O are O conserved O in O N B-protein - I-protein WASP I-protein and O would O be O able O to O interact O with O Cdc42 B-protein even O when O the O TOCA1 B-protein HR1 B-structure_element domain O is O already O bound B-protein_state . O The O dynamic B-protein_state organization O of O fungal B-taxonomy_domain acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type In O contrast O to O related O carboxylases B-protein_type , O large O - O scale O conformational O changes O are O required O for O substrate O turnover O , O and O are O mediated O by O the O CD B-structure_element under O phosphorylation B-ptm control O . O Biotin B-protein_type - I-protein_type dependent I-protein_type acetyl I-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O are O essential O enzymes O that O catalyse O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O This O reaction O provides O the O committed O activated O substrate O for O the O biosynthesis O of O fatty B-chemical acids I-chemical via O fatty B-protein_type - I-protein_type acid I-protein_type synthase I-protein_type . O In O addition O to O the O canonical O ACC B-structure_element components I-structure_element , O eukaryotic B-taxonomy_domain ACCs B-protein_type contain O two O non B-protein_state - I-protein_state catalytic I-protein_state regions B-structure_element , O the O large O central B-structure_element domain I-structure_element ( O CD B-structure_element ) O and O the O BC B-structure_element – I-structure_element CT I-structure_element interaction I-structure_element domain I-structure_element ( O BT B-structure_element ). O The O CD B-structure_element comprises O one O - O third O of O the O protein O and O is O a O unique B-protein_state feature I-protein_state of I-protein_state eukaryotic B-taxonomy_domain ACCs B-protein_type without O homologues O in O other O proteins O . O The O structure B-experimental_method determination I-experimental_method of O the O holoenzymes B-protein_state of O bacterial B-taxonomy_domain biotin B-protein_type - I-protein_type dependent I-protein_type carboxylases I-protein_type , O which O lack B-protein_state the O characteristic O CD B-structure_element , O such O as O the O pyruvate B-protein_type carboxylase I-protein_type ( O PC B-protein_type ), O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type , O 3 B-protein_type - I-protein_type methyl I-protein_type - I-protein_type crotonyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type and O a O long B-protein_type - I-protein_type chain I-protein_type acyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type revealed O strikingly O divergent O architectures O despite O a O general O conservation O of O all O functional O components O . O Human B-species ACC1 B-protein is O regulated B-protein_state allosterically I-protein_state , O via O specific O protein O – O protein O interactions O , O and O by O reversible O phosphorylation B-ptm . O Dynamic O polymerization O of O human B-species ACC1 B-protein is O linked O to O increased O activity O and O is O regulated B-protein_state allosterically I-protein_state by O the O activator O citrate B-chemical and O the O inhibitor O palmitate B-chemical , O or O by O binding O of O the O small O protein O MIG B-protein - I-protein 12 I-protein ( O ref O .). O AMPK B-protein phosphorylates O ACC1 B-protein in O vitro O at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1216 B-residue_name_number and O PKA B-protein at O Ser78 B-residue_name_number and O Ser1201 B-residue_name_number . O However O , O regulatory O effects O on O ACC1 B-protein activity O are O mainly O mediated O by O phosphorylation B-ptm of O Ser80 B-residue_name_number and O Ser1201 B-residue_name_number ( O refs O ). O The O organization O of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element CDL B-structure_element is O composed O of O a O small B-structure_element , I-structure_element irregular I-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Lα1 B-structure_element – I-structure_element 4 I-structure_element ) O and O tightly O interacts O with O the O open O face O of O CDC1 B-structure_element via O an O interface B-site of O 1 O , O 300 O Å2 O involving O helices B-structure_element Lα3 B-structure_element and O Lα4 B-structure_element . O CDL B-structure_element does O not O interact O with O CDN B-structure_element apart O from O the O covalent O linkage O and O forms O only O a O small O contact O to O CDC2 B-structure_element via O a O loop B-structure_element between O Lα2 B-structure_element / I-structure_element α3 I-structure_element and O the O N O - O terminal O end O of O Lα1 B-structure_element , O with O an O interface B-site area O of O 400 O Å2 O . O A O regulatory B-structure_element loop I-structure_element mediates O interdomain O interactions O The O SceCD B-species structure B-evidence thus O authentically O represents O the O state O of O SceACC B-protein , O where O the O enzyme B-protein is O inhibited B-protein_state by O SNF1 B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm . O An O experimentally B-evidence phased I-evidence map I-evidence was O obtained O at O 3 O . O 7 O Å O resolution O for O a O cadmium B-chemical - O derivatized O crystal O and O was O interpreted O by O a O poly O - O alanine O model O ( O Fig O . O 1e O and O Table O 1 O ). O In O agreement O with O their O tight O interaction O in O SceCD B-species , O the O relative O spatial O arrangement O of O CDL B-structure_element and O CDC1 B-structure_element is O preserved O in O HsaBT B-mutant - I-mutant CD I-mutant , O but O the O human B-species CDL B-structure_element / O CDC1 B-structure_element didomain O is O tilted O by O 30 O ° O based O on O a O superposition B-experimental_method of O human B-species and O yeast B-taxonomy_domain CDC2 B-structure_element ( O Supplementary O Fig O . O 1c O ). O As O a O result O , O the O N O terminus O of O CDL B-structure_element at O helix B-structure_element Lα1 B-structure_element , O which O connects O to O CDN B-structure_element , O is O shifted O by O 12 O Å O . O Remarkably O , O CDN B-structure_element of O HsaBT B-mutant - I-mutant CD I-mutant adopts O a O completely O different O orientation O compared O with O SceCD B-species . O This O rotation O displaces O the O N O terminus O of O CDN B-structure_element in O HsaBT B-mutant - I-mutant CD I-mutant by O 51 O Å O compared O with O SceCD B-species , O resulting O in O a O separation O of O the O attachment O points O of O the O N O - O terminal O linker B-structure_element to O the O BCCP B-structure_element domain I-structure_element and O the O C O - O terminal O CT B-structure_element domain O by O 67 O Å O ( O the O attachment O points O are O indicated O with O spheres O in O Fig O . O 1e O ). O The O highly B-protein_state conserved I-protein_state Ser1216 B-residue_name_number ( O corresponding O to O S B-species . I-species cerevisiae I-species Ser1157 B-residue_name_number ), O as O well O as O Ser1201 B-residue_name_number , O both O in O the O regulatory B-structure_element loop I-structure_element discussed O above O , O are O not B-protein_state phosphorylated I-protein_state . O At O the O level O of O isolated B-experimental_method yeast B-taxonomy_domain and O human B-species CD B-structure_element , O the O structural B-experimental_method analysis I-experimental_method indicates O the O presence O of O at O least O two O hinges B-structure_element , O one O with O large O - O scale O flexibility O at O the O CDN B-structure_element / I-structure_element CDL I-structure_element connection I-structure_element , O and O one O with O tunable O plasticity O between O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element , O plausibly O affected O by O phosphorylation B-ptm in O the O regulatory B-structure_element loop I-structure_element region O . O The O integration O of O CD B-structure_element into O the O fungal B-taxonomy_domain ACC B-protein_type multienzyme I-protein_type In O all O these O crystal B-evidence structures I-evidence , O the O CT B-structure_element domains O build O a O canonical O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state , O with O active B-site sites I-site formed O by O contributions O from O both O protomers B-oligomeric_state ( O Fig O . O 2 O and O Supplementary O Fig O . O 3a O ). O The O connecting B-structure_element region I-structure_element is O remarkably O similar O in O isolated B-protein_state CD B-structure_element and O CthCD B-mutant - I-mutant CTCter I-mutant structures B-evidence , O indicating O inherent O conformational O stability O . O CD B-structure_element / O CT B-structure_element contacts O are O only O formed O in O direct O vicinity O of O the O covalent O linkage O and O involve O the O β B-structure_element - I-structure_element hairpin I-structure_element extension I-structure_element of O CDC2 B-structure_element as O well O as O the O loop B-structure_element between O strands B-structure_element β2 I-structure_element / I-structure_element β3 I-structure_element of O the O CT B-structure_element N I-structure_element - I-structure_element lobe I-structure_element , O which O contains O a O conserved B-protein_state RxxGxN B-structure_element motif I-structure_element . O On O the O basis O of O an O interface O area O of O ∼ O 600 O Å2 O and O its O edge O - O to O - O edge O connection O characteristics O , O the O interface B-site between O CT B-structure_element and O CD B-structure_element might O be O classified O as O conformationally O variable O . O In O addition O , O CDN B-structure_element can O rotate O around O hinges B-structure_element in O the O connection O between O CDN B-structure_element / O CDL B-structure_element by O 70 O ° O ( O Fig O . O 4b O , O observed O in O the O second O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthΔBCCP2 B-mutant ) O and O 160 O ° O ( O Fig O . O 4c O , O observed O in O SceCD B-species ) O leading O to O displacement O of O the O anchor B-site site I-site for O the O BCCP B-structure_element linker I-structure_element by O up O to O 33 O and O 40 O Å O , O respectively O . O The O current O data O thus O suggest O that O regulation O of O fungal B-taxonomy_domain ACC B-protein_type is O mediated O by O controlling O the O dynamics O of O the O unique B-protein_state CD B-structure_element , O rather O than O directly O affecting O catalytic O turnover O at O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O In O their O study O , O mutational B-experimental_method data I-experimental_method indicate O a O requirement O for O BC O dimerization O for O catalytic O activity O . O In O flACC B-mutant , O the O regulatory B-structure_element loop I-structure_element is O mostly B-protein_state disordered I-protein_state , O illustrating O the O increased O flexibility O due O to O the O absence O of O the O phosphoryl B-chemical group O . O Only O in O three O out O of O eight O observed O protomers B-oligomeric_state a O short B-structure_element peptide I-structure_element stretch O ( O including O Ser1157 B-residue_name_number ) O was O modelled B-evidence . O In O those O instances O the O Ser1157 B-residue_name_number residue O is O located O at O a O distance O of O 14 O – O 20 O Å O away O from O the O location O of O the O phosphorylated B-protein_state serine B-residue_name observed O here O , O based O on O superposition B-experimental_method of O either O CDC1 B-structure_element or O CDC2 B-structure_element . O This O implicates O that O the O triangular B-protein_state shape I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O has O a O low O population O also O in O the O active B-protein_state form I-protein_state , O even O though O a O biasing O influence O of O grid O preparation O cannot O be O excluded O completely O . O Large O - O scale O conformational O variability O has O also O been O observed O in O most O other O carrier B-protein_type protein I-protein_type - I-protein_type based I-protein_type multienzymes I-protein_type , O including O polyketide B-protein_type and I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ( O with O the O exception O of O fungal B-protein_type - I-protein_type type I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ), O non B-protein_type - I-protein_type ribosomal I-protein_type peptide I-protein_type synthetases I-protein_type and O the O pyruvate B-protein_type dehydrogenase I-protein_type complexes I-protein_type , O although O based O on O completely O different O architectures O . O The O regulation O of O activity O thus O results O from O restrained O large O - O scale O conformational O dynamics O rather O than O a O direct O or O indirect O influence O on O active B-site site I-site structure I-site . O The O phosphorylated B-protein_state central B-structure_element domain I-structure_element of O yeast B-taxonomy_domain ACC B-protein_type . O The O attachment O points O to O the O N O - O terminal O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O indicated O with O spheres O . O Variability O of O the O connections O of O CDC2 B-structure_element to O CT B-structure_element and O CDC1 B-structure_element in O fungal B-taxonomy_domain ACC B-protein_type . O For O clarity O , O only O one O protomer B-oligomeric_state of O CthCD B-mutant - I-mutant CTCter1 I-mutant is O shown O in O full O colour O as O reference O . O The O domains O are O labelled O and O the O distances O between O the O N O termini O of O CDN B-structure_element ( O spheres O ) O in O the O compared O structures O are O indicated O . O ( O d O ) O Schematic O model O of O fungal B-taxonomy_domain ACC B-protein_type showing O the O intrinsic O , O regulated O flexibility O of O CD B-structure_element in O the O phosphorylated B-protein_state inhibited B-protein_state or O the O non B-protein_state - I-protein_state phosphorylated I-protein_state activated B-protein_state state O . O The O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein is O an O important O enterobacterial B-taxonomy_domain acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type whereas O LdcC B-protein is O its O close O paralogue O thought O to O play O mainly O a O metabolic O role O . O A O unique O macromolecular O cage O formed O by O two O decamers B-oligomeric_state of O the O Escherichia B-species coli I-species LdcI B-protein and O five O hexamers B-oligomeric_state of O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein was O shown O to O counteract O acid O stress O under O starvation O . O They O counteract O acid O stress O experienced O by O the O bacterium B-taxonomy_domain in O the O host O digestive O and O urinary O tract O , O and O in O particular O in O the O extremely O acidic O stomach O . O Decarboxylation O of O the O amino B-chemical acid I-chemical into O a O polyamine B-chemical is O catalysed O by O a O PLP B-chemical cofactor O in O a O multistep O reaction O that O consumes O a O cytoplasmic O proton B-chemical and O produces O a O CO2 B-chemical molecule O passively O diffusing O out O of O the O cell O , O while O the O polyamine B-chemical is O excreted O by O the O antiporter B-protein_type in O exchange O for O a O new O amino B-chemical acid I-chemical substrate O . O Both O acid B-protein_state pH I-protein_state and O cadaverine B-chemical induce O closure O of O outer O membrane O porins B-protein_type thereby O contributing O to O bacterial B-taxonomy_domain protection O from O acid O stress O , O but O also O from O certain O antibiotics O , O by O reduction O in O membrane O permeability O . O Ten O years O ago O we O showed O that O the O E B-species . I-species coli I-species AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein , O involved O in O multiple O stress O response O pathways O , O tightly O interacted O with O LdcI B-protein but O was O not O capable O of O binding O to O LdcC B-protein . O We O described O how O two O double O pentameric B-oligomeric_state rings B-structure_element of O the O LdcI B-protein tightly O associate O with O five O hexameric B-oligomeric_state rings B-structure_element of O RavA B-protein to O form O a O unique O cage O - O like O architecture O that O enables O the O bacterium B-taxonomy_domain to O withstand O acid O stress O even O under O conditions O of O nutrient O deprivation O eliciting O stringent O response O . O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O CryoEM B-experimental_method 3D B-evidence reconstructions I-evidence of O LdcC B-protein , O LdcIa B-protein and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly In O the O frame O of O this O work O , O we O produced O two O novel O subnanometer O resolution O cryoEM B-experimental_method reconstructions B-evidence of O the O E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O – O a O 5 O . O 5 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O pH B-protein_state 7 I-protein_state . I-protein_state 5 I-protein_state ) O for O which O no O 3D O structural O information O has O been O previously O available O ( O Figs O 1A O , O B O and O S1 O ), O and O a O 6 O . O 1 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcIa B-protein , O ( O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ) O ( O Figs O 1C O , O D O and O S2 O ). O Significant O differences O between O these O pseudoatomic B-evidence models I-evidence can O be O interpreted O as O movements O between O specific O biological O states O of O the O proteins O as O described O below O . O The O core B-structure_element domain I-structure_element and O the O active B-site site I-site rearrangements O upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA O binding O The O core B-structure_element domain I-structure_element is O built O by O the O PLP B-structure_element - I-structure_element binding I-structure_element subdomain I-structure_element ( O PLP B-structure_element - I-structure_element SD I-structure_element , O residues O 184 B-residue_range – I-residue_range 417 I-residue_range ) O flanked O by O two O smaller O subdomains B-structure_element rich O in O partly B-protein_state disordered I-protein_state loops B-structure_element – O the O linker B-structure_element region I-structure_element ( O residues O 130 B-residue_range – I-residue_range 183 I-residue_range ) O and O the O subdomain B-structure_element 4 I-structure_element ( O residues O 418 B-residue_range – I-residue_range 563 I-residue_range ). O Zooming O in O the O variations O in O the O PLP B-structure_element - I-structure_element SD I-structure_element shows O that O most O of O the O structural O changes O concern O displacements O in O the O active B-site site I-site ( O Fig O . O 3C O – O F O ). O The O ppGpp B-site binding I-site pocket I-site is O made O up O by O residues O from O all O domains O and O is O located O approximately O 30 O Å O away O from O the O PLP B-chemical moiety O . O At O this O resolution O , O the O apo B-protein_state - O LdcIi B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly structures B-evidence ( O both O solved O at O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ) O appeared O indistinguishable O except O for O the O presence O of O ppGpp B-chemical ( O Fig O . O S11 O in O ref O . O ). O Swinging O and O stretching O of O the O CTDs B-structure_element upon O pH B-protein_state - I-protein_state dependent I-protein_state LdcI B-protein activation O and O LARA B-structure_element binding O Importantly O , O most O of O the O amino O acid O differences O between O the O two O enzymes O are O located O in O this O very B-structure_element region I-structure_element . O One O of O the O elucidated O roles O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O is O to O maintain O LdcI B-protein activity O under O conditions O of O enterobacterial B-taxonomy_domain starvation O by O preventing O LdcI B-protein inhibition O by O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical . O The O dashed O circle O indicates O the O central O region B-structure_element that O remains O virtually O unchanged O between O all O the O structures B-evidence , O while O the O periphery O undergoes O visible O movements O . O The O PLP B-chemical moieties O of O the O cartoon O ring B-structure_element are O shown O in O red O . O The O active B-site site I-site is O boxed O . O ( O D O , O E O ) O A O gallery O of O negative O stain O EM O images O of O ( O D O ) O the O wild B-protein_state type I-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O and O ( O E O ) O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O ( O F O ) O Some O representative O class O averages O of O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O Crystal B-evidence Structures I-evidence of O Putative O Sugar B-protein_type Kinases I-protein_type from O Synechococcus B-species Elongatus I-species PCC I-species 7942 I-species and O Arabidopsis B-species Thaliana I-species Together O , O these O results O provide O important O information O for O a O more O detailed O understanding O of O the O cofactor O and O substrate O binding O mode O as O well O as O the O catalytic O mechanism O of O SePSK B-protein , O and O possible O similarities O with O its O plant B-taxonomy_domain homologue O AtXK B-protein - I-protein 1 I-protein . O Structures B-evidence reported O in O the O Protein O Data O Bank O of O the O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type exhibit O a O similar O overall O architecture O containing O two O protein O domains O , O one O of O which O is O responsible O for O the O binding O of O substrate O , O while O the O second O is O used O for O binding O cofactor O ATP B-chemical . O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein display O a O sequence O identity O of O 44 O . O 9 O %, O and O belong O to O the O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type , O a O sub O - O family O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O It O was O shown O that O XK B-protein - I-protein 2 I-protein ( O At5g49650 B-gene ) O located O in O the O cytosol O is O indeed O xylulose B-protein_type kinase I-protein_type . O The O attempt O to O solve O the O SePSK B-protein structure B-evidence by O molecular B-experimental_method replacement I-experimental_method method I-experimental_method failed O with O ribulokinase B-protein from O Bacillus B-species halodurans I-species ( O PDB O code O : O 3QDK O , O 15 O . O 7 O % O sequence O identity O ) O as O an O initial O model O . O The O secondary O structural O elements O are O indicated O ( O α B-structure_element - I-structure_element helix I-structure_element : O cyan O , O β B-structure_element - I-structure_element sheet I-structure_element : O yellow O ). O However O , O superposition B-experimental_method of O structures B-evidence of O AtXK B-protein - I-protein 1 I-protein and O SePSK B-protein shows O some O differences O , O especially O at O the O loop B-structure_element regions I-structure_element . O The O corresponding O residues O between O these O two O structures B-evidence ( O SePSK B-protein - O Lys35 B-residue_name_number and O AtXK B-protein - I-protein 1 I-protein - O Lys48 B-residue_name_number ) O have O a O distance O of O 15 O . O 4 O Å O ( O S3 O Fig O ). O To O further O identify O the O actual O substrate O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein , O five O different O sugar O molecules O , O including O D B-chemical - I-chemical ribulose I-chemical , O L B-chemical - I-chemical ribulose I-chemical , O D B-chemical - I-chemical xylulose I-chemical , O L B-chemical - I-chemical xylulose I-chemical and O Glycerol B-chemical , O were O used O in O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method . O While O the O ATP B-chemical hydrolysis O activity O of O SePSK B-protein greatly O increases O upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O DR B-chemical ). O To O obtain O more O detailed O information O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein in B-protein_state complex I-protein_state with I-protein_state ATP B-chemical , O we O soaked B-experimental_method the O apo B-protein_state - O crystals B-evidence in O the O reservoir O adding O cofactor O ATP B-chemical , O and O obtained O the O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein bound B-protein_state with I-protein_state ATP B-chemical at O the O resolution O of O 2 O . O 3 O Å O and O 1 O . O 8 O Å O , O respectively O . O In O both O structures B-evidence , O a O strong O electron B-evidence density I-evidence was O found O in O the O conserved B-protein_state ATP B-site binding I-site pocket I-site , O but O can O only O be O fitted O with O an O ADP B-chemical molecule O ( O S4 O Fig O ). O The O purine O ring O of O AMP B-chemical - I-chemical PNP I-chemical is O positioned O in O parallel O to O the O indole O ring O of O Trp383 B-residue_name_number . O In O addition O , O it O is O hydrogen O - O bonded O with O the O side O chain O amide O of O Asn380 B-residue_name_number ( O Fig O 3B O ). O Glu329 B-residue_name_number in O 3QDK O has O no O counterpart O in O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence . O The O hydrogen O bonds O are O indicated O by O the O black O dashed O lines O and O the O numbers O near O the O dashed O lines O are O the O distances O ( O Å O ). O ( O C O ) O The O binding B-experimental_method affinity I-experimental_method assays I-experimental_method of O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical . O This O change O might O be O the O reason O that O AtXK B-protein - I-protein 1 I-protein only O shows O limited O increasing O in O its O ATP B-chemical hydrolysis O ability O upon O adding O D B-chemical - I-chemical ribulose I-chemical as O a O substrate O after O comparing O with O SePSK B-protein ( O Fig O 2C O ). O As O reported O previously O , O members O of O the O sugar B-protein_type kinase I-protein_type family O undergo O a O conformational O change O to O narrow O the O crossing O angle O between O two O domains O and O reduce O the O distance O between O substrate O and O ATP B-chemical in O order O to O facilitate O the O catalytic O reaction O of O phosphorylation B-ptm of O sugar O substrates O . O The O results O of O superposition B-experimental_method displayed O different O crossing O angle O between O these O two O domains O . O After O superposition B-experimental_method , O the O distances O of O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O the O fifth O hydroxyl O group O of O RBL1 B-residue_name_number are O 7 O . O 9 O Å O ( O superposed B-experimental_method with O AtXK B-protein - I-protein 1 I-protein ), O 7 O . O 4 O Å O ( O superposed B-experimental_method with O SePSK B-protein ), O 6 O . O 6 O Å O ( O superposed B-experimental_method with O 3LL3 O ) O and O 6 O . O 1 O Å O ( O superposed B-experimental_method with O 1GLJ O ). O The O structures B-evidence are O shown O as O cartoon O and O the O ligands O are O shown O as O sticks O . O Domain B-structure_element I I-structure_element from O D B-complex_assembly - I-complex_assembly ribulose I-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O green O ) O and O Domain B-structure_element II I-structure_element from O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O cyan O ) O are O superposed B-experimental_method with O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein ( O 1st O ), O apo B-protein_state - O SePSK B-protein ( O 2nd O ), O 3LL3 O ( O 3rd O ) O and O 1GLJ O ( O 4th O ), O respectively O . O Mep2 B-protein_type proteins I-protein_type are O fungal B-taxonomy_domain transceptors B-protein_type that O play O an O important O role O as O ammonium B-chemical sensors O in O fungal B-taxonomy_domain development O . O Here O we O report O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type orthologues O from O Saccharomyces B-species cerevisiae I-species and O Candida B-species albicans I-species and O show O that O under O nitrogen O - O sufficient O conditions O the O transporters B-protein_type are O not B-protein_state phosphorylated I-protein_state and O present O in O closed B-protein_state , O inactive B-protein_state conformations O . O One O of O the O most O important O unresolved O questions O in O the O field O is O how O the O transceptors B-protein_type couple O to O downstream O signalling O pathways O . O They O belong O to O the O Amt B-protein_type / I-protein_type Mep I-protein_type / I-protein_type Rh I-protein_type family I-protein_type of I-protein_type transporters I-protein_type that O are O present O in O all B-taxonomy_domain kingdoms I-taxonomy_domain of I-taxonomy_domain life I-taxonomy_domain and O they O take O up O ammonium B-chemical from O the O extracellular O environment O . O As O is O the O case O for O other O transceptors B-protein_type , O it O is O not O clear O how O Mep2 B-protein interacts O with O downstream O signalling O partners O , O but O the O protein O kinase O A O and O mitogen O - O activated O protein O kinase O pathways O have O been O proposed O as O downstream O effectors O of O Mep2 B-protein ( O refs O ). O In O addition O , O Mep2 B-protein is O also O important O for O uptake O of O ammonium B-chemical produced O by O growth O on O other O nitrogen B-chemical sources O . O All O structures B-evidence show O the O transporters B-protein_type in O open B-protein_state conformations O . O To O elucidate O the O mechanism O of O Mep2 B-protein_type transport O regulation O , O we O present O here O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type transceptors I-protein_type from O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species . O The O channels B-site of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state mutants I-protein_state of O C B-species . I-species albicans I-species Mep2 B-protein are O still O closed B-protein_state but O show O large O conformational O changes O within O a O conserved B-protein_state part O of O the O CTR B-structure_element . O Of O these O , O Mep2 B-protein from O C B-species . I-species albicans I-species ( O CaMep2 B-protein ) O showed O superior O stability O in O relatively O harsh O detergents O such O as O nonyl O - O glucoside O , O allowing O structure B-experimental_method determination I-experimental_method in O two O different O crystal B-evidence forms I-evidence to O high O resolution O ( O up O to O 1 O . O 5 O Å O ). O Important O functional O features O such O as O the O extracellular O ammonium B-site binding I-site site I-site , O the O Phe B-site gate I-site and O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element within O the O hydrophobic B-site channel I-site are O all O very O similar O to O those O present O in O the O bacterial B-taxonomy_domain transporters B-protein_type and O RhCG B-protein . O In O addition O to O changing O the O RxK B-structure_element motif I-structure_element , O the O movement O of O ICL1 B-structure_element has O another O , O crucial O functional O consequence O . O This O two O - O tier O channel B-structure_element block I-structure_element likely O ensures O that O very O little O ammonium B-chemical transport O will O take O place O under O nitrogen B-chemical - O sufficient O conditions O . O The O result O of O these O interactions O is O that O the O CTR B-structure_element ‘ O hugs O ' O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O Fig O . O 4 O ). O Strikingly O , O the O Npr1 B-site target I-site serine I-site residue O is O located O at O the O periphery O of O the O trimer B-oligomeric_state , O far O away O (∼ O 30 O Å O ) O from O any O channel B-site exit I-site ( O Fig O . O 6 O ). O Given O that O Ser457 B-residue_name_number / O 453 B-residue_number is O far O from O any O channel B-site exit I-site ( O Fig O . O 6 O ), O the O crucial O question O is O how O phosphorylation B-ptm opens O the O Mep2 B-protein channel B-site to O generate O an O active B-protein_state transporter B-protein_type . O Density B-evidence for O ICL3 B-structure_element and O the O CTR B-structure_element beyond O residue O Arg415 B-residue_name_number is O missing O in O the O 442Δ B-mutant mutant B-protein_state , O and O the O density B-evidence for O the O other O ICLs B-structure_element including O ICL1 B-structure_element is O generally O poor O with O visible O parts O of O the O structure B-evidence having O high O B O - O factors O ( O Fig O . O 7 O ). O The O second O possibility O is O that O the O Tyr B-site – I-site His I-site hydrogen I-site bond I-site has O to O be O disrupted O by O the O incoming O substrate O to O open B-protein_state the O channel O . O The O latter O model O would O fit O well O with O the O NH3 B-chemical / O H B-chemical + I-chemical symport O model O in O which O the O proton O is O relayed O by O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O Phosphorylation B-ptm causes O a O conformational O change O in O the O CTR B-structure_element Do O the O Mep2 B-protein structures B-evidence provide O any O clues O regarding O the O potential O effect O of O phosphorylation B-ptm ? O The O ammonium B-chemical uptake O activity O of O the O S B-species . I-species cerevisiae I-species version O of O the O DD B-mutant mutant I-mutant is O the O same O as O that O of O WT B-protein_state Mep2 B-protein and O the O S453D B-mutant mutant B-protein_state , O indicating O that O the O mutations O do O not O affect O transporter O functionality O in O the O triple B-mutant mepΔ I-mutant background O ( O Fig O . O 3 O ). O For O example O , O the O distance B-evidence between O the O Asp453 B-residue_name_number acidic O oxygens O and O the O Glu420 B-residue_name_number acidic O oxygens O increases O from O ∼ O 7 O to O > O 22 O Å O after O 200 O ns O simulations B-experimental_method , O and O thus O these O residues O are O not O interacting O . O Our O model O also O provides O an O explanation O for O the O observation O that O certain B-mutant mutations I-mutant within O the O CTR B-structure_element completely O abolish O transport O activity O . O Such O mutations O likely O cause O structural O changes O in O the O CTR B-structure_element that O prevent O close O contacts O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element , O thereby O stabilizing O a O closed B-protein_state state O that O may O be O similar O to O that O observed O in O Mep2 B-protein . O While O the O current O study O does O not O specifically O address O the O mechanism O of O signalling O underlying O pseudohyphal O growth O , O our O structures B-evidence do O show O that O Mep2 B-protein_type proteins I-protein_type can O assume O different O conformations O . O ( O b O ) O CaMep2 B-protein trimer B-oligomeric_state viewed O from O the O intracellular O side O ( O right O ). O The O Npr1 B-site kinase I-site site I-site in O the O AI B-structure_element region I-structure_element is O highlighted O pink O . O Growth B-experimental_method of O ScMep2 B-mutant variants I-mutant on O low O ammonium O medium O . O The O side O chains O of O residues O in O the O RxK B-structure_element motif I-structure_element as O well O as O those O of O Tyr49 B-residue_name_number and O His342 B-residue_name_number are O labelled O . O ( O c O ) O Conserved B-protein_state residues O in O ICL1 B-structure_element - I-structure_element 3 I-structure_element and O the O CTR B-structure_element . O Views O from O the O cytosol O for O CaMep2 B-protein ( O left O ) O and O AfAmt B-protein - I-protein 1 I-protein , O highlighting O the O large O differences O in O conformation O of O the O conserved B-protein_state residues O in O ICL1 B-structure_element ( O RxK O motif O ; O blue O ), O ICL2 B-structure_element ( O ER B-structure_element motif I-structure_element ; O cyan O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ). O Missing O regions O are O labelled O . O ( O b O ) O Stereo O superpositions B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O truncation B-protein_state mutant I-protein_state . O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O residues O Tyr49 B-residue_name_number and O His342 B-residue_name_number is O shown O for O the O truncation B-protein_state mutant I-protein_state . O ( O a O ) O Cytoplasmic O view O of O the O DD B-mutant mutant I-mutant trimer B-oligomeric_state , O with O WT B-protein_state CaMep2 B-protein superposed B-experimental_method in O grey O for O one O of O the O monomers B-oligomeric_state . O High O - O resolution O structural B-evidence models I-evidence of O protein O - O protein O interactions O are O critical O for O obtaining O mechanistic O insights O into O biological O processes O . O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method has O historically O provided O valuable O information O on O small O - O scale O conformational O changes O , O but O observing O large O - O amplitude O heterogeneous O conformational O changes O often O falls O beyond O the O reach O of O current O crystallographic O techniques O . O NMR B-experimental_method can O theoretically O be O used O to O determine O heterogeneous O ensembles O , O but O in O practice O , O this O proves O to O be O very O challenging O . O However O , O modeling O of O the O substrate O in O the O complex O proved O to O be O a O substantial O challenge O , O as O the O electron B-evidence density I-evidence of O the O substrate O was O discontinuous O and O fragmented O . O Even O the O minimal B-structure_element binding I-structure_element portion I-structure_element of O Im7 B-protein ( O Im76 B-mutant - I-mutant 45 I-mutant ) O showed O highly O dispersed O electron B-evidence density I-evidence ( O Fig O . O 1a O ). O Thus O , O we O developed O a O new O approach O to O interpret O the O chaperone B-protein_state - I-protein_state bound I-protein_state substrate O in O multiple O conformations O . O If O successful O , O the O selection O identifies O the O smallest O group O of O specific O conformations O that O best O fits O the O residual B-evidence electron I-evidence density I-evidence and O anomalous B-evidence signals I-evidence . O Each O complex O within O this O pool O comprises O one O Spy B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state a O single O Im76 B-mutant - I-mutant 45 I-mutant substrate O . O This O process O provided O us O with O a O target O map B-evidence that O the O ensuing O selection O tried O to O recapitulate O . O This O approach O allowed O us O to O simultaneously O use O both O the O iodine B-chemical anomalous B-evidence signals I-evidence and O the O residual B-evidence electron I-evidence density I-evidence in O the O selection O procedure O . O The O selection O resulted O in O small O ensembles O from O the O MD B-experimental_method pool O that O best O fit O the O READ B-experimental_method data O ( O Fig O . O 1c O , O d O ). O The O Spy B-site - I-site contacting I-site residues I-site comprise O a O mixture O of O charged O , O polar O , O and O hydrophobic O residues O . O Surprisingly O , O we O noted O that O in O the O ensemble O , O Im76 B-mutant - I-mutant 45 I-mutant interacts O with O only O 38 O % O of O the O hydrophobic O residues O in O the O Spy B-protein cradle B-site , O but O interacts O with O 61 O % O of O the O hydrophilic O residues O in O the O cradle B-site . O The O structures B-evidence of O our O ensemble B-evidence agree O well O with O lower O - O resolution O crosslinking O data O , O which O indicate O that O chaperone B-protein_type - O substrate O interactions O primarily O occur O on O the O concave B-site surface I-site of O Spy B-protein . O The O ensemble B-evidence suggests O a O model O in O which O Spy B-protein provides O an O amphipathic B-site surface I-site that O allows O substrate O proteins O to O assume O different O conformations O while O bound B-protein_state to I-protein_state the O chaperone B-protein_type . O As O inter O - O molecular O hydrophobic O interactions O between O Spy B-protein and O the O substrate O become O progressively O replaced O by O intra O - O molecular O interactions O within O the O substrate O , O the O affinity O between O chaperone B-protein_type and O substrates O could O decrease O , O eventually O leading O to O release O of O the O folded B-protein_state client O protein O . O Other O Super O Spy B-protein mutations B-protein_state ( O F115I B-mutant and O F115L B-mutant ) O caused O increased O flexibility O but O not O tighter O substrate O binding O . O In O addition O to O insights O into O chaperone B-protein_type function O , O this O work O presents O a O new O method O for O determining O heterogeneous O structural O ensembles O via O a O hybrid O methodology O of O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O computational B-experimental_method modeling I-experimental_method . O Flowchart O of O the O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method process O . O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly ensemble O , O arranged O by O RMSD B-evidence to O native B-protein_state state O of O Im76 B-mutant - I-mutant 45 I-mutant . O Although O the O six O - O membered O ensemble O from O the O READ B-experimental_method selection O should O be O considered O only O as O an O ensemble O , O for O clarity O , O the O individual O conformers O are O shown O separately O here O . O Shown O below O each O ensemble O member O is O the O RMSD B-evidence of O each O conformer O to O the O native B-protein_state state O of O Im76 B-mutant - I-mutant 45 I-mutant , O as O well O as O the O percentage O of O contacts O between O Im76 B-mutant - I-mutant 45 I-mutant and O Spy B-protein that O are O hydrophobic O . O The O frequency O plotted O is O calculated O as O the O average O contact B-evidence frequency I-evidence from O Spy B-protein to O every O residue O of O Im76 B-mutant - I-mutant 45 I-mutant and O vice O - O versa O . O ( O a O ) O Overlay B-experimental_method of O apo B-protein_state Spy B-protein ( O PDB O ID O : O 3O39 O , O gray O ) O and O bound B-protein_state Spy B-protein ( O green O ). O ( O b O ) O Overlay B-experimental_method of O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state Im76 B-mutant - I-mutant 45 I-mutant ( O green O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state Im7 B-protein L18A B-mutant L19 B-mutant AL13A I-mutant ( O blue O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state WT B-protein_state Im7 B-protein ( O yellow O ), O and O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state casein B-chemical ( O salmon O ). O ( O c O ) O Competition B-experimental_method assay I-experimental_method showing O Im76 B-mutant - I-mutant 45 I-mutant competes O with O Im7 B-protein L18A B-mutant L19A B-mutant L37A B-mutant H40W B-mutant for O the O same O binding B-site site I-site on O Spy B-protein ( O further O substrate B-experimental_method competition I-experimental_method assays I-experimental_method are O shown O in O Supplementary O Fig O . O 8 O ). O ( O b O ) O F115 B-residue_name_number and O L32 B-residue_name_number tether O Spy B-protein ’ O s O linker B-structure_element region I-structure_element to O its O cradle B-site , O decreasing O Spy B-protein activity O by O limiting O linker B-structure_element region I-structure_element flexibility O . O All O four O heavy B-structure_element chains I-structure_element of O the O antigen B-structure_element - I-structure_element binding I-structure_element fragments I-structure_element ( O Fabs B-structure_element ) O have O the O same O complementarity B-structure_element - I-structure_element determining I-structure_element region I-structure_element ( O CDR B-structure_element ) O H3 B-structure_element that O was O reported O in O an O earlier O Fab B-structure_element structure B-evidence . O CDR B-structure_element H3 B-structure_element , O despite O having O the O same O amino O acid O sequence O , O exhibits O the O largest O conformational O diversity O . O The O structures B-evidence and O their O analyses O provide O a O rich O foundation O for O future O antibody B-protein_type modeling O and O engineering O efforts O . O At O present O , O therapeutic O antibodies B-protein_type are O the O largest O class O of O biotherapeutic O proteins O that O are O in O clinical O trials O . O Our O current O structural O knowledge O of O antibodies B-protein_type is O based O on O a O multitude O of O studies O that O used O many O techniques O to O gain O insight O into O the O functional O and O structural O properties O of O this O class O of O macromolecule O . O These O multimeric O forms O are O linked O with O an O additional O J B-structure_element chain O . O Both O κ B-structure_element and O λ B-structure_element polypeptide O chains O are O composed O of O a O single O V B-structure_element domain I-structure_element and O a O single O C B-structure_element domain I-structure_element . O A O CDR B-structure_element canonical O structure O is O defined O by O its O length O and O conserved O residues O located O in O the O hypervariable B-structure_element loop I-structure_element and O framework B-structure_element residues I-structure_element ( O V B-structure_element - I-structure_element region I-structure_element residues O that O are O not O part O of O the O CDRs B-structure_element ). O Additional O efforts O have O led O to O our O current O understanding O that O the O LC B-structure_element CDRs B-structure_element L1 B-structure_element , O L2 B-structure_element , O and O L3 B-structure_element have O preferred O sets O of O canonical O structures O based O on O length O and O amino O acid O sequence O composition O . O Classification O schemes O for O the O canonical O structures O of O these O 5 O CDRs B-structure_element have O emerged O and O evolved O as O the O number O of O depositions O in O the O Protein O Data O Bank O of O Fab B-structure_element fragments O of O antibodies B-protein_type grow O . O Recent O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method show O continued O improvement O in O the O quality O of O the O models O being O generated O by O a O variety O of O modeling O methods O . O ( O Continued O ) O Crystal B-evidence data I-evidence , O X B-evidence - I-evidence ray I-evidence data I-evidence , O and O refinement B-evidence statistics I-evidence . O The O crystal B-evidence structures I-evidence of O the O 16 O Fabs B-structure_element have O been O determined O at O resolutions O ranging O from O 3 O . O 3 O Å O to O 1 O . O 65 O Å O ( O Table O 1 O ). O One O involves O the O loop B-structure_element connecting O the O first O 2 O β B-structure_element - I-structure_element strands I-structure_element of O the O constant B-structure_element domain I-structure_element ( O in O all O Fabs B-structure_element except O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ). O The O CDR B-structure_element H1 B-structure_element structures B-evidence with O H1 B-mutant - I-mutant 69 I-mutant shown O in O Fig O . O 1A O are O quite O variable O , O both O for O the O structures B-evidence with O different O LCs B-structure_element and O for O the O copies O of O the O same O Fab B-structure_element in O the O asymmetric O unit O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O In O total O , O 6 O independent O Fab B-structure_element structures B-evidence produce O 5 O different O canonical O structures B-evidence , O namely O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 1 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 3 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 4 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 6 I-mutant and O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 10 I-mutant . O Although O three O of O the O germlines O have O CDR B-structure_element H2 B-structure_element of O the O same O length O , O 10 B-residue_range residues I-residue_range , O they O adopt O 2 O distinctively O different O conformations O depending O mostly O on O the O residue O at O position O 71 B-residue_number from O the O so O - O called O CDR B-structure_element H4 B-structure_element . O Conformations O of O CDR B-structure_element H2 B-structure_element in O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O both O of O which O have O canonical O structure O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 1 I-mutant , O show O little O deviation O within O each O set O of O 4 O structures B-evidence . O L4 B-mutant - I-mutant 1 I-mutant has O the O longest O CDR B-structure_element L1 B-structure_element , O composed O of O 17 B-residue_range amino I-residue_range acid I-residue_range residues I-residue_range ( O Fig O . O 3D O ). O This O is O the O tip O of O the O loop B-structure_element region I-structure_element , O which O appears O to O have O similar O conformations O that O fan O out O the O structures B-evidence because O of O the O slight O differences O in O torsion O angles O in O the O backbone O near O Tyr30a B-residue_name_number and O Lys30f B-residue_name_number . O The O third O structure O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O CDR B-structure_element L1 B-structure_element as O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O which O deviates O from O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant at O residues O 29 B-residue_range - I-residue_range 32 I-residue_range , O i O . O e O ., O at O the O site O of O insertion O with O respect O to O the O 11 B-residue_range - I-residue_range residue I-residue_range CDR B-structure_element . O The O superposition B-experimental_method of O CDR B-structure_element L2 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O The O slight O conformational O variability O occurs O in O the O region O of O amino O acid O residues O 90 B-residue_range - I-residue_range 92 I-residue_range , O which O is O in O contact O with O CDR B-structure_element H3 B-structure_element . O This O water B-chemical is O present O in O both O the O bound B-protein_state ( O 4DN4 O ) O and O unbound B-protein_state ( O 4DN3 O ) O forms O of O CNTO B-chemical 888 I-chemical . O Ribbon O representations O of O ( O A O ) O the O superposition B-experimental_method of O all O CDR B-structure_element H3s B-structure_element of O the O structures B-evidence with O complete O backbone O traces O . O ( O B O ) O The O CDR B-structure_element H3s B-structure_element rotated O 90 O ° O about O the O y O axis O of O the O page O . O Another O four O of O the O Fabs B-structure_element , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly have O missing O side O - O chain O atoms O . O A O comparison O of O representatives O of O the O “ O kinked B-protein_state ” O and O “ O extended B-protein_state ” O structures B-evidence . O The O largest O backbone O conformational O deviation O for O the O set O is O at O Tyr99 B-residue_name_number , O where O the O C O = O O O is O rotated O by O 90 O ° O relative O to O that O observed O in O 4DN3 O . O Also O , O it O is O worth O noting O that O only O one O of O these O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O has O the O conserved B-protein_state water B-chemical molecule O in O CDR B-structure_element H3 B-structure_element observed O in O the O 4DN3 O and O 4DN4 O structures B-evidence . O The O CDR B-structure_element H3 B-structure_element for O this O structure B-evidence is O shown O in O Fig O . O S3 O . O The O domain O packing O of O the O variants O was O assessed O by O computing O the O domain B-site interface I-site interactions O , O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence , O the O buried O surface O area O and O surface O complementarity O . O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence The O relative O orientation O of O VH B-structure_element and O VL B-structure_element has O been O measured O in O a O number O of O different O ways O . O The O four O LCs B-structure_element all O are O classified O as O Type O A O because O they O have O a O proline B-residue_name at O position O 44 B-residue_number , O and O the O results O for O each O orientation B-evidence parameter I-evidence are O within O the O range O of O values O of O this O type O reported O by O Dunbar O and O co O - O workers O . O This O kind O of O disorder O may O compromise O the O integrity O of O the O VH B-structure_element domain O and O its O interaction O with O the O VL B-structure_element . O The O smallest O differences O in O the O tilt B-evidence angle I-evidence are O between O the O Fabs B-structure_element in O isomorphous O crystal B-evidence forms I-evidence . O Among O the O complete B-protein_state structures B-evidence , O the O interface B-site areas O range O from O 684 O to O 836 O Å2 O . O These O findings O correlate O well O with O the O degree O of O conformational O disorder O observed O in O the O crystal B-evidence structures I-evidence . O This O variability O is O likely O a O result O of O 2 O factors O , O crystal O packing O interactions O and O internal O instability O of O the O variable B-structure_element domain I-structure_element . O The O other O 2 O HCs B-structure_element , O H3 B-mutant - I-mutant 23 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O have O canonical O structures O that O are O remarkably B-protein_state well I-protein_state conserved I-protein_state ( O Fig O . O 1 O ). O As O mentioned O in O the O Results O section O , O this O data O set O is O composed O of O 21 O Fabs B-structure_element , O since O 5 O of O the O 16 O variants O have O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O Thus O , O it O is O likely O that O the O CDR B-structure_element H3 B-structure_element conformation O is O dependent O upon O 2 O dominating O factors O : O 1 O ) O amino O acid O sequence O ; O and O 2 O ) O VH B-structure_element and O VL B-structure_element context O . O More O than O half O of O the O variants O retain O the O conformation O of O the O parent O despite O having O differences O in O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairing O . O The O absolute O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly orientation B-evidence parameters I-evidence for O the O 2 O Fabs B-structure_element ( O Table O S2 O ) O show O significant O deviation B-evidence in O HL B-structure_element , O LC1 B-structure_element and O HC2 B-structure_element values O ( O 2 O - O 3 O standard O deviations O from O the O mean O ). O Curiously O , O the O 2 O Fabs B-structure_element , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O deviate O markedly O in O their O tilt B-evidence angles I-evidence from O the O rest O of O the O panel O . O It O is O possible O that O by O adopting O extreme O tilt B-evidence angles I-evidence the O structure B-evidence modulates O CDR B-structure_element H3 B-structure_element and O its O environment O , O which O apparently O cannot O be O achieved O solely O by O conformational O rearrangement O of O the O CDR B-structure_element . O Quite O unexpectedly O , O 2 O of O the O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O have O the O ‘ O extended B-protein_state ’ O stem B-structure_element region I-structure_element differing O from O the O other O 14 O that O have O a O ‘ O kinked B-protein_state ’ O stem B-structure_element region I-structure_element . O These O data O reveal O the O difficulty O of O modeling O CDR B-structure_element H3 B-structure_element accurately O , O as O shown O again O in O Antibody O Modeling O Assessment O II O . O Fortunately O , O for O most O applications O of O antibody B-protein_type modeling O , O such O as O engineering O affinity O and O biophysical O properties O , O an O accurate O CDR B-structure_element H3 B-structure_element structure B-evidence is O not O always O necessary O . O The O results O essentially O support O the O underlying O idea O of O canonical O structures B-evidence , O indicating O that O most O CDRs B-structure_element with O germline O sequences O tend O to O adopt O predefined O conformations O . O Here O , O the O authors O report O U2AF65 B-protein structures B-evidence and O single B-experimental_method molecule I-experimental_method FRET I-experimental_method that O reveal O mechanistic O insights O into O splice B-site site I-site recognition O . O A O subsequent O NMR B-experimental_method structure B-evidence characterized O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O of O the O minimal B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O linker B-structure_element of O natural B-protein_state length I-protein_state ( O U2AF651 B-mutant , I-mutant 2 I-mutant ), O yet O depended O on O the O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structures I-evidence for O RNA B-chemical interactions O and O an O ab O initio O model O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element conformation O . O Cognate O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O requires O RRM B-structure_element extensions I-structure_element Historically O , O this O difference O was O attributed O to O the O U2AF65 B-protein arginine B-structure_element – I-structure_element serine I-structure_element rich I-structure_element domain I-structure_element , O which O contacts O pre B-complex_assembly - I-complex_assembly mRNA I-complex_assembly – I-complex_assembly U2 I-complex_assembly snRNA I-complex_assembly duplexes I-complex_assembly outside O of O the O Py B-chemical tract I-chemical . O U2AF65 B-protein_state - I-protein_state bound I-protein_state Py B-chemical tract I-chemical comprises O nine O contiguous B-structure_element nucleotides B-chemical The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element associate O with O the O Py B-chemical tract I-chemical in O a O parallel B-protein_state , O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O ( O shown O for O representative O structure O iv O in O Fig O . O 2b O , O c O ; O Supplementary O Movie O 1 O ). O Yet O , O only O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O at O sites B-site 1 I-site and I-site 7 I-site are O nearly O identical O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Fig O . O 3a O , O f O ). O Rather O than O interacting O with O a O new O 5 O ′- O terminal O nucleotide B-chemical as O we O had O hypothesized O , O the O C O - O terminal O α B-structure_element - I-structure_element helix I-structure_element of O RRM2 B-structure_element instead O folds O across O one O surface O of O rU3 B-residue_name_number in O the O third B-site binding I-site site I-site ( O Fig O . O 3b O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O that O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element mediates O an O extensive B-site interface I-site with O the O second O α B-structure_element - I-structure_element helix I-structure_element of O RRM1 B-structure_element , O the O β2 B-structure_element / I-structure_element β3 I-structure_element strands I-structure_element of O RRM2 B-structure_element and O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O RRM1 B-structure_element . O We O introduced O glycine B-residue_name substitutions B-experimental_method to O maximally O reduce O the O buried O surface O area O without O directly O interfering O with O its O hydrogen O bonds O between O backbone O atoms O and O the O base O . O However O , O the O resulting O decrease O in O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Gly I-mutant mutant B-protein_state relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein was O not O significant O ( O Fig O . O 4b O ). O A O more O conservative B-experimental_method substitution I-experimental_method of O these O five O residues O ( O 251 B-residue_range – I-residue_range 255 I-residue_range ) O with O an O unrelated O sequence O capable O of O backbone O - O mediated O hydrogen O bonds O ( O STVVP B-mutant > I-mutant NLALA I-mutant ) O confirmed O the O subtle O impact O of O this O versatile O inter B-structure_element - I-structure_element RRM I-structure_element sequence I-structure_element on O affinity B-evidence for O the O AdML B-gene Py B-chemical tract I-chemical . O Finally O , O to O ensure O that O these O selective O mutations O were O sufficient O to O disrupt O the O linker B-structure_element / O RRM B-structure_element contacts O , O we O substituted B-experimental_method glycine B-residue_name for O the O majority O of O buried O hydrophobic O residues O in O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O including O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number , O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number ; O called O 12Gly B-mutant ). O Yet O , O it O is O well O known O that O the O linker B-experimental_method deletion I-experimental_method in O the O context O of O the O minimal B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element boundaries O has O no O detectable O effect O on O the O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2 I-mutant ( O refs O ; O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4j O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence suggest O that O an O extended B-protein_state conformation I-protein_state of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element would O suffice O to O connect O the O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element C O terminus O to O the O N O terminus O of O RRM2 B-structure_element ( O 24 O Å O distance O between O U2AF651 B-mutant , I-mutant 2L I-mutant R227 B-residue_name_number - O Cα O – O H259 B-residue_name_number - O Cα O atoms O ), O which O agrees O with O the O greater O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant dual B-protein_state RRMs B-structure_element compared O with O the O individual B-protein_state U2AF65 B-protein RRMs B-structure_element . O Likewise O , O deletion B-experimental_method of O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element in O the O shortened B-protein_state constructs O would O remove O packing O interactions O that O position O the O linker B-structure_element in O a O kinked B-structure_element turn I-structure_element following O P229 B-residue_name_number ( O Fig O . O 4a O ), O consistent O with O the O lower O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant , O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2L I-mutant . O To O further O test O cooperation O among O the O U2AF65 B-protein RRM B-structure_element extensions I-structure_element and O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element for O RNA O recognition O , O we O tested O the O impact O of O a O triple O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method ( O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant ) O for O RNA O binding O ( O Fig O . O 4b O ; O Supplementary O Fig O . O 4d O ). O Notably O , O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method reduced O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant protein O by O 30 O - O fold O more O than O would O be O expected O based O on O simple O addition O of O the O ΔΔG B-evidence ' O s O for O the O single O mutations O . O Importance O of O U2AF65 B-complex_assembly – I-complex_assembly RNA I-complex_assembly contacts O for O pre B-chemical - I-chemical mRNA I-chemical splicing O As O a O representative O splicing O substrate O , O we O utilized O a O well O - O characterized O minigene B-chemical splicing I-chemical reporter I-chemical ( O called O pyPY B-chemical ) O comprising O a O weak O ( O that O is O , O degenerate O , O py B-chemical ) O and O strong O ( O that O is O , O U B-structure_element - I-structure_element rich I-structure_element , O PY B-chemical ) O polypyrimidine B-chemical tracts I-chemical preceding O two O alternative O splice B-site sites I-site ( O Fig O . O 5a O ). O Sparse O inter B-structure_element - I-structure_element RRM I-structure_element contacts O underlie O apo B-protein_state - O U2AF65 B-protein dynamics O The O direct O interface B-site between O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element is O minor O , O burying O 265 O Å2 O of O solvent O accessible O surface O area O compared O with O 570 O Å2 O on O average O for O a O crystal O packing O interface O . O Criteria O included O ( O i O ) O residue O locations O that O are O distant O from O and O hence O not O expected O to O interfere O with O the O RRM B-complex_assembly / I-complex_assembly RNA I-complex_assembly or O inter B-site - I-site RRM I-site interfaces I-site , O ( O ii O ) O inter O - O dye O distances O ( O 50 O Å O for O U2AF651 B-complex_assembly , I-complex_assembly 2L I-complex_assembly – I-complex_assembly Py I-complex_assembly tract I-complex_assembly and O 30 O Å O for O the O closed B-protein_state apo B-protein_state - O model O ) O that O are O expected O to O be O near O the O Förster B-experimental_method radius I-experimental_method ( I-experimental_method Ro I-experimental_method ) I-experimental_method for O the O Cy3 B-chemical / O Cy5 B-chemical pair O ( O 56 O Å O ), O where O changes O in O the O efficiency O of O energy O transfer O are O most O sensitive O to O distance O , O and O ( O iii O ) O FRET B-evidence efficiencies I-evidence that O are O calculated O to O be O significantly O greater O for O the O ‘ O closed B-protein_state ' O apo B-protein_state - O model O as O opposed O to O the O ‘ O open B-protein_state ' O RNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence ( O by O ∼ O 30 O %). O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O Importantly O , O the O majority O of O traces B-evidence (∼ O 70 O %) O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical lacked O FRET O fluctuations O and O predominately O exhibited O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O for O example O , O Fig O . O 6g O ). O Thus O , O the O sequence O of O structural O rearrangements O of O U2AF65 B-protein observed O in O smFRET B-experimental_method traces B-evidence ( O Supplementary O Fig O . O 7c O – O g O ) O suggests O that O a O ‘ O conformational O selection O ' O mechanism O of O Py B-chemical - I-chemical tract I-chemical recognition O ( O that O is O , O RNA O ligand O stabilization O of O a O pre B-protein_state - I-protein_state configured I-protein_state U2AF65 B-protein conformation O ) O is O complemented O by O ‘ O induced O fit O ' O ( O that O is O , O RNA O - O induced O rearrangement O of O the O U2AF65 B-protein RRMs B-structure_element to O achieve O the O final O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O conformation O ), O as O discussed O below O . O Recently O , O high B-experimental_method - I-experimental_method throughput I-experimental_method sequencing I-experimental_method studies I-experimental_method have O shown O that O somatic O mutations O in O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factors I-protein_type occur O in O the O majority O of O patients O with O myelodysplastic O syndrome O ( O MDS O ). O An O increased O prevalence O of O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence following O U2AF65 B-protein – O RNA B-chemical binding O , O coupled O with O the O apparent O absence B-protein_state of I-protein_state transitions O in O many O ∼ O 0 O . O 45 O - O value O single O molecule O traces B-evidence ( O for O example O , O Fig O . O 6e O ), O suggests O a O population O shift O in O which O RNA B-chemical binds O to O ( O and O draws O the O equilibrium O towards O ) O a O pre B-protein_state - I-protein_state configured I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element proximity O that O most O often O corresponds O to O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O Notably O , O our O smFRET B-experimental_method results O reveal O that O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O can O be O characterized O by O an O ‘ O extended O conformational O selection O ' O model O ( O Fig O . O 7b O ). O Here O , O the O majority O of O changes O in O smFRET B-experimental_method traces B-evidence for O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state slide O - O tethered O RNA B-chemical began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transition O to O the O predominant O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O The O finding O that O U2AF65 B-protein recognizes O a O nine O base O pair O Py B-chemical tract I-chemical contributes O to O an O elusive O ‘ O code O ' O for O predicting O splicing O patterns O from O primary O sequences O in O the O post O - O genomic O era O ( O reviewed O in O ref O .). O Moreover O , O structural O differences O among O U2AF65 B-protein homologues O and O paralogues O may O regulate O splice B-site site I-site selection O . O Ultimately O , O these O guidelines O will O assist O the O identification O of O 3 B-site ′ I-site splice I-site sites I-site and O the O relationship O of O disease O - O causing O mutations O to O penalties O for O U2AF65 B-protein association O . O ( O a O ) O Domain O organization O of O full B-protein_state - I-protein_state length I-protein_state ( O fl B-protein_state ) O U2AF65 B-protein and O constructs O used O for O RNA B-chemical binding O and O structural O experiments O . O Structures B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant recognizing O a O contiguous B-structure_element Py B-chemical tract I-chemical . O The O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant nucleotide B-site - I-site binding I-site sites I-site are O given O in O parentheses O ( O site O 4 O ' O interacts O with O dU2AF65 B-mutant RRM1 B-structure_element and O RRM2 B-structure_element by O crystallographic O symmetry O ). O ( O b O ) O Stereo O views O of O a O ‘ O kicked O ' O 2 B-evidence | I-evidence Fo I-evidence |−| I-evidence Fc I-evidence | I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N O - O and O C O - O terminal O residues O ( O blue O ) O or O bound O oligonucleotide B-chemical of O a O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure O ( O structure O iv O , O bound B-protein_state to I-protein_state 5 O ′-( O P O ) O rUrUrUdUrUrU O ( O BrdU O ) O dUrC O ) O ( O magenta O ). O The O nucleotide B-site - I-site binding I-site sites I-site of O the O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence are O compared O in O Supplementary O Fig O . O 3a O – O h O . O The O first B-site and I-site seventh I-site U2AF651 I-site , I-site 2L I-site - I-site binding I-site sites I-site are O unchanged O from O the O prior O dU2AF651 B-complex_assembly , I-complex_assembly 2 I-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence and O are O portrayed O in O Supplementary O Fig O . O 3a O , O f O . O The O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O similar O with O the O exception O of O pH O - O dependent O variations O at O the O ninth B-site site I-site that O are O detailed O in O Supplementary O Fig O . O 3i O , O j O . O The O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence shown O has O the O highest O resolution O and O / O or O ribose B-chemical nucleotide I-chemical at O the O given O site O : O ( O a O ) O rU2 B-residue_name_number of O structure O iv O ; O ( O b O ) O rU3 B-residue_name_number of O structure O iii O ; O ( O c O ) O rU4 B-residue_name_number of O structure O i O ; O ( O d O ) O rU5 B-residue_name_number of O structure O iii O ; O ( O e O ) O rU6 B-residue_name_number of O structure O ii O ; O ( O f O ) O dU8 B-residue_name_number of O structure O iii O ; O ( O g O ) O dU9 B-residue_name_number of O structure O iii O ; O ( O h O ) O rC9 B-residue_name_number of O structure O iv O . O The O U2AF65 B-protein linker B-structure_element / O RRM B-structure_element and O inter O - O RRM B-structure_element interactions O . O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O 3Gly B-mutant , O 47 O ± O 4 O nM O ; O 5Gly B-mutant , O 61 O ± O 3 O nM O ; O 12Gly B-mutant , O 88 O ± O 21 O nM O ; O NLALA B-mutant , O 45 O ± O 3 O nM O ; O dU2AF651 B-mutant , I-mutant 2L I-mutant , O 123 O ± O 5 O nM O ; O dU2AF651 B-mutant , I-mutant 2 I-mutant , O 5000 O ± O 100 O nM O ; O 3Mut B-mutant , O 5630 O ± O 70 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O ( O b O ) O Representative O RT B-experimental_method - I-experimental_method PCR I-experimental_method of O pyPY B-chemical transcripts O from O HEK293T O cells O co B-experimental_method - I-experimental_method transfected I-experimental_method with O constructs O encoding O the O pyPY B-chemical minigene O and O either O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O U2AF65 B-protein or O a O triple O U2AF65 B-protein mutant B-protein_state ( O 3Mut B-mutant ) O of O Q147A B-mutant , O R227A B-mutant and O V254P B-mutant residues O . O ( O c O ) O A O bar O graph O of O the O average O percentage O of O the O py B-chemical - O spliced O mRNA B-chemical relative O to O total O detected O pyPY B-chemical transcripts O ( O spliced O and O unspliced O ) O for O the O corresponding O gel O lanes O ( O black O , O no O U2AF65 B-protein added O ; O white O , O WT B-protein_state U2AF65 B-protein ; O grey O , O 3Mut B-mutant U2AF65 B-protein ). O Schematic O models O of O U2AF65 B-protein recognizing O the O Py B-chemical tract I-chemical . O Alternatively O , O a O conformation O of O U2AF65 B-protein corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence can O directly O bind O to O RNA B-chemical ; O RNA B-chemical binding O stabilizes O the O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O and O thus O shifts O the O U2AF65 B-protein population O towards O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O However O , O there O is O still O no O general O consensus O within O the O field O on O how O to O minimize O RD O during O MX B-experimental_method data O collection O , O and O debates O on O the O dependence O of O RD O progression O on O incident O X O - O ray O energy O ( O Shimizu O et O al O ., O 2007 O ; O Liebschner O et O al O ., O 2015 O ) O and O the O efficacy O of O radical O scavengers O ( O Allan O et O al O ., O 2013 O ) O have O yet O to O be O resolved O . O Specific B-experimental_method radiation I-experimental_method damage I-experimental_method ( O SRD B-experimental_method ) O is O observed O in O the O real B-evidence - I-evidence space I-evidence electron I-evidence density I-evidence , O and O has O been O detected O at O much O lower O doses O than O any O observable O decay O in O the O intensity O of O reflections O . O It O binds O with O high O affinity O ( O K B-evidence d I-evidence ≃ O 1 O . O 0 O nM O ) O to O RNA B-chemical segments O containing O 11 O GAG B-structure_element / I-structure_element UAG I-structure_element triplets I-structure_element separated O by O two O or O three O spacer B-structure_element nucleotides I-structure_element ( O Elliott O et O al O ., O 2001 O ) O to O regulate O the O transcription O of O tryptophan B-chemical biosynthetic O genes O in O Bacillus B-species subtilis I-species ( O Antson O et O al O ., O 1999 O ). O Ten O successive O 1 O . O 98 O Å O resolution O MX B-experimental_method data O sets O were O collected O from O the O same O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly crystal B-evidence to O analyse O X O - O ray O - O induced O structural O changes O over O a O large O dose O range O ( O d O 1 O = O 1 O . O 3 O MGy O to O d O 10 O = O 25 O . O 0 O MGy O ). O The O substrate O Trp B-chemical amino O - O acid O ligands O also O exhibited O disordering O of O the O free O terminal O carboxyl O groups O at O higher O doses O ( O Fig O . O 2 O ▸ O a O ); O however O , O no O clear O Fourier B-evidence difference I-evidence peaks I-evidence could O be O observed O visually O . O A O significant O reduction O in O D B-evidence loss I-evidence is O seen O for O Glu36 B-residue_name_number in O RNA B-protein_state - I-protein_state bound I-protein_state compared O with O nonbound B-protein_state TRAP B-complex_assembly , O indicative O of O a O lower O rate O of O side O - O chain O decarboxylation O ( O Fig O . O 5 O ▸ O a O ; O p O = O 6 O . O 06 O × O 10 O − O 5 O ). O RNA B-chemical binding O reduces O radiation O - O induced O disorder O on O the O atomic O scale O RNA B-chemical backbone O disordering O thus O appears O to O be O the O main O radiation O - O induced O effect O in O RNA B-chemical , O with O the O protein O – O base O interactions O maintained O even O at O high O doses O (> O 20 O MGy O ). O The O U4 B-residue_name_number phosphate B-chemical exhibited O marginally O larger O D B-evidence loss I-evidence values O above O 20 O MGy O than O G1 B-residue_name_number , O A2 B-residue_name_number and O G3 B-residue_name_number ( O Supplementary O Fig O . O S4 O ). O The O Glu36 B-residue_name_number carboxyl O side O chain O also O potentially O forms O hydrogen O bonds O to O His34 B-residue_name_number and O Lys56 B-residue_name_number , O but O since O these O interactions O are O conserved B-protein_state irrespective O of O G3 B-residue_name_number nucleotide O binding O , O this O cannot O directly O account O for O the O stabilization O effect O on O Glu36 B-residue_name_number in O RNA B-protein_state - I-protein_state bound I-protein_state TRAP B-complex_assembly . O By O comparing O equivalent O acidic O residues O with B-protein_state and O without B-protein_state RNA B-chemical , O we O have O now O deconvoluted O the O role O of O solvent O accessibility O from O other O local O protein O environment O factors O , O and O thus O propose O a O suitable O mechanism O by O which O exceptionally O low O solvent O accessibility O can O reduce O the O rate O of O decarboxylation O . O Apart O from O these O RNA B-site - I-site binding I-site interfaces I-site , O RNA B-chemical binding O was O seen O to O enhance O decarboxylation O for O residues O Glu50 B-residue_name_number , O Glu71 B-residue_name_number and O Glu73 B-residue_name_number , O all O of O which O are O involved O in O crystal O contacts O between O TRAP B-complex_assembly rings B-structure_element ( O Fig O . O 4 O ▸ O c O ). O In O TRAP B-complex_assembly , O D B-evidence loss I-evidence increased O at O a O similar O rate O for O both O the O Tyr B-residue_name O O atoms O and O aromatic O ring B-structure_element atoms O , O suggesting O that O full O ring B-structure_element conformational O disordering O is O more O likely O . O Within O the O cellular O environment O , O this O mechanism O could O reduce O the O risk O that O radiation O - O damaged O proteins O might O bind O to O RNA B-chemical , O thus O avoiding O the O detrimental O introduction O of O incorrect O DNA B-chemical - O repair O , O transcriptional O and O base O - O modification O pathways O . O RNA B-site - I-site binding I-site interface I-site interactions O are O shown O for O TRAP B-complex_assembly chain O N O , O with O the O F O obs O ( O d O 7 O ) O − O F O obs O ( O d O 1 O ) O Fourier O difference O map O ( O dose O 16 O . O 7 O MGy O ) O overlaid O and O contoured O at O a O ± O 4σ O level O . O Plants B-taxonomy_domain constantly O renew O during O their O life O cycle O and O thus O require O to O shed O senescent O and O damaged O organs O . O Here O we O show O that O IDA B-protein is O sensed O directly O by O the O HAESA B-protein ectodomain B-structure_element . O This O sequence O pattern O is O conserved B-protein_state among O diverse O plant B-taxonomy_domain peptides B-chemical , O suggesting O that O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type receptors I-protein_type may O share O a O common O ligand O binding O mode O and O activation O mechanism O . O The O experiments O show O that O IDA B-protein binds B-protein_state directly I-protein_state to I-protein_state a O canyon B-protein_state shaped I-protein_state pocket B-site in O HAESA B-protein that O extends O out O from O the O surface O of O the O cell O . O The O next O step O following O on O from O this O work O is O to O understand O what O signals O are O produced O when O IDA B-protein activates O HAESA B-protein . O The O calculated O molecular O mass O is O 65 O . O 7 O kDa O , O the O actual O molecular O mass O obtained O by O mass B-experimental_method spectrometry I-experimental_method is O 74 O , O 896 O Da O , O accounting O for O the O N B-chemical - I-chemical glycans I-chemical . O ( O B O ) O Ribbon O diagrams O showing O front O ( O left O panel O ) O and O side O views O ( O right O panel O ) O of O the O isolated O HAESA B-protein LRR B-structure_element domain I-structure_element . O The O N O - O ( O residues O 20 B-residue_range – I-residue_range 88 I-residue_range ) O and O C O - O terminal O ( O residues O 593 B-residue_range – I-residue_range 615 I-residue_range ) O capping B-structure_element domains I-structure_element are O shown O in O yellow O , O the O central O 21 O LRR B-structure_element motifs I-structure_element are O in O blue O and O disulphide B-ptm bonds I-ptm are O highlighted O in O green O ( O in O bonds O representation O ). O ( O C O ) O Structure B-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element in O HAESA B-protein with O the O plant B-taxonomy_domain LRR B-structure_element consensus O sequence O shown O for O comparison O . O During O their O growth O , O development O and O reproduction O plants B-taxonomy_domain use O cell O separation O processes O to O detach O no O - O longer O required O , O damaged O or O senescent O organs O . O Abscission O of O floral O organs O in O Arabidopsis B-taxonomy_domain is O a O model O system O to O study O these O cell O separation O processes O in O molecular O detail O . O The O LRR B-structure_element - I-structure_element RKs I-structure_element HAESA B-protein ( O greek O : O to O adhere O to O ) O and O HAESA B-protein - I-protein LIKE I-protein 2 I-protein ( O HSL2 B-protein ) O redundantly O control O floral O abscission O . O Transphosphorylation O activity O from O the O active B-protein_state kinase O to O the O mutated B-protein_state form O can O be O observed O in O both O directions O ( O lanes O 5 O + O 6 O ). O IDL1 B-protein , O which O can O rescue O IDA B-protein loss O - O of O - O function O mutants O when O introduced O in O abscission O zone O cells O , O can O also O be O sensed O by O HAESA B-protein , O albeit O with O lower O affinity B-evidence ( O Figure O 2D O ). O Notably O , O HAESA B-protein can O discriminate O between O IDLs B-protein_type and O functionally B-protein_state unrelated I-protein_state dodecamer B-structure_element peptides B-chemical with O Hyp B-ptm modifications I-ptm , O such O as O CLV3 B-protein ( O Figures O 2D O , O 7 O ). O Our O binding B-experimental_method assays I-experimental_method reveal O that O IDA B-chemical family I-chemical peptides I-chemical are O sensed O by O the O isolated B-protein_state HAESA B-protein ectodomain B-structure_element with O relatively O weak O binding B-evidence affinities I-evidence ( O Figures O 1B O , O 2A O – O D O ). O Possibly O because O SERKs B-protein_type have O additional O roles O in O plant O development O such O as O in O pollen O formation O and O brassinosteroid O signaling O , O we O found O that O higher O - O order O SERK O mutants O exhibit O pleiotropic O phenotypes O in O the O flower O , O rendering O their O analysis O and O comparison O by O quantitative B-experimental_method petal I-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assays I-experimental_method difficult O . O Ribbon O diagrams O of O HAESA B-protein ( O in O blue O ) O and O SERK1 B-protein ( O in O orange O ) O are O shown O with O selected O interface B-site residues I-site ( O in O bonds O representation O ). O HAESA B-protein LRRs B-structure_element 16 I-structure_element – I-structure_element 21 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element undergo O a O conformational O change O upon O SERK1 B-protein binding O ( O Figure O 4B O ). O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O For O a O rapidly O growing O number O of O plant B-taxonomy_domain signaling O pathways O , O SERK B-protein_type proteins I-protein_type act O as O these O essential O co B-protein_type - I-protein_type receptors I-protein_type (; O ). O Importantly O , O our O calorimetry B-experimental_method assays I-experimental_method reveal O that O the O SERK1 B-protein ectodomain B-structure_element binds B-protein_state HAESA B-protein with O nanomolar O affinity O , O but O only O in O the O presence B-protein_state of I-protein_state IDA B-protein ( O Figure O 3C O ). O SERK1 B-protein uses O partially O overlapping O surface O areas O to O activate O different O plant B-taxonomy_domain signaling B-protein_type receptors I-protein_type . O Residues O interacting O with O the O HAESA B-protein or O BRI1 B-protein LRR B-structure_element domains I-structure_element are O shown O in O orange O or O magenta O , O respectively O . O Comparison B-experimental_method of O our O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly structure B-evidence with O the O brassinosteroid O receptor O signaling O complex O , O where O SERK1 B-protein also O acts O as O co B-protein_type - I-protein_type receptor I-protein_type , O reveals O an O overall O conserved B-protein_state mode O of O SERK1 B-protein binding O , O while O the O ligand B-site binding I-site pockets I-site map O to O very O different O areas O in O the O corresponding O receptors O ( O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ; O HAESA B-protein ; O LRRs B-structure_element 21 I-structure_element – I-structure_element 25 I-structure_element , O BRI1 B-protein ) O and O may O involve O an O island O domain O ( O BRI1 B-protein ) O or O not O ( O HAESA B-protein ) O ( O Figure O 6A O ). O Several O residues O in O the O SERK1 B-protein N O - O terminal O capping B-structure_element domain I-structure_element ( O Thr59SERK1 B-residue_name_number , O Phe61SERK1 B-residue_name_number ) O and O the O LRR B-site inner I-site surface I-site ( O Asp75SERK1 B-residue_name_number , O Tyr101SERK1 B-residue_name_number , O SER121SERK1 B-residue_name_number , O Phe145SERK1 B-residue_name_number ) O contribute O to O the O formation O of O both O complexes O ( O Figures O 4C O , O D O , O 6B O ). O This O fact O together O with O the O largely O overlapping O SERK1 B-site binding I-site surfaces I-site in O HAESA B-protein and O BRI1 B-protein allows O us O to O speculate O that O SERK1 B-protein may O promote O high O - O affinity O peptide B-protein_type hormone I-protein_type and O brassinosteroid O sensing O by O simply O slowing O down O dissociation O of O the O ligand O from O its O cognate O receptor O . O The O conserved B-protein_state ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element is O highlighted O in O red O , O the O central O Hyp B-residue_name residue O in O IDLs B-protein_type and O CLEs B-protein_type is O marked O in O blue O . O Owing O to O some O differences O in O their O genomic O distribution O , O the O crotonyllysine B-residue_name and O acetyllysine B-residue_name ( O Kac B-residue_name ) O modifications O have O been O linked O to O distinct O functional O outcomes O . O The O acetyllysine B-residue_name binding O function O of O the O AF9 B-protein YEATS B-structure_element domain I-structure_element is O essential O for O the O recruitment O of O the O histone B-protein_type methyltransferase I-protein_type DOT1L B-protein to O H3K9ac B-protein_type - O containing O chromatin O and O for O DOT1L B-protein - O mediated O H3K79 B-protein_type methylation B-ptm and O transcription O . O To O elucidate O the O molecular O basis O for O recognition O of O the O H3K9cr B-protein_type mark O , O we O obtained O a O crystal B-evidence structure I-evidence of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element in B-protein_state complex I-protein_state with I-protein_state H3K9cr5 B-chemical - I-chemical 13 I-chemical ( O residues O 5 B-residue_range – I-residue_range 13 I-residue_range of O H3 B-protein_type ) O peptide O ( O Fig O . O 1 O , O Supplementary O Results O , O Supplementary O Fig O . O 1 O and O Supplementary O Table O 1 O ). O The O hydroxyl O group O of O Thr61 B-residue_name_number also O participates O in O a O hydrogen O bond O with O the O amide O nitrogen O of O the O K9cr B-residue_name_number side O chain O ( O Fig O . O 1d O ). O This O value O is O in O the O range O of O binding B-evidence affinities I-evidence exhibited O by O the O majority O of O histone O readers O , O thus O attesting O to O the O physiological O relevance O of O the O H3K9cr B-protein_type recognition O by O Taf14 B-protein . O As O shown O in O Figure O 2a O , O b O and O Supplementary O Fig O . O 3e O , O H3K9cr B-protein_type levels O were O abolished O or O reduced O considerably O in O the O HAT B-protein_type deletion B-experimental_method strains O , O whereas O they O were O dramatically O increased O in O the O HDAC B-protein_type deletion B-experimental_method strains O . O We O have O previously O shown O that O among O acetylated B-protein_state histone B-protein_type marks O , O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element prefers O acetylated B-protein_state H3K9 B-protein_type ( O also O see O Supplementary O Fig O . O 3b O ), O however O it O binds O to O H3K9cr B-protein_type tighter O . O To O determine O if O the O binding O to O crotonyllysine B-residue_name is O conserved B-protein_state , O we O tested O human B-species YEATS B-structure_element domains I-structure_element by O pull B-experimental_method - I-experimental_method down I-experimental_method experiments I-experimental_method using O singly O and O multiply O acetylated B-protein_state , O propionylated B-protein_state , O butyrylated B-protein_state , O and O crotonylated B-protein_state histone B-protein_type peptides O ( O Supplementary O Fig O . O 6 O ). O We O found O that O all O YEATS B-structure_element domains I-structure_element tested O are O capable O of O binding O to O crotonyllysine B-residue_name peptides O , O though O they O display O variable O preferences O for O the O acyl O moieties O . O While O YEATS2 B-protein and O ENL B-protein showed O selectivity O for O the O crotonylated B-protein_state peptides O , O GAS41 B-protein and O AF9 B-protein bound O acylated B-protein_state peptides O almost O equally O well O . O Spectra B-evidence are O color O coded O according O to O the O protein O : O peptide O molar O ratio O . O Substitution B-experimental_method of O Thr1 B-residue_name_number by O Cys B-residue_name disrupts O the O interaction O with O Lys33 B-residue_name_number and O inactivates B-protein_state the O proteasome B-complex_assembly . O Here O , O the O authors O use O structural O biology O and O biochemistry O to O investigate O the O role O of O proteasome B-complex_assembly active B-site site I-site residues O on O maturation O and O activity O . O Its O seven O different O α B-protein and O seven O different O β B-protein subunits I-protein assemble O into O four O heptameric B-oligomeric_state rings B-structure_element that O are O stacked O on O each O other O to O form O a O hollow B-structure_element cylinder I-structure_element . O Only O three O out O of O the O seven O different O β B-protein subunits I-protein , O namely O β1 B-protein , O β2 B-protein and O β5 B-protein , O bear O N O - O terminal O proteolytic B-site active I-site centres I-site , O and O before O CP B-complex_assembly maturation O these O are O protected O by O propeptides B-structure_element . O In O principle O it O could O function O as O the O general O base O during O both O autocatalytic B-ptm removal I-ptm of O the O propeptide B-structure_element and O protein O substrate O cleavage O . O Proteasome B-complex_assembly - O mediated O degradation O of O cell O - O cycle O regulators O and O potentially O toxic O misfolded O proteins O is O required O for O the O viability O of O eukaryotic B-taxonomy_domain cells O . O Inactivation O of O the O active B-site site I-site Thr1 B-residue_name_number by O mutation B-experimental_method to I-experimental_method Ala B-residue_name has O been O used O to O study O substrate O specificity O and O the O hierarchy O of O the O proteasome B-complex_assembly active B-site sites I-site . O Viability O is O restored O if O the O β5 B-mutant - I-mutant T1A I-mutant subunit O has O its O propeptide B-structure_element ( O pp B-chemical ) O deleted B-experimental_method but I-experimental_method expressed I-experimental_method separately I-experimental_method in O trans B-protein_state ( O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state ), O although O substantial O phenotypic O impairment O remains O ( O Table O 1 O ). O Processing O of O β O - O subunit O precursors O requires O deprotonation O of O Thr1OH B-residue_name_number ; O however O , O the O general O base O initiating O autolysis B-ptm is O unknown O . O Remarkably O , O eukaryotic B-taxonomy_domain proteasomal O β5 B-protein subunits O bear O a O His B-residue_name residue O in O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O propeptide B-structure_element ( O Supplementary O Fig O . O 3a O ). O We O determined O crystal B-evidence structures I-evidence of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutants O ( O Supplementary O Table O 1 O ). O By O contrast O , O the O prosegments B-structure_element of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutants O were O significantly O better O resolved O in O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence yet O not O at O full O occupancy O ( O Supplementary O Fig O . O 4b O , O c O and O Supplementary O Table O 1 O ), O suggesting O that O the O natural O propeptide B-structure_element bearing O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O most O favourable O . O Next O , O we O determined O the O crystal B-evidence structure I-evidence of O a O chimeric B-protein_state yCP B-complex_assembly having O the O yeast B-taxonomy_domain β1 B-protein - O propeptide B-structure_element replaced B-experimental_method by I-experimental_method its O β5 B-protein counterpart B-structure_element . O These O results O suggest O that O Asp166 B-residue_name_number and O Ser129 B-residue_name_number function O as O a O proton O shuttle O and O affect O the O protonation O state O of O Thr1N B-residue_name_number during O autolysis B-ptm and O catalysis O . O On O the O basis O of O the O phenotype O of O the O T1C B-mutant mutant B-protein_state and O the O propeptide B-structure_element remnant O identified O in O its O active B-site site I-site , O we O suppose O that O autolysis B-ptm is O retarded O and O may O not O have O been O completed O before O crystallization B-experimental_method . O Owing O to O the O unequal O positions O of O the O two O β5 B-protein subunits O within O the O CP B-complex_assembly in O the O crystal O lattice O , O maturation O and O propeptide B-structure_element displacement O may O occur O at O different O timescales O in O the O two O subunits O . O Despite O propeptide B-ptm hydrolysis I-ptm , O the O β5 B-mutant - I-mutant T1C I-mutant active B-site site I-site is O catalytically B-protein_state inactive I-protein_state ( O Fig O . O 4b O and O Supplementary O Fig O . O 9a O ). O All O proteasomes B-complex_assembly strictly B-protein_state employ I-protein_state threonine B-residue_name as O the O active B-site - I-site site I-site residue I-site instead O of O serine B-residue_name . O From O these O data O we O conclude O that O only O the O positioning O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Thr1 B-residue_name_number as O well O as O the O integrity O of O the O proteasomal O active B-site site I-site are O required O for O autolysis B-ptm . O In O this O regard O , O inappropriate O N B-ptm - I-ptm acetylation I-ptm of O the O Thr1 B-residue_name_number N O terminus O cannot O be O removed O by O Thr1Oγ B-residue_name_number due O to O the O rotational O freedom O and O flexibility O of O the O acetyl O group O . O Thus O , O specific O protein O surroundings O can O significantly O alter O the O chemical O properties O of O amino O acids O such O as O Lys B-residue_name to O function O as O an O acid O – O base O catalyst O . O Cleavage O of O the O scissile O peptide O bond O requires O protonation O of O the O emerging O free O amine O , O and O in O the O proteasome B-complex_assembly , O the O Thr1 B-residue_name_number amine O group O is O likely O to O assume O this O function O . O Breakdown O of O this O tetrahedral O transition O state O releases O the O Thr1 B-residue_name_number N O terminus O that O is O protonated O by O aspartic B-residue_name_number acid I-residue_name_number 166 I-residue_name_number via O Ser129OH B-residue_name_number to O yield O Thr1NH3 B-residue_name_number +. O While O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number are O required O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O side O chain O , O Ser129OH B-residue_name_number and O Asp166OH B-residue_name_number serve O to O protonate O the O N O - O terminal O amine O group O of O Thr1 B-residue_name_number . O However O , O owing O to O Cys B-residue_name being O a O strong O nucleophile O , O the O propeptide B-structure_element can O still O be O cleaved B-protein_state off O over O time O . O Notably O , O in O the O threonine B-protein_type aspartase I-protein_type Taspase1 B-protein , O mutation B-experimental_method of O the O active B-site - I-site site I-site Thr234 B-residue_name_number to O Ser B-residue_name also O places O the O side O chain O in O the O position O of O the O methyl O group O of O Thr234 B-residue_name_number in O the O WT B-protein_state , O thereby O reducing O catalytic O activity O . O Mutations B-experimental_method of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number and O their O influence O on O propeptide B-structure_element conformation O and O autolysis B-ptm . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site , O but O only O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O of O β2 B-protein forms O a O hydrogen O bridge O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O ( O black O dashed O line O ). O Collapse O of O the O transition O state O frees O the O Thr1 B-residue_name_number N O terminus O ( O by O completing O an O N O - O to O - O O O acyl O shift O of O the O propeptide B-structure_element ), O which O is O subsequently O protonated O by O Asp166OH B-residue_name_number via O Ser129OH B-residue_name_number . O The O charged O Thr1 B-residue_name_number N O terminus O may O engage O in O the O orientation O of O the O amide O moiety O and O donate O a O proton O to O the O emerging O N O terminus O of O the O C O - O terminal O cleavage O product O . O ( O g O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state active B-site sites I-site reveals O different O orientations O of O the O hydroxyl O groups O of O Thr1 B-residue_name_number and O Ser1 B-residue_name_number , O respectively O . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O