Molecular O Dissection O of O Xyloglucan B-chemical Recognition O in O a O Prominent O Human B-species Gut O Symbiont O Polysaccharide B-gene utilization I-gene loci I-gene ( O PUL B-gene ) O within O the O genomes O of O resident O human B-species gut O Bacteroidetes B-taxonomy_domain are O central O to O the O metabolism O of O the O otherwise O indigestible O complex O carbohydrates B-chemical known O as O “ O dietary O fiber O .” O However O , O functional O characterization O of O PUL B-gene lags O significantly O behind O sequencing O efforts O , O which O limits O physiological O understanding O of O the O human B-species - O bacterial B-taxonomy_domain symbiosis O . O In O particular O , O the O molecular O basis O of O complex B-chemical polysaccharide I-chemical recognition O , O an O essential O prerequisite O to O hydrolysis O by O cell O surface O glycosidases B-protein_type and O subsequent O metabolism O , O is O generally O poorly O understood O . O Here O , O we O present O the O biochemical B-experimental_method , I-experimental_method structural I-experimental_method , I-experimental_method and I-experimental_method reverse I-experimental_method genetic I-experimental_method characterization I-experimental_method of O two O unique O cell B-protein_type surface I-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O SGBPs B-protein_type ) O encoded O by O a O xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O from O Bacteroides B-species ovatus I-species , O which O are O integral O to O growth O on O this O key O dietary O vegetable B-taxonomy_domain polysaccharide B-chemical . O Biochemical B-experimental_method analysis I-experimental_method reveals O that O these O outer B-protein_type membrane I-protein_type - I-protein_type anchored I-protein_type proteins I-protein_type are O in O fact O exquisitely O specific O for O the O highly O branched O xyloglucan B-chemical ( O XyG B-chemical ) O polysaccharide B-chemical . O The O crystal B-evidence structure I-evidence of O SGBP B-protein - I-protein A I-protein , O a O SusD B-protein homolog O , O with O a O bound B-protein_state XyG B-chemical tetradecasaccharide B-chemical reveals O an O extended O carbohydrate B-site - I-site binding I-site platform I-site that O primarily O relies O on O recognition O of O the O β B-chemical - I-chemical glucan I-chemical backbone O . O The O unique O , O tetra B-structure_element - I-structure_element modular I-structure_element structure B-evidence of O SGBP B-protein - I-protein B I-protein is O comprised O of O tandem B-structure_element Ig I-structure_element - I-structure_element like I-structure_element folds I-structure_element , O with O XyG B-chemical binding O mediated O at O the O distal O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O Despite O displaying O similar O affinities B-evidence for O XyG B-chemical , O reverse B-experimental_method - I-experimental_method genetic I-experimental_method analysis I-experimental_method reveals O that O SGBP B-protein - I-protein B I-protein is O only O required O for O the O efficient O capture O of O smaller O oligosaccharides B-chemical , O whereas O the O presence O of O SGBP B-protein - I-protein A I-protein is O more O critical O than O its O carbohydrate B-chemical - O binding O ability O for O growth O on O XyG B-chemical . O Together O , O these O data O demonstrate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein play O complementary O , O specialized O roles O in O carbohydrate B-chemical capture O by O B B-species . I-species ovatus I-species and O elaborate O a O model O of O how O vegetable B-taxonomy_domain xyloglucans B-chemical are O accessed O by O the O Bacteroidetes B-taxonomy_domain . O The O Bacteroidetes B-taxonomy_domain are O dominant O bacteria B-taxonomy_domain in O the O human B-species gut O that O are O responsible O for O the O digestion O of O the O complex B-chemical polysaccharides I-chemical that O constitute O “ O dietary O fiber O .” O Although O this O symbiotic O relationship O has O been O appreciated O for O decades O , O little O is O currently O known O about O how O Bacteroidetes B-taxonomy_domain seek O out O and O bind O plant B-taxonomy_domain cell O wall O polysaccharides B-chemical as O a O necessary O first O step O in O their O metabolism O . O Here O , O we O provide O the O first O biochemical B-experimental_method , I-experimental_method crystallographic I-experimental_method , I-experimental_method and I-experimental_method genetic I-experimental_method insight I-experimental_method into O how O two O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type from O the O complex O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O enable O recognition O and O uptake O of O this O ubiquitous O vegetable B-taxonomy_domain polysaccharide B-chemical . O Our O combined O analysis O illuminates O new O fundamental O aspects O of O complex B-chemical polysaccharide I-chemical recognition O , O cleavage O , O and O import O at O the O Bacteroidetes B-taxonomy_domain cell O surface O that O may O facilitate O the O development O of O prebiotics O to O target O this O phylum O of O gut O bacteria B-taxonomy_domain . O The O human B-species gut O microbiota B-taxonomy_domain influences O the O course O of O human B-species development O and O health O , O playing O key O roles O in O immune O stimulation O , O intestinal O cell O proliferation O , O and O metabolic O balance O . O This O microbial B-taxonomy_domain community O is O largely O bacterial B-taxonomy_domain , O with O the O Bacteroidetes B-taxonomy_domain , O Firmicutes B-taxonomy_domain , O and O Actinobacteria B-taxonomy_domain comprising O the O dominant O phyla O . O The O ability O to O acquire O energy O from O carbohydrates B-chemical of O dietary O or O host O origin O is O central O to O the O adaptation O of O human B-species gut O bacterial B-taxonomy_domain species O to O their O niche O . O More O importantly O , O this O makes O diet O a O tractable O way O to O manipulate O the O abundance O and O metabolic O output O of O the O microbiota B-taxonomy_domain toward O improved O human B-species health O . O However O , O there O is O a O paucity O of O data O regarding O how O the O vast O array O of O complex B-chemical carbohydrate I-chemical structures O are O selectively O recognized O and O imported O by O members O of O the O microbiota B-taxonomy_domain , O a O critical O process O that O enables O these O organisms O to O thrive O in O the O competitive O gut O environment O . O The O human B-species gut O bacteria B-taxonomy_domain Bacteroidetes B-taxonomy_domain share O a O profound O capacity O for O dietary O glycan B-chemical degradation O , O with O many O species O containing O > O 250 O predicted O carbohydrate O - O active O enzymes O ( O CAZymes O ), O compared O to O 50 O to O 100 O within O many O Firmicutes B-taxonomy_domain and O only O 17 O in O the O human B-species genome O devoted O toward O carbohydrate O utilization O . O A O remarkable O feature O of O the O Bacteroidetes B-taxonomy_domain is O the O packaging O of O genes O for O carbohydrate O catabolism O into O discrete O polysaccharide B-gene utilization I-gene loci I-gene ( O PUL B-gene ), O which O are O transcriptionally O regulated O by O specific O substrate O signatures O . O The O archetypal O PUL B-gene - O encoded O system O is O the O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly ( O Sus B-complex_assembly ) O ( O Fig O . O 1B O ) O of O Bacteroides B-species thetaiotaomicron I-species . O The O Sus B-complex_assembly includes O a O lipid B-protein_state - I-protein_state anchored I-protein_state , O outer O membrane O endo B-protein_type - I-protein_type amylase I-protein_type , O SusG B-protein ; O a O TonB B-protein_type - I-protein_type dependent I-protein_type transporter I-protein_type ( O TBDT B-protein_type ), O SusC B-protein , O which O imports O oligosaccharides B-chemical with O the O help O of O an O associated O starch B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O SusD B-protein ; O two O additional O carbohydrate B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type , O SusE B-protein and O SusF B-protein ; O and O two O periplasmic O exo B-protein_type - I-protein_type glucosidases I-protein_type , O SusA B-protein and O SusB B-protein , O which O generate O glucose B-chemical for O transport O into O the O cytoplasm O . O The O importance O of O PUL B-gene as O a O successful O evolutionary O strategy O is O underscored O by O the O observation O that O Bacteroidetes B-taxonomy_domain such O as O B B-species . I-species thetaiotaomicron I-species and O Bacteroides B-species ovatus I-species devote O ~ O 18 O % O of O their O genomes O to O these O systems O . O Moving O beyond O seminal O genomic O and O transcriptomic O analyses O , O the O current O state O - O of O - O the O - O art O PUL B-gene characterization O involves O combined O reverse B-experimental_method - I-experimental_method genetic I-experimental_method , I-experimental_method biochemical I-experimental_method , I-experimental_method and I-experimental_method structural I-experimental_method studies I-experimental_method to O illuminate O the O molecular O details O of O PUL B-gene function O . O Xyloglucan B-chemical and O the O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ). O ( O A O ) O Representative O structures B-evidence of O common O xyloglucans B-chemical using O the O Consortium O for O Functional O Glycomics O Symbol O Nomenclature O ( O http O :// O www O . O functionalglycomics O . O org O / O static O / O consortium O / O Nomenclature O . O shtml O ). O Cleavage O sites O for O BoXyGUL B-gene glycosidases B-protein_type ( O GHs B-protein_type ) O are O indicated O for O solanaceous B-taxonomy_domain xyloglucan B-chemical . O ( O B O ) O BtSus B-gene and O BoXyGUL B-gene . O ( O C O ) O Localization O of O BoXyGUL B-gene - O encoded O proteins O in O cellular O membranes O and O concerted O modes O of O action O in O the O degradation O of O xyloglucans B-chemical to O monosaccharides O . O The O location O of O SGBP B-protein - I-protein A I-protein / O B B-protein is O presented O in O this O work O ; O the O location O of O GH5 B-protein has O been O empirically O determined O , O and O the O enzymes O have O been O placed O based O upon O their O predicted O cellular O location O . O We O recently O reported O the O detailed O molecular O characterization O of O a O PUL B-gene that O confers O the O ability O of O the O human B-species gut O commensal O B B-species . I-species ovatus I-species ATCC I-species 8483 I-species to O grow O on O a O prominent O family O of O plant B-taxonomy_domain cell O wall O glycans B-chemical , O the O xyloglucans B-chemical ( O XyG B-chemical ). O XyG B-chemical variants O ( O Fig O . O 1A O ) O constitute O up O to O 25 O % O of O the O dry O weight O of O common O vegetables B-taxonomy_domain . O Analogous O to O the O Sus B-gene locus I-gene , O the O xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O encodes O a O cohort O of O carbohydrate B-protein_type - I-protein_type binding I-protein_type , I-protein_type - I-protein_type hydrolyzing I-protein_type , I-protein_type and I-protein_type - I-protein_type importing I-protein_type proteins I-protein_type ( O Fig O . O 1B O and O C O ). O The O number O of O glycoside B-protein_type hydrolases I-protein_type ( O GHs B-protein_type ) O encoded O by O the O XyGUL B-gene is O , O however O , O more O expansive O than O that O by O the O Sus B-gene locus I-gene ( O Fig O . O 1B O ), O which O reflects O the O greater O complexity O of O glycosidic O linkages O found O in O XyG B-chemical vis O - O à O - O vis O starch B-chemical . O Whereas O our O previous O study O focused O on O the O characterization O of O the O linkage O specificity O of O these O GHs B-protein_type , O a O key O outstanding O question O regarding O this O locus O is O how O XyG B-chemical recognition O is O mediated O at O the O cell O surface O . O In O the O archetypal O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O starch O binding O to O the O cell O surface O is O mediated O at O eight O distinct O starch B-site - I-site binding I-site sites I-site distributed O among O four O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O SGBPs B-protein_type ): O two O within O the O amylase B-protein_type SusG B-protein , O one O within O SusD B-protein , O two O within O SusE B-protein , O and O three O within O SusF B-protein . O The O functional O redundancy O of O many O of O these O sites O is O high O : O whereas O SusD B-protein is O essential O for O growth O on O starch B-chemical , O combined O mutations O of O the O SusE B-protein , O SusF B-protein , O and O SusG B-protein binding B-site sites I-site are O required O to O impair O growth O on O the O polysaccharide B-chemical . O Bacteroidetes B-taxonomy_domain PUL B-gene ubiquitously O encode O homologs O of O SusC B-protein and O SusD B-protein , O as O well O as O proteins O whose O genes O are O immediately O downstream O of O susD B-gene , O akin O to O susE B-gene / I-gene F I-gene , O and O these O are O typically O annotated O as O “ O putative B-protein_state lipoproteins B-protein_type ”. O The O genes O coding O for O these O proteins O , O sometimes O referred O to O as O “ O susE B-gene / I-gene F I-gene positioned O ,” O display O products O with O a O wide O variation O in O amino O acid O sequence O and O which O have O little O or O no O homology O to O other O PUL B-gene - O encoded O proteins O or O known O carbohydrate B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type . O As O the O Sus B-complex_assembly SGBPs B-protein_type remain O the O only O structurally O characterized O cohort O to O date O , O we O therefore O wondered O whether O such O glycan B-chemical binding O and O function O are O extended O to O other O PUL B-gene that O target O more O complex O and O heterogeneous O polysaccharides B-chemical , O such O as O XyG B-chemical . O We O describe O here O the O detailed O functional B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O the O noncatalytic B-protein_state SGBPs B-protein_type encoded O by O Bacova_02651 B-gene and O Bacova_02650 B-gene of O the O XyGUL B-gene , O here O referred O to O as O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O to O elucidate O their O molecular O roles O in O carbohydrate O acquisition O in O vivo O . O Combined O biochemical B-experimental_method , I-experimental_method structural I-experimental_method , I-experimental_method and I-experimental_method reverse I-experimental_method - I-experimental_method genetic I-experimental_method approaches I-experimental_method clearly O illuminate O the O distinct O , O yet O complementary O , O functions O that O these O two O proteins O play O in O XyG B-chemical recognition O as O it O impacts O the O physiology O of O B B-species . I-species ovatus I-species . O These O data O extend O our O current O understanding O of O the O Sus O - O like O glycan B-chemical uptake O paradigm O within O the O Bacteroidetes B-taxonomy_domain and O reveals O how O the O complex O dietary O polysaccharide B-chemical xyloglucan B-chemical is O recognized O at O the O cell O surface O . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type , I-protein_type xyloglucan I-protein_type - I-protein_type specific I-protein_type binding I-protein_type proteins I-protein_type . O SGBP B-protein - I-protein A I-protein , O encoded O by O the O XyGUL B-gene locus O tag O Bacova_02651 B-gene ( O Fig O . O 1B O ), O shares O 26 O % O amino O acid O sequence O identity O ( O 40 O % O similarity O ) O with O its O homolog O , O B B-species . I-species thetaiotaomicron I-species SusD B-protein , O and O similar O homology O with O the O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type encoded O within O syntenic O XyGUL B-gene identified O in O our O earlier O work O . O In O contrast O , O SGBP B-protein - I-protein B I-protein , O encoded O by O locus O tag O Bacova_02650 B-gene , O displays O little O sequence O similarity O to O the O products O of O similarly O positioned O genes O in O syntenic O XyGUL B-gene nor O to O any O other O gene O product O among O the O diversity O of O Bacteroidetes B-taxonomy_domain PUL B-gene . O Whereas O sequence O similarity O among O SusC B-protein / O SusD B-protein homolog O pairs O often O serves O as O a O hallmark O for O PUL B-gene identification O , O the O sequence O similarities O of O downstream O genes O encoding O SGBPs B-protein_type are O generally O too O low O to O allow O reliable O bioinformatic O classification O of O their O products O into O protein O families O , O let O alone O prediction O of O function O . O Hence O , O there O is O a O critical O need O for O the O elucidation O of O detailed O structure O - O function O relationships O among O PUL B-gene SGBPs B-protein_type , O in O light O of O the O manifold O glycan B-chemical structures O in O nature O . O Immunofluorescence B-experimental_method of O formaldehyde O - O fixed O , O nonpermeabilized O cells O grown O in O minimal O medium O with O XyG B-chemical as O the O sole O carbon O source O to O induce O XyGUL B-gene expression O , O reveals O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O presented O on O the O cell O surface O by O N O - O terminal O lipidation B-ptm , O as O predicted O by O signal O peptide O analysis O with O SignalP O ( O Fig O . O 2 O ). O Here O , O the O SGBPs B-protein_type very O likely O work O in O concert O with O the O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type endo I-protein_type - I-protein_type xyloglucanase I-protein_type B B-species . I-species ovatus I-species GH5 B-protein ( O BoGH5 B-protein ) O to O recruit O and O cleave O XyG B-chemical for O subsequent O periplasmic O import O via O the O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type of O the O XyGUL B-gene ( O Fig O . O 1B O and O C O ). O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein visualized O by O immunofluorescence B-experimental_method . O Formalin O - O fixed O , O nonpermeabilized O B B-species . I-species ovatus I-species cells O were O grown O in O minimal O medium O plus O XyG B-chemical , O probed O with O custom O rabbit O antibodies O to O SGBP B-protein - I-protein A I-protein or O SGBP B-protein - I-protein B I-protein , O and O then O stained O with O Alexa O Fluor O 488 O goat O anti O - O rabbit O IgG O . O ( O A O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O A O . O ( O B O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O B O . O ( O C O ) O Bright B-evidence - I-evidence field I-evidence image I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O ( O D O ) O FITC B-evidence images I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O Cells O lacking B-protein_state SGBP B-protein - I-protein A I-protein ( O ΔSGBP B-mutant - I-mutant A I-mutant ) O do O not O grow O on O XyG B-chemical and O therefore O could O not O be O tested O in O parallel O . O In O our O initial O study O focused O on O the O functional O characterization O of O the O glycoside B-protein_type hydrolases I-protein_type of O the O XyGUL B-gene , O we O reported O preliminary O affinity B-experimental_method PAGE I-experimental_method and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O data O indicating O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O competent O xyloglucan B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O affinity B-evidence constant I-evidence [ O Ka B-evidence ] O values O of O 3 O . O 74 O × O 105 O M O − O 1 O and O 4 O . O 98 O × O 104 O M O − O 1 O , O respectively O [ O 23 O ]). O Additional O affinity B-experimental_method PAGE I-experimental_method analysis O ( O Fig O . O 3 O ) O demonstrates O that O SGBP B-protein - I-protein A I-protein also O has O moderate O affinity O for O the O artificial O soluble O cellulose O derivative O hydroxyethyl B-chemical cellulose I-chemical [ O HEC B-chemical ; O a O β B-chemical ( I-chemical 1 I-chemical → I-chemical 4 I-chemical )- I-chemical glucan I-chemical ] O and O limited O affinity O for O mixed B-chemical - I-chemical linkage I-chemical β I-chemical ( I-chemical 1 I-chemical → I-chemical 3 I-chemical )/ I-chemical β I-chemical ( I-chemical 1 I-chemical → I-chemical 4 I-chemical )- I-chemical glucan I-chemical ( O MLG B-chemical ) O and O glucomannan B-chemical ( O GM B-chemical ; O mixed O glucosyl B-chemical and O mannosyl B-chemical backbone O ), O which O together O indicate O general O binding O to O polysaccharide B-chemical backbone O residues O and O major O contributions O from O side O - O chain O recognition O . O In O contrast O , O SGBP B-protein - I-protein B I-protein bound O to O HEC B-chemical more O weakly O than O SGBP B-protein - I-protein A I-protein and O did O not O bind O to O MLG B-chemical or O GM B-chemical . O Neither O SGBP B-protein_type recognized O galactomannan B-chemical ( O GGM B-chemical ), O starch B-chemical , O carboxymethylcellulose B-chemical , O or O mucin B-chemical ( O see O Fig O . O S1 O in O the O supplemental O material O ). O Together O , O these O results O highlight O the O high O specificities O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein for O XyG B-chemical , O which O is O concordant O with O their O association O with O XyG B-protein_type - I-protein_type specific I-protein_type GHs I-protein_type in O the O XyGUL B-gene , O as O well O as O transcriptomic O analysis O indicating O that O B B-species . I-species ovatus I-species has O discrete O PUL B-gene for O MLG B-chemical , O GM B-chemical , O and O GGM B-chemical ( O 11 O ). O Notably O , O the O absence O of O carbohydrate B-site - I-site binding I-site modules I-site in O the O GHs B-protein_type encoded O by O the O XyGUL B-gene implies O that O noncatalytic O recognition O of O xyloglucan B-chemical is O mediated O entirely O by O SGBP B-protein - I-protein A I-protein and O - B-protein B I-protein . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein preferentially O bind O xyloglucan B-chemical . O Affinity B-experimental_method electrophoresis I-experimental_method ( O 10 O % O acrylamide O ) O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein with O BSA B-protein as O a O control O protein O . O All O samples O were O loaded O on O the O same O gel O next O to O the O BSA B-protein controls O ; O thin O black O lines O indicate O where O intervening O lanes O were O removed O from O the O final O image O for O both O space O and O clarity O . O The O percentage O of O polysaccharide B-chemical incorporated O into O each O native O gel O is O displayed O . O The O vanguard O endo B-protein_type - I-protein_type xyloglucanase I-protein_type of O the O XyGUL B-gene , O BoGH5 B-protein , O preferentially O cleaves O the O polysaccharide B-chemical at O unbranched O glucosyl B-chemical residues O to O generate O xylogluco B-chemical - I-chemical oligosaccharides I-chemical ( O XyGOs B-chemical ) O comprising O a O Glc4 B-structure_element backbone I-structure_element with O variable B-structure_element side I-structure_element - I-structure_element chain I-structure_element galactosylation I-structure_element ( O XyGO1 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 1 O ) O as O the O limit O of O digestion O products O in O vitro O ; O controlled B-experimental_method digestion I-experimental_method and I-experimental_method fractionation I-experimental_method by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method allow O the O production O of O higher O - O order O oligosaccharides B-chemical ( O e O . O g O ., O XyGO2 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 2 O ). O ITC B-experimental_method demonstrates O that O SGBP B-protein - I-protein A I-protein binds O to O XyG B-chemical polysaccharide B-chemical and O XyGO2 B-chemical ( O based O on O a O Glc8 B-structure_element backbone I-structure_element ) O with O essentially O equal O affinities B-evidence , O while O no O binding O of O XyGO1 B-chemical ( O Glc4 B-structure_element backbone I-structure_element ) O was O detectable O ( O Table O 1 O ; O see O Fig O . O S2 O and O S3 O in O the O supplemental O material O ). O Similarly O , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyG B-chemical and O XyGO2 B-chemical with O approximately O equal O affinities B-evidence , O although O in O both O cases O , O Ka B-evidence values O were O nearly O 10 O - O fold O lower O than O those O for O SGBP B-protein - I-protein A I-protein . O Also O in O contrast O to O SGBP B-protein - I-protein A I-protein , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyGO1 B-chemical , O yet O the O affinity B-evidence for O this O minimal B-structure_element repeating I-structure_element unit I-structure_element was O poor O , O with O a O Ka B-evidence value O of O ca O . O 1 O order O of O magnitude O lower O than O for O XyG B-chemical and O XyGO2 B-chemical . O Together O , O these O data O clearly O suggest O that O polysaccharide B-chemical binding O of O both O SGBPs B-protein_type is O fulfilled O by O a O dimer B-oligomeric_state of O the O minimal B-structure_element repeat I-structure_element , O corresponding O to O XyGO2 B-chemical ( O cf O . O The O observation O by O affinity B-experimental_method PAGE I-experimental_method that O these O proteins O specifically O recognize O XyG B-chemical is O further O substantiated O by O their O lack O of O binding O for O the O undecorated O oligosaccharide B-chemical cellotetraose B-chemical ( O Table O 1 O ; O see O Fig O . O S3 O ). O Furthermore O , O SGBP B-protein - I-protein A I-protein binds O cellohexaose B-chemical with O ~ O 770 O - O fold O weaker O affinity B-evidence than O XyG B-chemical , O while O SGBP B-protein - I-protein B I-protein displays O no O detectable O binding O to O this O linear O hexasaccharide B-chemical . O To O provide O molecular O - O level O insight O into O how O the O XyGUL B-gene SGBPs B-protein_type equip O B B-species . I-species ovatus I-species to O specifically O harvest O XyG B-chemical from O the O gut O environment O , O we O performed O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method analysis O of O both O SGBP B-protein - I-protein A I-protein and O SGPB B-protein - I-protein B I-protein in O oligosaccharide B-complex_assembly - I-complex_assembly complex I-complex_assembly forms I-complex_assembly . O Summary O of O thermodynamic O parameters O for O wild B-protein_state - I-protein_state type I-protein_state SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein obtained O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method at O 25 O ° O Ca O SGBP B-protein - I-protein A I-protein is O a O SusD B-protein homolog O with O an O extensive O glycan B-site - I-site binding I-site platform I-site . O As O anticipated O by O sequence O similarity O , O the O high O - O resolution O tertiary O structure B-evidence of O apo B-protein_state - O SGBP B-protein - I-protein A I-protein ( O 1 O . O 36 O Å O , O Rwork B-evidence = O 14 O . O 7 O %, O Rfree B-evidence = O 17 O . O 4 O %, O residues O 28 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Table O 2 O ) O displays O the O canonical O “ B-structure_element SusD I-structure_element - I-structure_element like I-structure_element ” I-structure_element protein I-structure_element fold I-structure_element dominated O by O four O tetratrico B-structure_element - I-structure_element peptide I-structure_element repeat I-structure_element ( O TPR B-structure_element ) O motifs O that O cradle O the O rest O of O the O structure B-evidence ( O Fig O . O 4A O ). O Specifically O , O SGBP B-protein - I-protein A I-protein overlays B-experimental_method B B-species . I-species thetaiotaomicron I-species SusD B-protein ( O BtSusD B-protein ) O with O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O value O of O 2 O . O 2 O Å O for O 363 O Cα O pairs O , O which O is O notable O given O the O 26 O % O amino O acid O identity O ( O 40 O % O similarity O ) O between O these O homologs O ( O Fig O . O 4C O ). O Cocrystallization B-experimental_method of O SGBP B-protein - I-protein A I-protein with O XyGO2 B-chemical generated O a O substrate B-complex_assembly complex I-complex_assembly structure B-evidence ( O 2 O . O 3 O Å O , O Rwork B-evidence = O 21 O . O 8 O %, O Rfree B-evidence = O 24 O . O 8 O %, O residues O 36 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Fig O . O 4A O and O B O ; O Table O 2 O ) O that O revealed O the O distinct O binding B-site - I-site site I-site architecture O of O the O XyG B-protein_type binding I-protein_type protein I-protein_type . O The O SGBP B-complex_assembly - I-complex_assembly A I-complex_assembly : I-complex_assembly XyGO2 I-complex_assembly complex O superimposes B-experimental_method closely O with O the O apo B-protein_state structure B-evidence ( O RMSD B-evidence of O 0 O . O 6 O Å O ) O and O demonstrates O that O no O major O conformational O change O occurs O upon O substrate O binding O ; O small O deviations O in O the O orientation O of O several O surface O loops O are O likely O the O result O of O differential O crystal O packing O . O It O is O particularly O notable O that O although O the O location O of O the O ligand B-site - I-site binding I-site site I-site is O conserved B-protein_state between O SGBP B-protein - I-protein A I-protein and O SusD B-protein , O that O of O SGBP B-protein - I-protein A I-protein displays O an O ~ O 29 O - O Å O - O long O aromatic B-site platform I-site to O accommodate O the O extended O , O linear O XyG B-chemical chain O ( O see O reference O for O a O review O of O XyG B-chemical secondary O structure O ), O versus O the O shorter O , O ~ O 18 O - O Å O - O long O , O site B-site within O SusD B-protein that O complements O the O helical O conformation O of O amylose B-chemical ( O Fig O . O 4C O and O D O ). O Molecular O structure B-evidence of O SGBP B-protein - I-protein A I-protein ( O Bacova_02651 B-gene ). O ( O A O ) O Overlay B-experimental_method of O SGBP B-protein - I-protein A I-protein from O the O apo B-protein_state ( O rainbow O ) O and O XyGO2 B-chemical ( O gray O ) O structures B-evidence . O The O apo B-protein_state structure B-evidence is O color O ramped O from O blue O to O red O . O An O omit B-evidence map I-evidence ( O 2σ O ) O for O XyGO2 B-chemical ( O orange O and O red O sticks O ) O is O displayed O . O ( O B O ) O Close O - O up O view O of O the O omit B-evidence map I-evidence as O in O panel O A O , O rotated O 90 O ° O clockwise O . O ( O C O ) O Overlay B-experimental_method of O the O Cα O backbones O of O SGBP B-protein - I-protein A I-protein ( O black O ) O with O XyGO2 B-chemical ( O orange O and O red O spheres O ) O and O BtSusD B-protein ( O blue O ) O with O maltoheptaose B-chemical ( O pink O and O red O spheres O ), O highlighting O the O conservation O of O the O glycan B-site - I-site binding I-site site I-site location O . O ( O D O ) O Close O - O up O of O the O SGBP B-protein - I-protein A I-protein ( O black O and O orange O ) O and O SusD B-protein ( O blue O and O pink O ) O glycan B-site - I-site binding I-site sites I-site . O The O approximate O length O of O each O glycan B-site - I-site binding I-site site I-site is O displayed O , O colored O to O match O the O protein B-evidence structures I-evidence . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein A I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O The O backbone O glucose B-chemical residues O are O numbered O from O the O nonreducing O end O ; O xylose B-chemical residues O are O labeled O X1 B-residue_name_number and O X2 B-residue_name_number . O Seven O of O the O eight O backbone O glucosyl B-chemical residues O of O XyGO2 B-chemical could O be O convincingly O modeled O in O the O ligand B-evidence electron I-evidence density I-evidence , O and O only O two O α B-chemical ( I-chemical 1 I-chemical → I-chemical 6 I-chemical )- I-chemical linked I-chemical xylosyl I-chemical residues O were O observed O ( O Fig O . O 4B O ; O cf O . O Indeed O , O the O electron B-evidence density I-evidence for O the O ligand O suggests O some O disorder O , O which O may O arise O from O multiple O oligosaccharide B-chemical orientations O along O the O binding B-site site I-site . O Three O aromatic O residues O — O W82 B-residue_name_number , O W283 B-residue_name_number , O W306 B-residue_name_number — O comprise O the O flat B-site platform I-site that O stacks O along O the O naturally O twisted O β B-chemical - I-chemical glucan I-chemical backbone O ( O Fig O . O 4E O ). O The O functional O importance O of O this O platform B-site is O underscored O by O the O observation O that O the O W82A B-mutant W283A B-mutant W306A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein A I-protein , O designated O SGBP B-mutant - I-mutant A I-mutant *, I-mutant is O completely B-protein_state devoid I-protein_state of I-protein_state XyG I-protein_state affinity I-protein_state ( O Table O 3 O ; O see O Fig O . O S4 O in O the O supplemental O material O ). O Dissection O of O the O individual O contribution O of O these O residues O reveals O that O the O W82A B-mutant mutant B-protein_state displays O a O significant O 4 O . O 9 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O while O the O W306A B-mutant substitution B-experimental_method completely O abolishes B-protein_state XyG I-protein_state binding I-protein_state . O Contrasting O with O the O clear O importance O of O these O hydrophobic O interactions O , O there O are O remarkably O few O hydrogen O - O bonding O interactions O with O the O ligand B-chemical , O which O are O provided O by O R65 B-residue_name_number , O N83 B-residue_name_number , O and O S308 B-residue_name_number , O which O are O proximal O to O Glc5 B-residue_name_number and O Glc3 B-residue_name_number . O Most O surprising O in O light O of O the O saccharide B-evidence - I-evidence binding I-evidence data I-evidence , O however O , O was O a O lack O of O extensive O recognition O of O the O XyG B-chemical side O chains O ; O only O Y84 B-residue_name_number appeared O to O provide O a O hydrophobic B-site interface I-site for O a O xylosyl B-chemical residue O ( O Xyl1 B-residue_name_number ). O Summary O of O thermodynamic O parameters O for O site O - O directed O mutants O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein obtained O by O ITC B-experimental_method with O XyG B-chemical at O 25 O ° O Ca O Protein O name O Ka B-evidence ΔG O ( O kcal O ⋅ O mol O − O 1 O ) O ΔH B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O TΔS B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O Fold O changeb O M O − O 1 O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant ) O c O 4 O . O 9 O 9 O . O 1 O × O 104 O − O 6 O . O 8 O − O 6 O . O 3 O 0 O . O 5 O SGBP B-protein - I-protein A I-protein ( O W306 B-residue_name_number ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein B I-protein ( O 230 B-residue_range – I-residue_range 489 I-residue_range ) O 0 O . O 7 O ( O 8 O . O 6 O ± O 0 O . O 20 O ) O × O 104 O − O 6 O . O 7 O − O 14 O . O 9 O ± O 0 O . O 1 O − O 8 O . O 2 O SGBP B-protein - I-protein B I-protein ( O Y363A B-mutant ) O 19 O . O 7 O ( O 2 O . O 9 O ± O 0 O . O 10 O ) O × O 103 O − O 4 O . O 7 O − O 18 O . O 1 O ± O 0 O . O 1 O − O 13 O . O 3 O SGBP B-protein - I-protein B I-protein ( O W364A B-mutant ) O ND O Weak O Weak O Weak O Weak O SGBP B-protein - I-protein B I-protein ( O F414A B-mutant ) O 3 O . O 2 O ( O 1 O . O 80 O ± O 0 O . O 03 O ) O × O 104 O − O 5 O . O 8 O − O 11 O . O 4 O ± O 0 O . O 1 O − O 5 O . O 6 O Binding O thermodynamics O are O based O on O the O concentration O of O the O binding O unit O , O XyGO2 B-chemical . O Weak O binding O represents O a O Ka B-evidence of O < O 500 O M O − O 1 O . O Ka B-evidence fold O change O = O Ka B-evidence of O wild B-protein_state - I-protein_state type I-protein_state protein O / O Ka B-evidence of O mutant O protein O for O xyloglucan B-chemical binding O . O SGBP B-protein - I-protein B I-protein has O a O multimodular O structure O with O a O single O , O C O - O terminal O glycan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element . O The O crystal B-evidence structure I-evidence of O full B-protein_state - I-protein_state length I-protein_state SGBP B-protein - I-protein B I-protein in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 2 O . O 37 O Å O , O Rwork B-evidence = O 19 O . O 9 O %, O Rfree B-evidence = O 23 O . O 9 O %, O residues O 34 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ) O revealed O an O extended O structure B-evidence composed O of O three O tandem B-structure_element immunoglobulin I-structure_element ( I-structure_element Ig I-structure_element )- I-structure_element like I-structure_element domains I-structure_element ( O domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element ) O followed O at O the O C O terminus O by O a O novel O xyloglucan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O domain O D B-structure_element ) O ( O Fig O . O 5A O ). O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element display O similar O β B-structure_element - I-structure_element sandwich I-structure_element folds I-structure_element ; O domains O B B-structure_element ( O residues O 134 B-residue_range to I-residue_range 230 I-residue_range ) O and O C B-structure_element ( O residues O 231 B-residue_range to I-residue_range 313 I-residue_range ) O can O be O superimposed B-experimental_method onto O domain O A B-structure_element ( O residues O 34 B-residue_range to I-residue_range 133 I-residue_range ) O with O RMSDs B-evidence of O 1 O . O 1 O and O 1 O . O 2 O Å O , O respectively O , O for O 47 O atom O pairs O ( O 23 O % O and O 16 O % O sequence O identity O , O respectively O ). O These B-structure_element domains I-structure_element also O display O similarity O to O the O C O - O terminal O β B-structure_element - I-structure_element sandwich I-structure_element domains I-structure_element of O many O GH13 B-protein_type enzymes I-protein_type , O including O the O cyclodextrin B-protein_type glucanotransferase I-protein_type of O Geobacillus B-species stearothermophilus I-species ( O Fig O . O 5B O ). O Such B-structure_element domains I-structure_element are O not O typically O involved O in O carbohydrate B-chemical binding O . O Indeed O , O visual B-experimental_method inspection I-experimental_method of O the O SGBP B-protein - I-protein B I-protein structure B-evidence , O as O well O as O individual O production O of O the O A B-structure_element and O B B-structure_element domains O and O affinity B-experimental_method PAGE I-experimental_method analysis O ( O see O Fig O . O S5 O in O the O supplemental O material O ), O indicates O that O these O domains O do O not O contribute O to O XyG B-chemical capture O . O On O the O other O hand O , O production B-experimental_method of O the O fused B-mutant domains I-mutant C I-mutant and I-mutant D I-mutant in O tandem O ( O SGBP B-protein - I-protein B I-protein residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O retains O complete O binding O of O xyloglucan B-chemical in O vitro O , O with O the O observed O slight O increase O in O affinity O likely O arising O from O a O reduced O potential O for O steric O hindrance O of O the O smaller O protein O construct O during O polysaccharide B-chemical interactions O ( O Table O 3 O ). O While O neither O the O full B-protein_state - I-protein_state length I-protein_state protein O nor O domain O D B-structure_element displays O structural O homology O to O known O XyG B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type , O the O topology O of O SGBP B-protein - I-protein B I-protein resembles O the O xylan B-protein_type - I-protein_type binding I-protein_type protein I-protein_type Bacova_04391 B-protein ( O PDB O 3ORJ O ) O encoded O within O a O xylan B-chemical - O targeting O PUL B-gene of O B B-species . I-species ovatus I-species ( O Fig O . O 5C O ). O The O structure B-experimental_method - I-experimental_method based I-experimental_method alignment I-experimental_method of O these O proteins O reveals O 17 O % O sequence O identity O , O with O a O core O RMSD B-evidence of O 3 O . O 6 O Å O for O 253 O aligned O residues O . O While O there O is O no O substrate O - O complexed O structure O of O Bacova_04391 B-protein available O , O the O binding B-site site I-site is O predicted O to O include O W241 B-residue_name_number and O Y404 B-residue_name_number , O which O are O proximal O to O the O XyGO B-site binding I-site site I-site in O SGBP B-protein - I-protein B I-protein . O However O , O the O opposing B-protein_state , I-protein_state clamp I-protein_state - I-protein_state like I-protein_state arrangement I-protein_state of O these B-structure_element residues I-structure_element in O Bacova_04391 B-protein is O clearly O distinct O from O the O planar B-site surface I-site arrangement I-site of O the O residues B-structure_element that O interact O with O XyG B-chemical in O SGBP B-protein - I-protein B I-protein ( O described O below O ). O Multimodular O structure O of O SGBP B-protein - I-protein B I-protein ( O Bacova_02650 B-gene ). O ( O A O ) O Full B-protein_state - I-protein_state length I-protein_state structure B-evidence of O SGBP B-protein - I-protein B I-protein , O color O coded O by O domain O as O indicated O . O Prolines B-residue_name between O domains O are O indicated O as O spheres O . O An O omit B-evidence map I-evidence ( O 2σ O ) O for O XyGO2 B-chemical is O displayed O to O highlight O the O location O of O the O glycan B-site - I-site binding I-site site I-site . O ( O B O ) O Overlay O of O SGBP B-protein - I-protein B I-protein domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element ( O colored O as O in O panel O A O ), O with O a O C O - O terminal O Ig B-structure_element - I-structure_element like I-structure_element domain I-structure_element of O the O G B-species . I-species stearothermophilus I-species cyclodextrin B-protein_type glucanotransferase I-protein_type ( O PDB O 1CYG O [ O residues O 375 B-residue_range to I-residue_range 493 I-residue_range ]) O in O green O . O ( O C O ) O Cα O overlay B-experimental_method of O SGBP B-protein - I-protein B I-protein ( O gray O ) O and O Bacova_04391 B-protein ( O PDB O 3ORJ O ) O ( O pink O ). O ( O D O ) O Close O - O up O omit B-evidence map I-evidence for O the O XyGO2 B-chemical ligand O , O contoured O at O 2σ O . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein B I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O The O backbone O glucose B-chemical residues O are O numbered O from O the O nonreducing O end O , O xylose B-chemical residues O are O shown O as O X1 B-residue_name_number , O X2 B-residue_name_number , O and O X3 B-residue_name_number , O potential O hydrogen O - O bonding O interactions O are O shown O as O dashed O lines O , O and O the O distance O is O shown O in O angstroms O . O Inspection O of O the O tertiary O structure B-evidence indicates O that O domains O C B-structure_element and O D B-structure_element are O effectively O inseparable O , O with O a O contact O interface O of O 396 O Å2 O . O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element do O not O pack O against O each O other O . O Moreover O , O the O five B-structure_element - I-structure_element residue I-structure_element linkers I-structure_element between O these O first O three O domains O all O feature O a O proline B-residue_name as O the O middle B-structure_element residue I-structure_element , O suggesting O significant O conformational O rigidity O ( O Fig O . O 5A O ). O Despite O the O lack O of O sequence O and O structural O conservation O , O a O similarly O positioned O proline B-residue_name joins O the O Ig B-structure_element - I-structure_element like I-structure_element domains I-structure_element of O the O xylan O - O binding O Bacova_04391 B-protein and O the O starch B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type SusE B-protein and O SusF B-protein . O We O speculate O that O this O is O a O biologically O important O adaptation O that O serves O to O project O the O glycan B-site binding I-site site I-site of O these O proteins O far O from O the O membrane O surface O . O Any O mobility O of O SGBP B-protein - I-protein B I-protein on O the O surface O of O the O cell O ( O beyond O lateral O diffusion O within O the O membrane O ) O is O likely O imparted O by O the O eight B-structure_element - I-structure_element residue I-structure_element linker I-structure_element that O spans O the O predicted O lipidated B-protein_state Cys B-residue_name ( O C28 B-residue_name_number ) O and O the O first B-structure_element β I-structure_element - I-structure_element strand I-structure_element of O domain O A B-structure_element . O Other O outer B-protein_type membrane I-protein_type proteins I-protein_type from O various O Sus B-complex_assembly - I-complex_assembly like I-complex_assembly systems I-complex_assembly possess O a O similar O 10 B-structure_element - I-structure_element to I-structure_element 20 I-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element flexible I-structure_element linker I-structure_element between O the O lipidated B-protein_state Cys B-residue_name that O tethers O the O protein O to O the O outside O the O cell O and O the O first O secondary O structure O element O . O Analogously O , O the O outer B-protein_state membrane I-protein_state - I-protein_state anchored I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type BoGH5 B-protein of O the O XyGUL B-gene contains O a O 100 B-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element , I-structure_element all I-structure_element - I-structure_element β I-structure_element - I-structure_element strand I-structure_element , O N B-structure_element - I-structure_element terminal I-structure_element module I-structure_element and O flexible B-structure_element linker I-structure_element that O imparts O conformational O flexibility O and O distances O the O catalytic B-structure_element module I-structure_element from O the O cell O surface O . O XyG B-chemical binds B-protein_state to I-protein_state domain O D B-structure_element of O SGBP B-protein - I-protein B I-protein at O the O concave B-site interface I-site of O the O top O β B-structure_element - I-structure_element sheet I-structure_element , O with O binding O mediated O by O loops B-structure_element connecting O the O β B-structure_element - I-structure_element strands I-structure_element . O Six O glucosyl B-chemical residues O , O comprising O the O main O chain O , O and O three O branching O xylosyl B-chemical residues O of O XyGO2 B-chemical can O be O modeled O in O the O density B-evidence ( O Fig O . O 5D O ; O cf O . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O The O aromatic B-site platform I-site created O by O W330 B-residue_name_number , O W364 B-residue_name_number , O and O Y363 B-residue_name_number spans O four O glucosyl B-chemical residues O , O compared O to O the O longer B-protein_state platform B-site of O SGBP B-protein - I-protein A I-protein , O which O supports O six O glucosyl B-chemical residues O ( O Fig O . O 5E O ). O The O Y363A B-mutant site B-experimental_method - I-experimental_method directed I-experimental_method mutant I-experimental_method of O SGBP B-protein - I-protein B I-protein displays O a O 20 O - O fold O decrease O in O the O Ka B-evidence for O XyG B-chemical , O while O the O W364A B-mutant mutant B-protein_state lacks B-protein_state XyG I-protein_state binding I-protein_state ( O Table O 3 O ; O see O Fig O . O S6 O in O the O supplemental O material O ). O There O are O no O additional O contacts O between O the O protein O and O the O β B-chemical - I-chemical glucan I-chemical backbone O and O surprisingly O few O interactions O with O the O side O - O chain O xylosyl B-chemical residues O , O despite O that O fact O that O ITC B-experimental_method data O demonstrate O that O SGBP B-protein - I-protein B I-protein does O not O measurably O bind O the O cellohexaose B-chemical ( O Table O 1 O ). O F414 B-residue_name_number stacks O with O the O xylosyl B-chemical residue O of O Glc3 B-residue_name_number , O while O Q407 B-residue_name_number is O positioned O for O hydrogen O bonding O with O the O O4 O of O xylosyl B-chemical residue O Xyl1 B-residue_name_number . O Surprisingly O , O an O F414A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein B I-protein displays O only O a O mild O 3 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O again O suggesting O that O glycan B-chemical recognition O is O primarily O mediated O via O contact O with O the O β O - O glucan O backbone O ( O Table O 3 O ; O see O Fig O . O S6 O ). O Additional O residues B-structure_element surrounding O the O binding B-site site I-site , O including O Y369 B-residue_name_number and O E412 B-residue_name_number , O may O contribute O to O the O recognition O of O more O highly O decorated O XyG B-chemical , O but O precisely O how O this O is O mediated O is O presently O unclear O . O Hoping O to O achieve O a O higher O - O resolution O view O of O the O SGBP B-protein - I-protein B I-protein – O xyloglucan B-chemical interaction O , O we O solved B-experimental_method the O crystal B-evidence structure I-evidence of O the O fused B-mutant CD I-mutant domains I-mutant in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 1 O . O 57 O Å O , O Rwork B-evidence = O 15 O . O 6 O %, O Rfree B-evidence = O 17 O . O 1 O %, O residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ). O The O CD B-structure_element domains I-structure_element of O the O truncated B-protein_state and O full B-protein_state - I-protein_state length I-protein_state proteins O superimpose B-experimental_method with O a O 0 O . O 4 O - O Å O RMSD B-evidence of O the O Cα O backbone O , O with O no O differences O in O the O position O of O any O of O the O glycan B-site - I-site binding I-site residues I-site ( O see O Fig O . O S7A O in O the O supplemental O material O ). O While O density B-evidence is O observed O for O XyGO2 B-chemical , O the O ligand O could O not O be O unambiguously O modeled O into O this O density B-evidence to O achieve O a O reasonable O fit O between O the O X B-evidence - I-evidence ray I-evidence data I-evidence and O the O known O stereochemistry O of O the O sugar O ( O see O Fig O . O S7B O and O C O ). O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein have O distinct O , O coordinated O functions O in O vivo O . O The O similarity O of O the O glycan B-chemical specificity O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein presents O an O intriguing O conundrum O regarding O their O individual O roles O in O XyG B-chemical utilization O by O B B-species . I-species ovatus I-species . O To O disentangle O the O functions O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein in O XyG B-chemical recognition O and O uptake O , O we O created O individual O in B-experimental_method - I-experimental_method frame I-experimental_method deletion I-experimental_method and I-experimental_method complementation I-experimental_method mutant I-experimental_method strains O of O B B-species . I-species ovatus I-species . O In O these O growth B-experimental_method experiments I-experimental_method , O overnight O cultures O of O strains O grown O on O minimal O medium O plus O glucose B-chemical were O back O - O diluted O 1 O : O 100 O - O fold O into O minimal O medium O containing O 5 O mg O / O ml O of O the O reported O carbohydrate B-chemical . O Growth O on O glucose B-chemical displayed O the O shortest O lag B-evidence time I-evidence for O each O strain O , O and O so O lag B-evidence times I-evidence were O normalized O for O each O carbohydrate B-chemical by O subtracting O the O lag B-evidence time I-evidence of O that O strain O in O glucose B-chemical ( O Fig O . O 6 O ; O see O Fig O . O S8 O in O the O supplemental O material O ). O A O strain O in O which O the O entire O XyGUL B-gene is O deleted B-experimental_method displays O a O lag B-evidence of O 24 O . O 5 O h O during O growth O on O glucose B-chemical compared O to O the O isogenic O parental O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Δtdk B-mutant strain O , O for O which O exponential O growth O lags B-evidence for O 19 O . O 8 O h O ( O see O Fig O . O S8D O ). O It O is O unknown O whether O this O is O because O cultures O were O not O normalized O by O the O starting O optical O density O ( O OD O ) O or O viable O cells O or O reflects O a O minor O defect O for O glucose B-chemical utilization O . O The O former O seems O more O likely O as O the O growth O rates O are O nearly O identical O for O these O strains O on O glucose B-chemical and O xylose B-chemical . O The O ΔXyGUL B-mutant and O WT B-protein_state Δtdk B-mutant strains O display O normalized O lag B-evidence times I-evidence on O xylose B-chemical within O experimental O error O , O and O curiously O some O of O the O mutant O and O complemented O strains O display O a O nominally O shorter O lag B-evidence time I-evidence on O xylose B-chemical than O the O WT B-protein_state Δtdk B-mutant strain O . O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O The O reason O for O this O observation O on O XyGO2 B-chemical is O unclear O , O as O the O ΔSGBP B-mutant - I-mutant B I-mutant mutant B-protein_state does O not O have O a O significantly O different O growth O rate O from O the O WT B-protein_state on O XyGO2 B-chemical . O Growth O of O select O XyGUL B-gene mutants O on O xyloglucan B-chemical and O oligosaccharides B-chemical . O B B-species . I-species ovatus I-species mutants O were O created O in O a O thymidine B-mutant kinase I-mutant deletion I-mutant ( O Δtdk B-mutant ) O mutant O as O described O previously O . O SGBP B-mutant - I-mutant A I-mutant * I-mutant denotes O the O Bacova_02651 B-gene ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O allele O , O and O the O GH9 B-protein gene O is O Bacova_02649 B-gene . O Growth O was O measured O over O time O in O minimal O medium O containing O ( O A O ) O XyG B-chemical , O ( O B O ) O XyGO2 B-chemical , O ( O C O ) O XyGO1 B-chemical , O ( O D O ) O glucose B-chemical , O and O ( O E O ) O xylose B-chemical . O In O panel O F O , O the O growth O rate O of O each O strain O on O the O five O carbon O sources O is O displayed O , O and O in O panel O G O , O the O normalized O lag B-evidence time I-evidence of O each O culture O , O relative O to O its O growth O on O glucose B-chemical , O is O displayed O . O Solid O bars O indicate O conditions O that O are O not O statistically O significant O from O the O WT B-protein_state Δtdk B-mutant cultures O grown O on O the O indicated O carbohydrate B-chemical , O while O open O bars O indicate O a O P O value O of O < O 0 O . O 005 O compared O to O the O WT B-protein_state Δtdk B-mutant strain O . O Conditions O denoted O by O the O same O letter O ( O b O , O c O , O or O d O ) O are O not O statistically O significant O from O each O other O but O are O significantly O different O from O the O condition O labeled O “ O a O .” O Complementation O of O ΔSGBP B-mutant - I-mutant A I-mutant and O ΔSBGP B-mutant - I-mutant B I-mutant was O performed O by O allelic O exchange O of O the O wild B-protein_state - I-protein_state type I-protein_state genes O back O into O the O genome O for O expression O via O the O native O promoter O : O these O growth O curves O , O quantified O rates O and O lag B-evidence times I-evidence are O displayed O in O Fig O . O S8 O in O the O supplemental O material O . O The O ΔSGBP B-mutant - I-mutant A I-mutant ( O ΔBacova_02651 B-mutant ) O strain O ( O cf O . O Fig O . O 1B O ) O was O completely O incapable O of O growth O on O XyG B-chemical , O XyGO1 B-chemical , O and O XyGO2 B-chemical , O indicating O that O SGBP B-protein - I-protein A I-protein is O essential O for O XyG B-chemical utilization O ( O Fig O . O 6 O ). O This O result O mirrors O our O previous O data O for O the O canonical O Sus B-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O which O revealed O that O a O homologous O ΔsusD B-mutant mutant B-protein_state is O unable O to O grow O on O starch B-chemical or O malto B-chemical - I-chemical oligosaccharides I-chemical , O despite O normal O cell O surface O expression O of O all O other O PUL B-gene - O encoded O proteins O . O More O recently O , O we O demonstrated O that O this O phenotype O is O due O to O the O loss O of O the O physical O presence O of O SusD B-protein ; O complementation B-experimental_method of O ΔsusD B-mutant with O SusD B-mutant *, I-mutant a O triple B-protein_state site I-protein_state - I-protein_state directed I-protein_state mutant I-protein_state ( O W96A B-mutant W320A B-mutant Y296A B-mutant ) O that O ablates B-protein_state glycan I-protein_state binding I-protein_state , O restores O B B-species . I-species thetaiotaomicron I-species growth O on O malto B-chemical - I-chemical oligosaccharides I-chemical and O starch B-chemical when O sus B-gene transcription O is O induced O by O maltose B-chemical addition O . O Similarly O , O the O function O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical binding O . O Complementation B-experimental_method of O ΔSGBP B-mutant - I-mutant A I-mutant with O the O SGBP B-mutant - I-mutant A I-mutant * I-mutant ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O variant O , O which O does O not B-protein_state bind I-protein_state XyG B-chemical , O supports O growth O on O XyG B-chemical and O XyGOs B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant *), I-mutant with O growth O rates O that O are O ~ O 70 O % O that O of O the O WT B-protein_state . O In O previous O studies O , O we O observed O that O carbohydrate B-chemical binding O by O SusD B-protein enhanced O the O sensitivity O of O the O cells O to O limiting O concentrations O of O malto O - O oligosaccharides O by O several O orders O of O magnitude O , O such O that O the O addition O of O 0 O . O 5 O g O / O liter O maltose B-chemical was O required O to O restore O growth O of O the O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O on O starch B-chemical , O which O nonetheless O occurred O following O an O extended O lag B-evidence phase I-evidence . O In O contrast O , O the O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O does O not O display O an O extended O lag B-evidence time I-evidence on O any O of O the O xyloglucan B-chemical substrates O compared O to O the O WT B-protein_state ( O Fig O . O 6 O ). O The O specific O glycan B-chemical signal O that O upregulates O BoXyGUL B-gene is O currently O unknown O . O From O our O present O data O , O we O cannot O eliminate O the O possibility O that O the O glycan B-chemical binding O by O SGBP B-protein - I-protein A I-protein enhances O transcriptional O activation O of O the O XyGUL B-gene . O However O , O the O modest O rate O defect O displayed O by O the O SGBP B-protein - I-protein A I-protein :: O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O suggests O that O recognition O of O XyG B-chemical and O product O import O is O somewhat O less O efficient O in O these O cells O . O Intriguingly O , O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O ( O ΔBacova_02650 B-mutant ) O ( O cf O . O Fig O . O 1B O ) O exhibited O a O minor O growth O defect O on O both O XyG B-chemical and O XyGO2 B-chemical , O with O rates O 84 O . O 6 O % O and O 93 O . O 9 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O . O However O , O growth O of O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O on O XyGO1 B-chemical was O 54 O . O 2 O % O the O rate O of O the O parental O strain O , O despite O the O fact O that O SGBP B-protein - I-protein B I-protein binds O this O substrate O ca O . O 10 O - O fold O more O weakly O than O XyGO2 B-chemical and O XyG B-chemical ( O Fig O . O 6 O ; O Table O 1 O ). O As O such O , O the O data O suggest O that O SGBP B-protein - I-protein A I-protein can O compensate O for O the O loss O of O function O of O SGBP B-protein - I-protein B I-protein on O longer O oligo B-chemical - I-chemical and I-chemical polysaccharides I-chemical , O while O SGBP B-protein - I-protein B I-protein may O adapt O the O cell O to O recognize O smaller O oligosaccharides B-chemical efficiently O . O Indeed O , O a O double B-protein_state mutant I-protein_state , O consisting O of O a O crippled B-protein_state SGBP B-protein - I-protein A I-protein and O a O deletion B-experimental_method of I-experimental_method SGBP B-protein - I-protein B I-protein ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant */ I-mutant ΔSGBP B-mutant - I-mutant B I-mutant ), O exhibits O an O extended O lag B-evidence time I-evidence on O both O XyG B-chemical and O XyGO2 B-chemical , O as O well O as O XyGO1 B-chemical . O Taken O together O , O the O data O indicate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein functionally O complement O each O other O in O the O capture O of O XyG B-chemical polysaccharide B-chemical , O while O SGBP B-protein - I-protein B I-protein may O allow O B B-species . I-species ovatus I-species to O scavenge O smaller O XyGOs B-chemical liberated O by O other O gut O commensals O . O This O additional O role O of O SGBP B-protein - I-protein B I-protein is O especially O notable O in O the O context O of O studies O on O BtSusE B-protein and O BtSusF B-protein ( O positioned O similarly O in O the O archetypal O Sus B-gene locus I-gene ) O ( O Fig O . O 1B O ), O for O which O growth O defects O on O starch B-chemical or O malto B-chemical - I-chemical oligosaccharides I-chemical have O never O been O observed O . O Beyond O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O we O speculated O that O the O catalytically B-protein_state feeble I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type GH9 B-protein , O which O is O expendable O for O growth O in O the O presence O of O GH5 B-protein , O might O also O play O a O role O in O glycan B-chemical binding O to O the O cell O surface O . O However O , O combined B-experimental_method deletion I-experimental_method of I-experimental_method the I-experimental_method genes I-experimental_method encoding I-experimental_method GH9 B-protein ( O encoded O by O Bacova_02649 B-gene ) O and O SGBP B-protein - I-protein B I-protein does O not O exacerbate O the O growth O defect O on O XyGO1 B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant B I-mutant / O ΔGH9 B-mutant ). O The O necessity O of O SGBP B-protein - I-protein B I-protein is O elevated O in O the O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O , O as O the O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant */ I-mutant ΔSGBP B-mutant - I-mutant B I-mutant mutant B-protein_state displays O an O extended O lag B-evidence during O growth O on O XyG B-chemical and O xylogluco B-chemical - I-chemical oligosaccharides I-chemical , O while O growth O rate O differences O are O more O subtle O . O The O precise O reason O for O this O lag B-evidence is O unclear O , O but O recapitulating O our O findings O on O the O role O of O SusD B-protein in O malto B-chemical - I-chemical oligosaccharide I-chemical sensing O in O B B-species . I-species thetaiotaomicron I-species , O this O extended O lag B-evidence may O be O due O to O inefficient O import O and O thus O sensing O of O xyloglucan B-chemical in O the O environment O in O the O absence O of O glycan B-chemical binding O by O essential O SGBPs B-protein_type . O Our O previous O work O demonstrates O that O B B-species . I-species ovatus I-species cells O grown O in O minimal O medium O plus O glucose B-chemical express O low O levels O of O the O XyGUL B-gene transcript O . O Thus O , O in O our O experiments O , O we O presume O that O each O strain O , O initially O grown O in O glucose B-chemical , O expresses O low O levels O of O the O XyGUL B-gene transcript O and O thus O low O levels O of O the O XyGUL B-gene - O encoded O surface O proteins O , O including O the O vanguard O GH5 B-protein . O Presumably O without O glycan B-chemical binding O by O the O SGBPs B-protein_type , O the O GH5 B-protein protein O cannot O efficiently O process O xyloglucan B-chemical , O and O / O or O the O lack O of O SGBP B-protein_type function O prevents O efficient O capture O and O import O of O the O processed O oligosaccharides B-chemical . O It O may O then O be O that O only O after O a O sufficient O amount O of O glycan B-chemical is O processed O and O imported O by O the O cell O is O XyGUL B-gene upregulated O and O exponential O growth O on O the O glycan B-chemical can O begin O . O We O hypothesize O that O during O exponential O growth O the O essential O role O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical recognition O , O perhaps O due O to O a O critical O interaction O with O the O TBDT B-protein_type . O In O the O BtSus B-gene , O SusD B-protein and O the O TBDT B-protein_type SusC B-protein interact O , O and O we O speculate O that O this O interaction O is O necessary O for O glycan B-chemical uptake O , O as O suggested O by O the O fact O that O a O ΔsusD B-mutant mutant B-protein_state cannot O grow O on O starch B-chemical , O but O a O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O regains O this O ability O if O a O transcriptional B-protein_type activator I-protein_type of O the O sus B-gene operon I-gene is O supplied O . O Likewise O , O such O cognate O interactions O between O homologous O protein O pairs O such O as O SGBP B-protein - I-protein A I-protein and O its O TBDT B-protein_type may O underlie O our O observation O that O a O ΔSGBP B-mutant - I-mutant A I-mutant mutant B-protein_state cannot O grow O on O xyloglucan B-chemical . O However O , O unlike O the O Sus B-complex_assembly , O in O which O elimination B-experimental_method of I-experimental_method SusE B-protein and O SusF B-protein does O not O affect O growth O on O starch B-chemical , O SGBP B-protein - I-protein B I-protein appears O to O have O a O dedicated O role O in O growth O on O small O xylogluco B-chemical - I-chemical oligosaccharides I-chemical . O The O ability O of O gut O - O adapted O microorganisms B-taxonomy_domain to O thrive O in O the O gastrointestinal O tract O is O critically O dependent O upon O their O ability O to O efficiently O recognize O , O cleave O , O and O import O glycans B-chemical . O The O human B-species gut O , O in O particular O , O is O a O densely O packed O ecosystem O with O hundreds O of O species O , O in O which O there O is O potential O for O both O competition O and O synergy O in O the O utilization O of O different O substrates O . O Recent O work O has O elucidated O that O Bacteroidetes B-taxonomy_domain cross O - O feed O during O growth O on O many O glycans B-chemical ; O the O glycoside B-protein_type hydrolases I-protein_type expressed O by O one O species O liberate O oligosaccharides B-chemical for O consumption O by O other O members O of O the O community O . O Thus O , O understanding O glycan B-chemical capture O at O the O cell O surface O is O fundamental O to O explaining O , O and O eventually O predicting O , O how O the O carbohydrate O content O of O the O diet O shapes O the O gut O community O structure O as O well O as O its O causative O health O effects O . O Here O , O we O demonstrate O that O the O surface B-protein_type glycan I-protein_type binding I-protein_type proteins I-protein_type encoded O within O the O BoXyGUL B-gene play O unique O and O essential O roles O in O the O acquisition O of O the O ubiquitous O and O abundant O vegetable B-taxonomy_domain polysaccharide B-chemical xyloglucan B-chemical . O Yet O , O a O number O of O questions O remain O regarding O the O molecular O interplay O of O SGBPs B-protein_type with O their O cotranscribed O cohort O of O glycoside B-protein_type hydrolases I-protein_type and O TonB B-protein_type - I-protein_type dependent I-protein_type transporters I-protein_type . O A O particularly O understudied O aspect O of O glycan B-chemical utilization O is O the O mechanism O of O import O via O TBDTs B-protein_type ( O SusC B-protein homologs O ) O ( O Fig O . O 1 O ), O which O are O ubiquitous O and O defining O components O of O all O PUL B-gene . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O A O direct O interaction O between O the O BtSusC B-protein TBDT B-protein_type and O the O SusD B-protein SGBP B-protein_type has O been O previously O demonstrated O , O as O has O an O interaction O between O the O homologous O components O encoded O by O an O N O - O glycan B-chemical - O scavenging O PUL B-gene of O Capnocytophaga B-species canimorsus I-species . O Our O observation O here O that O the O physical O presence O of O the O SusD B-protein homolog O SGBP B-protein - I-protein A I-protein , O independent O of O XyG B-chemical - O binding O ability O , O is O both O necessary O and O sufficient O for O XyG B-chemical utilization O further O supports O a O model O of O glycan B-chemical import O whereby O the O SusC B-protein_type - I-protein_type like I-protein_type TBDTs I-protein_type and O the O SusD B-protein_type - I-protein_type like I-protein_type SGBPs I-protein_type must O be O intimately O associated O to O support O glycan B-chemical uptake O ( O Fig O . O 1C O ). O It O is O yet O presently O unclear O whether O this O interaction O is O static O or O dynamic O and O to O what O extent O the O association O of O cognate O TBDT B-protein_type / O SGBPs B-protein_type is O dependent O upon O the O structure O of O the O carbohydrate B-chemical to O be O imported O . O On O the O other O hand O , O there O is O clear O evidence O for O independent O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain that O do O not O require O SGBP B-protein_type association O for O activity O . O For O example O , O it O was O recently O demonstrated O that O expression O of O nanO B-gene , O which O encodes O a O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type as O part O of O a O sialic O - O acid O - O targeting O PUL B-gene from O B B-species . I-species fragilis I-species , O restored O growth O on O this O monosaccharide B-chemical in O a O mutant O strain O of O E B-species . I-species coli I-species . O In O this O instance O , O coexpression O of O the O susD B-gene - O like O gene O nanU B-gene was O not O required O , O nor O did O the O expression O of O the O nanU B-gene gene O enhance O growth O kinetics O . O Similarly O , O the O deletion O of O BT1762 B-gene encoding O a O fructan B-protein_type - I-protein_type targeting I-protein_type SusD I-protein_type - I-protein_type like I-protein_type protein I-protein_type in O B B-species . I-species thetaiotaomicron I-species did O not O result O in O a O dramatic O loss O of O growth O on O fructans B-chemical . O Thus O , O the O strict O dependence O on O a O SusD B-protein_type - I-protein_type like I-protein_type SGBP I-protein_type for O glycan B-chemical uptake O in O the O Bacteroidetes B-taxonomy_domain may O be O variable O and O substrate O dependent O . O Furthermore O , O considering O the O broader O distribution O of O TBDTs B-protein_type in O PUL B-gene lacking O SGBPs B-protein_type ( O sometimes O known O as O carbohydrate B-gene utilization I-gene containing I-gene TBDT I-gene [ I-gene CUT I-gene ] I-gene loci I-gene ; O see O reference O and O reviewed O in O reference O ) O across O bacterial B-taxonomy_domain phyla O , O it O appears O that O the O intimate O biophysical O association O of O these O substrate O - O transport O and O - O binding O proteins O is O the O result O of O specific O evolution O within O the O Bacteroidetes B-taxonomy_domain . O Equally O intriguing O is O the O observation O that O while O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type such O as O SGBP B-protein - I-protein A I-protein share O moderate O primary O and O high O tertiary O structural O conservation O , O the O genes O for O the O SGBPs B-protein_type encoded O immediately O downstream O ( O Fig O . O 1B O [ O sometimes O referred O to O as O “ O susE O positioned O ”]) O encode O glycan B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type with O little O or O no O sequence O or O structural O conservation O , O even O among O syntenic O PUL B-gene that O target O the O same O polysaccharide B-chemical . O Such O is O the O case O for O XyGUL B-gene from O related O Bacteroides B-taxonomy_domain species O , O which O may O encode O either O one O or O two O of O these O predicted O SGBPs B-protein_type , O and O these O proteins O vary O considerably O in O length O . O The O extremely O low O similarity O of O these O SGBPs B-protein_type is O striking O in O light O of O the O moderate O sequence O conservation O observed O among O homologous O GHs B-protein_type in O syntenic O PUL B-gene . O This O , O together O with O the O observation O that O these O SGBPs B-protein_type , O as O exemplified O by O BtSusE B-protein and O BtSusF B-protein and O the O XyGUL B-gene SGBP B-protein - I-protein B I-protein of O the O present O study O , O are O expendable O for O polysaccharide B-chemical growth O , O implies O a O high O degree O of O evolutionary O flexibility O to O enhance O glycan B-chemical capture O at O the O cell O surface O . O Because O the O intestinal O ecosystem O is O a O dense O consortium O of O bacteria B-taxonomy_domain that O must O compete O for O their O nutrients O , O these O multimodular O SGBPs B-protein_type may O reflect O ongoing O evolutionary O experiments O to O enhance O glycan B-chemical uptake O efficiency O . O Whether O organisms O that O express O longer O SGBPs B-protein_type , O extending O further O above O the O cell O surface O toward O the O extracellular O environment O , O are O better O equipped O to O compete O for O available O carbohydrates B-chemical is O presently O unknown O . O However O , O the O natural O diversity O of O these O proteins O represents O a O rich O source O for O the O discovery O of O unique O carbohydrate B-structure_element - I-structure_element binding I-structure_element motifs I-structure_element to O both O inform O gut O microbiology O and O generate O new O , O specific O carbohydrate B-chemical analytical O reagents O . O In O conclusion O , O the O present O study O further O illuminates O the O essential O role O that O surface B-protein_type - I-protein_type glycan I-protein_type binding I-protein_type proteins I-protein_type play O in O facilitating O the O catabolism O of O complex O dietary O carbohydrates B-chemical by O Bacteroidetes B-taxonomy_domain . O The O ability O of O our O resident O gut O bacteria B-taxonomy_domain to O recognize O polysaccharides B-chemical is O the O first O committed O step O of O glycan B-chemical consumption O by O these O organisms O , O a O critical O process O that O influences O the O community O structure O and O thus O the O metabolic O output O ( O i O . O e O ., O short O - O chain O fatty O acid O and O metabolite O profile O ) O of O these O organisms O . O A O molecular O understanding O of O glycan B-chemical uptake O by O human B-species gut O bacteria B-taxonomy_domain is O therefore O central O to O the O development O of O strategies O to O improve O human B-species health O through O manipulation O of O the O microbiota B-taxonomy_domain . O Mucosal O glycan B-chemical foraging O enhances O fitness O and O transmission O of O a O saccharolytic O human O gut O bacterial O symbiont O Molecular O Basis O of O Ligand O - O Dependent O Regulation O of O NadR B-protein , O the O Transcriptional B-protein_type Repressor I-protein_type of O Meningococcal B-taxonomy_domain Virulence O Factor O NadA B-protein Neisseria B-protein adhesin I-protein A I-protein ( O NadA B-protein ) O is O present O on O the O meningococcal B-taxonomy_domain surface O and O contributes O to O adhesion O to O and O invasion O of O human B-species cells O . O NadA B-protein is O also O one O of O three O recombinant O antigens O in O the O recently O - O approved O Bexsero O vaccine O , O which O protects O against O serogroup B-taxonomy_domain B I-taxonomy_domain meningococcus I-taxonomy_domain . O The O amount O of O NadA B-protein on O the O bacterial B-taxonomy_domain surface O is O of O direct O relevance O in O the O constant O battle O of O host O - O pathogen O interactions O : O it O influences O the O ability O of O the O pathogen O to O engage O human B-species cell O surface O - O exposed O receptors O and O , O conversely O , O the O bacterial B-taxonomy_domain susceptibility O to O the O antibody O - O mediated O immune O response O . O It O is O therefore O important O to O understand O the O mechanisms O which O regulate O nadA B-gene expression O levels O , O which O are O predominantly O controlled O by O the O transcriptional B-protein_type regulator I-protein_type NadR B-protein ( O Neisseria B-protein adhesin I-protein A I-protein Regulator I-protein ) O both O in O vitro O and O in O vivo O . O NadR B-protein binds O the O nadA B-gene promoter O and O represses O gene O transcription O . O In O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical hydroxyphenylacetate I-chemical ( O 4 B-chemical - I-chemical HPA I-chemical ), O a O catabolite O present O in O human B-species saliva O both O under O physiological O conditions O and O during O bacterial B-taxonomy_domain infection O , O the O binding O of O NadR B-protein to O the O nadA B-gene promoter O is O attenuated O and O nadA B-gene expression O is O induced O . O NadR B-protein also O mediates O ligand O - O dependent O regulation O of O many O other O meningococcal B-taxonomy_domain genes O , O for O example O the O highly O - O conserved O multiple O adhesin O family O ( O maf O ) O genes O , O which O encode O proteins O emerging O with O important O roles O in O host O - O pathogen O interactions O , O immune O evasion O and O niche O adaptation O . O To O gain O insights O into O the O regulation O of O NadR B-protein mediated O by O 4 B-chemical - I-chemical HPA I-chemical , O we O combined O structural B-experimental_method , I-experimental_method biochemical I-experimental_method , I-experimental_method and I-experimental_method mutagenesis I-experimental_method studies I-experimental_method . O In O particular O , O two O new O crystal B-evidence structures I-evidence of O ligand B-protein_state - I-protein_state free I-protein_state and O ligand B-protein_state - I-protein_state bound I-protein_state NadR B-protein revealed O ( O i O ) O the O molecular O basis O of O ‘ O conformational O selection O ’ O by O which O a O single O molecule O of O 4 B-chemical - I-chemical HPA I-chemical binds O and O stabilizes O dimeric B-oligomeric_state NadR B-protein in O a O conformation O unsuitable O for O DNA O - O binding O , O ( O ii O ) O molecular O explanations O for O the O binding O specificities O of O different O hydroxyphenylacetate B-chemical ligands O , O including O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical which O is O produced O during O inflammation O , O ( O iii O ) O the O presence O of O a O leucine B-residue_name residue O essential O for O dimerization O and O conserved B-protein_state in O many O MarR B-protein_type family O proteins O , O and O ( O iv O ) O four O residues O ( O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number ), O which O are O involved O in O binding O 4 B-chemical - I-chemical HPA I-chemical , O and O were O confirmed O in O vitro O to O have O key O roles O in O the O regulatory O mechanism O in O bacteria B-taxonomy_domain . O Overall O , O this O study O deepens O our O molecular O understanding O of O the O sophisticated O regulatory O mechanisms O of O the O expression O of O nadA B-gene and O other O genes O governed O by O NadR B-protein , O dependent O on O interactions O with O niche O - O specific O signal O molecules O that O may O play O important O roles O during O meningococcal B-taxonomy_domain pathogenesis O . O Serogroup B-taxonomy_domain B I-taxonomy_domain meningococcus I-taxonomy_domain ( O MenB B-species ) O causes O fatal O sepsis O and O invasive O meningococcal B-taxonomy_domain disease O , O particularly O in O young O children O and O adolescents O , O as O highlighted O by O recent O MenB B-species outbreaks O in O universities O of O the O United O States O and O Canada O . O The O Bexsero O vaccine O protects O against O MenB B-species and O has O recently O been O approved O in O > O 35 O countries O worldwide O . O Neisseria B-protein adhesin I-protein A I-protein ( O NadA B-protein ) O present O on O the O meningococcal B-taxonomy_domain surface O can O mediate O binding O to O human B-species cells O and O is O one O of O the O three O MenB B-species vaccine O protein O antigens O . O The O amount O of O NadA B-protein exposed O on O the O meningococcal B-taxonomy_domain surface O also O influences O the O antibody O - O mediated O serum O bactericidal O response O measured O in O vitro O . O A O deep O understanding O of O nadA B-gene expression O is O therefore O important O , O otherwise O the O contribution O of O NadA B-protein to O vaccine O - O induced O protection O against O meningococcal B-taxonomy_domain meningitis O may O be O underestimated O . O The O abundance O of O surface O - O exposed O NadA B-protein is O regulated O by O the O ligand B-protein_type - I-protein_type responsive I-protein_type transcriptional I-protein_type repressor I-protein_type NadR B-protein . O Here O , O we O present O functional B-evidence , I-evidence biochemical I-evidence and I-evidence high I-evidence - I-evidence resolution I-evidence structural I-evidence data I-evidence on O NadR B-protein . O Our O studies O provide O detailed O insights O into O how O small O molecule O ligands O , O such O as O hydroxyphenylacetate B-chemical derivatives O , O found O in O relevant O host O niches O , O modulate O the O structure O and O activity O of O NadR B-protein , O by O ‘ O conformational O selection O ’ O of O inactive B-protein_state forms O . O These O findings O shed O light O on O the O regulation O of O NadR B-protein , O a O key O MarR B-protein_type - O family O virulence O factor O of O this O important O human B-species pathogen O . O The O ‘ O Reverse B-experimental_method Vaccinology I-experimental_method ’ O approach O was O pioneered O to O identify O antigens O for O a O protein O - O based O vaccine O against O serogroup B-species B I-species Neisseria I-species meningitidis I-species ( O MenB B-species ), O a O human B-species pathogen O causing O potentially O - O fatal O sepsis O and O invasive O meningococcal B-taxonomy_domain disease O . O Indeed O , O Reverse B-experimental_method Vaccinology I-experimental_method identified O Neisseria B-protein adhesin I-protein A I-protein ( O NadA B-protein ), O a O surface O - O exposed O protein O involved O in O epithelial O cell O invasion O and O found O in O ~ O 30 O % O of O clinical O isolates O . O Recently O , O we O reported O the O crystal B-evidence structure I-evidence of O NadA B-protein , O providing O insights O into O its O biological O and O immunological O functions O . O Recombinant O NadA B-protein elicits O a O strong O bactericidal O immune O response O and O is O therefore O included O in O the O Bexsero O vaccine O that O protects O against O MenB B-species and O which O was O recently O approved O in O over O 35 O countries O worldwide O . O Previous O studies O revealed O that O nadA B-gene expression O levels O are O mainly O regulated O by O the O Neisseria B-protein adhesin I-protein A I-protein Regulator I-protein ( O NadR B-protein ). O Although O additional O factors O influence O nadA B-gene expression O , O we O focused O on O its O regulation O by O NadR B-protein , O the O major O mediator O of O NadA B-protein phase O variable O expression O . O Studies O of O NadR B-protein also O have O broader O implications O , O since O a O genome O - O wide O analysis O of O MenB B-species wild B-protein_state - I-protein_state type I-protein_state and O nadR B-gene knock B-protein_state - I-protein_state out I-protein_state strains O revealed O that O NadR B-protein influences O the O regulation O of O > O 30 O genes O , O including O maf O genes O , O from O the O multiple O adhesin B-protein_type family O . O These O genes O encode O a O wide O variety O of O proteins O connected O to O many O biological O processes O contributing O to O bacterial B-taxonomy_domain survival O , O adaptation O in O the O host O niche O , O colonization O and O invasion O . O NadR B-protein belongs O to O the O MarR B-protein_type ( O Multiple B-protein_type Antibiotic I-protein_type Resistance I-protein_type Regulator I-protein_type ) O family O , O a O group O of O ligand B-protein_type - I-protein_type responsive I-protein_type transcriptional I-protein_type regulators I-protein_type ubiquitous O in O bacteria B-taxonomy_domain and O archaea B-taxonomy_domain . O MarR B-protein_type family O proteins O can O promote O bacterial B-taxonomy_domain survival O in O the O presence O of O antibiotics O , O toxic O chemicals O , O organic O solvents O or O reactive O oxygen O species O and O can O regulate O virulence O factor O expression O . O MarR B-protein_type homologues O can O act O either O as O transcriptional O repressors O or O as O activators O . O Although O > O 50 O MarR B-protein_type family O structures B-evidence are O known O , O a O molecular O understanding O of O their O ligand O - O dependent O regulatory O mechanisms O is O still O limited O , O often O hampered O by O lack O of O identification O of O their O ligands O and O / O or O DNA O targets O . O A O potentially O interesting O exception O comes O from O the O ligand B-protein_state - I-protein_state free I-protein_state and O salicylate B-protein_state - I-protein_state bound I-protein_state forms O of O the O Methanobacterium B-species thermoautotrophicum I-species protein O MTH313 B-protein which O revealed O that O two O salicylate B-chemical molecules O bind O to O one O MTH313 B-protein dimer B-oligomeric_state and O induce O large O conformational O changes O , O apparently O sufficient O to O prevent O DNA O binding O . O However O , O the O homologous O archeal B-taxonomy_domain Sulfolobus B-species tokodaii I-species protein O ST1710 B-protein presented O essentially O the O same O structure B-evidence in O ligand B-protein_state - I-protein_state free I-protein_state and O salicylate B-protein_state - I-protein_state bound I-protein_state forms O , O apparently O contrasting O the O mechanism O proposed O for O MTH313 B-protein . O Despite O these O apparent O differences O , O MTH313 B-protein and O ST1710 B-protein bind O salicylate B-chemical in O approximately O the O same O site O , O between O their O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element . O However O , O it O is O unknown O whether O salicylate B-chemical is O a O relevant O in O vivo O ligand O of O either O of O these O two O proteins O , O which O share O ~ O 20 O % O sequence O identity O with O NadR B-protein , O rendering O unclear O the O interpretation O of O these O findings O in O relation O to O the O regulatory O mechanisms O of O NadR B-protein or O other O MarR B-protein_type family O proteins O . O NadR B-protein binds O nadA B-gene on O three O different O operators O ( O OpI O , O OpII O and O OpIII O ). O The O DNA O - O binding O activity O of O NadR B-protein is O attenuated O in O vitro O upon O addition O of O various O hydroxyphenylacetate B-chemical ( O HPA B-chemical ) O derivatives O , O including O 4 B-chemical - I-chemical HPA I-chemical . O 4 B-chemical - I-chemical HPA I-chemical is O a O small O molecule O derived O from O mammalian B-taxonomy_domain aromatic O amino O acid O catabolism O and O is O released O in O human B-species saliva O , O where O it O has O been O detected O at O micromolar O concentration O . O In O the O presence O of O 4 B-chemical - I-chemical HPA I-chemical , O NadR B-protein is O unable O to O bind O the O nadA B-gene promoter O and O nadA B-gene gene O expression O is O induced O . O In O vivo O , O the O presence O of O 4 B-chemical - I-chemical HPA I-chemical in O the O host O niche O of O N B-species . I-species meningitidis I-species serves O as O an O inducer O of O NadA B-protein production O , O thereby O promoting O bacterial B-taxonomy_domain adhesion O to O host O cells O . O Further O , O we O recently O reported O that O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O produced O during O inflammation O , O is O another O inducer O of O nadA B-gene expression O . O Extending O our O previous O studies O based O on O hydrogen B-experimental_method - I-experimental_method deuterium I-experimental_method exchange I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O HDX B-experimental_method - I-experimental_method MS I-experimental_method ), O here O we O sought O to O reveal O the O molecular O mechanisms O and O effects O of O NadR B-protein / O HPA B-chemical interactions O via O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O NMR B-experimental_method spectroscopy I-experimental_method and O complementary O biochemical B-experimental_method and I-experimental_method in I-experimental_method vivo I-experimental_method mutagenesis I-experimental_method studies I-experimental_method . O We O obtained O detailed O new O insights O into O ligand O specificity O , O how O the O ligand O allosterically O influences O the O DNA O - O binding O ability O of O NadR B-protein , O and O the O regulation O of O nadA B-gene expression O , O thus O also O providing O a O deeper O structural O understanding O of O the O ligand O - O responsive O MarR B-protein_type super O - O family O . O Moreover O , O these O findings O are O important O because O the O activity O of O NadR B-protein impacts O the O potential O coverage O provided O by O anti O - O NadA B-protein antibodies O elicited O by O the O Bexsero O vaccine O and O influences O host O - O bacteria B-taxonomy_domain interactions O that O contribute O to O meningococcal B-taxonomy_domain pathogenesis O . O NadR B-protein is O dimeric B-oligomeric_state and O is O stabilized O by O specific O hydroxyphenylacetate B-chemical ligands O Recombinant O NadR B-protein was O produced O in O E B-species . I-species coli I-species using O an O expression B-experimental_method construct I-experimental_method prepared O from O N B-species . I-species meningitidis I-species serogroup I-species B I-species strain I-species MC58 I-species . O Standard O chromatographic O techniques O were O used O to O obtain O a O highly O purified O sample O of O NadR B-protein ( O see O Materials O and O Methods O ). O In O analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method high I-experimental_method - I-experimental_method performance I-experimental_method liquid I-experimental_method chromatography I-experimental_method ( O SE B-experimental_method - I-experimental_method HPLC I-experimental_method ) O experiments O coupled O with O multi B-experimental_method - I-experimental_method angle I-experimental_method laser I-experimental_method light I-experimental_method scattering I-experimental_method ( O MALLS B-experimental_method ), O NadR B-protein presented O a O single O species O with O an O absolute O molecular O mass O of O 35 O kDa O ( O S1 O Fig O ). O These O data O showed O that O NadR B-protein was O dimeric B-oligomeric_state in O solution O , O since O the O theoretical O molecular O mass O of O the O NadR B-protein dimer B-oligomeric_state is O 33 O . O 73 O kDa O ; O and O , O there O was O no O change O in O oligomeric O state O on O addition O of O 4 B-chemical - I-chemical HPA I-chemical . O The O thermal O stability O of O NadR B-protein was O examined O using O differential B-experimental_method scanning I-experimental_method calorimetry I-experimental_method ( O DSC B-experimental_method ). O Since O ligand O - O binding O often O increases O protein O stability O , O we O also O investigated O the O effect O of O various O HPAs B-chemical ( O Fig O 1A O ) O on O the O melting B-evidence temperature I-evidence ( O Tm B-evidence ) O of O NadR B-protein . O As O a O control O of O specificity O , O we O also O tested O salicylate B-chemical , O a O known O ligand O of O some O MarR B-protein_type proteins O previously O reported O to O increase O the O Tm B-evidence of O ST1710 B-protein and O MTH313 B-protein . O The O Tm B-evidence of O NadR B-protein was O 67 O . O 4 O ± O 0 O . O 1 O ° O C O in O the O absence B-protein_state of I-protein_state ligand I-protein_state , O and O was O unaffected O by O salicylate B-chemical . O However O , O an O increased O thermal O stability O was O induced O by O 4 B-chemical - I-chemical HPA I-chemical and O , O to O a O lesser O extent O , O by O 3 B-chemical - I-chemical HPA I-chemical . O Interestingly O , O NadR B-protein displayed O the O greatest O Tm B-evidence increase O upon O addition O of O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O Table O 1 O and O Fig O 1B O ). O Stability O of O NadR B-protein is O increased O by O small O molecule O ligands O . O ( O A O ) O Molecular O structures O of O 3 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 4 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O MW O 186 O . O 6 O ) O and O salicylic B-chemical acid I-chemical ( O MW O 160 O . O 1 O ). O ( O B O ) O DSC B-experimental_method profiles B-evidence , O colored O as O follows O : O apo B-protein_state - O NadR B-protein ( O violet O ), O NadR B-complex_assembly + I-complex_assembly salicylate I-complex_assembly ( O red O ), O NadR B-complex_assembly + I-complex_assembly 3 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ), O NadR B-complex_assembly + I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O blue O ), O NadR B-complex_assembly + I-complex_assembly 3Cl I-complex_assembly , I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O pink O ). O All O DSC B-experimental_method profiles B-evidence are O representative O of O triplicate O experiments O . O Melting B-evidence - I-evidence point I-evidence ( O Tm B-evidence ) O and O its O ligand O - O induced O increase O ( O ΔTm B-evidence ) O derived O from O DSC B-experimental_method thermostability B-experimental_method experiments I-experimental_method . O Dissociation B-evidence constants I-evidence ( O KD B-evidence ) O of O the O NadR B-protein / O ligand O interactions O from O SPR B-experimental_method steady I-experimental_method - I-experimental_method state I-experimental_method binding I-experimental_method experiments I-experimental_method . O Ligand O Tm B-evidence (° O C O ) O ΔTm B-evidence (° O C O ) O KD B-evidence ( O mM O ) O No O ligand O 67 O . O 4 O ± O 0 O . O 1 O n O . O a O . O n O . O a O . O 3 B-chemical - I-chemical HPA I-chemical 70 O . O 0 O ± O 0 O . O 1 O 2 O . O 7 O 2 O . O 7 O ± O 0 O . O 1 O 4 B-chemical - I-chemical HPA I-chemical 70 O . O 7 O ± O 0 O . O 1 O 3 O . O 3 O 1 O . O 5 O ± O 0 O . O 1 O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical 71 O . O 3 O ± O 0 O . O 2 O 3 O . O 9 O 1 O . O 1 O ± O 0 O . O 1 O NadR B-protein displays O distinct O binding B-evidence affinities I-evidence for O hydroxyphenylacetate B-chemical ligands O To O further O investigate O the O binding O of O HPAs B-chemical to O NadR B-protein , O we O used O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ). O The O SPR B-experimental_method sensorgrams B-evidence revealed O very O fast O association O and O dissociation O events O , O typical O of O small O molecule O ligands O , O thus O prohibiting O a O detailed O study O of O binding O kinetics O . O However O , O steady B-experimental_method - I-experimental_method state I-experimental_method SPR I-experimental_method analyses O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O allowed O determination O of O the O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O ( O Table O 1 O and O S2 O Fig O ). O The O interactions O of O 4 B-chemical - I-chemical HPA I-chemical and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical with O NadR B-protein exhibited O KD B-evidence values O of O 1 O . O 5 O mM O and O 1 O . O 1 O mM O , O respectively O . O 3 B-chemical - I-chemical HPA I-chemical showed O a O weaker O interaction O , O with O a O KD B-evidence of O 2 O . O 7 O mM O , O while O salicylate B-chemical showed O only O a O very O weak O response O that O did O not O reach O saturation O , O indicating O a O non O - O specific O interaction O with O NadR B-protein . O A O ranking O of O these O KD B-evidence values O showed O that O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical was O the O tightest O binder O , O and O thus O matched O the O ranking O of O ligand O - O induced O Tm B-evidence increases O observed O in O the O DSC B-experimental_method experiments O . O Although O these O KD B-evidence values O indicate O rather O weak O interactions O , O they O are O similar O to O the O values O reported O previously O for O the O MarR B-protein_type / O salicylate B-chemical interaction O ( O KD O ~ O 1 O mM O ) O and O the O MTH313 B-protein / O salicylate B-chemical interaction O ( O KD O 2 O – O 3 O mM O ), O and O approximately O 20 O - O fold O tighter O than O the O ST1710 B-protein / O salicylate B-chemical interaction O ( O KD O ~ O 20 O mM O ). O Crystal B-evidence structures I-evidence of O holo B-protein_state - O NadR B-protein and O apo B-protein_state - O NadR B-protein To O fully O characterize O the O NadR B-protein / O HPA B-chemical interactions O , O we O sought O to O determine O crystal B-evidence structures I-evidence of O NadR B-protein in O ligand B-protein_state - I-protein_state bound I-protein_state ( O holo B-protein_state ) O and O ligand B-protein_state - I-protein_state free I-protein_state ( O apo B-protein_state ) O forms O . O First O , O we O crystallized B-experimental_method NadR B-protein ( O a O selenomethionine B-experimental_method - I-experimental_method labelled I-experimental_method derivative I-experimental_method ) O in O the O presence O of O a O 200 O - O fold O molar O excess O of O 4 B-chemical - I-chemical HPA I-chemical . O The O structure B-evidence of O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O was O determined O at O 2 O . O 3 O Å O resolution O using O a O combination O of O the O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method dispersion I-experimental_method ( O SAD B-experimental_method ) O and O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O methods O , O and O was O refined O to O R B-evidence work I-evidence / I-evidence R I-evidence free I-evidence values O of O 20 O . O 9 O / O 26 O . O 0 O % O ( O Table O 2 O ). O Despite O numerous O attempts O , O we O were O unable O to O obtain O high O - O quality O crystals B-evidence of O NadR B-protein complexed B-protein_state with I-protein_state 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O 3 B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O 3 B-chemical - I-chemical HPA I-chemical or O DNA O targets O . O However O , O it O was O eventually O possible O to O crystallize B-experimental_method apo B-protein_state - O NadR B-protein , O and O the O structure B-evidence was O determined O at O 2 O . O 7 O Å O resolution O by O MR B-experimental_method methods O using O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O as O the O search O model O . O The O apo B-protein_state - O NadR B-protein structure B-evidence was O refined O to O R B-evidence work I-evidence / I-evidence R I-evidence free I-evidence values O of O 19 O . O 1 O / O 26 O . O 8 O % O ( O Table O 2 O ). O Data O collection O and O refinement O statistics O for O NadR B-protein structures B-evidence . O The O asymmetric O unit O of O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly crystals B-evidence ( O holo B-protein_state - O NadR B-protein ) O contained O one O NadR B-protein homodimer B-oligomeric_state , O while O the O apo B-protein_state - O NadR B-protein crystals B-evidence contained O two O homodimers B-oligomeric_state . O In O the O apo B-protein_state - O NadR B-protein crystals B-evidence , O the O two O homodimers B-oligomeric_state were O related O by O a O rotation O of O ~ O 90 O °; O the O observed O association O of O the O two O dimers B-oligomeric_state was O presumably O merely O an O effect O of O crystal O packing O , O since O the O interface B-site between O the O two O homodimers B-oligomeric_state is O small O (< O 550 O Å2 O of O buried O surface O area O ), O and O is O not O predicted O to O be O physiologically O relevant O by O the O PISA O software O . O Moreover O , O our O SE B-experimental_method - I-experimental_method HPLC I-experimental_method / I-experimental_method MALLS I-experimental_method analyses O ( O see O above O ) O revealed O that O in O solution O NadR B-protein is O dimeric B-oligomeric_state , O and O previous O studies O using O native B-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O revealed O dimers B-oligomeric_state , O not O tetramers B-oligomeric_state . O The O NadR B-protein homodimer B-oligomeric_state bound B-protein_state to I-protein_state 4 B-chemical - I-chemical HPA I-chemical has O a O dimerization B-site interface I-site mostly O involving O the O top O of O its O ‘ O triangular B-protein_state ’ O form O , O while O the O two O DNA B-structure_element - I-structure_element binding I-structure_element domains I-structure_element are O located O at O the O base O ( O Fig O 2A O ). O High O - O quality O electron B-evidence density I-evidence maps I-evidence allowed O clear O identification O of O the O bound B-protein_state ligand O , O 4 B-chemical - I-chemical HPA I-chemical ( O Fig O 2B O ). O The O overall O structure B-evidence of O NadR B-protein shows O dimensions O of O ~ O 50 O × O 65 O × O 50 O Å O and O a O large O homodimer B-site interface I-site that O buries O a O total O surface O area O of O ~ O 4800 O Å2 O . O Each O NadR B-protein monomer B-oligomeric_state consists O of O six O α B-structure_element - I-structure_element helices I-structure_element and O two O short B-structure_element β I-structure_element - I-structure_element strands I-structure_element , O with O helices B-structure_element α1 B-structure_element , O α5 B-structure_element , O and O α6 B-structure_element forming O the O dimer B-site interface I-site . O Helices B-structure_element α3 B-structure_element and O α4 B-structure_element form O a O helix B-structure_element - I-structure_element turn I-structure_element - I-structure_element helix I-structure_element motif I-structure_element , O followed O by O the O “ O wing B-structure_element motif I-structure_element ” O comprised O of O two O short B-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element ( O β1 B-structure_element - I-structure_element β2 I-structure_element ) O linked O by O a O relatively O long O and O flexible O loop B-structure_element . O Interestingly O , O in O the O α4 B-structure_element - I-structure_element β2 I-structure_element region I-structure_element , O the O stretch O of O residues O from O R64 B-residue_range - I-residue_range R91 I-residue_range presents O seven O positively O - O charged O side O chains O , O all O available O for O potential O interactions O with O DNA B-chemical . O Together O , O these O structural O elements O constitute O the O winged B-structure_element helix I-structure_element - I-structure_element turn I-structure_element - I-structure_element helix I-structure_element ( O wHTH B-structure_element ) O DNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element and O , O together O with O the O dimeric B-oligomeric_state organization O , O are O the O hallmarks O of O MarR B-protein_type family O structures B-evidence . O The O crystal B-evidence structure I-evidence of O NadR B-protein in B-protein_state complex I-protein_state with I-protein_state 4 B-chemical - I-chemical HPA I-chemical . O ( O A O ) O The O holo B-protein_state - O NadR B-protein homodimer B-oligomeric_state is O depicted O in O green O and O blue O for O chains B-structure_element A I-structure_element and I-structure_element B I-structure_element respectively O , O while O yellow O sticks O depict O the O 4 B-chemical - I-chemical HPA I-chemical ligand O ( O labelled O ). O For O simplicity O , O secondary O structure O elements O are O labelled O for O chain B-structure_element B I-structure_element only O . O Red O dashes O show O hypothetical O positions O of O chain B-structure_element B I-structure_element residues O 88 B-residue_range – I-residue_range 90 I-residue_range that O were O not O modeled O due O to O lack O of O electron B-evidence density I-evidence . O ( O B O ) O A O zoom O into O the O pocket B-site occupied O by O 4 B-chemical - I-chemical HPA I-chemical shows O that O the O ligand O contacts O both O chains B-structure_element A I-structure_element and I-structure_element B I-structure_element ; O blue O mesh O shows O electron B-evidence density I-evidence around O 4 B-chemical - I-chemical HPA I-chemical calculated O from O a O composite B-evidence omit I-evidence map I-evidence ( O omitting O 4 B-chemical - I-chemical HPA I-chemical ), O using O phenix B-experimental_method . O The O map B-evidence is O contoured O at O 1σ O and O the O figure O was O prepared O with O a O density B-evidence mesh I-evidence carve O factor O of O 1 O . O 7 O , O using O Pymol O ( O www O . O pymol O . O org O ). O A O single O conserved B-protein_state leucine B-residue_name residue O ( O L130 B-residue_name_number ) O is O crucial O for O dimerization O The O NadR B-protein dimer B-site interface I-site is O formed O by O at O least O 32 O residues O , O which O establish O numerous O inter O - O chain O salt O bridges O or O hydrogen O bonds O , O and O many O hydrophobic O packing O interactions O ( O Fig O 3A O and O 3B O ). O To O determine O which O residues O were O most O important O for O dimerization O , O we O studied O the O interface B-site in O silico O and O identified O several O residues O as O potential O mediators O of O key O stabilizing O interactions O . O Using O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O a O panel O of O eight O mutant B-protein_state NadR B-protein proteins O was O prepared O ( O including O mutations O H7A B-mutant , O S9A B-mutant , O N11A B-mutant , O D112A B-mutant , O R114A B-mutant , O Y115A B-mutant , O K126A B-mutant , O L130K B-mutant and O L133K B-mutant ), O sufficient O to O explore O the O entire O dimer B-site interface I-site . O Each O mutant B-protein_state NadR B-protein protein O was O purified O , O and O then O its O oligomeric O state O was O examined O by O analytical B-experimental_method SE I-experimental_method - I-experimental_method HPLC I-experimental_method . O Almost O all O the O mutants O showed O the O same O elution O profile O as O the O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O NadR B-protein protein O . O Only O the O L130K B-mutant mutation O induced O a O notable O change O in O the O oligomeric O state O of O NadR B-protein ( O Fig O 3C O ). O Further O , O in O SE B-experimental_method - I-experimental_method MALLS I-experimental_method analyses O , O the O L130K B-mutant mutant B-protein_state displayed O two O distinct O species O in O solution O , O approximately O 80 O % O being O monomeric B-oligomeric_state ( O a O 19 O kDa O species O ), O and O only O 20 O % O retaining O the O typical O native O dimeric B-oligomeric_state state O ( O a O 35 O kDa O species O ) O ( O Fig O 3D O ), O demonstrating O that O Leu130 B-residue_name_number is O crucial O for O stable O dimerization O . O It O is O notable O that O L130 B-residue_name_number is O usually O present O as O Leu B-residue_name , O or O an O alternative O bulky O hydrophobic O amino O acid O ( O e O . O g O . O Phe B-residue_name , O Val B-residue_name ), O in O many O MarR B-protein_type family O proteins O , O suggesting O a O conserved B-protein_state role O in O stabilizing O the O dimer B-site interface I-site . O In O contrast O , O most O of O the O other O residues O identified O in O the O NadR B-protein dimer B-site interface I-site were O poorly B-protein_state conserved I-protein_state in O the O MarR B-protein_type family O . O Analysis O of O the O NadR B-protein dimer B-site interface I-site . O ( O A O ) O Both O orientations O show O chain B-structure_element A I-structure_element , O green O backbone O ribbon O , O colored O red O to O highlight O all O locations O involved O in O dimerization O ; O namely O , O inter O - O chain O salt O bridges O or O hydrogen O bonds O involving O Q4 B-residue_name_number , O S5 B-residue_name_number , O K6 B-residue_name_number , O H7 B-residue_name_number , O S9 B-residue_name_number , O I10 B-residue_name_number , O N11 B-residue_name_number , O I15 B-residue_name_number , O Q16 B-residue_name_number , O R18 B-residue_name_number , O D36 B-residue_name_number , O R43 B-residue_name_number , O A46 B-residue_name_number , O Q59 B-residue_name_number , O C61 B-residue_name_number , O Y104 B-residue_name_number , O D112 B-residue_name_number , O R114 B-residue_name_number , O Y115 B-residue_name_number , O D116 B-residue_name_number , O E119 B-residue_name_number , O K126 B-residue_name_number , O E136 B-residue_name_number , O E141 B-residue_name_number , O N145 B-residue_name_number , O and O the O hydrophobic O packing O interactions O involving O I10 B-residue_name_number , O I12 B-residue_name_number , O L14 B-residue_name_number , O I15 B-residue_name_number , O R18 B-residue_name_number , O Y115 B-residue_name_number , O I118 B-residue_name_number , O L130 B-residue_name_number , O L133 B-residue_name_number , O L134 B-residue_name_number and O L137 B-residue_name_number . O Chain B-structure_element B I-structure_element , O grey O surface O , O is O marked O blue O to O highlight O residues O probed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method ( O E136 B-residue_name_number only O makes O a O salt O bridge O with O K126 B-residue_name_number , O therefore O it O was O sufficient O to O make O the O K126A B-mutant mutation O to O assess O the O importance O of O this O ionic O interaction O ; O the O H7 B-residue_name_number position O is O labelled O for O monomer B-oligomeric_state A B-structure_element , O since O electron B-evidence density I-evidence was O lacking O for O monomer B-oligomeric_state B B-structure_element ). O ( O B O ) O A O zoom O into O the O environment O of O helix B-structure_element α6 B-structure_element to O show O how O residue O L130 B-residue_name_number chain B-structure_element B I-structure_element ( O blue O side O chain O ) O is O a O focus O of O hydrophobic O packing O interactions O with O L130 B-residue_name_number , O L133 B-residue_name_number , O L134 B-residue_name_number and O L137 B-residue_name_number of O chain B-structure_element A I-structure_element ( O red O side O chains O ). O ( O C O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method analyses O of O all O mutant B-protein_state forms O of O NadR B-protein are O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O protein O . O The O WT B-protein_state and O most O of O the O mutants O show O a O single O elution O peak O with O an O absorbance O maximum O at O 17 O . O 5 O min O . O Only O the O mutation O L130K B-mutant has O a O noteworthy O effect O on O the O oligomeric O state O , O inducing O a O second O peak O with O a O longer O retention O time O and O a O second O peak O maximum O at O 18 O . O 6 O min O . O To O a O much O lesser O extent O , O the O L133K B-mutant mutation O also O appears O to O induce O a O ‘ O shoulder O ’ O to O the O main O peak O , O suggesting O very O weak O ability O to O disrupt O the O dimer B-oligomeric_state . O ( O D O ) O SE B-experimental_method - I-experimental_method HPLC I-experimental_method / I-experimental_method MALLS I-experimental_method analyses O of O the O L130K B-mutant mutant B-protein_state , O shows O 20 O % O dimer B-oligomeric_state and O 80 O % O monomer B-oligomeric_state . O The O holo B-protein_state - O NadR B-protein structure B-evidence presents O only O one O occupied O ligand B-site - I-site binding I-site pocket I-site The O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly structure B-evidence revealed O the O ligand B-site - I-site binding I-site site I-site nestled O between O the O dimerization B-structure_element and I-structure_element DNA I-structure_element - I-structure_element binding I-structure_element domains I-structure_element ( O Fig O 2 O ). O The O ligand O showed O a O different O position O and O orientation O compared O to O salicylate B-chemical complexed B-protein_state with I-protein_state MTH313 B-protein and O ST1710 B-protein ( O see O Discussion O ). O The O binding B-site pocket I-site was O almost O entirely O filled O by O 4 B-chemical - I-chemical HPA I-chemical and O one O water B-chemical molecule O , O although O there O also O remained O a O small O tunnel B-site 2 O - O 4Å O in O diameter O and O 5 O - O 6Å O long O leading O from O the O pocket B-site ( O proximal O to O the O 4 O - O hydroxyl O position O ) O to O the O protein O surface O . O The O tunnel B-site was O lined O with O rather O hydrophobic O amino O acids O , O and O did O not O contain O water B-chemical molecules O . O Unexpectedly O , O only O one O monomer B-oligomeric_state of O the O holo B-protein_state - O NadR B-protein homodimer B-oligomeric_state contained O 4 B-chemical - I-chemical HPA I-chemical in O the O binding B-site pocket I-site , O whereas O the O corresponding O pocket B-site of O the O other O monomer B-oligomeric_state was O unoccupied O by O ligand O , O despite O the O large O excess O of O 4 B-chemical - I-chemical HPA I-chemical used O in O the O crystallization O conditions O . O Inspection O of O the O protein B-site - I-site ligand I-site interaction I-site network I-site revealed O no O bonds O from O NadR B-protein backbone O groups O to O the O ligand O , O but O several O key O side O chain O mediated O hydrogen O ( O H O )- O bonds O and O ionic O interactions O , O most O notably O between O the O carboxylate O group O of O 4 B-chemical - I-chemical HPA I-chemical and O Ser9 B-residue_name_number of O chain B-structure_element A I-structure_element ( O SerA9 B-residue_name_number ), O and O chain B-structure_element B I-structure_element residues O TrpB39 B-residue_name_number , O ArgB43 B-residue_name_number and O TyrB115 B-residue_name_number ( O Fig O 4A O ). O At O the O other O ‘ O end O ’ O of O the O ligand O , O the O 4 O - O hydroxyl O group O was O proximal O to O AspB36 B-residue_name_number , O with O which O it O may O establish O an O H O - O bond O ( O see O bond O distances O in O Table O 3 O ). O The O water B-chemical molecule O observed O in O the O pocket O was O bound O by O the O carboxylate O group O and O the O side O chains O of O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number . O Atomic O details O of O NadR B-protein / O HPA B-chemical interactions O . O A O ) O A O stereo O - O view O zoom O into O the O binding B-site pocket I-site showing O side O chain O sticks O for O all O interactions O between O NadR B-protein and O 4 B-chemical - I-chemical HPA I-chemical . O Green O and O blue O ribbons O depict O NadR B-protein chains B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O . O 4 B-chemical - I-chemical HPA I-chemical is O shown O in O yellow O sticks O , O with O oxygen O atoms O in O red O . O A O water B-chemical molecule O is O shown O by O the O red O sphere O . O The O entire O set O of O residues O making O H O - O bonds O or O non O - O bonded O contacts O with O 4 B-chemical - I-chemical HPA I-chemical is O as O follows O : O SerA9 B-residue_name_number , O AsnA11 B-residue_name_number , O LeuB21 B-residue_name_number , O MetB22 B-residue_name_number , O PheB25 B-residue_name_number , O LeuB29 B-residue_name_number , O AspB36 B-residue_name_number , O TrpB39 B-residue_name_number , O ArgB43 B-residue_name_number , O ValB111 B-residue_name_number and O TyrB115 B-residue_name_number ( O automated O analysis O performed O using O PDBsum B-experimental_method and O verified O manually O ). O Residues O AsnA11 B-residue_name_number and O ArgB18 B-residue_name_number likely O make O indirect O yet O local O contributions O to O ligand O binding O , O mainly O by O stabilizing O the O position O of O AspB36 B-residue_name_number . O Side O chains O mediating O hydrophobic O interactions O are O shown O in O orange O . O ( O B O ) O A O model O was O prepared O to O visualize O putative O interactions O of O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O pink O ) O with O NadR B-protein , O revealing O the O potential O for O additional O contacts O ( O dashed O lines O ) O of O the O chloro O moiety O ( O green O stick O ) O with O LeuB29 B-residue_name_number and O AspB36 B-residue_name_number . O List O of O 4 B-chemical - I-chemical HPA I-chemical atoms O bound O to O NadR B-protein via O ionic O interactions O and O / O or O H O - O bonds O . O 4 B-chemical - I-chemical HPA I-chemical atom O NadR B-protein residue O / O atom O Distance O ( O Å O ) O O2 O TrpB39 B-residue_name_number / O NE1 O 2 O . O 83 O O2 O ArgB43 B-residue_name_number / O NH1 O 2 O . O 76 O O1 O ArgB43 B-residue_name_number / O NH1 O 3 O . O 84 O O1 O SerA9 B-residue_name_number / O OG O 2 O . O 75 O O1 O TyrB115 B-residue_name_number / O OH O 2 O . O 50 O O2 O Water B-chemical (* O Ser9 B-residue_name_number / O Asn11 B-residue_name_number ) O 2 O . O 88 O OH O AspB36 B-residue_name_number / O OD1 O / O OD2 O 3 O . O 6 O / O 3 O . O 7 O * O Bond O distance O between O the O ligand O carboxylate O group O and O the O water B-chemical molecule O , O which O in O turn O makes O H O - O bond O to O the O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number side O chains O . O In O addition O to O the O H O - O bonds O involving O the O carboxylate O and O hydroxyl O groups O of O 4 B-chemical - I-chemical HPA I-chemical , O binding O of O the O phenyl O moiety O appeared O to O be O stabilized O by O several O van O der O Waals O ’ O contacts O , O particularly O those O involving O the O hydrophobic O side O chain O atoms O of O LeuB21 B-residue_name_number , O MetB22 B-residue_name_number , O PheB25 B-residue_name_number , O LeuB29 B-residue_name_number and O ValB111 B-residue_name_number ( O Fig O 4A O ). O Notably O , O the O phenyl O ring O of O PheB25 B-residue_name_number was O positioned O parallel O to O the O phenyl O ring O of O 4 B-chemical - I-chemical HPA I-chemical , O potentially O forming O π O - O π O parallel O - O displaced O stacking O interactions O . O Consequently O , O residues O in O the O 4 B-site - I-site HPA I-site binding I-site pocket I-site are O mostly O contributed O by O NadR B-protein chain B-structure_element B I-structure_element , O and O effectively O created O a O polar O ‘ O floor O ’ O and O a O hydrophobic O ‘ O ceiling O ’, O which O house O the O ligand O . O Collectively O , O this O mixed O network O of O polar O and O hydrophobic O interactions O endows O NadR B-protein with O a O strong O recognition O pattern O for O HPAs B-chemical , O with O additional O medium O - O range O interactions O potentially O established O with O the O hydroxyl O group O at O the O 4 O - O position O . O Structure O - O activity O relationships O : O molecular O basis O of O enhanced O stabilization O by O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical We O modelled B-experimental_method the O binding O of O other O HPAs B-chemical by O in B-experimental_method silico I-experimental_method superposition I-experimental_method onto O 4 B-chemical - I-chemical HPA I-chemical in O the O holo B-protein_state - O NadR B-protein structure B-evidence , O and O thereby O obtained O molecular O explanations O for O the O binding O specificities O of O diverse O ligands O . O For O example O , O similar O to O 4 B-chemical - I-chemical HPA I-chemical , O the O binding O of O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical could O involve O multiple O bonds O towards O the O carboxylate O group O of O the O ligand O and O some O to O the O 4 O - O hydroxyl O group O . O Additionally O , O the O side O chains O of O LeuB29 B-residue_name_number and O AspB36 B-residue_name_number would O be O only O 2 O . O 6 O – O 3 O . O 5 O Å O from O the O chlorine O atom O , O thus O providing O van O der O Waals O ’ O interactions O or O H O - O bonds O to O generate O the O additional O binding B-evidence affinity I-evidence observed O for O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O Fig O 4B O ). O The O presence O of O a O single O hydroxyl O group O at O position O 2 O , O as O in O 2 B-chemical - I-chemical HPA I-chemical , O rather O than O at O position O 4 O , O would O eliminate O the O possibility O of O favorable O interactions O with O AspB36 B-residue_name_number , O resulting O in O the O lack O of O NadR B-protein regulation O by O 2 B-chemical - I-chemical HPA I-chemical described O previously O . O Finally O , O salicylate B-chemical is O presumably O unable O to O specifically O bind O NadR B-protein due O to O the O 2 O - O hydroxyl O substitution O and O the O shorter O aliphatic O chain O connecting O its O carboxylate O group O ( O Fig O 1A O ): O the O compound O simply O seems O too O small O to O simultaneously O establish O the O network O of O beneficial O bonds O observed O in O the O NadR B-protein / O HPA B-chemical interactions O . O Analysis O of O the O pockets B-site reveals O the O molecular O basis O for O asymmetric O binding O and O stoichiometry O However O , O studies O based O on O tryptophan B-experimental_method fluorescence I-experimental_method were O confounded O by O the O fluorescence O of O the O HPA B-chemical ligands O , O and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O was O unfeasible O due O to O the O need O for O very O high O concentrations O of O NadR B-protein in O the O ITC B-experimental_method chamber O ( O due O to O the O relatively O low O affinity O ), O which O exceeded O the O solubility O limits O of O the O protein O . O However O , O it O was O possible O to O calculate O the O binding B-evidence stoichiometry I-evidence of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O using O an O SPR B-experimental_method - O based O approach O . O In O SPR B-experimental_method , O the O signal O measured O is O proportional O to O the O total O molecular O mass O proximal O to O the O sensor O surface O ; O consequently O , O if O the O molecular O weights O of O the O interactors O are O known O , O then O the O stoichiometry O of O the O resulting O complex O can O be O determined O . O This O approach O relies O on O the O assumption O that O the O captured O protein O (‘ O the O ligand O ’, O according O to O SPR B-experimental_method conventions O ) O is O 100 O % O active O and O freely O - O accessible O to O potential O interactors O (‘ O the O analytes O ’). O Firstly O , O NadR B-protein is O expected O to O be O covalently O immobilized O on O the O sensor O chip O as O a O dimer B-oligomeric_state in O random O orientations O , O since O it O is O a O stable B-protein_state dimer B-oligomeric_state in O solution O and O has O sixteen O lysines B-residue_name well O - O distributed O around O its O surface O , O all O able O to O act O as O potential O sites O for O amine O coupling O to O the O chip O , O and O none O of O which O are O close O to O the O ligand B-site - I-site binding I-site pocket I-site . O Secondly O , O the O HPA B-chemical analytes O are O all O very O small O ( O MW O 150 O – O 170 O , O Fig O 1A O ) O and O therefore O are O expected O to O be O able O to O diffuse O readily O into O all O potential O binding B-site sites I-site , O irrespective O of O the O random O orientations O of O the O immobilized O NadR B-protein dimers B-oligomeric_state on O the O chip O . O The O stoichiometry O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O was O determined O using O Eq O 1 O ( O see O Materials O and O Methods O ), O and O revealed O stoichiometries B-evidence of O 1 O . O 13 O for O 4 B-chemical - I-chemical HPA I-chemical , O 1 O . O 02 O for O 3 B-chemical - I-chemical HPA I-chemical , O and O 1 O . O 21 O for O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O strongly O suggesting O that O one O NadR B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state 1 O HPA B-chemical analyte O molecule O . O The O crystallographic B-evidence data I-evidence , O supported O by O the O SPR B-experimental_method studies O of O binding B-evidence stoichiometry I-evidence , O revealed O the O lack O of O a O second O 4 B-chemical - I-chemical HPA I-chemical molecule O in O the O homodimer B-oligomeric_state , O suggesting O negative O co O - O operativity O , O a O phenomenon O previously O described O for O the O MTH313 B-protein / O salicylate B-chemical interaction O and O for O other O MarR B-protein_type family O proteins O . O To O explore O the O molecular O basis O of O asymmetry O in O holo B-protein_state - O NadR B-protein , O we O superposed B-experimental_method its O ligand B-protein_state - I-protein_state free I-protein_state monomer B-oligomeric_state ( O chain B-structure_element A I-structure_element ) O onto O the O ligand B-protein_state - I-protein_state occupied I-protein_state monomer B-oligomeric_state ( O chain B-structure_element B I-structure_element ). O Overall O , O the O superposition B-experimental_method revealed O a O high O degree O of O structural O similarity O ( O Cα O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O rmsd B-evidence ) O of O 1 O . O 5Å O ), O though O on O closer O inspection O a O rotational O difference O of O ~ O 9 O degrees O along O the O long O axis O of O helix B-structure_element α6 B-structure_element was O observed O , O suggesting O that O 4 B-chemical - I-chemical HPA I-chemical induced O a O slight O conformational O change O ( O Fig O 5A O ). O However O , O since O residues O of O helix B-structure_element α6 B-structure_element were O not O directly O involved O in O ligand O binding O , O an O explanation O for O the O lack O of O 4 B-chemical - I-chemical HPA I-chemical in O monomer B-oligomeric_state A B-structure_element did O not O emerge O by O analyzing O only O these O backbone O atom O positions O , O suggesting O that O a O more O complex O series O of O allosteric O events O may O occur O . O Indeed O , O we O noted O interesting O differences O in O the O side O chains O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O Arg43 B-residue_name_number , O which O in O monomer B-oligomeric_state B B-structure_element are O used O to O contact O the O ligand O while O in O monomer B-oligomeric_state A B-structure_element they O partially O occupied O the O pocket B-site and O collectively O reduced O its O volume O significantly O . O Specifically O , O upon O analysis O with O the O CASTp B-experimental_method software O , O the O pocket B-site in O chain B-structure_element B I-structure_element containing O the O 4 B-chemical - I-chemical HPA I-chemical exhibited O a O total O volume O of O approximately O 370 O Å3 O , O while O the O pocket B-site in O chain B-structure_element A I-structure_element was O occupied O by O these O three O side O chains O that O adopted O ‘ O inward B-protein_state ’ O positions O and O thereby O divided O the O space O into O a O few O much O smaller O pockets O , O each O with O volume O < O 50 O Å3 O , O evidently O rendering O chain B-structure_element A I-structure_element unfavorable O for O ligand O binding O . O Most O notably O , O atomic O clashes O between O the O ligand O and O the O side O chains O of O MetA22 B-residue_name_number , O PheA25 B-residue_name_number and O ArgA43 B-residue_name_number would O occur O if O 4 B-chemical - I-chemical HPA I-chemical were O present O in O the O monomer B-oligomeric_state A B-structure_element pocket B-site ( O Fig O 5B O ). O Subsequently O , O analyses O of O the O pockets B-site in O apo B-protein_state - O NadR B-protein revealed O that O in O the O absence B-protein_state of I-protein_state ligand I-protein_state the O long O Arg43 B-residue_name_number side O chain O was O always O in O the O open O ‘ O outward B-protein_state ’ O position O compatible O with O binding O to O the O 4 B-chemical - I-chemical HPA I-chemical carboxylate O group O . O In O contrast O , O the O apo B-protein_state - O form O Met22 B-residue_name_number and O Phe25 B-residue_name_number residues O were O still O encroaching O the O spaces O of O the O 4 O - O hydroxyl O group O and O the O phenyl O ring O of O the O ligand O , O respectively O ( O Fig O 5C O ). O The O ‘ O outward B-protein_state ’ O position O of O Arg43 B-residue_name_number generated O an O open B-protein_state apo B-protein_state - O form O pocket B-site with O volume O approximately O 380Å3 O . O Taken O together O , O these O observations O suggest O that O Arg43 B-residue_name_number is O a O major O determinant O of O ligand O binding O , O and O that O its O ‘ O inward B-protein_state ’ O position O inhibits O the O binding O of O 4 B-chemical - I-chemical HPA I-chemical to O the O empty O pocket B-site of O holo B-protein_state - O NadR B-protein . O Structural O differences O of O NadR B-protein in O ligand B-protein_state - I-protein_state bound I-protein_state or O free B-protein_state forms O . O ( O A O ) O Aligned B-experimental_method monomers B-oligomeric_state of O holo B-protein_state - O NadR B-protein ( O chain B-structure_element A I-structure_element : O green O ; O chain B-structure_element B I-structure_element : O blue O ), O reveal O major O overall O differences O by O the O shift O of O helix B-structure_element α6 B-structure_element . O ( O B O ) O Comparison B-experimental_method of O the O two O binding B-site pockets I-site in O holo B-protein_state - O NadR B-protein shows O that O in O the O ligand B-protein_state - I-protein_state free I-protein_state monomer B-oligomeric_state A B-structure_element ( O green O ) O residues O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O Arg43 B-residue_name_number adopt O ‘ O inward B-protein_state ’ O positions O ( O highlighted O by O arrows O ) O compared O to O the O ligand B-protein_state - I-protein_state occupied I-protein_state pocket B-site ( O blue O residues O ); O these O ‘ O inward B-protein_state ’ O conformations O appear O unfavorable O for O binding O of O 4 B-chemical - I-chemical HPA I-chemical due O to O clashes O with O the O 4 O - O hydroxyl O group O , O the O phenyl O ring O and O the O carboxylate O group O , O respectively O . O In O these O crystals B-evidence , O the O ArgA43 B-residue_name_number side O chain O showed O two O alternate O conformations O , O modelled O with O 50 O % O occupancy O in O each O state O , O as O indicated O by O the O two O ‘ O mirrored O ’ O arrows O . O The O inner O conformer O is O the O one O that O would O display O major O clashes O if O 4 B-chemical - I-chemical HPA I-chemical were O present O . O ( O C O ) O Comparison O of O the O empty O pocket B-site from O holo B-protein_state - O NadR B-protein ( O green O residues O ) O with O the O four O empty O pockets B-site of O apo B-protein_state - O NadR B-protein ( O grey O residues O ), O shows O that O in O the O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical the O Arg43 B-residue_name_number side O chain O is O always O observed O in O the O ‘ O outward B-protein_state ’ O conformation O . O Finally O , O we O applied O 15N B-experimental_method heteronuclear I-experimental_method solution I-experimental_method NMR I-experimental_method spectroscopy I-experimental_method to O examine O the O interaction O of O 4 B-chemical - I-chemical HPA I-chemical with O apo B-protein_state NadR B-protein . O We O collected O NMR B-experimental_method spectra B-evidence on O NadR B-protein in B-protein_state the I-protein_state presence I-protein_state and O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical ( O see O Materials O and O Methods O ). O The O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectrum B-evidence of O apo B-protein_state - O NadR B-protein , O acquired O at O 25 O ° O C O , O displayed O approximately O 140 O distinct O peaks O ( O Fig O 6A O ), O most O of O which O correspond O to O backbone O amide O N O - O H O groups O . O The O broad O spectral O dispersion O and O the O number O of O peaks O observed O , O which O is O close O to O the O number O of O expected O backbone O amide O N O - O H O groups O for O this O polypeptide O , O confirmed O that O apo B-protein_state - O NadR B-protein is O well B-protein_state - I-protein_state folded I-protein_state under O these O conditions O and O exhibits O one O conformation O appreciable O on O the O NMR B-experimental_method timescale O , O i O . O e O . O in O the O NMR B-experimental_method experiments O at O 25 O ° O C O , O two O or O more O distinct O conformations O of O apo B-protein_state - O NadR B-protein monomers B-oligomeric_state were O not O readily O apparent O . O Upon O the O addition O of O 4 B-chemical - I-chemical HPA I-chemical , O over O 45 O peaks O showed O chemical O shift O perturbations O , O i O . O e O . O changed O position O in O the O spectrum O or O disappeared O , O while O the O remaining O peaks O remained O unchanged O . O This O observation O showed O that O 4 B-chemical - I-chemical HPA I-chemical was O able O to O bind O NadR B-protein and O induce O notable O changes O in O specific O regions O of O the O protein O . O NMR B-experimental_method spectra B-evidence of O NadR B-protein in B-protein_state the I-protein_state presence I-protein_state and O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical . O ( O A O ) O Superposition B-experimental_method of O two O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence recorded O at O 25 O ° O C O on O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O on O NadR B-protein in O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical ( O red O ). O ( O B O , O C O ) O Overlay B-experimental_method of O selected O regions O of O the O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence acquired O at O 25 O ° O C O of O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O red O ) O superimposed B-experimental_method with O the O spectra B-evidence acquired O at O 10 O ° O C O of O apo B-protein_state - O NadR B-protein ( O blue O ) O and O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ). O The O spectra B-evidence acquired O at O 10 O ° O C O are O excluded O from O panel O A O for O simplicity O . O However O , O in O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical , O the O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectrum B-evidence of O NadR B-protein displayed O approximately O 140 O peaks O , O as O for O apo B-protein_state - O NadR B-protein , O i O . O e O . O two O distinct O stable O conformations O ( O that O might O have O potentially O revealed O the O molecular O asymmetry O observed O crystallographically B-experimental_method ) O were O not O notable O . O Considering O the O small O size O , O fast O diffusion O and O relatively O low O binding B-evidence affinity I-evidence of O 4 B-chemical - I-chemical HPA I-chemical , O it O would O not O be O surprising O if O the O ligand O associates O and O dissociates O rapidly O on O the O NMR B-experimental_method time O scale O , O resulting O in O only O one O set O of O peaks O whose O chemical O shifts O represent O the O average O environment O of O the O bound B-protein_state and O unbound B-protein_state states O . O Interestingly O , O by O cooling O the O samples O to O 10 O ° O C O , O we O observed O that O a O number O of O those O peaks O strongly O affected O by O 4 B-chemical - I-chemical HPA I-chemical ( O and O therefore O likely O to O be O in O the O ligand B-site - I-site binding I-site site I-site ) O demonstrated O evidence O of O peak O splitting O , O i O . O e O . O a O tendency O to O become O two O distinct O peaks O rather O than O one O single O peak O ( O Fig O 6B O and O 6C O ). O These O doubled O peaks O may O therefore O reveal O that O the O cooler O temperature O partially O trapped O the O existence O in O solution O of O two O distinct O states O , O in O presence B-protein_state or O absence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical , O with O minor O conformational O differences O occurring O at O least O in O proximity O to O the O binding B-site pocket I-site . O Although O more O comprehensive O NMR B-experimental_method experiments O and O full O chemical O shift O assignment O of O the O spectra B-evidence would O be O required O to O precisely O define O this O multi O - O state O behavior O , O the O NMR B-experimental_method data O clearly O demonstrate O that O NadR B-protein exhibits O conformational O flexibility O which O is O modulated O by O 4 B-chemical - I-chemical HPA I-chemical in O solution O . O Apo B-protein_state - O NadR B-protein structures B-evidence reveal O intrinsic O conformational O flexibility O The O apo B-protein_state - O NadR B-protein crystal B-evidence structure I-evidence contained O two O homodimers B-oligomeric_state in O the O asymmetric O unit O ( O chains B-structure_element A I-structure_element + I-structure_element B I-structure_element and O chains B-structure_element C I-structure_element + I-structure_element D I-structure_element ). O Upon O overall O structural B-experimental_method superposition I-experimental_method , O these O dimers B-oligomeric_state revealed O a O few O minor O differences O in O the O α6 B-structure_element helix I-structure_element ( O a O major O component O of O the O dimer B-site interface I-site ) O and O the O helices B-structure_element α4 B-structure_element - I-structure_element α5 I-structure_element ( O the O DNA B-site binding I-site region I-site ), O and O an O rmsd B-evidence of O 1 O . O 55Å O ( O Fig O 7A O ). O Similarly O , O the O entire O holo B-protein_state - O homodimer B-oligomeric_state could O be O closely B-experimental_method superposed I-experimental_method onto O each O of O the O apo B-protein_state - O homodimers B-oligomeric_state , O showing O rmsd B-evidence values O of O 1 O . O 29Å O and O 1 O . O 31Å O , O and O with O more O notable O differences O in O the O α6 B-structure_element helix I-structure_element positions O ( O Fig O 7B O ). O The O slightly O larger O rmsd B-evidence between O the O two O apo B-protein_state - O homodimers B-oligomeric_state , O rather O than O between O apo B-protein_state - O and O holo B-protein_state - O homodimers B-oligomeric_state , O further O indicate O that O apo B-protein_state - O NadR B-protein possesses O a O notable O degree O of O intrinsic O conformational O flexibility O . O Overall O apo B-protein_state - O and O holo B-protein_state - O NadR B-protein structures B-evidence are O similar O . O ( O A O ) O Pairwise B-experimental_method alignment I-experimental_method of O the O two O distinct O apo B-protein_state - O NadR B-protein homodimers B-oligomeric_state ( O AB B-structure_element and O CD B-structure_element ) O present O in O the O apo B-protein_state - O NadR B-protein crystals B-evidence . O ( O B O ) O Alignment B-experimental_method of O the O holo B-protein_state - O NadR B-protein homodimer B-oligomeric_state ( O green O and O blue O chains O ) O onto O the O apo B-protein_state - O NadR B-protein homodimers B-oligomeric_state . O Here O , O larger O differences O are O observed O in O the O α6 B-structure_element helices I-structure_element ( O top O ). O 4 B-chemical - I-chemical HPA I-chemical stabilizes O concerted O conformational O changes O in O NadR B-protein that O prevent O DNA O - O binding O To O further O investigate O the O conformational O rearrangements O of O NadR B-protein , O we O performed O local B-experimental_method structural I-experimental_method alignments I-experimental_method using O only O a O subset O of O residues O in O the O DNA B-structure_element - I-structure_element binding I-structure_element helix I-structure_element ( O α4 B-structure_element ). O By O selecting B-experimental_method and O aligning B-experimental_method residues O Arg64 B-residue_range - I-residue_range Ala77 I-residue_range of O one O α4 B-structure_element helix I-structure_element per O dimer B-oligomeric_state , O superposition B-experimental_method of O the O holo B-protein_state - O homodimer B-oligomeric_state onto O the O two O apo B-protein_state - O homodimers B-oligomeric_state revealed O differences O in O the O monomer B-oligomeric_state conformations O of O each O structure B-evidence . O While O one O monomer B-oligomeric_state from O each O structure B-evidence was O closely O superimposable O ( O Fig O 8A O , O left O side O ), O the O second O monomer B-oligomeric_state displayed O quite O large O differences O ( O Fig O 8A O , O right O side O ). O Most O notably O , O the O position O of O the O DNA B-chemical - O binding O helix B-structure_element α4 B-structure_element shifted O by O as O much O as O 6 O Å O ( O Fig O 8B O ). O Accordingly O , O helix B-structure_element α4 B-structure_element was O also O found O to O be O one O of O the O most O dynamic O regions O in O previous O HDX B-experimental_method - I-experimental_method MS I-experimental_method analyses O of O apo B-protein_state - O NadR B-protein in O solution O . O Structural B-experimental_method comparisons I-experimental_method of O NadR B-protein and O modelling O of O interactions O with O DNA B-chemical . O ( O A O ) O The O holo B-protein_state - O homodimer B-oligomeric_state structure B-evidence is O shown O as O green O and O blue O cartoons O , O for O chain B-structure_element A I-structure_element and I-structure_element B I-structure_element , O respectively O , O while O the O two O homodimers B-oligomeric_state of O apo B-protein_state - O NadR B-protein are O both O cyan O and O pale O blue O for O chains O A B-structure_element / I-structure_element C I-structure_element and O B B-structure_element / I-structure_element D I-structure_element , O respectively O . O The O three O homodimers B-oligomeric_state ( O chains O AB B-structure_element holo B-protein_state , O AB B-structure_element apo B-protein_state , O and O CD B-structure_element apo B-protein_state ) O were O overlaid B-experimental_method by O structural B-experimental_method alignment I-experimental_method exclusively O of O all O heavy O atoms O in O residues O R64 B-residue_range - I-residue_range A77 I-residue_range ( O shown O in O red O , O with O side O chain O sticks O ) O of O chains O A B-structure_element holo B-protein_state , O A B-structure_element apo B-protein_state , O and O C B-structure_element apo B-protein_state , O belonging O to O helix B-structure_element α4 B-structure_element ( O left O ). O The O α4 B-structure_element helices I-structure_element aligned O closely O , O Cα O rmsd B-evidence 0 O . O 2Å O for O 14 O residues O . O ( O B O ) O The O relative O positions O of O the O α4 B-structure_element helices I-structure_element of O the O 4 B-protein_state - I-protein_state HPA I-protein_state - I-protein_state bound I-protein_state holo B-protein_state homodimer B-oligomeric_state chain B-structure_element B I-structure_element ( O blue O ), O and O of O apo B-protein_state homodimers B-oligomeric_state AB B-structure_element and O CD B-structure_element ( O showing O chains B-structure_element B I-structure_element and I-structure_element D I-structure_element ) O in O pale O blue O . O Dashes O indicate O the O Ala77 B-residue_name_number Cα O atoms O , O in O the O most O highly O shifted O region O of O the O ‘ O non O - O fixed O ’ O α4 B-structure_element helix I-structure_element . O ( O C O ) O The O double O - O stranded O DNA B-chemical molecule O ( O grey O cartoon O ) O from O the O OhrR B-complex_assembly - I-complex_assembly ohrA I-complex_assembly complex O is O shown O after O superposition B-experimental_method with O NadR B-protein , O to O highlight O the O expected O positions O of O the O NadR B-protein α4 B-structure_element helices I-structure_element in O the O DNA B-chemical major O grooves O . O For O clarity O , O only O the O α4 B-structure_element helices I-structure_element are O shown O in O panels O ( O B O ) O and O ( O C O ). O ( O D O ) O Upon O comparison O with O the O experimentally O - O determined O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly structure B-evidence ( O grey O ), O the O α4 B-structure_element helix I-structure_element of O holo B-protein_state - O NadR B-protein ( O blue O ) O is O shifted O ~ O 8Å O out O of O the O major O groove O . O However O , O structural B-experimental_method comparisons I-experimental_method revealed O that O the O shift O of O holo B-protein_state - O NadR B-protein helix B-structure_element α4 B-structure_element induced O by O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical was O also O accompanied O by O several O changes O at O the O holo B-protein_state dimer B-site interface I-site , O while O such O extensive O structural O differences O were O not O observed O in O the O apo B-protein_state dimer B-site interfaces I-site , O particularly O notable O when O comparing O the O α6 B-structure_element helices I-structure_element ( O S3 O Fig O ). O In O summary O , O compared O to O ligand B-protein_state - I-protein_state stabilized I-protein_state holo B-protein_state - O NadR B-protein , O apo B-protein_state - O NadR B-protein displayed O an O intrinsic O flexibility O focused O in O the O DNA B-site - I-site binding I-site region I-site . O This O was O also O evident O in O the O greater O disorder O ( O i O . O e O . O less O well O - O defined O electron B-evidence density I-evidence ) O in O the O β1 B-structure_element - I-structure_element β2 I-structure_element loops I-structure_element of O the O apo B-protein_state dimers B-oligomeric_state ( O density B-evidence for O 16 O residues O per O dimer B-oligomeric_state was O missing O ) O compared O to O the O holo B-protein_state dimer B-oligomeric_state ( O density B-evidence for O only O 3 O residues O was O missing O ). O In O holo B-protein_state - O NadR B-protein , O the O distance O separating O the O two O DNA O - O binding O α4 B-structure_element helices I-structure_element was O 32 O Å O , O while O in O apo B-protein_state - O NadR B-protein it O was O 29 O Å O for O homodimer B-oligomeric_state AB B-structure_element , O and O 34 O Å O for O homodimer B-oligomeric_state CD B-structure_element ( O Fig O 8C O ). O Thus O , O the O apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element presented O the O DNA B-structure_element - I-structure_element binding I-structure_element helices I-structure_element in O a O conformation O similar O to O that O observed O in O the O protein O : O DNA O complex O of O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly from O Bacillus B-species subtilis I-species ( O Fig O 8C O ). O Interestingly O , O OhrR B-protein contacts O ohrA B-gene across O 22 O base O pairs O ( O bp O ), O and O similarly O the O main O NadR B-protein target B-site sites I-site identified O in O the O nadA B-gene promoter O ( O the O operators O Op O I O and O Op O II O ) O both O span O 22 O bp O . O Pairwise B-experimental_method superpositions I-experimental_method showed O that O the O NadR B-protein apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element was O the O most O similar O to O OhrR B-protein ( O rmsd B-evidence 2 O . O 6 O Å O ), O while O the O holo B-protein_state - O homodimer B-oligomeric_state was O the O most O divergent O ( O rmsd B-evidence 3 O . O 3 O Å O ) O ( O Fig O 8C O ). O Assuming O the O same O DNA B-chemical - O binding O mechanism O is O used O by O OhrR B-protein and O NadR B-protein , O the O apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element seems O ideally O pre O - O configured O for O DNA B-chemical binding O , O while O 4 B-chemical - I-chemical HPA I-chemical appeared O to O stabilize O holo B-protein_state - O NadR B-protein in O a O conformation O poorly O suited O for O DNA B-chemical binding O . O Specifically O , O in O addition O to O the O different O inter B-evidence - I-evidence helical I-evidence translational I-evidence distances I-evidence , O the O α4 B-structure_element helices I-structure_element in O the O holo B-protein_state - O NadR B-protein homodimer B-oligomeric_state were O also O reoriented O , O resulting O in O movement O of O α4 B-structure_element out O of O the O major O groove O , O by O up O to O 8Å O , O and O presumably O preventing O efficient O DNA B-chemical binding O in O the O presence O of O 4 B-chemical - I-chemical HPA I-chemical ( O Fig O 8D O ). O When O aligned B-experimental_method with O OhrR B-protein , O the O apo B-protein_state - O homodimer B-oligomeric_state CD B-structure_element presented O yet O another O different O intermediate O conformation O ( O rmsd B-evidence 2 O . O 9Å O ), O apparently O not O ideally O pre O - O configured O for O DNA B-chemical binding O , O but O which O in O solution O can O presumably O readily O adopt O the O AB B-structure_element conformation O due O to O the O intrinsic O flexibility O described O above O . O NadR B-protein residues O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number are O essential O for O regulation O of O NadA B-protein expression O in O vivo O While O previous O studies O had O correctly O suggested O the O involvement O of O several O NadR B-protein residues O in O ligand O binding O , O the O crystal B-evidence structures I-evidence presented O here O revealed O additional O residues O with O previously O unknown O roles O in O dimerization O and O / O or O binding O to O 4 B-chemical - I-chemical HPA I-chemical . O To O explore O the O functional O involvement O of O these O residues O , O we O characterized O the O behavior O of O four O new O NadR B-protein mutants O ( O H7A B-mutant , O S9A B-mutant , O N11A B-mutant and O F25A B-mutant ) O in O an O in O vivo O assay O using O the O previously O described O MC58 B-mutant - I-mutant Δ1843 I-mutant nadR B-gene - O null O mutant B-protein_state strain O , O which O was O complemented O either O by O wild B-protein_state - I-protein_state type I-protein_state nadR B-gene or O by O the O nadR B-gene mutants B-protein_state . O NadA B-protein protein O abundance O levels O were O assessed O by O Western B-experimental_method blotting I-experimental_method to O evaluate O the O ability O of O the O NadR B-protein mutants B-protein_state to O repress O the O nadA B-gene promoter O , O in O the O presence O or O absence O of O 4 B-chemical - I-chemical HPA I-chemical . O The O nadR B-gene H7A B-mutant , O S9A B-mutant and O F25A B-mutant complemented O strains O showed O hyper O - O repression O of O nadA B-gene expression O in O vivo O , O i O . O e O . O these O mutants O repressed O nadA B-gene more O efficiently O than O the O NadR B-protein WT B-protein_state protein O , O either O in O the O presence O or O absence O of O 4 B-chemical - I-chemical HPA I-chemical , O while O complementation O with O wild B-protein_state - I-protein_state type I-protein_state nadR B-gene resulted O in O high O production O of O NadA B-protein only O in O the O presence O of O 4 B-chemical - I-chemical HPA I-chemical ( O Fig O 9 O ). O Interestingly O , O and O on O the O contrary O , O the O nadR B-gene N11A B-mutant complemented O strain O showed O hypo O - O repression O ( O i O . O e O . O exhibited O high O expression O of O nadA B-gene both O in O absence O and O presence O of O 4 B-chemical - I-chemical HPA I-chemical ). O This O mutagenesis B-experimental_method data O revealed O that O NadR B-protein residues O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number play O key O roles O in O the O ligand O - O mediated O regulation O of O NadR B-protein ; O they O are O each O involved O in O the O controlled O de O - O repression O of O the O nadA B-gene promoter O and O synthesis O of O NadA B-protein in O response O to O 4 B-chemical - I-chemical HPA I-chemical in O vivo O . O Structure B-experimental_method - I-experimental_method based I-experimental_method point I-experimental_method mutations I-experimental_method shed O light O on O ligand O - O induced O regulation O of O NadR B-protein . O Western B-experimental_method blot I-experimental_method analyses O of O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O strain O ( O lanes O 1 O – O 2 O ) O or O isogenic O nadR B-gene knockout O strains O ( O ΔNadR B-mutant ) O complemented O to O express O the O indicated O NadR B-protein WT B-protein_state or O mutant B-protein_state proteins O ( O lanes O 3 O – O 12 O ) O or O not O complemented O ( O lanes O 13 O – O 14 O ), O grown O in O the O presence O ( O even O lanes O ) O or O absence O ( O odd O lanes O ) O of O 5mM O 4 B-chemical - I-chemical HPA I-chemical , O showing O NadA B-protein and O NadR B-protein expression O . O Complementation O of O ΔNadR B-mutant with O WT B-protein_state NadR B-protein enables O induction O of O nadA B-gene expression O by O 4 B-chemical - I-chemical HPA I-chemical . O The O H7A B-mutant , O S9A B-mutant and O F25A B-mutant mutants O efficiently O repress O nadA B-gene expression O but O are O less O ligand O - O responsive O than O WT B-protein_state NadR B-protein . O The O N11A B-mutant mutant B-protein_state does O not O efficiently O repress O nadA B-gene expression O either O in O presence O or O absence O of O 4 B-chemical - I-chemical HPA I-chemical . O ( O The O protein O abundance O levels O of O the O meningococcal B-taxonomy_domain factor B-protein H I-protein binding I-protein protein I-protein ( O fHbp B-protein ) O were O used O as O a O gel O loading O control O ). O NadA B-protein is O a O surface O - O exposed O meningococcal B-taxonomy_domain protein O contributing O to O pathogenesis O , O and O is O one O of O three O main O antigens O present O in O the O vaccine O Bexsero O . O A O detailed O understanding O of O the O in O vitro O repression O of O nadA B-gene expression O by O the O transcriptional B-protein_type regulator I-protein_type NadR B-protein is O important O , O both O because O it O is O a O relevant O disease O - O related O model O of O how O small O - O molecule O ligands O can O regulate O MarR B-protein_type family O proteins O and O thereby O impact O bacterial B-taxonomy_domain virulence O , O and O because O nadA B-gene expression O levels O are O linked O to O the O prediction O of O vaccine O coverage O . O The O repressive O activity O of O NadR B-protein can O be O relieved O by O hydroxyphenylacetate B-chemical ( O HPA B-chemical ) O ligands O , O and O HDX B-experimental_method - I-experimental_method MS I-experimental_method studies O previously O indicated O that O 4 B-chemical - I-chemical HPA I-chemical stabilizes O dimeric B-oligomeric_state NadR B-protein in O a O configuration O incompatible O with O DNA O binding O . O Despite O these O and O other O studies O , O the O molecular O mechanisms O by O which O ligands O regulate O MarR B-protein_type family O proteins O are O relatively O poorly O understood O and O likely O differ O depending O on O the O specific O ligand O . O Given O the O importance O of O NadR B-protein - O mediated O regulation O of O NadA B-protein levels O in O the O contexts O of O meningococcal B-taxonomy_domain pathogenesis O , O we O sought O to O characterize O NadR B-protein , O and O its O interaction O with O ligands O , O at O atomic O resolution O . O Firstly O , O we O confirmed O that O NadR B-protein is O dimeric B-oligomeric_state in O solution O and O demonstrated O that O it O retains O its O dimeric B-oligomeric_state state O in O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical , O indicating O that O induction O of O a O monomeric B-oligomeric_state status O is O not O the O manner O by O which O 4 B-chemical - I-chemical HPA I-chemical regulates O NadR B-protein . O These O observations O were O in O agreement O with O ( O i O ) O a O previous O study O of O NadR B-protein performed O using O SEC B-experimental_method and O mass B-experimental_method spectrometry I-experimental_method , O and O ( O ii O ) O crystallographic B-experimental_method studies I-experimental_method showing O that O several O MarR B-protein_type homologues O are O dimeric B-oligomeric_state . O We O also O used O structure B-experimental_method - I-experimental_method guided I-experimental_method site I-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method to O identify O an O important O conserved B-protein_state residue O , O Leu130 B-residue_name_number , O which O stabilizes O the O NadR B-protein dimer B-site interface I-site , O knowledge O of O which O may O also O inform O future O studies O to O explore O the O regulatory O mechanisms O of O other O MarR B-protein_type family O proteins O . O Secondly O , O we O assessed B-experimental_method the I-experimental_method thermal I-experimental_method stability I-experimental_method and O unfolding O of O NadR B-protein in B-protein_state the I-protein_state presence I-protein_state or O absence B-protein_state of I-protein_state ligands O . O All O DSC B-experimental_method profiles B-evidence showed O a O single O peak O , O suggesting O that O a O single O unfolding O event O simultaneously O disrupted O the O dimer B-oligomeric_state and O the O monomer B-oligomeric_state . O HPA O ligands O specifically O increased O the O stability O of O NadR B-protein . O The O largest O effects O were O induced O by O the O naturally O - O occurring O compounds O 4 B-chemical - I-chemical HPA I-chemical and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O which O , O in O SPR B-experimental_method assays I-experimental_method , O were O found O to O bind O NadR B-protein with O KD B-evidence values O of O 1 O . O 5 O mM O and O 1 O . O 1 O mM O , O respectively O . O Although O these O NadR B-protein / O HPA O interactions O appeared O rather O weak O , O their O distinct O affinities O and O specificities O matched O their O in O vitro O effects O and O their O biological O relevance O appears O similar O to O previous O proposals O that O certain O small O molecules O , O including O some O antibiotics O , O in O the O millimolar O concentration O range O may O be O broad O inhibitors O of O MarR B-protein_type family O proteins O . O Indeed O , O 4 B-chemical - I-chemical HPA I-chemical is O found O in O human B-species saliva O and O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical is O produced O during O inflammatory O processes O , O suggesting O that O these O natural O ligands O are O encountered O by O N B-species . I-species meningitidis I-species in O the O mucosa O of O the O oropharynx O during O infections O . O It O is O also O possible O that O NadR B-protein responds O to O currently O unidentified O HPA B-chemical analogues O . O Indeed O , O in O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O there O was O a O water B-chemical molecule O close O to O the O carboxylate O group O and O also O a O small O unfilled O tunnel B-site ~ O 5Å O long O , O both O factors O suggesting O that O alternative O larger O ligands O could O occupy O the O pocket O . O The O ability O to O respond O to O various O ligands O might O enable O NadR B-protein in O vivo O to O orchestrate O multiple O response O mechanisms O and O modulate O expression O of O genes O other O than O nadA B-gene . O Ultimately O , O confirmation O of O the O relevance O of O each O ligand O will O require O a O deeper O understanding O of O the O available O concentration O in O vivo O in O the O host O niche O during O bacterial B-taxonomy_domain colonization O and O inflammation O . O Here O , O we O determined O the O first O crystal B-evidence structures I-evidence of O apo B-protein_state - O NadR B-protein and O holo B-protein_state - O NadR B-protein . O These O experimentally O - O determined O structures B-evidence enabled O a O new O detailed O characterization O of O the O ligand B-site - I-site binding I-site pocket I-site . O In O holo B-protein_state - O NadR B-protein , O 4 B-chemical - I-chemical HPA I-chemical interacted O directly O with O at O least O 11 O polar O and O hydrophobic O residues O . O Several O , O but O not O all O , O of O these O interactions O were O predicted O previously O by O homology B-experimental_method modelling I-experimental_method combined O with O ligand B-experimental_method docking I-experimental_method in O silico O . O Subsequently O , O we O established O the O functional O importance O of O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number in O the O in O vitro O response O of O meningococcus B-taxonomy_domain to O 4 B-chemical - I-chemical HPA I-chemical , O via O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O More O unexpectedly O , O the O crystal B-evidence structure I-evidence revealed O that O only O one O molecule O of O 4 B-chemical - I-chemical HPA I-chemical was O bound B-protein_state per O NadR B-protein dimer B-oligomeric_state . O We O confirmed O this O stoichiometry O in O solution O using O SPR B-experimental_method methods O . O We O also O used O heteronuclear B-experimental_method NMR I-experimental_method spectroscopy I-experimental_method to O detect O substantial O conformational O changes O of O NadR B-protein occurring O in O solution O upon O addition O of O 4 B-chemical - I-chemical HPA I-chemical . O Moreover O , O NMR B-experimental_method spectra B-evidence at O 10 O ° O C O suggested O the O existence O of O two O distinct O conformations O of O NadR B-protein in O the O vicinity O of O the O ligand B-site - I-site binding I-site pocket I-site . O More O powerfully O , O our O unique O crystallographic B-evidence observation I-evidence of O this O ‘ O occupied B-protein_state vs O unoccupied B-protein_state site O ’ O asymmetry O in O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly interaction O is O , O to O our O knowledge O , O the O first O example O reported O for O a O MarR B-protein_type family O protein O . O Structural B-experimental_method analyses I-experimental_method suggested O that O ‘ O inward B-protein_state ’ O side O chain O positions O of O Met22 B-residue_name_number , O Phe25 B-residue_name_number and O especially O Arg43 B-residue_name_number precluded O binding O of O a O second O ligand O molecule O . O Such O a O mechanism O indicates O negative O cooperativity O , O which O may O enhance O the O ligand O - O responsiveness O of O NadR B-protein . O Comparisons O of O the O NadR B-complex_assembly / I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly complex O with O available O MarR B-protein_type family O / O salicylate B-chemical complexes O revealed O that O 4 B-chemical - I-chemical HPA I-chemical has O a O previously O unobserved O binding O mode O . O Briefly O , O in O the O M B-species . I-species thermoautotrophicum I-species MTH313 B-protein dimer B-oligomeric_state , O one O molecule O of O salicylate B-chemical binds O in O the O pocket B-site of O each O monomer B-oligomeric_state , O though O with O two O rather O different O positions O and O orientations O , O only O one O of O which O ( O site B-site - I-site 1 I-site ) O is O thought O to O be O biologically O relevant O ( O Fig O 10A O ). O In O the O S B-species . I-species tokodaii I-species protein O ST1710 B-protein , O salicylate B-chemical binds O to O the O same O position O in O each O monomer B-oligomeric_state of O the O dimer B-oligomeric_state , O in O a O site O equivalent O to O the O putative O biologically O relevant O site O of O MTH313 B-protein ( O Fig O 10B O ). O Unlike O other O MarR B-protein_type family O proteins O which O revealed O multiple O ligand O binding O interactions O , O we O observed O only O 1 O molecule O of O 4 B-chemical - I-chemical HPA I-chemical bound B-protein_state to I-protein_state NadR B-protein , O suggesting O a O more O specific O and O less O promiscuous O interaction O . O In O NadR B-protein , O the O single O molecule O of O 4 B-chemical - I-chemical HPA I-chemical binds O in O a O position O distinctly O different O from O the O salicylate B-site binding I-site site I-site : O translated O by O > O 10 O Å O and O with O a O 180 O ° O inverted O orientation O ( O Fig O 10C O ). O NadR B-protein shows O a O ligand B-site binding I-site site I-site distinct O from O other O MarR B-protein_type homologues O . O ( O A O ) O A O structural B-experimental_method alignment I-experimental_method of O MTH313 B-protein chains B-structure_element A I-structure_element and I-structure_element B I-structure_element shows O that O salicylate B-chemical is O bound B-protein_state in O distinct O locations O in O each O monomer B-oligomeric_state ; O site B-site - I-site 1 I-site ( O thought O to O be O the O biologically O relevant O site O ) O and O site B-site - I-site 2 I-site differ O by O ~ O 7Å O ( O indicated O by O black O dotted O line O ) O and O also O by O ligand O orientation O . O ( O B O ) O A O structural B-experimental_method alignment I-experimental_method of O MTH313 B-protein chain B-structure_element A I-structure_element and O ST1710 B-protein ( O pink O ) O ( O Cα O rmsd B-evidence 2 O . O 3Å O ), O shows O that O they O bind O salicylate B-chemical in O equivalent O sites O ( O differing O by O only O ~ O 3Å O ) O and O with O the O same O orientation O . O ( O C O ) O Addition O of O holo B-protein_state - O NadR B-protein ( O chain B-structure_element B I-structure_element , O blue O ) O to O the O alignment B-experimental_method reveals O that O bound B-protein_state 4 B-chemical - I-chemical HPA I-chemical differs O in O position O by O > O 10 O Å O compared O to O salicylate B-chemical , O and O adopts O a O novel O orientation O . O Interestingly O , O a O crystal B-evidence structure I-evidence was O previously O reported O for O a O functionally O - O uncharacterized O meningococcal B-taxonomy_domain homologue O of O NadR B-protein , O termed O NMB1585 B-protein , O which O shares O 16 O % O sequence O identity O with O NadR B-protein . O The O two O structures B-evidence can O be O closely O aligned O ( O rmsd B-evidence 2 O . O 3 O Å O ), O but O NMB1585 B-protein appears O unsuited O for O binding O HPAs B-chemical , O since O its O corresponding O ‘ B-site pocket I-site ’ O region O is O occupied O by O several O bulky O hydrophobic O side O chains O . O It O can O be O speculated O that O MarR B-protein_type family O members O have O evolved O separately O to O engage O distinct O signaling O molecules O , O thus O enabling O bacteria B-taxonomy_domain to O use O the O overall O conserved O MarR B-protein_type scaffold O to O adapt O and O respond O to O diverse O changing O environmental O stimuli O experienced O in O their O natural O niches O . O Alternatively O , O it O is O possible O that O other O MarR B-protein_type homologues O ( O e O . O g O . O NMB1585 B-protein ) O may O have O no O extant O functional O binding B-site pocket I-site and O thus O may O have O lost O the O ability O to O respond O to O a O ligand O , O acting O instead O as O constitutive O DNA B-chemical - O binding O regulatory O proteins O . O The O apo B-protein_state - O NadR B-protein crystal B-evidence structures I-evidence revealed O two O dimers B-oligomeric_state with O slightly O different O conformations O , O most O divergent O in O the O DNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element . O It O is O not O unusual O for O a O crystal B-evidence structure I-evidence to O reveal O multiple O copies O of O the O same O protein O in O very O slightly O different O conformations O , O which O are O likely O representative O of O the O lowest O - O energy O conformations O sampled O by O the O dynamic O ensemble O of O molecular O states O occurring O in O solution O , O and O which O likely O have O only O small O energetic O differences O , O as O described O previously O for O MexR B-protein ( O a O MarR B-protein_type protein O ) O or O more O recently O for O the O solute B-protein_type - I-protein_type binding I-protein_type protein I-protein_type FhuD2 B-protein . O Further O , O the O holo B-protein_state - O NadR B-protein structure B-evidence was O overall O more O different O from O the O two O apo B-protein_state - O NadR B-protein structures B-evidence ( O rmsd B-evidence values O ~ O 1 O . O 3Å O ), O suggesting O that O the O ligand O selected O and O stabilized O yet O another O conformation O of O NadR B-protein . O These O observations O suggest O that O 4 B-chemical - I-chemical HPA I-chemical , O and O potentially O other O similar O ligands O , O can O shift O the O molecular O equilibrium O , O changing O the O energy O barriers O that O separate O active B-protein_state and O inactive B-protein_state states O , O and O stabilizing O the O specific O conformation O of O NadR B-protein poorly O suited O to O bind O DNA B-chemical . O Comparisons O of O the O apo B-protein_state - O and O holo B-protein_state - O NadR B-protein structures B-evidence revealed O that O the O largest O differences O occurred O in O the O DNA B-chemical - O binding O helix B-structure_element α4 B-structure_element . O The O shift O of O helix B-structure_element α4 B-structure_element in O holo B-protein_state - O NadR B-protein was O also O accompanied O by O rearrangements O at O the O dimer B-site interface I-site , O involving O helices B-structure_element α1 B-structure_element , O α5 B-structure_element , O and O α6 B-structure_element , O and O this O holo B-protein_state - O form O appeared O poorly O suited O for O DNA B-chemical - O binding O when O compared O with O the O known O OhrR B-complex_assembly : I-complex_assembly ohrA I-complex_assembly complex O . O While O some O flexibility O of O helix B-structure_element α4 B-structure_element was O also O observed O in O the O two O apo B-protein_state - O structures B-evidence , O concomitant O changes O in O the O dimer B-site interfaces I-site were O not O observed O , O possibly O due O to O the O absence B-protein_state of I-protein_state ligand I-protein_state . O One O of O the O two O conformations O of O apo B-protein_state - O NadR B-protein appeared O ideally O suited O for O DNA B-chemical - O binding O . O Overall O , O these O analyses O suggest O that O the O apo B-protein_state - O NadR B-protein dimer B-oligomeric_state has O a O pre O - O existing O equilibrium O that O samples O a O variety O of O conformations O , O some O of O which O are O compatible O with O DNA B-chemical binding O . O The O noted O flexibility O may O also O explain O how O NadR B-protein can O adapt O to O bind O various O DNA B-chemical target O sequences O with O slightly O different O structural O features O . O Subsequently O , O upon O ligand O binding O , O holo B-protein_state - O NadR B-protein adopts O a O structure O less O suited O for O DNA B-chemical - O binding O and O this O conformation O is O selected O and O stabilized O by O a O network O of O protein O - O ligand O interactions O and O concomitant O rearrangements O at O the O NadR B-protein holo B-protein_state dimer B-site interface I-site . O In O an O alternative O and O less O extensive O manner O , O the O binding O of O two O salicylate B-chemical molecules O to O the O M B-species . I-species thermoautotrophicum I-species protein O MTH313 B-protein appeared O to O induce O large O changes O in O the O wHTH B-structure_element domain I-structure_element , O which O was O associated O with O reduced O DNA O - O binding O activity O . O Here O we O have O presented O two O new O crystal B-evidence structures I-evidence of O the O transcription B-protein_type factor I-protein_type , O NadR B-protein , O which O regulates O expression O of O the O meningococcal B-taxonomy_domain surface O protein O , O virulence O factor O and O vaccine O antigen O NadA B-protein . O Detailed O structural B-experimental_method analyses I-experimental_method provided O a O molecular O explanation O for O the O ligand O - O responsive O regulation O by O NadR B-protein on O the O majority O of O the O promoters O of O meningococcal B-taxonomy_domain genes O regulated O by O NadR B-protein , O including O nadA B-gene . O Intriguingly O , O NadR B-protein exhibits O a O reversed O regulatory O mechanism O on O a O second O class O of O promoters O , O including O mafA B-gene of O the O multiple O adhesin O family O – O i O . O e O . O NadR B-protein represses O these O genes O in O the O presence O but O not O absence O of O 4 B-chemical - I-chemical HPA I-chemical . O The O latter O may O influence O the O surface O abundance O or O secretion O of O maf O proteins O , O an O emerging O class O of O highly B-protein_state conserved I-protein_state meningococcal B-taxonomy_domain putative O adhesins O and O toxins O with O many O important O roles O . O Further O work O is O required O to O investigate O how O the O two O different O promoter O types O influence O the O ligand O - O responsiveness O of O NadR B-protein during O bacterial B-taxonomy_domain infection O and O may O provide O insights O into O the O regulatory O mechanisms O occurring O during O these O host O - O pathogen O interactions O . O Ultimately O , O knowledge O of O the O ligand O - O dependent O activity O of O NadR B-protein will O continue O to O deepen O our O understanding O of O nadA B-gene expression O levels O , O which O influence O meningococcal B-taxonomy_domain pathogenesis O . O Structure O of O an O OhrR O - O ohrA B-gene operator O complex O reveals O the O DNA O binding O mechanism O of O the O MarR O family O The O structure O of O NMB1585 B-protein , O a O MarR O - O family O regulator O from O Neisseria O meningitidis O The O Structural O Basis O of O Coenzyme B-chemical A I-chemical Recycling O in O a O Bacterial B-taxonomy_domain Organelle O Bacterial B-taxonomy_domain Microcompartments B-complex_assembly ( O BMCs B-complex_assembly ) O are O proteinaceous O organelles O that O encapsulate O critical O segments O of O autotrophic O and O heterotrophic O metabolic O pathways O ; O they O are O functionally O diverse O and O are O found O across O 23 O different O phyla O . O The O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O compartmentalize O a O common O core O of O enzymes O to O metabolize O compounds O via O a O toxic O and O / O or O volatile O aldehyde B-chemical intermediate O . O The O core O enzyme O phosphotransacylase B-protein_type ( O PTAC B-protein_type ) O recycles O Coenzyme B-chemical A I-chemical and O generates O an O acyl B-chemical phosphate I-chemical that O can O serve O as O an O energy O source O . O The O PTAC B-protein_type predominantly O associated O with O metabolosomes B-complex_assembly ( O PduL B-protein_type ) O has O no O sequence O homology O to O the O PTAC B-protein_type ubiquitous O among O fermentative B-taxonomy_domain bacteria I-taxonomy_domain ( O Pta B-protein_type ). O Here O , O we O report O two O high O - O resolution O PduL B-protein_type crystal B-evidence structures I-evidence with B-protein_state bound I-protein_state substrates I-protein_state . O The O PduL B-protein_type fold B-structure_element is O unrelated O to O that B-structure_element of O Pta B-protein_type ; O it O contains O a O dimetal B-site active I-site site I-site involved O in O a O catalytic O mechanism O distinct O from O that O of O the O housekeeping B-protein_state PTAC B-protein_type . O Accordingly O , O PduL B-protein_type and O Pta B-protein_type exemplify O functional O , O but O not O structural O , O convergent O evolution O . O The O PduL B-protein_type structure B-evidence , O in O the O context O of O the O catalytic O core O , O completes O our O understanding O of O the O structural O basis O of O cofactor O recycling O in O the O metabolosome B-complex_assembly lumen O . O This O study O describes O the O structure B-evidence of O a O novel O phosphotransacylase B-protein_type enzyme O that O facilitates O the O recycling O of O the O essential O cofactor O acetyl B-chemical - I-chemical CoA I-chemical within O a O bacterial B-taxonomy_domain organelle O and O discusses O the O properties O of O the O enzyme O ' O s O active B-site site I-site and O how O it O is O packaged O into O the O organelle O . O In O metabolism O , O molecules O with O “ O high O - O energy O ” O bonds O ( O e O . O g O ., O ATP B-chemical and O Acetyl B-chemical ~ I-chemical CoA I-chemical ) O are O critical O for O both O catabolic O and O anabolic O processes O . O The O phosphotransacylase B-protein_type ( O Pta B-protein_type ) O enzyme O catalyzes O the O conversion O between O acyl B-chemical - I-chemical CoA I-chemical and O acyl B-chemical - I-chemical phosphate I-chemical . O This O reaction O directly O links O an O acyl B-chemical - I-chemical CoA I-chemical with O ATP B-chemical generation O via O substrate O - O level O phosphorylation O , O producing O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical ( O e O . O g O ., O acetate B-chemical ), O and O also O provides O a O path O for O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical to O enter O central O metabolism O . O Due O to O this O key O function O , O Pta O is O conserved B-protein_state across O the O bacterial B-taxonomy_domain kingdom I-taxonomy_domain . O Recently O , O a O new O type O of O phosphotransacylase B-protein_type was O described O that O shares O no O evolutionary O relation O to O Pta B-protein_type . O This O enzyme O , O PduL B-protein_type , O is O exclusively B-protein_state associated O with O organelles O called O bacterial B-taxonomy_domain microcompartments B-complex_assembly , O which O are O used O to O catabolize O various O compounds O . O Not O only O does O PduL B-protein_type facilitate O substrate O level O phosphorylation O , O but O it O also O is O critical O for O cofactor O recycling O within O , O and O product O efflux O from O , O the O organelle O . O We O solved B-experimental_method the O structure B-evidence of O this O convergent B-protein_state phosphotransacylase B-protein_type and O show O that O it O is O completely O structurally O different O from O Pta B-protein_type , O including O its O active B-site site I-site architecture O . O Bacterial B-taxonomy_domain Microcompartments B-complex_assembly ( O BMCs B-complex_assembly ) O are O organelles O that O encapsulate O enzymes O for O sequential O biochemical O reactions O within O a O protein O shell B-structure_element . O The O shell B-structure_element is O typically O composed O of O three O types O of O protein O subunits O , O which O form O either O hexagonal B-protein_state ( O BMC B-complex_assembly - I-complex_assembly H I-complex_assembly and O BMC B-complex_assembly - I-complex_assembly T I-complex_assembly ) O or O pentagonal B-protein_state ( O BMC B-complex_assembly - I-complex_assembly P I-complex_assembly ) O tiles O that O assemble O into O a O polyhedral B-protein_state shell B-structure_element . O The O facets O of O the O shell B-structure_element are O composed O primarily O of O hexamers B-oligomeric_state that O are O typically O perforated O by O pores B-site lined O with O highly B-protein_state conserved I-protein_state , O polar B-protein_state residues B-structure_element that O presumably O function O as O the O conduits O for O metabolites O into O and O out O of O the O shell B-structure_element . O The O vitamin B-complex_assembly B12 I-complex_assembly - I-complex_assembly dependent I-complex_assembly propanediol I-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly PDU I-complex_assembly ) I-complex_assembly BMC I-complex_assembly was O one O of O the O first O functionally O characterized O catabolic B-protein_state BMCs B-complex_assembly ; O subsequently O , O other O types O have O been O implicated O in O the O degradation O of O ethanolamine B-chemical , O choline B-chemical , O fucose B-chemical , O rhamnose B-chemical , O and O ethanol B-chemical , O all O of O which O produce O different O aldehyde B-chemical intermediates O ( O Table O 1 O ). O More O recently O , O bioinformatic B-experimental_method studies I-experimental_method have O demonstrated O the O widespread O distribution O of O BMCs B-complex_assembly among O diverse O bacterial B-taxonomy_domain phyla I-taxonomy_domain and O grouped O them O into O 23 O different O functional O types O . O The O reactions O carried O out O in O the O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O also O known O as O metabolosomes B-complex_assembly ) O fit O a O generalized O biochemical O paradigm O for O the O oxidation O of O aldehydes B-chemical ( O Fig O 1 O ). O This O involves O a O BMC B-complex_assembly - O encapsulated O signature O enzyme O that O generates O a O toxic O and O / O or O volatile O aldehyde B-chemical that O the O BMC B-complex_assembly shell B-structure_element sequesters O from O the O cytosol O . O The O aldehyde B-chemical is O subsequently O converted O into O an O acyl B-chemical - I-chemical CoA I-chemical by O aldehyde B-protein_type dehydrogenase I-protein_type , O which O uses O NAD B-chemical + I-chemical and O CoA B-chemical as O cofactors O . O These O two O cofactors O are O relatively O large O , O and O their O diffusion O across O the O protein B-structure_element shell I-structure_element is O thought O to O be O restricted O , O necessitating O their O regeneration O within O the O BMC B-complex_assembly lumen O . O NAD B-chemical + I-chemical is O recycled O via O alcohol B-protein_type dehydrogenase I-protein_type , O and O CoA B-chemical is O recycled O via O phosphotransacetylase B-protein_type ( O PTAC B-protein_type ) O ( O Fig O 1 O ). O The O final O product O of O the O BMC B-complex_assembly , O an O acyl B-chemical - I-chemical phosphate I-chemical , O can O then O be O used O to O generate O ATP B-chemical via O acyl B-protein_type kinase I-protein_type , O or O revert O back O to O acyl B-chemical - I-chemical CoA I-chemical by O Pta B-protein_type for O biosynthesis O . O Collectively O , O the O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type , O as O well O as O the O PTAC B-protein_type , O constitute O the O common O metabolosome B-complex_assembly core O . O General O biochemical O model O of O aldehyde B-protein_state - I-protein_state degrading I-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O illustrating O the O common O metabolosome B-complex_assembly core O enzymes O and O reactions O . O Substrates O and O cofactors O involving O the O PTAC B-protein_type reaction O are O shown O in O red O ; O other O substrates O and O enzymes O are O shown O in O black O , O and O other O cofactors O are O shown O in O gray O . O Characterized O and O predicted O catabolic B-protein_state BMC B-complex_assembly ( O metabolosome B-complex_assembly ) O types O that O represent O the O aldehyde B-chemical - O degrading O paradigm O ( O for O definition O of O types O see O Kerfeld O and O Erbilgin O ). O Name O PTAC B-protein_type Type O Sequestered O Aldehyde B-chemical PDU B-complex_assembly * O PduL B-protein_type propionaldehyde B-chemical EUT1 B-complex_assembly PTA_PTB B-protein_type acetaldehyde B-chemical EUT2 B-complex_assembly PduL B-protein_type acetaldehyde B-chemical ETU B-complex_assembly None O acetaldehyde B-chemical GRM1 B-complex_assembly / I-complex_assembly CUT I-complex_assembly PduL B-protein_type acetaldehyde B-chemical GRM2 B-complex_assembly PduL B-protein_type acetaldehyde B-chemical GRM3 B-complex_assembly *, I-complex_assembly 4 I-complex_assembly PduL B-protein_type propionaldehyde B-chemical GRM5 B-complex_assembly / I-complex_assembly GRP I-complex_assembly PduL B-protein_type propionaldehyde B-chemical PVM B-complex_assembly * O PduL B-protein_type lactaldehyde B-chemical RMM1 B-complex_assembly , I-complex_assembly 2 I-complex_assembly None O unknown O SPU B-complex_assembly PduL B-protein_type unknown O * O PduL B-protein_type from O these O functional O types O of O metabolosomes B-complex_assembly were O purified O in O this O study O . O The O activities O of O core O enzymes O are O not O confined O to O BMC B-complex_assembly - O associated O functions O : O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type are O utilized O in O diverse O metabolic O reactions O , O and O PTAC B-protein_type catalyzes O a O key O biochemical O reaction O in O the O process O of O obtaining O energy O during O fermentation O . O The O concerted O functioning O of O a O PTAC B-protein_type and O an O acetate B-protein_type kinase I-protein_type ( O Ack B-protein_type ) O is O crucial O for O ATP B-chemical generation O in O the O fermentation O of O pyruvate B-chemical to O acetate B-chemical ( O see O Reactions O 1 O and O 2 O ). O Both O enzymes O are O , O however O , O not O restricted O to O fermentative B-taxonomy_domain organisms I-taxonomy_domain . O They O can O also O work O in O the O reverse O direction O to O activate O acetate B-chemical to O the O CoA B-chemical - I-chemical thioester I-chemical . O This O occurs O , O for O example O , O during O acetoclastic O methanogenesis O in O the O archaeal B-taxonomy_domain Methanosarcina B-taxonomy_domain species I-taxonomy_domain . O Reaction O 1 O : O acetyl B-chemical - I-chemical S I-chemical - I-chemical CoA I-chemical + O Pi B-chemical ←→ O acetyl B-chemical phosphate I-chemical + O CoA B-chemical - I-chemical SH I-chemical ( O PTAC B-protein_type ) O Reaction O 2 O : O acetyl B-chemical phosphate I-chemical + O ADP B-chemical ←→ O acetate B-chemical + O ATP B-chemical ( O Ack B-protein_type ) O The O canonical O PTAC B-protein_type , O Pta B-protein_type , O is O an O ancient O enzyme O found O in O some O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain , O and O widespread O among O the O bacteria B-taxonomy_domain ; O 90 O % O of O the O bacterial B-taxonomy_domain genomes O in O the O Integrated O Microbial O Genomes O database O contain O a O gene O encoding O the O PTA_PTB B-protein_type phosphotransacylase I-protein_type ( O Pfam O domain O PF01515 B-structure_element ). O Pta B-protein_type has O been O extensively O characterized O due O to O its O key O role O in O fermentation O . O More O recently O , O a O second O type O of O PTAC B-protein_type without O any O sequence O homology O to O Pta B-protein_type was O identified O . O This O protein O , O PduL B-protein_type ( O Pfam O domain O PF06130 B-structure_element ), O was O shown O to O catalyze O the O conversion O of O propionyl B-chemical - I-chemical CoA I-chemical to O propionyl B-chemical - I-chemical phosphate I-chemical and O is O associated O with O a O BMC B-complex_assembly involved O in O propanediol O utilization O , O the O PDU B-complex_assembly BMC I-complex_assembly . O Both O pduL B-gene and O pta B-gene genes O can O be O found O in O genetic O loci O of O functionally O distinct O BMCs B-complex_assembly , O although O the O PduL B-protein_type type O is O much O more O prevalent O , O being O found O in O all O but O one O type O of O metabolosome B-gene locus I-gene : O EUT1 B-gene ( O Table O 1 O ). O Furthermore O , O in O the O Integrated O Microbial O Genomes O Database O , O 91 O % O of O genomes O that O encode O PF06130 B-structure_element also O encode O genes O for O shell O proteins O . O As O a O member O of O the O core O biochemical O machinery O of O functionally O diverse O aldehyde B-protein_state - I-protein_state oxidizing I-protein_state metabolosomes B-complex_assembly , O PduL B-protein_type must O have O a O certain O level O of O substrate O plasticity O ( O see O Table O 1 O ) O that O is O not O required O of O Pta B-protein_type , O which O has O generally O been O observed O to O prefer O acetyl B-chemical - I-chemical CoA I-chemical . O PduL B-protein_type from O the O PDU B-complex_assembly BMC I-complex_assembly of O Salmonella B-species enterica I-species favors O propionyl B-chemical - I-chemical CoA I-chemical over O acetyl B-chemical - I-chemical CoA I-chemical , O and O it O is O likely O that O PduL B-protein_type orthologs O in O functionally O diverse O BMCs B-complex_assembly would O have O substrate O preferences O for O other O CoA B-chemical derivatives O . O Another O distinctive O feature O of O BMC B-protein_state - I-protein_state associated I-protein_state PduL B-protein_type homologs O is O an O N O - O terminal O encapsulation B-structure_element peptide I-structure_element ( O EP B-structure_element ) O that O is O thought O to O “ O target O ” O proteins O for O encapsulation O by O the O BMC B-complex_assembly shell B-structure_element . O EPs B-structure_element are O frequently O found O on O BMC B-protein_type - I-protein_type associated I-protein_type proteins I-protein_type and O have O been O shown O to O interact O with O shell O proteins O . O EPs B-structure_element have O also O been O observed O to O cause O proteins O to O aggregate O , O and O this O has O recently O been O suggested O to O be O functionally O relevant O as O an O initial O step O in O metabolosome B-complex_assembly assembly O , O in O which O a O multifunctional O protein O core O is O formed O , O around O which O the O shell B-structure_element assembles O . O Of O the O three O common O metabolosome B-complex_assembly core O enzymes O , O crystal B-evidence structures I-evidence are O available O for O both O the O alcohol B-protein_type and I-protein_type aldehyde I-protein_type dehydrogenases I-protein_type . O In O contrast O , O the O structure B-evidence of O PduL B-protein_type , O the O PTAC B-protein_type found O in O the O vast O majority O of O catabolic B-protein_state BMCs B-complex_assembly , O has O not O been O determined O . O This O is O a O major O gap O in O our O understanding O of O metabolosome B-complex_assembly - O encapsulated O biochemistry O and O cofactor O recycling O . O Moreover O , O it O will O be O useful O for O guiding O efforts O to O engineer O novel O BMC B-complex_assembly cores O for O biotechnological O applications O . O The O primary O structure O of O PduL B-protein_type homologs O is O subdivided O into O two O PF06130 B-structure_element domains O , O each O roughly O 80 B-residue_range residues I-residue_range in I-residue_range length I-residue_range . O No O available O protein O structures O contain O the O PF06130 B-structure_element domain O , O and O homology B-experimental_method searches I-experimental_method using O the O primary O structure O of O PduL B-protein_type do O not O return O any O significant O results O that O would O allow O prediction O of O the O structure B-evidence . O Moreover O , O the O evident O novelty O of O PduL B-protein_type makes O its O structure B-evidence interesting O in O the O context O of O convergent O evolution O of O PTAC B-protein_type function O ; O to O - O date O , O only O the O Pta B-protein_type active B-site site I-site and O catalytic O mechanism O is O known O . O Here O we O report O high O - O resolution O crystal B-evidence structures I-evidence of O a O PduL B-protein_type - I-protein_type type I-protein_type PTAC I-protein_type in O both O CoA B-protein_state - I-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state forms O , O completing O our O understanding O of O the O structural O basis O of O catalysis O by O the O metabolosome B-complex_assembly common O core O enzymes O . O We O propose O a O catalytic O mechanism O analogous O but O yet O distinct O from O the O ubiquitous O Pta B-protein_type enzyme O , O highlighting O the O functional O convergence O of O two O enzymes O with O completely O different O structures O and O metal O requirements O . O We O also O investigate O the O quaternary O structures O of O three O different O PduL B-protein_type homologs O and O situate O our O findings O in O the O context O of O organelle O biogenesis O in O functionally O diverse O BMCs B-complex_assembly . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type We O cloned B-experimental_method , I-experimental_method expressed I-experimental_method , I-experimental_method and I-experimental_method purified I-experimental_method three O different O PduL B-protein_type homologs O from O functionally O distinct O BMCs B-complex_assembly ( O Table O 1 O ): O from O the O well O - O studied O pdu B-gene locus I-gene in O S B-species . I-species enterica I-species Typhimurium I-species LT2 I-species ( O sPduL B-protein ), O from O the O recently O characterized O pvm B-gene locus I-gene in O Planctomyces B-species limnophilus I-species ( O pPduL B-protein ), O and O from O the O grm3 B-gene locus I-gene in O Rhodopseudomonas B-species palustris I-species BisB18 I-species ( O rPduL B-protein ). O While O purifying O full B-protein_state - I-protein_state length I-protein_state sPduL B-protein , O we O observed O a O tendency O to O aggregation O as O described O previously O , O with O a O large O fraction O of O the O expressed O protein O found O in O the O insoluble O fraction O in O a O white O , O cake O - O like O pellet O . O Remarkably O , O after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 27 B-residue_range amino I-residue_range acids I-residue_range ), O most O of O the O sPduLΔEP B-mutant protein O was O in O the O soluble O fraction O upon O cell O lysis O . O Similar O differences O in O solubility O were O observed O for O pPduL B-protein and O rPduL B-protein when O comparing O EP B-protein_state - I-protein_state truncated I-protein_state forms O to O the O full B-protein_state - I-protein_state length I-protein_state protein O , O but O none O were O quite O as O dramatic O as O for O sPduL B-protein . O We O confirmed O that O all O homologs O were O active B-protein_state ( O S1a O and O S1b O Fig O ). O Among O these O , O we O were O only O able O to O obtain O diffraction B-evidence - I-evidence quality I-evidence crystals I-evidence of O rPduL B-protein after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 33 B-residue_range amino I-residue_range acids I-residue_range , O also O see O Fig O 2a O ) O ( O rPduLΔEP B-mutant ). O Truncated B-protein_state rPduLΔEP B-mutant had O comparable O enzymatic O activity O to O the O full B-protein_state - I-protein_state length I-protein_state enzyme O ( O S1a O Fig O ). O Structural O overview O of O R B-species . I-species palustris I-species PduL B-protein_type from O the O grm3 B-gene locus I-gene . O ( O a O ) O Primary O and O secondary O structure O of O rPduL B-protein ( O tubes O represent O α B-structure_element - I-structure_element helices I-structure_element , O arrows O β B-structure_element - I-structure_element sheets I-structure_element and O dashed O line O residues O disordered O in O the O structure B-evidence . O The O first B-residue_range 33 I-residue_range amino I-residue_range acids I-residue_range are O present O only O in O the O wildtype O construct O and O contains O the O predicted O EP B-structure_element alpha B-structure_element helix I-structure_element , O α0 B-structure_element ); O the O truncated B-protein_state rPduLΔEP B-mutant that O was O crystallized B-experimental_method begins O with O M B-residue_name - O G B-residue_name - O V B-residue_name . O Coloring O is O according O to O structural O domains O ( O domain B-structure_element 1 I-structure_element D36 B-residue_range - I-residue_range N46 I-residue_range / O Q155 B-residue_range - I-residue_range C224 I-residue_range , O blue O ; O loop B-structure_element insertion I-structure_element G61 B-residue_range - I-residue_range E81 I-residue_range , O grey O ; O domain B-structure_element 2 I-structure_element R47 B-residue_range - I-residue_range F60 I-residue_range / O E82 B-residue_range - I-residue_range A154 I-residue_range , O red O ). O Metal B-site coordination I-site residues I-site are O highlighted O in O light O blue O and O CoA B-site contacting I-site residues I-site in O magenta O , O residues O contacting O the O CoA B-chemical of O the O other O chain O are O also O outlined O . O ( O b O ) O Cartoon O representation O of O the O structure B-evidence colored O by O domains O and O including O secondary O structure B-evidence numbering O . O Coenzyme B-chemical A I-chemical is O shown O in O magenta O sticks O and O Zinc B-chemical ( O grey O ) O as O spheres O . O We O collected B-experimental_method a I-experimental_method native I-experimental_method dataset I-experimental_method from O rPduLΔEP B-mutant crystals B-evidence diffracting O to O a O resolution O of O 1 O . O 54 O Å O ( O Table O 2 O ). O Using O a O mercury B-experimental_method - I-experimental_method derivative I-experimental_method crystal I-experimental_method form O diffracting O to O 1 O . O 99 O Å O ( O Table O 2 O ), O we O obtained O high O quality O electron B-evidence density I-evidence for O model O building O and O used O the O initial O model O to O refine O against O the O native O data O to O Rwork B-evidence / O Rfree B-evidence values O of O 18 O . O 9 O / O 22 O . O 1 O %. O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O of O the O P212121 O unit O cell O . O We O were O able O to O fit O all O of O the O primary O structure O of O PduLΔEP B-mutant into O the O electron B-evidence density I-evidence with O the O exception O of O three O amino O acids O at O the O N O - O terminus O and O two O amino O acids O at O the O C O - O terminus O ( O Fig O 2a O ); O the O model O is O of O excellent O quality O ( O Table O 2 O ). O A O CoA B-chemical cofactor O as O well O as O two O metal O ions O are O clearly O resolved O in O the O density B-evidence ( O for O omit B-evidence maps I-evidence of O CoA B-chemical see O S2 O Fig O ). O Structurally O , O PduL B-protein_type consists O of O two O domains B-structure_element ( O Fig O 2 O , O blue O / O red O ), O each O a O beta B-structure_element - I-structure_element barrel I-structure_element that O is O capped O on O both O ends O by O short O α B-structure_element - I-structure_element helices I-structure_element . O β B-structure_element - I-structure_element Barrel I-structure_element 1 I-structure_element consists O of O the O N O - O terminal O β B-structure_element strand I-structure_element and O β B-structure_element strands I-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O polypeptide O chain O ( O β1 B-structure_element , O β10 B-structure_element - I-structure_element β14 I-structure_element ; O residues O 37 B-residue_range – I-residue_range 46 I-residue_range and O 155 B-residue_range – I-residue_range 224 I-residue_range ). O β B-structure_element - I-structure_element Barrel I-structure_element 2 I-structure_element consists O mainly O of O the O central O segment O of O primary O structure O ( O β2 B-structure_element , O β5 B-structure_element – I-structure_element β9 I-structure_element ; O residues O 47 B-residue_range – I-residue_range 60 I-residue_range and O 82 B-residue_range – I-residue_range 154 I-residue_range ) O ( O Fig O 2 O , O red O ), O but O is O interrupted O by O a O short B-structure_element two I-structure_element - I-structure_element strand I-structure_element beta I-structure_element sheet I-structure_element ( O β3 B-structure_element - I-structure_element β4 I-structure_element , O residues O 61 B-residue_range – I-residue_range 81 I-residue_range ). O This O β B-structure_element - I-structure_element sheet I-structure_element is O involved O in O contacts O between O the O two O domains O and O forms O a O lid O over O the O active B-site site I-site . O Residues O in O this O region O ( O Gln42 B-residue_name_number , O Pro43 B-residue_name_number , O Gly44 B-residue_name_number ), O covering O the O active B-site site I-site , O are O strongly B-protein_state conserved I-protein_state ( O Fig O 3 O ). O This O structural O arrangement O is O completely O different O from O the O functionally O related O Pta B-protein_type , O which O is O composed O of O two O domains B-structure_element , O each O consisting O of O a O central O flat O beta B-structure_element sheet I-structure_element with O alpha B-structure_element - I-structure_element helices I-structure_element on O the O top O and O bottom O . O Primary O structure O conservation O of O the O PduL B-protein_type protein O family O . O Sequence O logo O calculated O from O the O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PduL B-protein_type homologs O ( O see O Materials O and O Methods O ), O but O not B-protein_state including I-protein_state putative O EP B-structure_element sequences O . O Residues O 100 O % O conserved O across O all O PduL B-protein_type homologs O in O our O dataset O are O noted O with O an O asterisk O , O and O residues O conserved O in O over O 90 O % O of O sequences O are O noted O with O a O colon O . O The O sequences O aligning O to O the O PF06130 B-structure_element domain O ( O determined O by O BLAST O ) O are O highlighted O in O red O and O blue O . O The O position O numbers O shown O correspond O to O the O residue O numbering O of O rPduL B-protein ; O note O that O some O positions O in O the O logo O represent O gaps O in O the O rPduL B-protein sequence O . O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O forming O a O butterfly B-protein_state - I-protein_state shaped I-protein_state dimer B-oligomeric_state ( O Fig O 4c O ). O Consistent O with O this O , O results O from O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O rPduLΔEP B-mutant suggest O that O it O is O a O dimer B-oligomeric_state in O solution O ( O Fig O 5e O ). O The O interface B-site between O the O two O chains O buries O 882 O Å2 O per O monomer B-oligomeric_state and O is O mainly O formed O by O α B-structure_element - I-structure_element helices I-structure_element 2 I-structure_element and I-structure_element 4 I-structure_element and O parts O of O β B-structure_element - I-structure_element sheets I-structure_element 12 I-structure_element and I-structure_element 14 I-structure_element , O as O well O as O a O π O – O π O stacking O of O the O adenine B-chemical moiety O of O CoA B-chemical with O Phe116 B-residue_name_number of O the O adjacent O chain O ( O Fig O 4c O ). O The O folds O of O the O two O chains O in O the O asymmetric O unit O are O very O similar O , O superimposing B-experimental_method with O a O rmsd B-evidence of O 0 O . O 16 O Å O over O 2 O , O 306 O aligned O atom O pairs O . O The O peripheral O helices B-structure_element and O the O short B-structure_element antiparallel I-structure_element β3 I-structure_element – I-structure_element 4 I-structure_element sheet I-structure_element mediate O most O of O the O crystal O contacts O . O Details O of O active B-site site I-site , O dimeric B-oligomeric_state assembly O , O and O sequence O conservation O of O PduL B-protein_type . O ( O a O , O b O ) O Proposed O active B-site site I-site of O PduL B-protein_type with O relevant O residues O shown O as O sticks O in O atom O coloring O ( O nitrogen B-chemical blue O , O oxygen B-chemical red O , O sulfur B-chemical yellow O ), O zinc B-chemical as O grey O colored O spheres O and O coordinating O ordered O water B-chemical molecules O in O red O . O Distances O between O atom O centers O are O indicated O in O Å O . O ( O a O ) O Coenzyme B-chemical A I-chemical containing O , O ( O b O ) O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence . O ( O c O ) O View O of O the O dimer B-oligomeric_state in O the O asymmetric O unit O from O the O side O , O domains B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element colored O as O in O Fig O 2 O and O the O two O chains O differentiated O by O blue O / O red O versus O slate O / O firebrick O . O The O asterisk O and O double O arrow O marks O the O location O of O the O π O – O π O interaction O between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O ( O d O ) O Surface O representation O of O the O structure B-evidence with O indicated O conservation O ( O red O : O high O , O white O : O intermediate O , O yellow O : O low O ). O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PduL B-protein_type homologs O . O ( O a O )–( O c O ): O Chromatograms B-evidence of O sPduL B-protein ( O a O ), O rPduL B-protein ( O b O ), O and O pPduL B-protein ( O c O ) O with O ( O orange O ) O or O without O ( O blue O ) O the O predicted O EP B-structure_element , O post O - O nickel B-experimental_method affinity I-experimental_method purification I-experimental_method , O applied O over O a O preparative O size O exclusion O column O ( O see O Materials O and O Methods O ). O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O All O chromatograms B-evidence are O cropped O to O show O only O the O linear O range O of O separation O based O on O standard O runs O , O shown O in O black O squares O with O a O dashed O linear O trend O line O . O Active B-site Site I-site Properties O CoA B-chemical and O the O metal O ions O bind O between O the O two O domains O , O presumably O in O the O active B-site site I-site ( O Figs O 2b O and O 4a O ). O To O identify O the O bound O metals O , O we O performed O an O X B-experimental_method - I-experimental_method ray I-experimental_method fluorescence I-experimental_method scan I-experimental_method on O the O crystals B-evidence at O various O wavelengths O ( O corresponding O to O the O K O - O edges O of O Mn B-chemical , O Fe B-chemical , O Co B-chemical , O Ni B-chemical , O Cu B-chemical , O and O Zn B-chemical ). O There O was O a O large O signal O at O the O zinc O edge O , O and O we O tested O for O the O presence O of O zinc B-chemical by O collecting B-experimental_method full I-experimental_method data I-experimental_method sets I-experimental_method before I-experimental_method and I-experimental_method after I-experimental_method the I-experimental_method Zn I-experimental_method K I-experimental_method - I-experimental_method edge I-experimental_method ( I-experimental_method 1 I-experimental_method . I-experimental_method 2861 I-experimental_method and I-experimental_method 1 I-experimental_method . I-experimental_method 2822 I-experimental_method Å I-experimental_method , O respectively O ). O The O large O differences O between O the O anomalous O signals O confirm O the O presence O of O zinc B-chemical at O both O metal O sites O ( O S3 O Fig O ). O The O first O zinc B-chemical ion O ( O Zn1 B-chemical ) O is O in O a O tetrahedral O coordination O state O with O His48 B-residue_name_number , O His50 B-residue_name_number , O Glu109 B-residue_name_number , O and O the O CoA B-chemical sulfur B-chemical ( O Fig O 4a O ). O The O second O ( O Zn2 B-chemical ) O is O in O octahedral O coordination O by O three O conserved B-protein_state histidine B-residue_name residues O ( O His157 B-residue_name_number , O His159 B-residue_name_number and O His204 B-residue_name_number ) O as O well O as O three O water B-chemical molecules O ( O Fig O 4a O ). O The O nitrogen O atom O coordinating O the O zinc B-chemical is O the O Nε O in O each O histidine B-residue_name residue O , O as O is O typical O for O this O interaction O . O When O the O crystals B-experimental_method were I-experimental_method soaked I-experimental_method in O a O sodium B-chemical phosphate I-chemical solution O for O 2 O d O prior O to O data O collection O , O the O CoA B-chemical dissociates O , O and O density B-evidence for O a O phosphate B-chemical molecule O is O visible O at O the O active B-site site I-site ( O Table O 2 O , O Fig O 4b O ). O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence aligns B-experimental_method well O with O the O CoA B-protein_state - I-protein_state bound I-protein_state structure B-evidence ( O 0 O . O 43 O Å O rmsd B-evidence over O 2 O , O 361 O atoms O for O the O monomer B-oligomeric_state , O 0 O . O 83 O Å O over O 5 O , O 259 O aligned O atoms O for O the O dimer B-oligomeric_state ). O The O phosphate B-chemical contacts O both O zinc B-chemical atoms O ( O Fig O 4b O ) O and O replaces O the O coordination O by O CoA B-chemical at O Zn1 B-chemical ; O the O coordination O for O Zn2 B-chemical changes O from O octahedral O with O three O bound O waters B-chemical to O tetrahedral O with O a O phosphate B-chemical ion O as O one O of O the O ligands O ( O Fig O 4b O ). O Conserved B-protein_state Arg103 B-residue_name_number seems O to O be O involved O in O maintaining O the O phosphate B-chemical in O that O position O . O The O two O zinc B-chemical atoms O are O slightly O closer O together O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state form O ( O 5 O . O 8 O Å O vs O 6 O . O 3 O Å O ), O possibly O due O to O the O bridging O effect O of O the O phosphate B-chemical . O An O additional O phosphate B-chemical molecule O is O bound O at O a O crystal O contact O interface O , O perhaps O accounting O for O the O 14 O Å O shorter O c O - O axis O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state crystal O form O ( O Table O 2 O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element Interestingly O , O some O of O the O residues O important O for O dimerization O of O rPduL B-protein , O particularly O Phe116 B-residue_name_number , O are O poorly B-protein_state conserved I-protein_state across O PduL B-protein_type homologs O associated O with O functionally O diverse O BMCs B-complex_assembly ( O Figs O 4c O and O 3 O ), O suggesting O that O they O may O have O alternative O oligomeric O states O . O We O tested O this O hypothesis O by O performing O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method on O both O full B-protein_state - I-protein_state length I-protein_state and O truncated O variants O ( O lacking B-protein_state the O EP B-structure_element , O ΔEP B-mutant ) O of O sPduL B-protein , O rPduL B-protein , O and O pPduL B-protein . O These O three O homologs O are O found O in O functionally O distinct O BMCs B-complex_assembly ( O Table O 1 O ). O It O has O been O proposed O that O the O catabolic B-protein_state BMCs B-complex_assembly may O assemble O in O a O core O - O first O manner O , O with O the O luminal O enzymes O ( O signature O enzyme O , O aldehyde B-protein_type , I-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type and O the O BMC B-complex_assembly PTAC B-protein_type ) O forming O an O initial O bolus O , O or O prometabolosome O , O around O which O a O shell B-structure_element assembles O . O Given O the O diversity O of O signature O enzymes O ( O Table O 1 O ), O it O is O plausible O that O PduL B-protein_type orthologs O may O adopt O different O oligomeric O states O that O reflect O the O differences O in O the O proteins O being O packaged O with O them O in O the O organelle O lumen O . O We O found O that O not O only O did O the O different O orthologs O appear O to O assemble O into O different O oligomeric O states O , O but O that O quaternary O structure O was O dependent O on O whether O or O not O the O EP B-structure_element was O present O . O Full B-protein_state - I-protein_state length I-protein_state sPduL B-protein was O unstable O in O solution O — O precipitating O over O time O — O and O eluted O throughout O the O entire O volume O of O a O size O exclusion O column O , O indicating O it O was O nonspecifically O aggregating O . O However O , O when O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 27 I-residue_range ) O was O removed B-experimental_method ( O sPduL B-mutant ΔEP I-mutant ), O the O truncated B-protein_state protein O was O stable O and O eluted O as O a O single O peak O ( O Fig O 5a O ) O consistent O with O the O size O of O a O monomer B-oligomeric_state ( O Fig O 5d O , O blue O curve O ). O In O contrast O , O both O full B-protein_state - I-protein_state length I-protein_state rPduL B-protein and O pPduL B-protein appeared O to O exist O in O two O distinct O oligomeric O states O ( O Fig O 5b O and O 5c O respectively O , O orange O curves O ), O one O form O of O the O approximate O size O of O a O dimer B-oligomeric_state and O the O second O , O a O higher O molecular O weight O oligomer B-oligomeric_state (~ O 150 O kDa O ). O Upon O deletion B-experimental_method of O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 47 I-residue_range for O rPduL B-protein , O and O 1 B-residue_range – I-residue_range 20 I-residue_range for O pPduL B-protein ), O there O was O a O distinct O change O in O the O elution O profiles O ( O Fig O 5b O and O 5c O respectively O , O blue O curves O ). O pPduLΔEP B-mutant eluted O as O two O smaller O forms O , O possibly O corresponding O to O a O trimer B-oligomeric_state and O a O monomer B-oligomeric_state . O In O contrast O , O rPduLΔEP B-mutant eluted O as O one O smaller O oligomer O , O possibly O a O dimer B-oligomeric_state . O We O also O analyzed O purified O rPduL B-protein and O rPduLΔEP B-mutant by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method coupled O with O multiangle B-experimental_method light I-experimental_method scattering I-experimental_method ( O SEC B-experimental_method - I-experimental_method MALS I-experimental_method ) O for O a O complementary O approach O to O assessing O oligomeric O state O . O SEC B-experimental_method - I-experimental_method MALS I-experimental_method analysis O of O rPdulΔEP B-mutant is O consistent O with O a O dimer B-oligomeric_state ( O as O observed O in O the O crystal B-evidence structure I-evidence ) O with O a O weighted B-evidence average I-evidence ( I-evidence Mw I-evidence ) I-evidence and I-evidence number I-evidence average I-evidence ( I-evidence Mn I-evidence ) I-evidence of I-evidence the I-evidence molar I-evidence mass I-evidence of O 58 O . O 4 O kDa O +/− O 11 O . O 2 O % O and O 58 O . O 8 O kDa O +/− O 10 O . O 9 O %, O respectively O ( O S4a O Fig O ). O rPduL B-protein full B-protein_state length I-protein_state runs O as O Mw B-evidence = O 140 O . O 3 O kDa O +/− O 1 O . O 2 O % O and O Mn B-evidence = O 140 O . O 5 O kDa O +/− O 1 O . O 2 O %. O This O corresponds O to O an O oligomeric O state O of O six B-oligomeric_state subunits I-oligomeric_state ( O calculated O molecular B-evidence weight I-evidence of O 144 O kDa O ). O Collectively O , O these O data O strongly O suggest O that O the O N O - O terminal O EP B-structure_element of O PduL B-protein_type plays O a O role O in O defining O the O quaternary O structure O of O the O protein O . O The O BMC B-complex_assembly shell B-structure_element not O only O sequesters O specific O enzymes O but O also O their O cofactors O , O thereby O establishing O a O private O cofactor O pool O dedicated O to O the O encapsulated O reactions O . O In O catabolic B-protein_state BMCs B-complex_assembly , O CoA B-chemical and O NAD B-chemical + I-chemical must O be O continually O recycled O within O the O organelle O ( O Fig O 1 O ). O Homologs O of O the O predominant O cofactor O utilizer O ( O aldehyde B-protein_type dehydrogenase I-protein_type ) O and O NAD B-chemical + I-chemical regenerator O ( O alcohol B-protein_type dehydrogenase I-protein_type ) O have O been O structurally O characterized O , O but O until O now O structural O information O was O lacking O for O PduL B-protein_type , O which O recycles O CoA B-chemical in O the O organelle O lumen O . O Curiously O , O while O the O housekeeping B-protein_state Pta B-protein_type could O provide O this O function O , O and O indeed O does O so O in O the O case O of O one O type O of O ethanolamine B-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly EUT I-complex_assembly ) I-complex_assembly BMC I-complex_assembly , O the O evolutionarily O unrelated O PduL B-protein_type fulfills O this O function O for O the O majority O of O metabolosomes B-complex_assembly using O a O novel O structure B-evidence and O active B-site site I-site for O convergent O evolution O of O function O . O The O Tertiary O Structure O of O PduL B-protein_type Is O Formed O by O Discontinuous O Segments O of O Primary O Structure O The O structure B-evidence of O PduL B-protein_type consists O of O two B-structure_element β I-structure_element - I-structure_element barrel I-structure_element domains I-structure_element capped O by O short B-structure_element alpha I-structure_element helical I-structure_element segments I-structure_element ( O Fig O 2b O ). O The O two O domains O are O structurally O very O similar O ( O superimposing B-experimental_method with O a O rmsd B-evidence of O 1 O . O 34 O Å O ( O over O 123 O out O of O 320 O / O 348 O aligned O backbone O atoms O , O S5a O Fig O ). O However O , O the O amino O acid O sequences O of O the O two O domains O are O only O 16 O % O identical O ( O mainly O the O RHxH B-structure_element motif I-structure_element , O β2 B-structure_element and O β10 B-structure_element ), O and O 34 O % O similar O . O Our O structure B-evidence reveals O that O the O two O assigned O PF06130 B-structure_element domains O ( O Fig O 3 O ) O do O not O form O structurally O discrete O units O ; O this O reduces O the O apparent O sequence O conservation O at O the O level O of O primary O structure O . O One O strand B-structure_element of O the O domain B-structure_element 1 I-structure_element beta B-structure_element barrel I-structure_element ( O shown O in O blue O in O Fig O 2 O ) O is O contributed O by O the O N O - O terminus O , O while O the O rest O of O the O domain O is O formed O by O the O residues O from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein B-protein_type . O When O aligned B-experimental_method by O structure B-evidence , O the O β1 B-structure_element strand I-structure_element of O the O first B-structure_element domain I-structure_element ( O Fig O 2a O and O 2b O , O blue O ) O corresponds O to O the O final B-structure_element strand I-structure_element of O the O second B-structure_element domain I-structure_element ( O β9 B-structure_element ), O effectively O making O the O domains O continuous O if O the O first O strand O was O transplanted O to O the O C O - O terminus O . O Refined O domain O assignment O based O on O our O structure B-evidence should O be O able O to O predict O domains O of O PF06130 B-structure_element homologs O much O more O accurately O . O The O closest O structural O homolog O of O the O PduL B-protein_type barrel B-structure_element domain I-structure_element is O a O subdomain O of O a O multienzyme O complex O , O the O alpha B-structure_element subunit I-structure_element of O ethylbenzene B-protein_type dehydrogenase I-protein_type ( O S5b O Fig O , O rmsd B-evidence of O 2 O . O 26 O Å O over O 226 O aligned O atoms O consisting O of O one O beta B-structure_element barrel I-structure_element and O one O capping B-structure_element helix I-structure_element ). O In O contrast O to O PduL B-protein_type , O there O is O only O one O barrel B-structure_element present O in O ethylbenzene B-protein_type dehydrogenase I-protein_type , O and O there O is O no O comparable O active B-site site I-site arrangement O . O The O PduL B-protein_type signature O primary O structure O , O two O PF06130 B-structure_element domains O , O occurs O in O some O multidomain O proteins O , O most O of O them O annotated O as O Acks B-protein_type , O suggesting O that O PduL B-protein_type may O also O replace O Pta B-protein_type in O variants O of O the O phosphotransacetylase B-protein_type - O Ack B-protein_type pathway O . O These O PduL B-protein_type homologs O lack B-protein_state EPs B-structure_element , O and O their B-protein_type fusion O to O Ack B-protein_type may O have O evolved O as O a O way O to O facilitate O substrate O channeling O between O the O two O enzymes O . O Implications O for O Metabolosome B-complex_assembly Core O Assembly O For O BMC B-complex_assembly - O encapsulated O proteins O to O properly O function O together O , O they O must O be O targeted O to O the O lumen O and O assemble O into O an O organization O that O facilitates O substrate O / O product O channeling O among O the O different O catalytic B-site sites I-site of O the O signature O and O core O enzymes O . O The O N B-structure_element - I-structure_element terminal I-structure_element extension I-structure_element on O PduL B-protein_type homologs O may O serve O both O of O these O functions O . O The B-structure_element extension I-structure_element shares O many O features O with O previously O characterized O EPs B-structure_element : O it O is O present O only O in O homologs O associated O with O BMC B-gene loci I-gene , O and O it O is O predicted O to O form O an O amphipathic B-protein_state α B-structure_element - I-structure_element helix I-structure_element . O Moreover O , O its O removal B-experimental_method affects O the O oligomeric O state O of O the O protein O . O EP B-structure_element - O mediated O oligomerization O has O been O observed O for O the O signature O and O core O BMC B-complex_assembly enzymes O ; O for O example O , O full B-protein_state - I-protein_state length I-protein_state propanediol B-protein_type dehydratase I-protein_type and O ethanolamine B-protein_type ammonia I-protein_type - I-protein_type lyase I-protein_type ( O signature O enzymes O for O PDU B-complex_assembly and O EUT B-complex_assembly BMCs I-complex_assembly ) O subunits O are O also O insoluble O , O but O become O soluble O upon O removal O of O the O predicted O EP B-structure_element . O sPduL B-protein has O also O previously O been O reported O to O localize O to O inclusion O bodies O when O overexpressed B-experimental_method ; O we O show O here O that O this O is O dependent O on O the O presence O of O the O EP B-structure_element . O This O propensity O of O the O EP B-structure_element to O cause O proteins O to O form O complexes O ( O Fig O 5 O ) O might O not O be O a O coincidence O , O but O could O be O a O necessary O step O in O the O assembly O of O BMCs B-complex_assembly . O Structured O aggregation O of O the O core O enzymes O has O been O proposed O to O be O the O initial O step O in O metabolosome B-complex_assembly assembly O and O is O known O to O be O the O first O step O of O β O - O carboxysome O biogenesis O , O where O the O core O enzyme O Ribulose B-protein_type Bisphosphate I-protein_type Carboxylase I-protein_type / I-protein_type Oxygenase I-protein_type ( O RuBisCO B-protein_type ) O is O aggregated O by O the O CcmM B-protein_type protein O . O Likewise O , O CsoS2 B-protein_type , O a O protein O in O the O α B-complex_assembly - I-complex_assembly carboxysome I-complex_assembly core O , O also O aggregates O when O purified O and O is O proposed O to O facilitate O the O nucleation O and O encapsulation O of O RuBisCO B-protein_type molecules O in O the O lumen O of O the O organelle O . O This O role O for O EPs B-structure_element in O BMC B-complex_assembly assembly O is O in O addition O to O their O interaction O with O shell O proteins O . O Moreover O , O the O PduL B-protein_type crystal B-evidence structures I-evidence offer O a O clue O as O to O how O required O cofactors O enter O the O BMC B-complex_assembly lumen O during O assembly O . O Free O CoA B-chemical and O NAD B-chemical +/ I-chemical H B-chemical could O potentially O be O bound O to O the O enzymes O as O the O core O assembles O and O is O encapsulated O . O Our O PduL B-protein_type crystals B-evidence contained O CoA B-chemical that O was O captured O from O the O Escherichia B-species coli I-species cytosol O , O indicating O that O the O “ O ground O state O ” O of O PduL B-protein_type is O in O the O CoA B-protein_state - I-protein_state bound I-protein_state form O ; O this O could O provide O an O elegantly O simple O means O of O guaranteeing O a O 1 O : O 1 O ratio O of O CoA B-complex_assembly : I-complex_assembly PduL I-complex_assembly within O the O metabolosome B-complex_assembly lumen O . O Active B-site Site I-site Identification O and O Structural O Insights O into O Catalysis O The O active B-site site I-site of O PduL B-protein_type is O formed O at O the O interface B-site of O the O two O structural O domains B-structure_element ( O Fig O 2b O ). O As O expected O , O the O amino O acid O sequence O conservation O is O highest O in O the O region O around O the O proposed O active B-site site I-site ( O Fig O 4d O ); O highly B-protein_state conserved I-protein_state residues O are O also O involved O in O CoA B-chemical binding O ( O Figs O 2a O and O 3 O , O residues O Ser45 B-residue_name_number , O Lys70 B-residue_name_number , O Arg97 B-residue_name_number , O Leu99 B-residue_name_number , O His204 B-residue_name_number , O Asn211 B-residue_name_number ). O All O of O the O metal B-site - I-site coordinating I-site residues I-site ( O Fig O 2a O ) O are O absolutely B-protein_state conserved I-protein_state , O implicating O them O in O catalysis O or O the O correct O spatial O orientation O of O the O substrates O . O Arg103 B-residue_name_number , O which O contacts O the O phosphate B-chemical ( O Fig O 4b O ), O is O present O in O all O PduL B-protein_type homologs O . O The O close O resemblance O between O the O structures O binding O CoA B-chemical and O phosphate B-chemical likely O indicates O that O no O large O changes O in O protein O conformation O are O involved O in O catalysis O , O and O that O our O crystal B-evidence structures I-evidence are O representative O of O the O active B-protein_state form O . O The O native O substrate O for O the O forward O reaction O of O rPduL B-protein and O pPduL B-protein , O propionyl B-chemical - I-chemical CoA I-chemical , O most O likely O binds O to O the O enzyme O in O the O same O way O at O the O observed O nucleotide B-chemical and O pantothenic B-chemical acid I-chemical moiety O , O but O the O propionyl O group O in O the O CoA B-chemical - I-chemical thioester I-chemical might O point O in O a O different O direction O . O There O is O a O pocket B-site nearby O the O active B-site site I-site between O the O well B-protein_state - I-protein_state conserved I-protein_state residues O Ser45 B-residue_name_number and O Ala154 B-residue_name_number , O which O could O accommodate O the O propionyl O group O ( O S6 O Fig O ). O A O homology B-experimental_method model I-experimental_method of O sPduL B-protein indicates O that O the O residues O making O up O this O pocket B-site and O the O surrounding O active B-site site I-site region O are O identical O to O that O of O rPduL B-protein , O which O is O not O surprising O , O because O these O two O homologs O presumably O have O the O same O propionyl B-chemical - I-chemical CoA I-chemical substrate O . O The O homology B-experimental_method model I-experimental_method of O pPduL B-protein also O has O identical O residues O making O up O the O pocket B-site , O but O with O a O key O difference O in O the O vicinity O of O the O active B-site site I-site : O Gln77 B-residue_name_number of O rPduL B-protein is O replaced O by O a O tyrosine B-residue_name ( O Tyr77 B-residue_name_number ) O in O pPduL B-protein . O The O physiological O substrate O of O pPduL B-protein ( O Table O 1 O ) O is O thought O to O be O lactyl B-chemical - I-chemical CoA I-chemical , O which O contains O an O additional O hydroxyl O group O relative O to O propionyl B-chemical - I-chemical CoA I-chemical . O The O presence O of O an O aromatic B-protein_state residue B-structure_element at O this O position O may O underlie O the O substrate O preference O of O the O PduL B-protein_type enzyme O from O the O pvm B-gene locus I-gene . O Indeed O , O in O the O majority O of O PduLs B-protein_type encoded O in O pvm B-gene loci I-gene , O Gln77 B-residue_name_number is O substituted O by O either O a O Tyr B-residue_name or O Phe B-residue_name , O whereas O it O is O typically O a O Gln B-residue_name or O Glu B-residue_name in O PduLs B-protein_type in O all O other O BMC B-complex_assembly types O that O degrade O acetyl B-chemical - I-chemical or O propionyl B-chemical - I-chemical CoA I-chemical . O A O comparison B-experimental_method of O the O PduL B-protein_type active B-site site I-site to O that O of O the O functionally O identical O Pta B-protein_type suggests O that O the O two O enzymes O have O distinctly O different O mechanisms O . O The O catalytic O mechanism O of O Pta B-protein_type involves O the O abstraction O of O a O thiol O hydrogen O by O an O aspartate B-residue_name residue O , O resulting O in O the O nucleophilic O attack O of O thiolate O upon O the O carbonyl O carbon O of O acetyl B-chemical - I-chemical phosphate I-chemical , O oriented O by O an O arginine B-residue_name and O stabilized O by O a O serine B-residue_name — O there O are O no O metals O involved O . O In O contrast O , O in O the O rPduL B-protein structure B-evidence , O there O are O no O conserved O aspartate B-residue_name residues O in O or O around O the O active B-site site I-site , O and O the O only O well B-protein_state - I-protein_state conserved I-protein_state glutamate B-residue_name residue O in O the O active B-site site I-site is O involved O in O coordinating O one O of O the O metal O ions O . O These O observations O strongly O suggest O that O an O acidic B-protein_state residue B-structure_element is O not O directly O involved O in O catalysis O by O PduL B-protein_type . O Instead O , O the O dimetal B-site active I-site site I-site of O PduL B-protein_type may O create O a O nucleophile O from O one O of O the O hydroxyl O groups O on O free O phosphate B-chemical to O attack O the O carbonyl O carbon O of O the O thioester O bond O of O an O acyl B-chemical - I-chemical CoA I-chemical . O In O the O reverse O direction O , O the O metal O ion O ( O s O ) O could O stabilize O the O thiolate O anion O that O would O attack O the O carbonyl O carbon O of O an O acyl B-chemical - I-chemical phosphate I-chemical ; O a O similar O mechanism O has O been O described O for O phosphatases B-protein_type where O hydroxyl O groups O or O hydroxide O ions O can O act O as O a O base O when O coordinated O by O a O dimetal B-site active I-site site I-site . O Our O structures B-evidence provide O the O foundation O for O studies O to O elucidate O the O details O of O the O catalytic O mechanism O of O PduL B-protein_type . O Conserved B-protein_state residues O in O the O active B-site site I-site that O may O contribute O to O substrate O binding O and O / O or O transition O state O stabilization O include O Ser127 B-residue_name_number , O Arg103 B-residue_name_number , O Arg194 B-residue_name_number , O Gln107 B-residue_name_number , O Gln74 B-residue_name_number , O and O Gln B-residue_name_number / O Glu77 B-residue_name_number . O In O the O phosphate B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence , O Ser127 B-residue_name_number and O Arg103 B-residue_name_number appear O to O position O the O phosphate B-chemical ( O Fig O 4b O ). O Alternatively O , O Arg103 B-residue_name_number might O act O as O a O base O to O render O the O phosphate B-chemical more O nucleophilic O . O The O functional O groups O of O Gln74 B-residue_name_number , O Gln B-residue_name_number / O Glu77 B-residue_name_number , O and O Arg194 B-residue_name_number are O directed O away O from O the O active B-site site I-site in O both O CoA B-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structures I-evidence and O do O not O appear O to O be O involved O in O hydrogen O bonding O with O these O substrates O , O although O they O could O be O important O for O positioning O an O acyl B-chemical - I-chemical phosphate I-chemical . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O This O hypothesis O is O strengthened O by O the O fact O that O the O CoA B-protein_state - I-protein_state bound I-protein_state crystals B-evidence were O obtained O without O added O CoA B-chemical , O indicating O that O the O protein O bound B-protein_state CoA B-chemical from O the O E B-species . I-species coli I-species expression O strain O and O retained O it O throughout O purification O and O crystallization O . O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence indicates O that O in O the O opposite O reaction O direction O phosphate B-chemical is O bound O first O , O and O then O an O acyl B-chemical - I-chemical CoA I-chemical enters O . O The O two O high O - O resolution O crystal B-evidence structures I-evidence presented O here O will O serve O as O the O foundation O for O mechanistic O studies O on O this O noncanonical O PTAC B-protein_type enzyme O to O determine O how O the O dimetal B-site active I-site site I-site functions O to O catalyze O both O forward O and O reverse O reactions O . O Functional O , O but O Not O Structural O , O Convergence O of O PduL B-protein_type and O Pta B-protein_type PduL B-protein_type and O Pta B-protein_type are O mechanistically O and O structurally O distinct O enzymes O that O catalyze O the O same O reaction O , O a O prime O example O of O evolutionary O convergence O upon O a O function O . O There O are O several O examples O of O such O functional O convergence O of O enzymes O , O although O typically O the O enzymes O have O independently O evolved O similar O , O or O even O identical O active B-site sites I-site ; O for O example O , O the O carbonic B-protein_type anhydrase I-protein_type family O . O However O , O apparently O less O frequent O is O functional O convergence O that O is O supported O by O distinctly O different O active B-site sites I-site and O accordingly O catalytic O mechanism O , O as O revealed O by O comparison O of O the O structures O of O Pta B-protein_type and O PduL B-protein_type . O One O well O - O studied O example O of O this O is O the O β B-protein_type - I-protein_type lactamase I-protein_type family O of O enzymes O , O in O which O the O active B-site site I-site of O Class O A O and O Class O C O enzymes O involve O serine O - O based O catalysis O , O but O Class O B O enzymes O are O metalloproteins B-protein_type . O This O is O not O surprising O , O as O β B-protein_type - I-protein_type lactamases I-protein_type are O not O so O widespread O among O bacteria B-taxonomy_domain and O therefore O would O be O expected O to O have O evolved O independently O several O times O as O a O defense O mechanism O against O β O - O lactam O antibiotics O . O However O , O nearly O all O bacteria B-taxonomy_domain encode O Pta B-protein_type , O and O it O is O not O immediately O clear O why O the O Pta B-protein_type / O PduL B-protein_type functional O convergence O should O have O evolved O : O it O would O seem O to O be O evolutionarily O more O resourceful O for O the O Pta B-gene - I-gene encoding I-gene gene I-gene to O be O duplicated O and O repurposed O for O BMCs B-complex_assembly , O as O is O apparently O the O case O in O one O type O of O BMC B-complex_assembly — I-complex_assembly EUT1 I-complex_assembly ( O Table O 1 O ). O There O could O be O some O intrinsic O biochemical O difference O between O the O two O enzymes O that O renders O PduL B-protein_type a O more O attractive O candidate O for O encapsulation O in O a O BMC B-complex_assembly — O for O example O , O PduL B-protein_type might O be O more O amenable O to O tight O packaging O , O or O is O better O suited O for O the O chemical O microenvironment O formed O within O the O lumen O of O the O BMC B-complex_assembly , O which O can O be O quite O different O from O the O cytosol O . O Further O biochemical O comparison O between O the O two O PTACs B-protein_type will O likely O yield O exciting O results O that O could O answer O this O evolutionary O question O . O BMCs B-complex_assembly are O now O known O to O be O widespread O among O the O bacteria B-taxonomy_domain and O are O involved O in O critical O segments O of O both O autotrophic O and O heterotrophic O biochemical O pathways O that O confer O to O the O host O organism O a O competitive O ( O metabolic O ) O advantage O in O select O niches O . O As O one O of O the O three O common O metabolosome B-complex_assembly core O enzymes O , O the O structure B-evidence of O PduL B-protein_type provides O a O key O missing O piece O to O our O structural O picture O of O the O shared O core O biochemistry O ( O Fig O 1 O ) O of O functionally O diverse O catabolic B-protein_state BMCs B-complex_assembly . O We O have O observed O the O oligomeric O state O differences O of O PduL B-protein_type to O correlate O with O the O presence O of O an O EP B-structure_element , O providing O new O insight O into O the O function O of O this O sequence O extension O in O BMC B-complex_assembly assembly O . O Moreover O , O our O results O suggest O a O means O for O Coenzyme B-chemical A I-chemical incorporation O during O metabolosome B-complex_assembly biogenesis O . O A O detailed O understanding O of O the O underlying O principles O governing O the O assembly O and O internal O structural O organization O of O BMCs B-complex_assembly is O a O requisite O for O synthetic O biologists O to O design O custom O nanoreactors O that O use O BMC B-complex_assembly architectures O as O a O template O . O Furthermore O , O given O the O growing O number O of O metabolosomes B-complex_assembly implicated O in O pathogenesis O , O the O PduL B-protein_type structure B-evidence will O be O useful O in O the O development O of O therapeutics O . O The O fact O that O PduL B-protein_type is O confined O almost O exclusively O to O metabolosomes B-complex_assembly can O be O used O to O develop O an O inhibitor O that O blocks O only O PduL B-protein_type and O not O Pta B-protein_type as O a O way O to O selectively O disrupt O BMC B-complex_assembly - O based O metabolism O , O while O not O affecting O most O commensal O organisms O that O require O PTAC B-protein_type activity O . O Structural O basis O for O the O regulation O of O enzymatic O activity O of O Regnase B-protein - I-protein 1 I-protein by O domain O - O domain O interactions O Regnase B-protein - I-protein 1 I-protein is O an O RNase B-protein_type that O directly O cleaves O mRNAs B-chemical of O inflammatory O genes O such O as O IL B-protein_type - I-protein_type 6 I-protein_type and O IL B-protein_type - I-protein_type 12p40 I-protein_type , O and O negatively O regulates O cellular O inflammatory O responses O . O Here O , O we O report O the O structures B-evidence of O four O domains O of O Regnase B-protein - I-protein 1 I-protein from O Mus B-species musculus I-species — O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O NTD B-structure_element ), O PilT B-structure_element N I-structure_element - I-structure_element terminus I-structure_element like I-structure_element ( O PIN B-structure_element ) O domain O , O zinc B-structure_element finger I-structure_element ( O ZF B-structure_element ) O domain O and O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ). O The O PIN B-structure_element domain O harbors O the O RNase B-protein_type catalytic B-site center I-site ; O however O , O it O is O insufficient O for O enzymatic O activity O . O We O found O that O the O NTD B-structure_element associates O with O the O PIN B-structure_element domain O and O significantly O enhances O its O RNase B-protein_type activity O . O The O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state and O the O dimer B-site interface I-site overlaps O with O the O NTD B-site binding I-site site I-site . O Interestingly O , O mutations B-experimental_method blocking O PIN B-structure_element oligomerization O had O no O RNase B-protein_type activity O , O indicating O that O both O oligomerization O and O NTD B-structure_element binding O are O crucial O for O RNase B-protein_type activity O in O vitro O . O These O results O suggest O that O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O is O tightly O controlled O by O both O intramolecular O ( O NTD B-structure_element - O PIN B-structure_element ) O and O intermolecular O ( O PIN B-structure_element - O PIN B-structure_element ) O interactions O . O The O initial O sensing O of O infection O is O mediated O by O a O set O of O pattern B-protein_type - I-protein_type recognition I-protein_type receptors I-protein_type ( O PRRs B-protein_type ) O such O Toll B-protein_type - I-protein_type like I-protein_type receptors I-protein_type ( O TLRs B-protein_type ) O and O the O intracellular O signaling O cascades O triggered O by O TLRs B-protein_type evoke O transcriptional O expression O of O inflammatory O mediators O that O coordinate O the O elimination O of O pathogens O and O infected O cells O . O Regnase B-protein - I-protein 1 I-protein ( O also O known O as O Zc3h12a B-protein and O MCPIP1 B-protein ) O is O an O RNase B-protein_type whose O expression O level O is O stimulated O by O lipopolysaccharides B-chemical and O prevents O autoimmune O diseases O by O directly O controlling O the O stability O of O mRNAs B-chemical of O inflammatory O genes O such O as O interleukin O ( B-protein_type IL I-protein_type )- I-protein_type 6 I-protein_type , O IL B-protein_type - I-protein_type 1β I-protein_type , O IL B-protein_type - I-protein_type 2 I-protein_type , O and O IL B-protein_type - I-protein_type 12p40 I-protein_type . O Regnase B-protein - I-protein 1 I-protein accelerates O target O mRNA B-chemical degradation O via O their O 3 B-structure_element ′- I-structure_element terminal I-structure_element untranslated I-structure_element region I-structure_element ( O 3 B-structure_element ′ I-structure_element UTR I-structure_element ), O and O also O degrades O its O own O mRNA B-chemical . O Regnase B-protein - I-protein 1 I-protein is O a O member O of O Regnase B-protein_type family I-protein_type and O is O composed O of O a O PilT B-structure_element N I-structure_element - I-structure_element terminus I-structure_element like I-structure_element ( O PIN B-structure_element ) O domain O followed O by O a O CCCH B-structure_element - I-structure_element type I-structure_element zinc I-structure_element – I-structure_element finger I-structure_element ( O ZF B-structure_element ) O domain O , O which O are O conserved B-protein_state among O Regnase B-protein_type family I-protein_type members I-protein_type . O Recently O , O the O crystal B-evidence structure I-evidence of O the O Regnase B-protein - I-protein 1 I-protein PIN B-structure_element domain O derived O from O Homo B-species sapiens I-species was O reported O . O The O structure B-evidence combined O with O functional O analyses O revealed O that O four O catalytically O important O Asp B-residue_name residues O form O the O catalytic B-site center I-site and O stabilize O Mg2 B-chemical + I-chemical binding O that O is O crucial O for O RNase B-protein_type activity O . O Several O CCCH B-structure_element - I-structure_element type I-structure_element ZF I-structure_element motifs I-structure_element in O RNA B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type have O been O reported O to O directly O bind O RNA B-chemical . O In O addition O , O Regnase B-protein - I-protein 1 I-protein has O been O predicted O to O possess O other O domains O in O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element regions I-structure_element . O However O , O the O structure B-evidence and O function O of O the O ZF B-structure_element domain O , O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O NTD B-structure_element ) O and O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ) O of O Regnase B-protein - I-protein 1 I-protein have O not O been O solved O . O Here O , O we O performed O structural B-experimental_method and I-experimental_method functional I-experimental_method analyses I-experimental_method of O individual O domains O of O Regnase B-protein - I-protein 1 I-protein derived O from O Mus B-species musculus I-species in O order O to O understand O the O catalytic O activity O in O vitro O . O Our O data O revealed O that O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein is O regulated O through O both O intra O and O intermolecular O domain O interactions O in O vitro O . O The O NTD B-structure_element plays O a O crucial O role O in O efficient O cleavage O of O target O mRNA B-chemical , O through O intramolecular O NTD B-structure_element - O PIN B-structure_element interactions O . O Moreover O , O Regnase B-protein - I-protein 1 I-protein functions O as O a O dimer B-oligomeric_state through O intermolecular O PIN B-structure_element - O PIN B-structure_element interactions O during O cleavage O of O target O mRNA B-chemical . O Our O findings O suggest O that O Regnase B-protein - I-protein 1 I-protein cleaves O its O target O mRNA B-chemical by O an O NTD B-protein_state - I-protein_state activated I-protein_state functional B-protein_state PIN B-structure_element dimer B-oligomeric_state , O while O the O ZF B-structure_element increases O RNA B-chemical affinity O in O the O vicinity O of O the O PIN B-structure_element dimer B-oligomeric_state . O Domain O structures B-evidence of O Regnase B-protein - I-protein 1 I-protein We O analyzed O Rengase B-protein - I-protein 1 I-protein derived O from O Mus B-species musculus I-species and O solved B-experimental_method the O structures B-evidence of O the O four O domains O ; O NTD B-structure_element , O PIN B-structure_element , O ZF B-structure_element , O and O CTD B-structure_element individually O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method or O NMR B-experimental_method ( O Fig O . O 1a O – O e O ). O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method was O attempted O for O the O fragment O containing O both O the O PIN B-structure_element and O ZF B-structure_element domains O , O however O , O electron B-evidence density I-evidence was O observed O only O for O the O PIN B-structure_element domain O ( O Fig O . O 1c O ), O consistent O with O a O previous O report O on O Regnase B-protein - I-protein 1 I-protein derived O from O Homo B-species sapiens I-species . O This O suggests O that O the O PIN B-structure_element and O ZF B-structure_element domains O exist O independently O without O interacting O with O each O other O . O The O domain O structures B-evidence of O NTD B-structure_element , O ZF B-structure_element , O and O CTD B-structure_element were O determined O by O NMR B-experimental_method ( O Fig O . O 1b O , O d O , O e O ). O The O NTD B-structure_element and O CTD B-structure_element are O both O composed O of O three O α B-structure_element helices I-structure_element , O and O structurally O resemble O ubiquitin B-protein conjugating I-protein enzyme I-protein E2 I-protein K I-protein ( O PDB O ID O : O 3K9O O ) O and O ubiquitin B-protein associated I-protein protein I-protein 1 I-protein ( O PDB O ID O : O 4AE4 O ), O respectively O , O according O to O the O Dali B-experimental_method server I-experimental_method . O Contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O the O mRNA B-chemical binding O activity O Although O the O PIN B-structure_element domain O is O responsible O for O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein , O the O roles O of O the O other O domains O are O largely O unknown O . O First O , O we O evaluated O a O role O of O the O NTD B-structure_element and O ZF B-structure_element domains O for O mRNA B-chemical binding O by O an O in B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method assay I-experimental_method ( O Fig O . O 1f O ). O Fluorescently B-protein_state 5 I-protein_state ′- I-protein_state labeled I-protein_state RNA B-chemical corresponding O to O nucleotides O 82 O – O 106 O of O the O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical 3 B-structure_element ′ I-structure_element UTR I-structure_element and O the O catalytically O inactive B-protein_state mutant B-protein_state ( O D226N B-mutant and O D244N B-mutant ) O of O Regnase B-protein - I-protein 1 I-protein — O hereafter O referred O to O as O the O DDNN B-mutant mutant B-protein_state — O were O utilized O . O Upon O addition O of O a O larger O amount O of O Regnase B-protein - I-protein 1 I-protein , O the O fluorescence B-evidence of O free B-protein_state RNA B-chemical decreased O , O indicating O that O Regnase B-protein - I-protein 1 I-protein bound B-protein_state to I-protein_state the O RNA B-chemical . O Based O on O the O decrease O in O the O free O RNA B-chemical fluorescence O band O , O we O evaluated O the O contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNA B-chemical binding O . O While O the O RNA B-chemical binding O ability O was O not O significantly O changed O in O the O presence B-protein_state of I-protein_state NTD B-structure_element , O it O increased O in O the O presence B-protein_state of I-protein_state the O ZF B-structure_element domain O ( O Fig O . O 1f O , O g O and O Supplementary O Fig O . O 1 O ). O Direct O binding O of O the O ZF B-structure_element domain O and O RNA B-chemical were O confirmed O by O NMR B-experimental_method spectral B-evidence changes I-evidence . O The O fitting O of O the O titration B-evidence curve I-evidence of O Y314 B-residue_name_number resulted O in O an O apparent O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O of O 10 O ± O 1 O . O 1 O μM O ( O Supplementary O Fig O . O 2 O ). O These O results O indicate O that O not O only O the O PIN B-structure_element but O also O the O ZF B-structure_element domain O contribute O to O RNA B-chemical binding O , O while O the O NTD B-structure_element is O not O likely O to O be O involved O in O direct O interaction O with O RNA B-chemical . O Contribution O of O each O domain O of O Regnase B-protein - I-protein 1 I-protein to O RNase B-protein_type activity O In O order O to O characterize O the O role O of O each O domain O in O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein , O we O performed O an O in B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method using O fluorescently B-protein_state 5 I-protein_state ′- I-protein_state labeled I-protein_state RNA B-chemical corresponding O to O nucleotides O 82 O – O 106 O of O the O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical 3 B-structure_element ′ I-structure_element UTR I-structure_element ( O Fig O . O 1g O ). O Regnase B-protein - I-protein 1 I-protein constructs O consisting O of O NTD B-mutant - I-mutant PIN I-mutant - I-mutant ZF I-mutant completely O cleaved O the O target O mRNA B-chemical and O generated O the O cleaved O products O . O The O apparent O half O - O life O ( O T1 O / O 2 O ) O of O the O RNase B-protein_type activity O was O about O 20 O minutes O . O Regnase B-protein - I-protein 1 I-protein lacking B-protein_state the O ZF B-structure_element domain O generated O a O smaller O but O appreciable O amount O of O cleaved O product O ( O T1 O / O 2 O ~ O 70 O minutes O ), O while O those O lacking B-protein_state the O NTD B-structure_element did O not O generate O cleaved O products O ( O T1 O / O 2 O > O 90 O minutes O ). O It O should O be O noted O that O NTD B-mutant - I-mutant PIN I-mutant ( I-mutant DDNN I-mutant )- I-mutant ZF I-mutant , O which O possesses O the O NTD B-structure_element but O lacks B-protein_state the O catalytic B-site residues I-site in O PIN B-structure_element , O completely O lost O all O RNase B-protein_type activity O ( O Fig O . O 1g O , O right O panel O ), O as O expected O , O confirming O that O the O RNase B-protein_type catalytic B-site center I-site is O located O in O the O PIN B-structure_element domain O . O Taken O together O with O the O results O in O the O previous O section O , O we O conclude O that O the O NTD B-structure_element is O crucial O for O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein in O vitro O , O although O it O does O not O contribute O to O the O direct O mRNA B-chemical binding O . O Dimer B-oligomeric_state formation O of O the O PIN B-structure_element domains O During O purification B-experimental_method by O gel B-experimental_method filtration I-experimental_method , O the O PIN B-structure_element domain O exhibited O extremely O asymmetric O elution O peaks O in O a O concentration O dependent O manner O ( O Fig O . O 2a O ). O By O comparison B-experimental_method with I-experimental_method the I-experimental_method elution I-experimental_method volume I-experimental_method of I-experimental_method standard I-experimental_method marker I-experimental_method proteins I-experimental_method , O the O PIN B-structure_element domain O was O assumed O to O be O in O equilibrium O between O a O monomer B-oligomeric_state and O a O dimer B-oligomeric_state in O solution O at O concentrations O in O the O 20 O – O 200 O μM O range O . O The O crystal B-evidence structure I-evidence of O the O PIN B-structure_element domain O has O been O determined O in O three O distinct O crystal B-evidence forms I-evidence with O a O space O group O of O P3121 O ( O form O I O in O this O study O and O PDB O ID O 3V33 O ), O P3221 O ( O form O II O in O this O study O ), O and O P41 O ( O PDB O ID O 3V32 O and O 3V34 O ), O respectively O . O We O found O that O the O PIN B-structure_element domain O formed O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state that O was O commonly O observed O in O all O three O crystal B-evidence forms I-evidence in O spite O of O the O different O crystallization O conditions O ( O Supplementary O Fig O . O 3 O ). O Mutation B-experimental_method of O Arg215 B-residue_name_number , O whose O side O chain O faces O to O the O opposite O side O of O the O oligomeric B-site surface I-site , O to O Glu B-residue_name preserved O the O monomer B-oligomeric_state / O dimer B-oligomeric_state equilibrium O , O similar O to O the O wild B-protein_state type I-protein_state . O On O the O other O hand O , O single B-experimental_method mutations I-experimental_method of O side O chains O involved O in O the O PIN B-structure_element – O PIN B-structure_element oligomeric O interaction O resulted O in O monomer B-oligomeric_state formation O , O judging O from O gel B-experimental_method filtration I-experimental_method ( O Fig O . O 2a O , O b O ). O Wild B-protein_state type I-protein_state and O monomeric B-oligomeric_state PIN B-structure_element mutants B-protein_state ( O P212A B-mutant and O D278R B-mutant ) O were O also O analyzed O by O NMR B-experimental_method . O The O spectra B-evidence indicate O that O the O dimer B-site interface I-site of O the O wild B-protein_state type I-protein_state PIN B-structure_element domain O were O significantly O broadened O compared O to O the O monomeric B-oligomeric_state mutants B-protein_state ( O Supplementary O Fig O . O 4 O ). O These O results O indicate O that O the O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state in O solution O similar O to O the O crystal B-evidence structure I-evidence . O Interestingly O , O the O monomeric B-oligomeric_state PIN B-structure_element mutants B-protein_state P212A B-mutant , O R214A B-mutant , O and O D278R B-mutant had O no O significant O RNase B-protein_type activity O for O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical in O vitro O ( O Fig O . O 2c O ). O The O side O chains O of O these O residues O point O away O from O the O catalytic B-site center I-site on O the O same O molecule O ( O Fig O . O 2b O ). O Therefore O , O we O concluded O that O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state PIN B-structure_element dimerization O , O together O with O the O NTD B-structure_element , O are O required O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O in O vitro O . O Domain O - O domain O interaction O between O the O NTD B-structure_element and O the O PIN B-structure_element domain O While O the O NTD B-structure_element does O not O contribute O to O RNA B-chemical binding O ( O Fig O . O 1f O , O g O , O and O Supplementary O Fig O . O 1 O ), O it O increases O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein ( O Fig O . O 1h O ). O In O order O to O gain O insight O into O the O molecular O mechanism O of O the O NTD B-structure_element - O mediated O enhancement O of O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O , O we O further O investigated O the O domain O - O domain O interaction O between O the O NTD B-structure_element and O the O PIN B-structure_element domain O using O NMR B-experimental_method . O We O used O the O catalytically B-protein_state inactive I-protein_state monomeric B-oligomeric_state PIN B-structure_element mutant B-protein_state possessing O both O the O DDNN B-mutant and O D278R B-mutant mutations O to O avoid O dimer B-oligomeric_state formation O of O the O PIN B-structure_element domain O . O The O NMR B-experimental_method signals O from O the O PIN B-structure_element domain O ( O residues O V177 B-residue_name_number , O F210 B-residue_range - I-residue_range T211 I-residue_range , O R214 B-residue_name_number , O F228 B-residue_range - I-residue_range L232 I-residue_range , O and O F234 B-residue_range - I-residue_range S236 I-residue_range ) O exhibited O significant O chemical O shift O changes O upon O addition B-experimental_method of I-experimental_method the O NTD B-structure_element ( O Fig O . O 3a O ). O Likewise O , O upon O addition B-experimental_method of I-experimental_method the O PIN B-structure_element domain O , O NMR B-experimental_method signals O derived O from O R56 B-residue_name_number , O L58 B-residue_range - I-residue_range G59 I-residue_range , O and O V86 B-residue_range - I-residue_range H88 I-residue_range in O the O NTD B-structure_element exhibited O large O chemical O shift O changes O and O residues O D53 B-residue_name_number , O F55 B-residue_name_number , O K57 B-residue_name_number , O Y60 B-residue_range - I-residue_range S61 I-residue_range , O V68 B-residue_name_number , O T80 B-residue_range - I-residue_range G83 I-residue_range , O L85 B-residue_name_number , O and O G89 B-residue_name_number of O the O NTD B-structure_element as O well O as O side O chain O amide O signals O of O N79 B-residue_name_number exhibited O small O but O appreciable O chemical O shift O changes O ( O Fig O . O 3b O and O Supplementary O Fig O . O 5 O ). O These O results O clearly O indicate O a O direct O interaction O between O the O PIN B-structure_element domain O and O the O NTD B-structure_element . O Based O on O the O titration B-evidence curve I-evidence for O the O chemical B-evidence shift I-evidence changes I-evidence of O L58 B-residue_name_number , O the O apparent O Kd B-evidence between O the O isolated O NTD B-structure_element and O PIN B-structure_element was O estimated O to O be O 110 O ± O 5 O . O 8 O μM O . O Considering O the O fact O that O the O NTD B-structure_element and O PIN B-structure_element domains O are O attached O by O a O linker B-structure_element , O the O actual O binding B-evidence affinity I-evidence is O expected O much O higher O in O the O native B-protein_state protein O . O Mapping O the O residues O with O chemical O shift O changes O reveals O the O putative O PIN B-site / I-site NTD I-site interface I-site , O which O includes O a O helix B-structure_element that O harbors O catalytic O residues O D225 B-residue_name_number and O D226 B-residue_name_number on O the O PIN B-structure_element domain O ( O Fig O . O 3a O ). O Interestingly O , O the O putative O binding B-site site I-site for O the O NTD B-structure_element overlaps O with O the O PIN B-site - I-site PIN I-site dimer I-site interface I-site , O implying O that O NTD B-structure_element binding O can O “ O terminate O ” O PIN B-structure_element - O PIN B-structure_element oligomerization O ( O Fig O . O 2b O ). O An O in B-experimental_method silico I-experimental_method docking I-experimental_method of O the O NTD B-structure_element and O PIN B-structure_element domains O using O chemical B-evidence shift I-evidence restraints I-evidence provided O a O model O consistent O with O the O NMR B-experimental_method experiments O ( O Fig O . O 3c O ). O Residues O critical O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O To O gain O insight O into O the O residues O critical O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O , O each O basic O or O aromatic O residue O located O around O the O catalytic B-site site I-site of O the O PIN B-structure_element oligomer B-oligomeric_state was O mutated B-experimental_method to I-experimental_method alanine B-residue_name , O and O the O oligomerization O and O RNase B-protein_type activity O were O investigated O ( O Fig O . O 4 O ). O From O the O gel B-experimental_method filtration I-experimental_method assays I-experimental_method , O all O mutants B-protein_state except O R214A B-mutant formed O dimers B-oligomeric_state , O suggesting O that O any O lack O of O RNase B-protein_type activity O in O the O mutants B-protein_state , O except O R214A B-mutant , O was O directly O due O to O mutational O effects O of O the O specific O residues O and O not O to O abrogation O of O dimer B-oligomeric_state formation O . O The O W182A B-mutant , O R183A B-mutant , O and O R214A B-mutant mutants B-protein_state markedly O lost O cleavage O activity O for O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical as O well O as O for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O The O K184A B-mutant , O R215A B-mutant , O and O R220A B-mutant mutants B-protein_state moderately O but O significantly O decreased O the O cleavage O activity O for O both O target O mRNAs B-chemical . O The O importance O of O K219 B-residue_name_number and O R247 B-residue_name_number was O slightly O different O for O IL B-protein_type - I-protein_type 6 I-protein_type and O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical ; O both O K219 B-residue_name_number and O R247 B-residue_name_number were O more O important O in O the O cleavage O of O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical than O for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O The O other O mutated O residues O — O K152 B-residue_name_number , O R158 B-residue_name_number , O R188 B-residue_name_number , O R200 B-residue_name_number , O K204 B-residue_name_number , O K206 B-residue_name_number , O K257 B-residue_name_number , O and O R258 B-residue_name_number — O were O not O critical O for O RNase B-protein_type activity O . O The O importance O of O residues O W182 B-residue_name_number and O R183 B-residue_name_number can O readily O be O understood O in O terms O of O the O monomeric B-oligomeric_state PIN B-structure_element structure B-evidence as O they O are O located O near O to O the O RNase B-protein_type catalytic B-site site I-site ; O however O , O the O importance O of O residue O K184 B-residue_name_number , O which O points O away O from O the O active B-site site I-site is O more O easily O rationalized O in O terms O of O the O oligomeric O structure B-evidence , O in O which O the O “ O secondary O ” O chain O ’ O s O residue O K184 B-residue_name_number is O positioned O near O the O “ O primary B-protein_state ” I-protein_state chain O ’ O s O catalytic B-site site I-site ( O Fig O . O 4 O ). O In O contrast O , O R214 B-residue_name_number is O important O for O oligomerization O of O the O PIN B-structure_element domain O and O the O “ O secondary O ” O chain O ’ O s O residue O R214 B-residue_name_number is O also O positioned O near O the O “ O primary B-protein_state ” O chain O ’ O s O active B-site site I-site within O the O dimer B-site interface I-site . O It O should O be O noted O that O the O putative B-site - I-site RNA I-site binding I-site residues I-site K184 B-residue_name_number and O R214 B-residue_name_number are O unique O to O Regnase B-protein - I-protein 1 I-protein among O PIN B-structure_element domains O . O Molecular O mechanism O of O target O mRNA B-chemical cleavage O by O the O PIN B-structure_element dimer B-oligomeric_state Our O mutational B-experimental_method experiments I-experimental_method indicated O that O the O observed O dimer B-oligomeric_state is O functional O and O that O the O role O of O the O secondary B-protein_state PIN B-structure_element domain O is O to O position O Regnase B-protein - I-protein 1 I-protein - O unique O RNA B-site binding I-site residues I-site near O the O active B-site site I-site of O the O primary B-protein_state PIN B-structure_element domain O . O If O this O model O is O correct O , O then O we O reasoned O that O a O catalytically B-protein_state inactive I-protein_state PIN B-structure_element and O a O PIN B-structure_element lacking B-protein_state the O putative O RNA B-site - I-site binding I-site residues I-site ought O to O be O inactive B-protein_state in O isolation O but O become O active B-protein_state when O mixed O together O . O In O order O to O test O this O hypothesis O , O we O performed O in B-experimental_method vitro I-experimental_method cleavage I-experimental_method assays I-experimental_method using O combinations O of O Regnase B-protein - I-protein 1 I-protein mutants B-protein_state that O had O no O or O decreased O RNase B-protein_type activities O by O themselves O ( O Fig O . O 5 O ). O One O group O consisted O of O catalytically B-protein_state active I-protein_state PIN B-structure_element domains O with O mutation B-experimental_method of I-experimental_method basic O residues O found O in O the O previous O section O to O confer O decreased O RNase B-protein_type activity O ( O Fig O . O 4 O ). O These O were O paired O with O a O DDNN B-mutant mutant B-protein_state that O had O no O RNase B-protein_type activity O by O itself O . O When O any O members O of O the O two O groups O are O mixed O , O two O kinds O of O heterodimers B-oligomeric_state can O be O formed O : O one O is O composed O of O a O DDNN B-mutant primary B-protein_state PIN B-structure_element and O a O basic O residue O mutant B-protein_state secondary B-protein_state PIN B-structure_element and O is O expected O to O exhibit O no O RNase B-protein_type activity O ; O the O other O is O composed O of O a O basic O residue O mutant B-protein_state primary B-protein_state PIN B-structure_element and O a O DDNN B-mutant secondary B-protein_state PIN B-structure_element and O is O predicted O to O rescue O RNase B-protein_type activity O ( O Fig O . O 5a O ). O When O we O compared O the O fluorescence B-evidence intensity I-evidence of O uncleaved B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical , O basic O residue O mutants B-protein_state W182A B-mutant , O K184A B-mutant , O R214A B-mutant , O and O R220A B-mutant were O rescued O upon O addition O of O the O DDNN B-mutant mutant B-protein_state ( O Fig O . O 5b O ). O Consistently O , O when O we O compared O the O fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state Regnase B-protein - I-protein 1 I-protein mRNA B-chemical , O basic O residue O mutants B-protein_state K184A B-mutant and O R214A B-mutant were O rescued O upon O addition O of O the O DDNN B-mutant mutant B-protein_state ( O Fig O . O 5c O ). O Rescue O of O K184A B-mutant and O R214A B-mutant by O the O DDNN B-mutant mutant B-protein_state was O also O confirmed O by O a O significant O increase O in O the O cleaved O products O . O This O is O particularly O significant O because O the O side O chains O of O K184 B-residue_name_number and O R214 B-residue_name_number in O the O primary B-protein_state PIN B-structure_element are O oriented O away O from O their O own O catalytic B-site center I-site , O while O those O in O the O secondary B-protein_state PIN B-structure_element face O toward O the O catalytic B-site center I-site of O the O primary B-protein_state PIN B-structure_element . O R214 B-residue_name_number is O an O important O residue O for O dimer B-oligomeric_state formation O as O shown O in O Fig O . O 2 O , O therefore O , O R214A B-mutant in O the O secondary B-protein_state PIN B-structure_element cannot O dimerize O . O According O to O the O proposed O model O , O an O R214A B-mutant PIN B-structure_element domain O can O only O form O a O dimer B-oligomeric_state when O the O DDNN B-mutant PIN B-structure_element acts O as O the O secondary B-protein_state PIN B-structure_element . O Taken O together O , O the O rescue O experiments O above O support O the O proposed O model O in O which O the O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state is O functional O in O vitro O . O We O determined O the O individual O domain O structures B-evidence of O Regnase B-protein - I-protein 1 I-protein by O NMR B-experimental_method and O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Although O the O function O of O the O CTD B-structure_element remains O elusive O , O we O revealed O the O functions O of O the O NTD B-structure_element , O PIN B-structure_element , O and O ZF B-structure_element domains O . O A O Regnase B-protein - I-protein 1 I-protein construct O consisting O of O PIN B-structure_element and O ZF B-structure_element domains O derived O from O Mus B-species musculus I-species was O crystallized B-experimental_method ; O however O , O the O electron B-evidence density I-evidence of O the O ZF B-structure_element domain O was O low O , O indicating O that O the O ZF B-structure_element domain O is O highly B-protein_state mobile I-protein_state in O the O absence B-protein_state of I-protein_state target O mRNA B-chemical or O possibly O other O protein O - O protein O interactions O . O Our O NMR B-experimental_method experiments O confirmed O direct O binding O of O the O ZF B-structure_element domain O to O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical with O a O Kd B-evidence of O 10 O ± O 1 O . O 1 O μM O . O Furthermore O , O an O in B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method assay I-experimental_method indicated O that O Regnase B-protein - I-protein 1 I-protein containing O the O ZF B-structure_element domain O enhanced O target O mRNA B-chemical - O binding O , O but O the O protein O - O RNA B-chemical complex O remained O in O the O bottom O of O the O well O without O entering O into O the O polyacrylamide O gel O . O These O results O indicate O that O Regnase B-protein - I-protein 1 I-protein directly O binds O to O RNA B-chemical and O precipitates O under O such O experimental O conditions O . O Due O to O this O limitation O , O it O is O difficult O to O perform O further O structural B-experimental_method analyses I-experimental_method of O mRNA B-complex_assembly - I-complex_assembly Regnase I-complex_assembly - I-complex_assembly 1 I-complex_assembly complexes O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method or O NMR B-experimental_method . O The O previously O reported O crystal B-evidence structure I-evidence of O the O Regnase B-protein - I-protein 1 I-protein PIN B-structure_element domain O derived O from O Homo B-species sapiens I-species is O nearly O identical O to O the O one O derived O from O Mus B-species musculus I-species in O this O study O , O with O a O backbone O RMSD B-evidence of O 0 O . O 2 O Å O . O The O amino O acid O sequences O corresponding O to O PIN B-structure_element ( O residues O 134 B-residue_range – I-residue_range 295 I-residue_range ) O are O the O two O non O - O identical O residues O are O substituted O with O similar O amino O acids O . O Both O the O mouse B-taxonomy_domain and O human B-species PIN B-structure_element domains O form O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomers B-oligomeric_state in O three O distinct O crystal B-evidence forms I-evidence . O Rao O and O co O - O workers O previously O argued O that O PIN B-structure_element dimerization O is O likely O to O be O a O crystallographic O artifact O with O no O physiological O significance O , O since O monomers B-oligomeric_state were O dominant O in O their O analytical B-experimental_method ultra I-experimental_method - I-experimental_method centrifugation I-experimental_method experiments O . O In O contrast O , O our O gel B-experimental_method filtration I-experimental_method data O , O mutational B-experimental_method analyses I-experimental_method , O and O NMR B-experimental_method spectra B-evidence all O indicate O that O the O PIN B-structure_element domain O forms O a O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state in O solution O in O a O manner O similar O to O the O crystal B-evidence structure I-evidence . O This O inconsistency O might O be O due O to O difference O in O the O analytical O methods O and O / O or O protein O concentrations O used O in O each O experiment O , O since O the O oligomer B-oligomeric_state formation O of O PIN B-structure_element was O dependent O on O the O protein O concentration O in O our O study O . O Single B-experimental_method mutations I-experimental_method to O residues O involved O in O the O putative O oligomeric O interaction O of O PIN B-structure_element monomerized B-oligomeric_state as O expected O and O these O mutants B-protein_state lost O their O RNase B-protein_type activity O as O well O . O Since O the O NMR B-experimental_method spectra B-evidence of O monomeric B-oligomeric_state mutants B-protein_state overlaps O with O those O of O the O oligomeric O forms O , O it O is O unlikely O that O the O tertiary O structure O of O the O monomeric B-oligomeric_state mutants B-protein_state were O affected O by O the O mutations O . O ( O Supplementary O Fig O . O 4b O , O c O ). O Based O on O these O observations O , O we O concluded O that O PIN B-structure_element - O PIN B-structure_element dimer B-oligomeric_state formation O is O critical O for O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O in O vitro O . O Within O the O crystal B-evidence structure I-evidence of O the O PIN B-structure_element dimer B-oligomeric_state , O the O Regnase B-protein - I-protein 1 I-protein specific O basic O regions O in O both O the O “ O primary B-protein_state ” O and O “ O secondary B-protein_state ” O PINs B-structure_element are O located O around O the O catalytic B-site site I-site of O the O primary O PIN B-structure_element ( O Supplementary O Fig O . O 6 O ). O Moreover O , O our O structure B-experimental_method - I-experimental_method based I-experimental_method mutational I-experimental_method analyses I-experimental_method showed O these O two O Regnase B-protein - I-protein 1 I-protein specific O basic O regions O were O essential O for O target O mRNA B-chemical cleavage O in O vitro O . O The O cleavage B-experimental_method assay I-experimental_method also O showed O that O the O NTD B-structure_element is O crucial O for O efficient O mRNA B-chemical cleavage O . O Moreover O , O we O found O that O the O NTD B-structure_element associates O with O the O oligomeric B-site surface I-site of O the O primary B-protein_state PIN B-structure_element , O docking O to O a O helix B-structure_element that O harbors O its O catalytic B-site residues I-site ( O Figs O 2b O and O 3a O ). O Taken O together O , O this O suggests O that O the O NTD B-structure_element and O the O PIN B-structure_element domain O compete O for O a O common B-site binding I-site site I-site . O The O affinity B-evidence of O the O domain O - O domain O interaction O between O two O PIN B-structure_element domains O ( O Kd B-evidence = O ~ O 10 O − O 4 O M O ) O is O similar O to O that O of O the O NTD B-structure_element - O PIN B-structure_element ( O Kd B-evidence = O 110 O ± O 5 O . O 8 O μM O ) O interactions O ; O however O , O the O covalent O connection O corresponding O to O residues O 90 B-residue_range – I-residue_range 133 I-residue_range between O the O NTD B-structure_element and O the O primary B-protein_state PIN B-structure_element will O greatly O enhance O the O intramolecular O domain O interaction O in O the O case O of O full B-protein_state - I-protein_state length I-protein_state Regnase B-protein - I-protein 1 I-protein . O While O further O analyses O are O necessary O to O prove O this O point O , O our O preliminary O docking B-experimental_method and I-experimental_method molecular I-experimental_method dynamics I-experimental_method simulations I-experimental_method indicate O that O NTD B-structure_element - O binding O rearranges O the O catalytic B-site residues I-site of O the O PIN B-structure_element domain O toward O an O active B-protein_state conformation O suitable O for O binding O Mg2 B-chemical +. I-chemical In O this O context O , O it O is O interesting O that O , O in O response O to O TCR O stimulation O , O Malt1 B-protein cleaves O Regnase B-protein - I-protein 1 I-protein at O R111 B-residue_name_number to O control O immune O responses O in O vivo O . O This O result O is O consistent O with O a O model O in O which O the O NTD B-structure_element acts O as O an O enhancer O , O and O cleavage O of O the O linker B-structure_element lowers O enzymatic O activity O dramatically O . O Based O on O these O structural B-experimental_method and I-experimental_method functional I-experimental_method analyses I-experimental_method of O Regnase B-protein - I-protein 1 I-protein domain O - O domain O interactions O , O we O performed O docking B-experimental_method simulations I-experimental_method of O the O NTD B-structure_element , O PIN B-structure_element dimer B-oligomeric_state , O and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O We O incorporated O information O from O the O cleavage B-site site I-site of O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical in O vitro O is O indicated O by O denaturing O polyacrylamide B-experimental_method gel I-experimental_method electrophoresis I-experimental_method ( O Supplementary O Fig O . O 7a O , O b O ). O The O docking B-experimental_method result O revealed O multiple O RNA B-chemical binding O modes O that O satisfied O the O experimental O results O in O vitro O ( O Supplementary O Fig O . O 7c O , O d O ), O however O , O it O should O be O noted O that O , O in O vivo O , O there O would O likely O be O many O other O RNA B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type that O would O protect O loop B-structure_element regions O from O cleavage O by O Regnase B-protein - I-protein 1 I-protein . O The O overall O model O of O regulation O of O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O through O domain O - O domain O interactions O in O vitro O is O summarized O in O Fig O . O 6 O . O In O the O absence B-protein_state of I-protein_state target O mRNA B-chemical , O the O PIN B-structure_element domain O forms O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomers B-oligomeric_state at O high O concentration O . O A O fully B-protein_state active I-protein_state catalytic B-site center I-site can O be O formed O only O when O the O NTD B-structure_element associates O with O the O oligomer B-oligomeric_state surface O of O the O PIN B-structure_element domain O , O which O terminates O the O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state formation O in O one O direction O ( O primary B-protein_state PIN B-structure_element ), O and O forms O a O functional B-protein_state dimer B-oligomeric_state together O with O the O neighboring O PIN B-structure_element ( O secondary B-protein_state PIN B-structure_element ). O While O further O investigations O on O the O domain O - O domain O interactions O of O Regnase B-protein - I-protein 1 I-protein in O vivo O are O necessary O , O these O intramolecular O and O intermolecular O domain O interactions O of O Regnase B-protein - I-protein 1 I-protein appear O to O structurally O constrain O Regnase B-protein - I-protein 1activity I-protein , O which O , O in O turn O , O enables O tight O regulation O of O immune O responses O . O For O the O domain O - O domain O interaction O analyses O between O the O NTD O and O the O PIN O domain O , O 1H O - O 15N O HSQC O spectra O of O uniformly O 15N O - O labeled O proteins O in O the O concentration O of O 100 O μM O were O obtained O in O the O presence B-protein_state of I-protein_state 3 O or O 6 O molar O equivalents O of O unlabeled O proteins O . O Structural B-experimental_method and I-experimental_method functional I-experimental_method analyses I-experimental_method of O Regnase B-protein - I-protein 1 I-protein . O ( O a O ) O Domain O architecture O of O Regnase B-protein - I-protein 1 I-protein . O ( O b O ) O Solution B-evidence structure I-evidence of O the O NTD B-structure_element . O ( O c O ) O Crystal B-evidence structure I-evidence of O the O PIN B-structure_element domain O . O Catalytic B-protein_state Asp B-residue_name residues O were O shown O in O sticks O . O ( O d O ) O Solution B-evidence structure I-evidence of O the O ZF B-structure_element domain O . O Three O Cys B-residue_name residues O and O one O His B-residue_name residue O responsible O for O Zn2 O +- O binding O were O shown O in O sticks O . O ( O e O ) O Solution B-evidence structure I-evidence of O the O CTD B-structure_element . O All O the O structures B-evidence were O colored O in O rainbow O from O N O - O terminus O ( O blue O ) O to O C O - O terminus O ( O red O ). O ( O f O ) O In B-experimental_method vitro I-experimental_method gel I-experimental_method shift I-experimental_method binding I-experimental_method assay I-experimental_method between O Regnase B-protein - I-protein 1 I-protein and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O Fluorescence B-evidence intensity I-evidence of O the O free B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type in O each O sample O was O indicated O as O the O percentage O against O that O in O the O absence B-protein_state of I-protein_state Regnase B-protein - I-protein 1 I-protein . O ( O g O ) O Binding O of O Regnase B-protein - I-protein 1 I-protein and O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical was O plotted O . O The O percentage O of O the O bound O IL B-protein_type - I-protein_type 6 I-protein_type was O calculated O based O on O the O fluorescence B-evidence intensities I-evidence of O the O free O IL B-protein_type - I-protein_type 6 I-protein_type quantified O in O ( O f O ). O ( O h O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O Regnase B-protein - I-protein 1 I-protein to O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O Fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical was O indicated O as O the O percentage O against O that O in O the O absence B-protein_state of I-protein_state Regnase B-protein - I-protein 1 I-protein . O Head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state oligomer B-oligomeric_state formation O of O the O PIN B-structure_element domain O is O crucial O for O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein . O ( O a O ) O Gel B-experimental_method filtration I-experimental_method analyses I-experimental_method of O the O PIN B-structure_element domain O . O ( O b O ) O Dimer B-oligomeric_state structure B-evidence of O the O PIN B-structure_element domain O . O Two O PIN B-structure_element molecules O in O the O crystal B-evidence were O colored O white O and O green O , O respectively O . O Catalytic B-site residues I-site and O mutated O residues O were O shown O in O sticks O . O Residues O important O for O the O oligomeric O interaction O were O colored O red O , O while O R215 B-residue_name_number that O was O dispensable O for O the O oligomeric O interaction O was O colored O blue O . O ( O c O ) O RNase B-protein_type activity O of O monomeric B-oligomeric_state mutants B-protein_state for O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical was O analyzed O . O Domain O - O domain O interaction O between O the O NTD B-structure_element and O the O PIN B-structure_element domain O . O ( O a O ) O NMR B-experimental_method analyses I-experimental_method of O the O NTD B-structure_element - O binding O to O the O PIN B-structure_element domain O . O The O residues O with O significant O chemical O shift O changes O were O labeled O in O the O overlaid B-experimental_method spectra B-evidence ( O left O ) O and O colored O red O on O the O surface O and O ribbon O structure O of O the O PIN B-structure_element domain O ( O right O ). O Pro B-residue_name and O the O residues O without O analysis O were O colored O black O and O gray O , O respectively O . O ( O b O ) O NMR B-experimental_method analyses I-experimental_method of O the O PIN B-structure_element - O binding O to O the O NTD B-structure_element . O The O residues O with O significant B-evidence chemical I-evidence shift I-evidence changes I-evidence were O labeled O in O the O overlaid B-experimental_method spectra B-evidence ( O left O ) O and O colored O red O , O yellow O , O or O green O on O the O surface O and O ribbon O structure O of O the O NTD B-structure_element . O S62 B-residue_name_number was O colored O gray O and O excluded O from O the O analysis O , O due O to O low O signal O intensity O . O ( O c O ) O Docking O model O of O the O NTD B-structure_element and O the O PIN B-structure_element domain O . O The O NTD B-structure_element and O the O PIN B-structure_element domain O are O shown O in O cyan O and O white O , O respectively O . O Residues O in O close O proximity O (< O 5 O Å O ) O to O each O other O in O the O docking B-evidence structure I-evidence were O colored O yellow O . O Catalytic B-site residues I-site of O the O PIN B-structure_element domain O are O shown O in O sticks O , O and O the O residues O that O exhibited O significant B-evidence chemical I-evidence shift I-evidence changes I-evidence in O ( O a O , O b O ) O were O labeled O . O Critical O residues O in O the O PIN B-structure_element domain O for O the O RNase B-protein_type activity O of O Regnase B-protein - I-protein 1 I-protein . O ( O a O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O basic O residue O mutants B-protein_state for O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O ( O b O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O basic O residue O mutants B-protein_state for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O The O fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state mRNA B-chemical was O quantified O and O the O results O were O mapped O on O the O PIN B-structure_element dimer B-oligomeric_state structure B-evidence . O Mutated O basic O residues O were O shown O in O sticks O and O those O with O significantly O reduced O RNase B-protein_type activities O were O colored O red O or O yellow O . O Heterodimer O formation O by O combination O of O the O Regnase B-protein - I-protein 1 I-protein basic O residue O mutants B-protein_state and O the O DDNN B-mutant mutant B-protein_state restored O the O RNase B-protein_type activity O . O ( O a O ) O Cartoon O representation O of O the O concept O of O the O experiment O . O ( O b O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O Regnase B-protein - I-protein 1 I-protein for O IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical . O ( O c O ) O In B-experimental_method vitro I-experimental_method cleavage I-experimental_method assay I-experimental_method of O Regnase B-protein - I-protein 1 I-protein for O Regnase B-protein - I-protein 1 I-protein mRNA B-chemical . O The O fluorescence B-evidence intensity I-evidence of O the O uncleaved B-protein_state mRNA B-chemical was O quantified O and O the O results O were O mapped O on O the O PIN B-structure_element dimer B-oligomeric_state . O The O mutations O whose O RNase B-protein_type activities O were O not O increased O in O the O presence B-protein_state of I-protein_state DDNN B-mutant mutant B-protein_state were O colored O in O blue O on O the O primary O PIN B-structure_element . O The O mutations O whose O RNase B-protein_type activities O were O restored O in O the O presence B-protein_state of I-protein_state DDNN B-mutant mutant B-protein_state were O colored O in O red O or O yellow O on O the O primary O PIN B-structure_element . O Schematic O representation O of O regulation O of O the O Regnase B-protein - I-protein 1 I-protein catalytic O activity O through O the O domain O - O domain O interactions O . O Ribosome B-protein_type biogenesis I-protein_type factor I-protein_type Tsr3 B-protein is O the O aminocarboxypropyl B-protein_type transferase I-protein_type responsible O for O 18S B-chemical rRNA I-chemical hypermodification O in O yeast B-taxonomy_domain and O humans B-species The O chemically O most O complex O modification O in O eukaryotic B-taxonomy_domain rRNA B-chemical is O the O conserved B-protein_state hypermodified B-protein_state nucleotide B-chemical N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical aminocarboxypropyl I-chemical - I-chemical pseudouridine I-chemical ( O m1acp3Ψ B-chemical ) O located O next O to O the O P B-site - I-site site I-site tRNA B-chemical on O the O small O subunit O 18S B-chemical rRNA I-chemical . O While O S B-chemical - I-chemical adenosylmethionine I-chemical was O identified O as O the O source O of O the O aminocarboxypropyl B-chemical ( O acp B-chemical ) O group O more O than O 40 O years O ago O the O enzyme O catalyzing O the O acp B-chemical transfer O remained O elusive O . O Here O we O identify O the O cytoplasmic O ribosome O biogenesis O protein O Tsr3 B-protein as O the O responsible O enzyme O in O yeast B-taxonomy_domain and O human B-species cells O . O In O functionally O impaired O Tsr3 B-protein - O mutants B-protein_state , O a O reduced O level O of O acp B-chemical modification O directly O correlates O with O increased O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulation O . O The O crystal B-evidence structure I-evidence of O archaeal B-taxonomy_domain Tsr3 B-protein homologs O revealed O the O same O fold O as O in O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type but O a O distinct O SAM B-site binding I-site mode I-site . O This O unique O SAM B-site binding I-site mode I-site explains O why O Tsr3 B-protein transfers O the O acp B-chemical and O not O the O methyl O group O of O SAM B-chemical to O its O substrate O . O Structurally O , O Tsr3 B-protein therefore O represents O a O novel O class O of O acp B-protein_type transferase I-protein_type enzymes O . O Eukaryotic B-taxonomy_domain ribosome O biogenesis O is O highly O complex O and O requires O a O large O number O of O non O - O ribosomal O proteins O and O small B-chemical non I-chemical - I-chemical coding I-chemical RNAs I-chemical in O addition O to O ribosomal B-chemical RNAs I-chemical ( O rRNAs B-chemical ) O and O proteins O . O During O eukaryotic B-taxonomy_domain ribosome O biogenesis O several O dozens O of O rRNA B-chemical nucleotides B-chemical become O chemically O modified O . O The O most O abundant O rRNA B-chemical modifications O are O methylations B-ptm at O the O 2 O ′- O OH O ribose B-chemical moieties O and O isomerizations O of O uridine B-chemical residues O to O pseudouridine B-chemical , O catalyzed O by O small B-complex_assembly nucleolar I-complex_assembly ribonucleoprotein I-complex_assembly particles I-complex_assembly ( O snoRNPs B-complex_assembly ). O In O addition O , O 18S B-chemical and O 25S B-chemical ( O yeast B-taxonomy_domain )/ O 28S B-chemical ( O humans B-species ) O rRNAs B-chemical contain O several O base O modifications O catalyzed O by O site O - O specific O and O snoRNA B-chemical - O independent O enzymes O . O In O Saccharomyces B-species cerevisiae I-species 18S B-chemical rRNA I-chemical contains O four O base O methylations B-ptm , O two O acetylations B-ptm and O a O single O 3 B-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical ( O acp B-chemical ) O modification O , O whereas O six O base O methylations B-ptm are O present O in O the O 25S B-chemical rRNA I-chemical . O While O in O humans B-species the O 18S B-chemical rRNA I-chemical base O modifications O are O highly B-protein_state conserved I-protein_state , O only O three O of O the O yeast B-taxonomy_domain base O modifications O catalyzed O by O ScRrp8 B-protein / O HsNML B-protein , O ScRcm1 B-protein / O HsNSUN5 B-protein and O ScNop2 B-protein / O HsNSUN1 B-protein are O preserved O in O the O corresponding O human B-species 28S B-chemical rRNA I-chemical . O Ribosomal B-chemical RNA I-chemical modifications O have O been O suggested O to O optimize O ribosome O function O , O although O in O most O cases O this O remains O to O be O clearly O established O . O They O might O contribute O to O increased O RNA B-chemical stability O by O providing O additional O hydrogen O bonds O ( O pseudouridines B-chemical ), O improved O base O stacking O ( O pseudouridines B-chemical and O base B-ptm methylations I-ptm ) O or O an O increased O resistance O against O hydrolysis O ( O ribose B-ptm methylations I-ptm ). O Most O modified O rRNA B-chemical nucleotides B-chemical cluster O in O the O vicinity O of O the O decoding B-site or O the O peptidyl B-site transferase I-site center I-site , O suggesting O an O influence O on O ribosome O functionality O and O stability O . O Defects O of O rRNA B-chemical modification O enzymes O often O lead O to O disturbed O ribosome O biogenesis O or O functionally O impaired O ribosomes O , O although O the O lack O of O individual O rRNA B-chemical modifications O often O has O no O or O only O a O slight O influence O on O the O cell O . O The O chemically O most O complex O modification O is O located O in O the O loop B-structure_element capping I-structure_element helix I-structure_element 31 I-structure_element of O 18S B-chemical rRNA I-chemical ( O Supplementary O Figure O S1B O ). O There O a O uridine B-residue_name ( O U1191 B-residue_name_number in O yeast B-taxonomy_domain ) O is O modified O to O 1 B-chemical - I-chemical methyl I-chemical - I-chemical 3 I-chemical -( I-chemical 3 I-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical )- I-chemical pseudouridine I-chemical ( O m1acp3Ψ B-chemical , O Figure O 1A O ). O This O base O modification O was O first O described O in O 1968 O for O hamster B-taxonomy_domain cells O and O is O conserved B-protein_state in I-protein_state eukaryotes B-taxonomy_domain . O This O hypermodified B-protein_state nucleotide B-chemical , O which O is O located O at O the O P B-site - I-site site I-site tRNA B-chemical , O is O synthesized O in O three O steps O beginning O with O the O snR35 B-chemical H B-structure_element / I-structure_element ACA I-structure_element snoRNP B-complex_assembly guided O conversion O of O uridine B-chemical into O pseudouridine B-chemical . O In O a O second O step O , O the O essential O SPOUT B-protein_type - I-protein_type class I-protein_type methyltransferase I-protein_type Nep1 B-protein / O Emg1 B-protein modifies O the O pseudouridine B-chemical to O N1 B-chemical - I-chemical methylpseudouridine I-chemical . O Methylation B-ptm can O only O occur O once O pseudouridylation B-ptm has O taken O place O , O as O the O latter O reaction O generates O the O substrate O for O the O former O . O The O final O acp B-chemical modification O leading O to O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical aminocarboxypropyl I-chemical - I-chemical pseudouridine I-chemical occurs O late O during O 40S B-complex_assembly biogenesis O in O the O cytoplasm O , O while O the O two O former O reactions O are O taking O place O in O the O nucleolus O and O nucleus O , O and O is O independent O from O pseudouridylation B-ptm or O methylation O . O Both O the O methyl O and O the O acp O group O are O derived O from O S B-chemical - I-chemical adenosylmethionine I-chemical ( O SAM B-chemical ), O but O the O enzyme O responsible O for O acp B-chemical modification O remained O elusive O for O more O than O 40 O years O . O Tsr3 B-protein is O necessary O for O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical in O yeast B-taxonomy_domain and O human B-species . O ( O A O ) O Hypermodified B-protein_state nucleotide B-chemical m1acp3Ψ B-chemical is O synthesized O in O three O steps O : O pseudouridylation B-ptm catalyzed O by O snoRNP35 B-complex_assembly , O N1 B-ptm - I-ptm methylation I-ptm catalyzed O by O methyltransferase B-protein_type Nep1 B-protein and O N3 O - O acp B-chemical modification O catalyzed O by O Tsr3 B-protein . O The O asterisk O indicates O the O C1 O - O atom O labeled O in O the O 14C B-experimental_method - I-experimental_method incorporation I-experimental_method assay I-experimental_method . O ( O B O ) O RP B-experimental_method - I-experimental_method HPLC I-experimental_method elution B-evidence profile I-evidence of O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical nucleosides B-chemical . O Hypermodified B-protein_state m1acp3Ψ B-chemical elutes O at O 7 O . O 4 O min O ( O wild B-protein_state type I-protein_state , O left O profile O ) O and O is O missing O in O Δtsr3 B-mutant ( O middle O profile O ) O and O Δnep1 B-mutant Δnop6 I-mutant mutants O ( O right O profile O ). O ( O C O ) O 14C B-chemical - I-chemical acp I-chemical labeling O of O 18S B-chemical rRNAs I-chemical . O Wild B-protein_state type I-protein_state ( O WT B-protein_state ) O and O plasmid O encoded O 18S B-chemical rRNA I-chemical ( O U1191U B-mutant ) O show O the O 14C B-chemical - I-chemical acp I-chemical signal O , O whereas O the O 14C B-chemical - I-chemical acp I-chemical signal O is O missing O in O the O U1191A B-mutant mutant B-protein_state plasmid O encoded O 18S B-chemical rRNA I-chemical ( O U1191A B-mutant ) O and O Δtsr3 B-mutant mutants O ( O Δtsr3 B-mutant ). O Upper O lanes O show O the O ethidium B-chemical bromide I-chemical staining O of O the O 18S B-chemical rRNAs I-chemical for O quantification O . O All O samples O were O loaded O on O the O gel O with O two O different O amounts O of O 5 O and O 10 O μl O . O ( O D O ) O Primer B-experimental_method extension I-experimental_method analysis I-experimental_method of O acp B-chemical modification O in O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical ( O right O gel O ) O including O a O sequencing O ladder O ( O left O gel O ). O The O primer O extension O stop O at O nucleotide O 1191 B-residue_number is O missing O exclusively O in O Δtsr3 B-mutant mutants O and O Δtsr3 B-mutant Δsnr35 I-mutant recombinants O . O ( O E O ) O Primer B-experimental_method extension I-experimental_method analysis I-experimental_method of O human B-species 18S B-chemical rRNA I-chemical after O siRNA B-experimental_method knockdown I-experimental_method of O HsNEP1 B-protein / O EMG1 B-protein ( O 541 O , O 542 O and O 543 O ) O and O HsTSR3 B-protein ( O 544 O and O 545 O ) O ( O right O gel O ), O including O a O sequencing O ladder O ( O left O gel O ). O The O primer O extension O arrest O is O reduced O in O HTC116 O cells O transfected O with O siRNAs B-chemical 544 O and O 545 O . O The O efficiency O of O siRNA B-chemical mediated O HsTSR3 B-protein repression O correlates O with O the O primer B-evidence extension I-evidence signals I-evidence ( O see O Supplementary O Figure O S2A O ). O Only O a O few O acp B-chemical transferring O enzymes O have O been O characterized O until O now O . O During O the O biosynthesis O of O wybutosine B-chemical , O a O tricyclic O nucleoside B-chemical present O in O eukaryotic B-taxonomy_domain and O archaeal B-taxonomy_domain phenylalanine B-chemical tRNA B-chemical , O Tyw2 B-protein ( O Trm12 B-protein in O yeast B-taxonomy_domain ) O transfers O an O acp B-chemical group O from O SAM B-chemical to O an O acidic O carbon O atom O . O Archaeal B-taxonomy_domain Tyw2 B-protein has O a O structure B-evidence very O similar O to O Rossmann B-protein_type - I-protein_type fold I-protein_type ( I-protein_type class I-protein_type I I-protein_type ) I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type , O but O its O distinctive O SAM B-site - I-site binding I-site mode I-site enables O the O transfer O of O the O acp B-chemical group O instead O of O the O methyl O group O of O the O cofactor O . O Another O acp B-chemical modification O has O been O described O in O the O diphtamide B-chemical biosynthesis O pathway O , O where O an O acp B-chemical group O is O transferred O from O SAM B-chemical to O the O carbon O atom O of O a O histidine B-residue_name residue O of O eukaryotic B-taxonomy_domain translation B-protein_type elongation I-protein_type factor I-protein_type 2 I-protein_type by O use O of O a O radical O mechanism O . O In O a O recent O bioinformatic O study O , O the O uncharacterized O yeast B-taxonomy_domain gene O YOR006c B-gene was O predicted O to O be O involved O in O ribosome O biogenesis O . O It O is O highly B-protein_state conserved I-protein_state among O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain ( O Supplementary O Figure O S1A O ) O and O its O deletion O leads O to O an O accumulation O of O the O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical precursor O of O 18S B-chemical rRNA I-chemical , O suggesting O an O influence O on O D B-site - I-site site I-site cleavage O during O the O maturation O of O the O small O ribosomal O subunit O . O On O this O basis O , O YOR006C B-gene was O renamed O ‘ O Twenty B-protein S I-protein rRNA I-protein accumulation I-protein 3 I-protein ′ O ( O TSR3 B-protein ). O However O , O its O function O remained O unclear O although O recently O a O putative O nuclease O function O during O 18S B-chemical rRNA I-chemical maturation O was O predicted O . O Here O , O we O identify O Tsr3 B-protein as O the O long O - O sought O acp B-protein_type transferase I-protein_type that O catalyzes O the O last O step O in O the O biosynthesis O of O the O hypermodified B-protein_state nucleotide B-chemical m1acp3Ψ B-chemical in O yeast B-taxonomy_domain and O human B-species cells O . O Furthermore O using O catalytically B-protein_state defective I-protein_state mutants O of O yeast B-taxonomy_domain Tsr3 B-protein we O demonstrated O that O the O acp B-chemical modification O is O required O for O 18S B-chemical rRNA I-chemical maturation O . O Surprisingly O , O the O crystal B-evidence structures I-evidence of O archaeal B-taxonomy_domain homologs O revealed O that O Tsr3 B-protein is O structurally O similar O to O the O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type methyltransferases I-protein_type . O In O contrast O , O the O only O other O structurally O characterized O acp B-protein_type transferase I-protein_type enzyme O Tyw2 B-protein belongs O to O the O Rossmann B-protein_type - I-protein_type fold I-protein_type class I-protein_type of I-protein_type methyltransferase I-protein_type proteins I-protein_type . O Interestingly O , O the O two O structurally O very O different O enzymes O use O similar O strategies O in O binding O the O SAM B-chemical - O cofactor O in O order O to O ensure O that O in O contrast O to O methyltransferases B-protein_type the O acp B-chemical and O not O the O methyl O group O of O SAM B-chemical is O transferred O to O the O substrate O . O Tsr3 B-protein is O the O enzyme O responsible O for O 18S B-chemical rRNA I-chemical acp B-chemical modification O in O yeast B-taxonomy_domain and O humans B-species The O S B-species . I-species cerevisiae I-species 18S B-protein_type rRNA I-protein_type acp I-protein_type transferase I-protein_type was O identified O in O a O systematic O genetic O screen O where O numerous O deletion O mutants O from O the O EUROSCARF O strain O collection O ( O www O . O euroscarf O . O de O ) O were O analyzed O by O HPLC B-experimental_method for O alterations O in O 18S B-chemical rRNA I-chemical base O modifications O . O For O the O Δtsr3 B-mutant deletion O strain O the O HPLC B-evidence elution I-evidence profile I-evidence of O 18S B-chemical rRNA I-chemical nucleosides B-chemical ( O Figure O 1B O ) O was O very O similar O to O that O of O the O pseudouridine B-protein_type - I-protein_type N1 I-protein_type methyltransferase I-protein_type mutant B-protein_state Δnep1 B-mutant , O where O a O shoulder O at O ∼ O 7 O . O 4 O min O elution O time O was O missing O in O the O elution O profile O . O As O previously O reported O this O shoulder O was O identified O by O ESI B-experimental_method - I-experimental_method MS I-experimental_method as O corresponding O to O m1acp3Ψ B-chemical . O In O order O to O directly O analyze O the O presence O of O the O acp B-chemical modification O of O nucleotide B-chemical 1191 B-residue_number we O used O an O in B-experimental_method vivo14C I-experimental_method incorporation I-experimental_method assay I-experimental_method with O 1 B-chemical - I-chemical 14C I-chemical - I-chemical methionine I-chemical . O Whereas O the O acp B-chemical labeling O of O 18S B-chemical rRNA I-chemical was O clearly O present O in O the O wild B-protein_state type I-protein_state strain O no O radioactive O labeling O could O be O observed O in O a O Δtsr3 B-mutant strain O ( O Figure O 1C O ). O No O radioactive O labeling O was O detected O in O the O 18S B-mutant U1191A I-mutant mutant B-protein_state which O served O as O a O control O for O the O specificity O of O the O 14C B-chemical - I-chemical aminocarboxypropyl I-chemical incorporation O . O As O previously O shown O , O only O the O acp B-chemical but O none O of O the O other O modifications O at O U1191 B-residue_name_number of O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical blocks O reverse O transcriptase O activity O . O Therefore O the O presence O of O the O acp B-chemical modification O can O be O directly O assessed O by O primer B-experimental_method extension I-experimental_method . O Indeed O , O in O wild B-protein_state - I-protein_state type I-protein_state yeast B-taxonomy_domain a O strong O primer B-evidence extension I-evidence stop I-evidence signal I-evidence occurred O at O position O 1192 B-residue_number . O In O contrast O , O in O a O Δtsr3 B-mutant mutant B-protein_state no O primer O extension O stop O signal O was O present O at O this O position O . O As O expected O , O in O a O Δsnr35 B-mutant deletion B-experimental_method preventing O pseudouridylation B-ptm and O N1 B-ptm - I-ptm methylation I-ptm ( O resulting O in O acp3U B-chemical ) O as O well O as O in O a O Δnep1 B-mutant deletion O strain O where O pseudouridine B-chemical is O not B-protein_state methylated I-protein_state ( O resulting O in O acp3Ψ B-chemical ) O a O primer B-evidence extension I-evidence stop I-evidence signal I-evidence of O similar O intensity O as O in O the O wild B-protein_state type I-protein_state was O observed O . O In O a O Δtsr3 B-mutant Δsnr35 I-mutant double O deletion O strain O the O 18S B-chemical rRNA I-chemical contains O an O unmodified B-protein_state U B-chemical and O the O primer O extension O stop O signal O was O missing O ( O Figure O 1D O ). O The O Tsr3 B-protein protein O is O highly B-protein_state conserved I-protein_state in O yeast B-taxonomy_domain and O humans B-species ( O 50 O % O identity O ). O Human B-species 18S B-chemical rRNA I-chemical has O also O been O shown O to O contain O m1acp3Ψ B-ptm in O the O 18S B-chemical rRNA I-chemical at O position O 1248 B-residue_number . O After O siRNA B-experimental_method - I-experimental_method mediated I-experimental_method depletion I-experimental_method of O Tsr3 B-protein in O human B-species colon O carcinoma O HCT116 O (+/+) O cells O the O acp B-evidence primer I-evidence extension I-evidence arrest I-evidence was O reduced O in O comparison O to O cells O transfected O with O a O non O - O targeting O scramble O siRNA B-chemical control O ( O Figure O 1E O , O compare O lanes O 544 O and O scramble O ). O The O efficiency O of O siRNA B-chemical - O mediated O depletion O was O established O by O RT B-experimental_method - I-experimental_method qPCR I-experimental_method and O found O to O be O very O high O with O siRNA B-chemical 544 O ( O Supplementary O Figure O S2A O , O remaining O TSR3 B-protein mRNA O level O of O 2 O %). O By O comparison O , O treating O cells O with O siRNA B-chemical 545 O , O which O only O reduced O the O TSR3 B-protein mRNA O to O 20 O %, O did O not O markedly O reduced O the O acp B-chemical signal O . O This O suggests O that O low O residual O levels O of O HsTsr3 B-protein are O sufficient O to O modify O the O RNA B-chemical . O Thus O , O HsTsr3 B-protein is O also O responsible O for O the O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical nucleotide B-chemical Ψ1248 B-ptm in O helix B-structure_element 31 I-structure_element . O Similar O to O yeast B-taxonomy_domain , O siRNA B-experimental_method - I-experimental_method mediated I-experimental_method depletion I-experimental_method of O the O Ψ1248 B-protein_type N1 I-protein_type - I-protein_type methyltransferase I-protein_type Nep1 B-protein / O Emg1 B-protein had O no O influence O on O the O primer B-evidence extension I-evidence arrest I-evidence ( O Figure O 1E O ). O Phenotypic O characterization O of O Δtsr3 B-mutant mutants O Although O the O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical is O highly B-protein_state conserved I-protein_state in O eukaryotes B-taxonomy_domain , O yeast B-taxonomy_domain Δtsr3 B-mutant mutants O showed O only O a O minor O growth O defect O . O However O , O the O Δtsr3 B-mutant deletion O was O synthetic O sick O with O a O Δsnr35 B-mutant deletion O preventing O pseudouridylation B-ptm and O Nep1 B-protein - O catalyzed O methylation O of O nucleotide O 1191 B-residue_number ( O Figure O 2A O ). O Interestingly O , O no O increased O growth O defect O could O be O observed O for O Δtsr3 B-mutant Δnep1 I-mutant recombinants O containing O the O nep1 B-gene suppressor O mutation O Δnop6 B-mutant as O well O as O for O Δtsr3 B-mutant Δsnr35 I-mutant Δnep1 I-mutant recombinants O with O unmodified B-protein_state U1191 B-residue_name_number ( O Supplementary O Figure O S2D O and O E O ). O Phenotypic O characterization O of O yeast B-taxonomy_domain TSR3 B-protein deletion O ( O Δtrs3 B-mutant ) O and O human B-species TSR3 B-protein depletion O ( O siRNAs B-chemical 544 O and O 545 O ) O and O cellular O localization O of O yeast B-taxonomy_domain Tsr3 B-protein . O ( O A O ) O Growth O of O yeast B-taxonomy_domain wild B-protein_state type I-protein_state , O Δtsr3 B-mutant , O Δsnr35 B-mutant and O Δtsr3 B-mutant Δsnr35 I-mutant segregants O after O meiosis O and O tetrad O dissection O of O Δtsr3 B-mutant / O TSR3 B-protein Δsnr35 B-mutant / O SNR35 B-protein heterozygous O diploids O . O The O Δtsr3 B-mutant deletion O is O synthetic O sick O with O a O Δsnr35 B-mutant deletion O preventing O U1191 B-residue_name_number pseudouridylation O . O ( O B O ) O In O agar B-experimental_method diffusion I-experimental_method assays I-experimental_method the O yeast B-taxonomy_domain Δtsr3 B-mutant deletion B-protein_state mutant I-protein_state shows O a O hypersensitivity O against O paromomycin B-chemical and O hygromycin B-chemical B I-chemical which O is O further O increased O by O recombination O with O Δsnr35 B-mutant . O ( O C O ) O Northern B-experimental_method blot I-experimental_method analysis I-experimental_method with O an O ITS1 O hybridization O probe O after O siRNA B-experimental_method depletion I-experimental_method of O HsTSR3 B-protein ( O siRNAs B-chemical 544 O and O 545 O ) O and O a O scrambled O siRNA B-chemical as O control O . O The O accumulation O of O 18SE B-chemical and O 47S B-chemical and O / O or O 45S B-chemical pre I-chemical - I-chemical RNAs I-chemical is O enforced O upon O HsTSR3 B-protein depletion O . O Right O gel O : O Ethidium O bromide O staining O showing O 18S B-chemical and O 28S B-chemical rRNAs I-chemical . O ( O D O ) O Cytoplasmic O localization O of O yeast B-taxonomy_domain Tsr3 B-protein shown O by O fluorescence B-experimental_method microscopy I-experimental_method of O GFP B-mutant - I-mutant fused I-mutant Tsr3 I-mutant . O From O left O to O right O : O differential B-experimental_method interference I-experimental_method contrast I-experimental_method ( O DIC B-experimental_method ), O green O fluorescence O of O GFP B-mutant - I-mutant Tsr3 I-mutant , O red O fluorescence O of O Nop56 B-mutant - I-mutant mRFP I-mutant as O nucleolar O marker O , O and O merge O of O GFP B-mutant - I-mutant Tsr3 I-mutant / O Nop56 B-mutant - I-mutant mRFP I-mutant with O DIC B-experimental_method . O ( O E O ) O Elution B-evidence profile I-evidence ( O A254 O ) O after O sucrose B-experimental_method gradient I-experimental_method separation I-experimental_method of O yeast B-taxonomy_domain ribosomal B-complex_assembly subunits I-complex_assembly and O polysomes B-complex_assembly ( O upper O part O ) O and O western B-experimental_method blot I-experimental_method analysis O of O 3xHA B-chemical tagged O Tsr3 B-protein ( O Tsr3 B-mutant - I-mutant 3xHA I-mutant ) O after O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method separation O of O polysome O profile O fractions O taken O every O 20 O s O ( O lower O part O ). O The O TSR3 B-protein gene O was O genetically O modified O at O its O native O locus O , O resulting O in O a O C O - O terminal O fusion B-protein_state of O Tsr3 B-protein with O a O 3xHA B-chemical epitope O expressed O by O the O native O promotor O in O yeast B-taxonomy_domain strain O CEN O . O BM258 O - O 5B O . O The O influence O of O the O acp B-chemical modification O of O nucleotide B-chemical 1191 B-residue_number on O ribosome O function O was O analyzed O by O treating O Δtsr3 B-mutant mutants O with O protein O synthesis O inhibitors O . O Similar O to O a O temperature O - O sensitive O nep1 B-gene mutant B-protein_state , O the O Δtsr3 B-mutant deletion O caused O hypersensitivity O to O paromomycin B-chemical and O , O to O a O lesser O extent O , O to O hygromycin B-chemical B I-chemical ( O Figure O 2B O ), O but O not O to O G418 B-chemical or O cycloheximide B-chemical ( O data O not O shown O ). O In O accordance O with O the O synthetic O sick O growth O phenotype O the O paromomycin B-chemical and O hygromycin B-chemical B I-chemical hypersensitivity O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombination O strain O ( O Figure O 2B O ). O In O a O yeast B-taxonomy_domain Δtsr3 B-mutant strain O as O well O as O in O the O Δtsr3 B-mutant Δsnr35 I-mutant recombinant O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulated O significantly O and O the O level O of O mature O 18S B-chemical rRNA I-chemical was O reduced O ( O Supplementary O Figures O S2C O and O S3D O ), O as O reported O previously O . O A O minor O effect O on O 20S B-chemical rRNA I-chemical accumulation O was O also O observed O for O Δsnr35 B-mutant , O but O - O probably O due O to O different O strain O backgrounds O – O to O a O weaker O extent O than O described O earlier O . O In O human B-species cells O , O the O depletion B-experimental_method of I-experimental_method HsTsr3 B-protein in O HCT116 O (+/+) O cells O caused O an O accumulation O of O the O human B-species 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical equivalent O 18S B-chemical - I-chemical E I-chemical suggesting O an O evolutionary O conserved O role O of O Tsr3 B-protein in O the O late O steps O of O 18S B-chemical rRNA I-chemical processing O ( O Figure O 2C O and O Supplementary O Figure O S2B O ). O Surprisingly O , O early O nucleolar O processing O reactions O were O also O inhibited O , O and O this O was O observed O in O both O yeast B-taxonomy_domain Δtsr3 B-mutant cells O ( O see O accumulation O of O 35S B-complex_assembly in O Supplementary O Figure O S2C O ) O and O Tsr3 B-protein depleted O human B-species cells O ( O see O 47S B-complex_assembly / O 45S B-complex_assembly accumulation O in O Figure O 2C O and O Northern B-experimental_method blot I-experimental_method quantification O in O Supplementary O Figure O S2B O ). O Consistent O with O its O role O in O late O 18S B-chemical rRNA I-chemical processing O , O TSR3 B-protein deletion O leads O to O a O ribosomal O subunit O imbalance O with O a O reduced O 40S B-complex_assembly to O 60S B-complex_assembly ratio O of O 0 O . O 81 O ( O σ O = O 0 O . O 024 O ) O which O was O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombinant O to O 0 O . O 73 O ( O σ O = O 0 O . O 023 O ) O ( O Supplementary O Figure O S2F O ). O In O polysome B-evidence profiles I-evidence , O a O reduced O level O of O 80S B-complex_assembly ribosomes I-complex_assembly and O a O strong O signal O for O free O 60S B-complex_assembly subunits O was O observed O in O line O with O the O 40S B-complex_assembly subunit O deficiency O ( O Supplementary O Figure O S2G O ). O Cellular O localization O of O Tsr3 B-protein in O S B-species . I-species cerevisiae I-species Fluorescence B-experimental_method microscopy I-experimental_method of O GFP B-protein_state - I-protein_state tagged I-protein_state Tsr3 B-protein localized O the O fusion O protein O in O the O cytoplasm O of O yeast B-taxonomy_domain cells O and O no O co O - O localization O with O the O nucleolar O marker O protein O Nop56 B-protein could O be O observed O ( O Figure O 2D O ). O This O agrees O with O previous O biochemical O data O suggesting O that O the O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical occurs O late O during O 40S B-complex_assembly subunit O biogenesis O in O the O cytoplasm O , O and O makes O an O additional O nuclear O localization O as O reported O in O a O previous O large O - O scale O analysis O unlikely O . O After O polysome B-experimental_method gradient I-experimental_method separation I-experimental_method C O - O terminally O epitope O - O labeled O Tsr3 B-mutant - I-mutant 3xHA I-mutant was O exclusively O detectable O in O the O low O - O density O fraction O ( O Figure O 2E O ). O Such O distribution B-evidence on I-evidence a I-evidence density I-evidence gradient I-evidence suggests O that O Tsr3 B-protein only O interacts O transiently O with O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly , O which O presumably O explains O why O it O was O not O characterized O in O pre B-experimental_method - I-experimental_method ribosome I-experimental_method affinity I-experimental_method purifications I-experimental_method . O Structure B-evidence of O Tsr3 B-protein Searches O for O sequence O homologs O of O S B-species . I-species cerevisiae I-species Tsr3 B-protein ( O ScTsr3 B-protein ) O by O us O and O others O revealed O that O the O genomes O of O many O archaea B-taxonomy_domain contain O genes O encoding O Tsr3 B-protein_type - I-protein_type like I-protein_type proteins I-protein_type . O However O , O these O archaeal B-taxonomy_domain homologs O are O significantly O smaller O than O ScTsr3 B-protein (∼ O 190 O aa O in O archaea B-taxonomy_domain vs O . O 313 O aa O in O yeast B-taxonomy_domain ) O due O to O shortened O N O - O and O C O - O termini O ( O Supplementary O Figure O S1A O ). O To O locate O the O domains O most O important O for O Tsr3 B-protein activity O , O ScTsr3 B-protein fragments O of O different O lengths O containing O the O highly B-protein_state conserved I-protein_state central O part O were O expressed B-experimental_method in O a O Δtsr3 B-mutant mutant B-protein_state ( O Figure O 3A O ) O and O analyzed O by O primer B-experimental_method extension I-experimental_method ( O Figure O 3B O ) O and O Northern B-experimental_method blotting I-experimental_method ( O Figure O 3C O ). O N O - O terminal O truncations B-experimental_method of O up O to O 45 B-residue_range aa I-residue_range and O C O - O terminal O truncations B-experimental_method of O up O to O 76 B-residue_range aa I-residue_range mediated O acp B-chemical modification O as O efficiently O as O the O full B-protein_state - I-protein_state length I-protein_state protein O and O no O significant O increased O levels O of O 20S B-chemical pre I-chemical - I-chemical RNA I-chemical were O detected O . O Even O a O Tsr3 B-protein fragment O with O a O 90 B-residue_range aa I-residue_range C O - O terminal O truncation O showed O a O residual O primer O extension O stop O , O whereas O N O - O terminal O truncations O exceeding O 46 B-residue_range aa I-residue_range almost O completely O abolished O the O primer O extension O arrest O ( O Figure O 3B O ). O Domain O characterization O of O yeast B-taxonomy_domain Tsr3 B-protein and O correlation O of O acp B-chemical modification O with O late O 18S B-chemical rRNA I-chemical processing O steps O . O ( O A O ) O Scheme O of O the O TSR3 B-protein gene O with O truncation O positions O in O the O open O reading O frame O . O TSR3 B-protein fragments O of O different O length O were O expressed O under O the O native O promotor O from O multicopy O plasmids O in O a O Δtsr3 B-mutant deletion O strain O . O ( O B O ) O Primer B-experimental_method extension I-experimental_method analysis I-experimental_method of O 18S B-chemical rRNA I-chemical acp B-chemical modification O in O yeast B-taxonomy_domain cells O expressing O the O indicated O TSR3 B-protein fragments O . O N O - O terminal O deletions B-experimental_method of O 36 B-residue_range or O 45 B-residue_range amino O acids O and O C O - O terminal O deletions B-experimental_method of O 43 B-residue_range or O 76 B-residue_range residues O show O a O primer B-evidence extension I-evidence stop I-evidence comparable O to O the O wild B-protein_state type I-protein_state . O Tsr3 B-protein fragments O 37 B-residue_range – I-residue_range 223 I-residue_range or O 46 B-residue_range – I-residue_range 223 I-residue_range cause O a O nearly O complete O loss O of O the O arrest O signal O . O The O box O highlights O the O shortest O Tsr3 B-protein fragment O ( O aa O 46 B-residue_range – I-residue_range 270 I-residue_range ) O with O wild B-protein_state type I-protein_state activity O ( O strong O primer B-evidence extension I-evidence block I-evidence ). O ( O C O ) O Northern B-experimental_method blot I-experimental_method analysis O of O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulation O . O A O weak O 20S B-chemical rRNA I-chemical signal O , O indicating O normal O processing O , O is O observed O for O Tsr3 B-protein fragment O 46 B-residue_range – I-residue_range 270 I-residue_range ( O highlighted O in O a O box O ) O showing O its O functionality O . O Strong O 20S O rRNA O accumulation O similar O to O that O of O the O Δtsr3 B-mutant deletion B-experimental_method is O observed O for O Tsr3 B-protein fragments O 37 B-residue_range – I-residue_range 223 I-residue_range or O 46 B-residue_range – I-residue_range 223 I-residue_range . O Thus O , O the O archaeal B-taxonomy_domain homologs O correspond O to O the O functional O core O of O Tsr3 B-protein . O In O order O to O define O the O structural O basis O for O Tsr3 B-protein function O , O homologs O from O thermophilic B-taxonomy_domain archaea I-taxonomy_domain were O screened O for O crystallization B-experimental_method . O We O focused O on O archaeal B-taxonomy_domain species O containing O a O putative O Nep1 B-protein homolog O suggesting O that O these O species O are O in O principle O capable O of O synthesizing O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical acp I-chemical - I-chemical pseudouridine I-chemical . O Well O diffracting O crystals B-evidence were O obtained O for O Tsr3 B-protein homologs O from O the O two O crenarchaeal B-taxonomy_domain species O Vulcanisaeta B-species distributa I-species ( O VdTsr3 B-protein ) O and O Sulfolobus B-species solfataricus I-species ( O SsTsr3 B-protein ) O which O share O 36 O % O ( O VdTsr3 B-protein ) O and O 38 O % O ( O SsTsr3 B-protein ) O identity O with O the O ScTsr3 B-protein core B-structure_element region I-structure_element ( O ScTsr3 B-protein aa O 46 B-residue_range – I-residue_range 223 I-residue_range ). O While O for O S B-species . I-species solfataricus I-species the O existence O of O a O modified O nucleotide B-chemical of O unknown O chemical O composition O in O the O loop B-structure_element capping I-structure_element helix I-structure_element 31 I-structure_element of O its O 16S B-chemical rRNA I-chemical has O been O demonstrated O , O no O information O regarding O rRNA O modifications O is O yet O available O for O V B-species . I-species distributa I-species . O Crystals B-evidence of O VdTsr3 B-protein diffracted O to O a O resolution O of O 1 O . O 6 O Å O whereas O crystals B-evidence of O SsTsr3 B-protein diffracted O to O 2 O . O 25 O Å O . O Serendipitously O , O VdTsr3 B-protein was O purified O and O crystallized B-experimental_method in B-protein_state complex I-protein_state with I-protein_state endogenous B-protein_state ( O E B-species . I-species coli I-species ) O SAM B-chemical ( O Supplementary O Figure O S4 O ) O while O SsTsr3 B-protein crystals B-evidence contained O the O protein O in O the O apo B-protein_state state O . O The O structure B-evidence of O VdTsr3 B-protein was O solved O ab O initio O , O by O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method diffraction I-experimental_method phasing I-experimental_method ( O Se B-experimental_method - I-experimental_method SAD I-experimental_method ) O with O Se B-chemical containing O derivatives O ( O selenomethionine B-chemical and O seleno B-chemical - I-chemical substituted I-chemical SAM I-chemical ). O The O structure B-evidence of O SsTsr3 B-protein was O solved O by O molecular B-experimental_method replacement I-experimental_method using O VdTsr3 B-protein as O a O search O model O ( O see O Supplementary O Table O S1 O for O data O collection O and O refinement O statistics O ). O The O structure B-evidence of O VdTsr3 B-protein can O be O divided O into O two O domains O ( O Figure O 4A O ). O The O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O aa O 1 B-residue_range – I-residue_range 92 I-residue_range ) O has O a O mixed O α B-structure_element / I-structure_element β I-structure_element - I-structure_element structure I-structure_element centered O around O a O five B-structure_element - I-structure_element stranded I-structure_element all I-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O Figure O 4B O ) O with O the O strand O order O β5 B-structure_element ↑- I-structure_element β3 B-structure_element ↑- I-structure_element β4 B-structure_element ↑- I-structure_element β1 B-structure_element ↑- I-structure_element β2 B-structure_element ↑. I-structure_element The O loops B-structure_element connecting O β1 B-structure_element and O β2 B-structure_element , O β3 B-structure_element and O β4 B-structure_element and O β4 B-structure_element and O β5 B-structure_element include O α B-structure_element - I-structure_element helices I-structure_element α1 B-structure_element , O α2 B-structure_element and O α3 B-structure_element , O respectively O . O The O loop B-structure_element connecting O β2 B-structure_element and O β3 B-structure_element contains O a O single O turn O of O a O 310 B-structure_element - I-structure_element helix I-structure_element . O Helices B-structure_element α1 B-structure_element and O α2 B-structure_element are O located O on O one O side O of O the O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element while O α3 B-structure_element packs O against O the O opposite O β B-structure_element - I-structure_element sheet I-structure_element surface O . O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O aa O 93 B-residue_range – I-residue_range 184 I-residue_range ) O has O a O globular B-structure_element all I-structure_element α I-structure_element - I-structure_element helical I-structure_element structure I-structure_element comprising O α B-structure_element - I-structure_element helices I-structure_element α4 B-structure_element to I-structure_element α9 I-structure_element . O Remarkably O , O the O entire O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O 92 B-residue_range aa I-residue_range ) O of O the O protein O is O threaded O through O the O loop B-structure_element which O connects O β B-structure_element - I-structure_element strand I-structure_element β3 B-structure_element and O α B-structure_element - I-structure_element helix I-structure_element α2 B-structure_element of O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O Thus O , O the O VdTsr3 B-protein structure B-evidence contains O a O deep B-structure_element trefoil I-structure_element knot I-structure_element . O The O structure B-evidence of O SsTsr3 B-protein in O the O apo B-protein_state state O is O very O similar O to O that O of O VdTsr3 B-protein ( O Figure O 4C O ) O with O an O RMSD B-evidence for O equivalent O Cα O atoms O of O 1 O . O 1 O Å O . O The O only O significant O difference O in O the O global O structure B-evidence of O the O two O proteins O is O the O presence O of O an O extended O α B-structure_element - I-structure_element helix I-structure_element α8 B-structure_element and O the O absence B-protein_state of I-protein_state α B-structure_element - I-structure_element helix I-structure_element α9 B-structure_element in O SsTsr3 B-protein . O Tsr3 B-protein has O a O fold O similar O to O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type methyltransferases I-protein_type . O ( O A O ) O Cartoon O representation O of O the O X B-evidence - I-evidence ray I-evidence structure I-evidence of O VdTsr3 B-protein in O two O orientations O . O β B-structure_element - I-structure_element strands I-structure_element are O colored O in O crimson O whereas O α B-structure_element - I-structure_element helices I-structure_element in O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element are O colored O light O blue O and O α B-structure_element - I-structure_element helices I-structure_element in O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element are O colored O dark O blue O . O The O bound O S B-chemical - I-chemical adenosylmethionine I-chemical is O shown O in O a O stick O representation O and O colored O by O atom O type O . O A O red O arrow O marks O the O location O of O the O topological B-structure_element knot I-structure_element in O the O structure B-evidence . O ( O B O ) O Secondary O structure O representation O of O the O VdTsr3 B-protein structure B-evidence . O The O color O coding O is O the O same O as O in O ( O A O ). O ( O C O ) O Structural B-experimental_method superposition I-experimental_method of O the O X B-evidence - I-evidence ray I-evidence structures I-evidence of O VdTsr3 B-protein in O the O SAM B-protein_state - I-protein_state bound I-protein_state state O ( O red O ) O and O SsTsr3 B-protein ( O blue O ) O in O the O apo B-protein_state state O . O The O locations O of O the O α B-structure_element - I-structure_element helix I-structure_element α8 B-structure_element which O is O longer O in O SsTsr3 B-protein and O of O α B-structure_element - I-structure_element helix I-structure_element α9 B-structure_element which O is O only O present O in O VdTsr3 B-protein are O indicated O . O ( O D O ) O Secondary O structure O cartoon O ( O left O ) O of O S B-species . I-species pombe I-species Trm10 B-protein ( O pdb4jwf O )— O the O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type methyltransferase I-protein_type structurally O most O similar O to O Tsr3 B-protein and O superposition B-experimental_method of O the O VdTsr3 B-protein and O Trm10 B-protein X B-evidence - I-evidence ray I-evidence structures I-evidence ( O right O ). O ( O E O ) O Analytical B-experimental_method gel I-experimental_method filtration I-experimental_method profiles B-evidence for O VdTsr3 B-protein ( O red O ) O and O SsTsr3 B-protein ( O blue O ) O show O that O both O proteins O are O monomeric B-oligomeric_state in O solution O . O Vd B-species , O Vulcanisaeta B-species distributa I-species ; O Ss B-species , O Sulfolobus B-species solfataricus I-species . O Structure B-experimental_method predictions I-experimental_method suggested O that O Tsr3 B-protein might O contain O a O so O - O called O RLI B-structure_element domain I-structure_element which O contains O a O ‘ O bacterial B-structure_element like I-structure_element ’ I-structure_element ferredoxin I-structure_element fold I-structure_element and O binds O two O iron O - O sulfur O clusters O through O eight O conserved B-protein_state cysteine B-residue_name residues O . O However O , O no O structural O similarity O to O an O RLI B-structure_element - I-structure_element domain I-structure_element was O detectable O . O This O is O in O accordance O with O the O functional O analysis O of O alanine B-experimental_method replacement I-experimental_method mutations I-experimental_method of O cysteine B-residue_name residues O in O ScTsr3 B-protein ( O Supplementary O Figure O S3 O ). O The O β B-structure_element - I-structure_element strand I-structure_element topology I-structure_element and O the O deep O C O - O terminal O trefoil B-structure_element knot I-structure_element of O archaeal B-taxonomy_domain Tsr3 B-protein are O the O structural O hallmarks O of O the O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type - I-protein_type methyltransferase I-protein_type fold O . O The O closest O structural O homolog O identified O in O a O DALI B-experimental_method search I-experimental_method is O the O tRNA B-protein_type methyltransferase I-protein_type Trm10 B-protein ( O DALI B-evidence Z I-evidence - I-evidence score I-evidence 6 O . O 8 O ) O which O methylates O the O N1 O nitrogen O of O G9 B-residue_name_number / O A9 B-residue_name_number in O many O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain tRNAs B-chemical by O using O SAM B-chemical as O the O methyl O group O donor O . O In O comparison O to O Tsr3 B-protein the O central O β B-structure_element - I-structure_element sheet I-structure_element element I-structure_element of O Trm10 B-protein is O extended O by O one O additional O β B-structure_element - I-structure_element strand I-structure_element pairing O to O β2 B-structure_element . O Furthermore O , O the O trefoil B-structure_element knot I-structure_element of O Trm10 B-protein is O not O as O deep O as O that O of O Tsr3 B-protein ( O Figure O 4D O ). O Interestingly O , O Nep1 B-protein — O the O enzyme O preceding O Tsr3 B-protein in O the O biosynthetic O pathway O for O the O synthesis O of O m1acp3Ψ B-chemical — O also O belongs O to O the O SPOUT B-protein_type - I-protein_type class I-protein_type of I-protein_type RNA I-protein_type methyltransferases I-protein_type . O However O , O the O structural O similarities O between O Nep1 B-protein and O Tsr3 B-protein ( O DALI B-evidence Z I-evidence - I-evidence score I-evidence 4 O . O 4 O ) O are O less O pronounced O than O between O Tsr3 B-protein and O Trm10 B-protein . O Most O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type are O homodimers B-oligomeric_state . O A O notable O exception O is O Trm10 B-protein . O Gel B-experimental_method filtration I-experimental_method experiments O with O both O VdTsr3 B-protein and O SsTsr3 B-protein ( O Figure O 4E O ) O showed O that O both O proteins O are O monomeric B-oligomeric_state in O solution O thereby O extending O the O structural O similarities O to O Trm10 B-protein . O So O far O , O structural O information O is O only O available O for O one O other O enzyme O that O transfers O the O acp B-chemical group O from O SAM B-chemical to O an O RNA B-chemical nucleotide B-chemical . O This O enzyme O , O Tyw2 B-protein , O is O part O of O the O biosynthesis O pathway O of O wybutosine B-chemical nucleotides I-chemical in O tRNAs B-chemical . O However O , O there O are O no O structural O similarities O between O Tsr3 B-protein and O Tyw2 B-protein , O which O contains O an O all B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O a O different O topology O and O no O knot B-structure_element structure I-structure_element . O Instead O , O Tyw2 B-protein has O a O fold O typical O for O the O class B-protein_type - I-protein_type I I-protein_type - I-protein_type or I-protein_type Rossmann I-protein_type - I-protein_type fold I-protein_type class I-protein_type of I-protein_type methyltransferases I-protein_type ( O Supplementary O Figure O S5B O ). O Cofactor O binding O of O Tsr3 B-protein The O SAM B-site - I-site binding I-site site I-site of O Tsr3 B-protein is O located O in O a O deep O crevice O between O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element domains I-structure_element in O the O vicinity O of O the O trefoil B-structure_element knot I-structure_element as O typical O for O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type - I-protein_type methyltransferases I-protein_type ( O Figure O 4A O ). O The O adenine B-chemical base O of O the O cofactor O is O recognized O by O hydrogen O bonds O between O its O N1 O nitrogen O and O the O backbone O amide O of O L93 B-residue_name_number directly O preceding O β5 B-structure_element as O well O as O between O its O N6 O - O amino O group O and O the O backbone O carbonyl O group O of O Y108 B-residue_name_number located O in O the O loop B-structure_element connecting O β5 B-structure_element in O the O N B-structure_element - I-structure_element terminal I-structure_element and O α4 B-structure_element in O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O Figure O 5A O ). O Furthermore O , O the O adenine B-chemical base O of O SAM B-chemical is O involved O in O hydrophobic O packing O interactions O with O the O side O chains O of O L45 B-residue_name_number ( O β3 B-structure_element ), O P47 B-residue_name_number and O W73 B-residue_name_number ( O α3 B-structure_element ) O in O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element as O well O as O with O L93 B-residue_name_number , O L110 B-residue_name_number ( O both O in O the O loop B-structure_element connecting O β5 B-structure_element and O α4 B-structure_element ) O and O A115 B-residue_name_number ( O α5 B-structure_element ) O in O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O The O ribose B-chemical 2 O ′ O and O 3 O ′ O hydroxyl O groups O of O SAM B-chemical are O hydrogen O bonded O to O the O backbone O carbonyl O group O of O I69 B-residue_name_number . O The O acp B-chemical side O chain O of O SAM B-chemical is O fixed O in O position O by O hydrogen O bonding O of O its O carboxylate O group O to O the O backbone O amide O and O the O side O chain O hydroxyl O group O of O T19 B-residue_name_number in O α1 B-structure_element as O well O as O the O backbone O amide O group O of O T112 B-residue_name_number in O α4 B-structure_element ( O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ). O Most O importantly O , O the O methyl O group O of O SAM B-chemical is O buried O in O a O hydrophobic B-site pocket I-site formed O by O the O sidechains O of O W73 B-residue_name_number and O A76 B-residue_name_number both O located O in O α3 B-structure_element ( O Figure O 5A O and O B O ). O W73 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O all O known O Tsr3 B-protein_type proteins I-protein_type , O whereas O A76 B-residue_name_number can O be O replaced O by O other O hydrophobic O amino B-chemical acids I-chemical . O Consequently O , O the O accessibility O of O this O methyl O group O for O a O nucleophilic O attack O is O strongly O reduced O in O comparison O with O RNA B-protein_type - I-protein_type methyltransferases I-protein_type such O as O Trm10 B-protein ( O Figure O 5B O , O C O ). O In O contrast O , O the O acp B-chemical side O chain O of O SAM B-chemical is O accessible O for O reactions O in O the O Tsr3 B-protein_state - I-protein_state bound I-protein_state state O ( O Figure O 5B O ). O SAM B-chemical - O binding O by O Tsr3 B-protein . O ( O A O ) O Close O - O up O view O of O the O SAM B-site - I-site binding I-site pocket I-site of O VdTsr3 B-protein . O Nitrogen O atoms O are O dark O blue O , O oxygen O atoms O red O , O sulfur B-chemical atoms O orange O , O carbon O atoms O of O the O protein O light O blue O and O carbon O atoms O of O SAM B-chemical yellow O . O ( O B O ) O Solvent O accessibility O of O the O acp B-chemical group O of O SAM B-chemical bound B-protein_state to I-protein_state VdTsr3 B-protein . O The O solvent O accessible O surface O of O the O protein O is O shown O in O semitransparent O gray O whereas O SAM B-chemical is O show O in O a O stick O representation O . O A O red O arrow O indicates O the O reactive O CH2 O - O moiety O of O the O acp B-chemical group O . O ( O C O ) O Solvent O accessibility O of O the O SAM B-chemical methyl O group O for O SAM B-chemical bound B-protein_state to I-protein_state the O RNA B-protein_type methyltransferase I-protein_type Trm10 B-protein . O Bound B-protein_state SAM B-chemical was O modelled O based O on O the O X B-evidence - I-evidence ray I-evidence structure I-evidence of O the O Trm10 B-complex_assembly / I-complex_assembly SAH I-complex_assembly - O complex O ( O pdb4jwf O ). O A O red O arrow O indicates O the O SAM B-chemical methyl O group O . O ( O D O ) O Binding O of O SAM B-chemical analogs O to O SsTsr3 B-protein . O Tryptophan B-evidence fluorescence I-evidence quenching I-evidence curves I-evidence upon O addition O of O SAM B-chemical ( O blue O ), O 5 B-chemical ′- I-chemical methyl I-chemical - I-chemical thioadenosine I-chemical ( O red O ) O and O SAH B-chemical ( O black O ). O ( O E O ) O Binding O of O 14C B-chemical - I-chemical labeled I-chemical SAM I-chemical to O SsTsr3 B-protein . O Radioactively O labeled O SAM B-chemical is O retained O on O a O filter O in O the O presence B-protein_state of I-protein_state SsTsr3 B-protein . O Addition O of O unlabeled O SAM B-chemical competes O with O the O binding O of O labeled O SAM B-chemical . O A O W66A B-mutant - O mutant B-protein_state of O SsTsr3 B-protein ( O W73 B-residue_name_number in O VdTsr3 B-protein ) O does O not O bind O SAM B-chemical . O ( O F O ) O Primer B-experimental_method extension I-experimental_method ( O upper O left O ) O shows O a O strongly O reduced O acp B-chemical modification O of O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical in O Δtsr3 B-mutant cells O expressing O Tsr3 B-mutant - I-mutant S62D I-mutant , O - B-mutant E111A I-mutant or O – B-mutant W114A I-mutant . O This O correlates O with O a O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical accumulation O comparable O to O the O Δtsr3 B-mutant deletion O ( O right O : O northern B-experimental_method blot I-experimental_method ). O 3xHA B-protein_state tagged I-protein_state Tsr3 B-protein mutants B-protein_state are O expressed O comparable O to O the O wild B-protein_state type I-protein_state as O shown O by O western B-experimental_method blot I-experimental_method ( O lower O left O ). O Binding B-evidence affinities I-evidence for O SAM B-chemical and O its O analogs O 5 B-chemical ′- I-chemical methylthioadenosin I-chemical and O SAH B-chemical to O SsTsr3 B-protein were O measured O using O tryptophan B-experimental_method fluorescence I-experimental_method quenching I-experimental_method . O VdTsr3 B-protein could O not O be O used O in O these O experiments O since O we O could O not O purify O it O in O a O stable B-protein_state SAM B-protein_state - I-protein_state free I-protein_state form O . O SsTsr3 B-protein bound B-protein_state SAM B-chemical with O a O KD B-evidence of O 6 O . O 5 O μM O , O which O is O similar O to O SAM B-evidence - I-evidence KD I-evidence ' I-evidence s I-evidence reported O for O several O SPOUT B-protein_type - I-protein_type class I-protein_type methyltransferases I-protein_type . O 5 B-chemical ′- I-chemical methylthioadenosin I-chemical — O the O reaction O product O after O the O acp B-chemical - O transfer O — O binds O only O ∼ O 2 O . O 5 O - O fold O weaker O ( O KD O = O 16 O . O 7 O μM O ) O compared O to O SAM B-chemical . O S B-chemical - I-chemical adenosylhomocysteine I-chemical which O lacks O the O methyl O group O of O SAM B-chemical binds O with O significantly O lower O affinity B-evidence ( O KD B-evidence = O 55 O . O 5 O μM O ) O ( O Figure O 5D O ). O This O suggests O that O the O hydrophobic O interaction O between O SAM B-chemical ' O s O methyl O group O and O the O hydrophobic B-site pocket I-site of O Tsr3 B-protein is O thermodynamically O important O for O the O interaction O . O On O the O other O hand O , O the O loss O of O hydrogen O bonds O between O the O acp B-chemical sidechain O carboxylate O group O and O the O protein O appears O to O be O thermodynamically O less O important O but O these O hydrogen O bonds O might O play O a O crucial O role O for O the O proper O orientation O of O the O cofactor O side O chain O in O the O substrate B-site binding I-site pocket I-site . O Accordingly O , O a O W66A B-mutant - O mutation B-experimental_method ( O W73 B-residue_name_number in O VdTsr3 B-protein ) O of O SsTsr3 B-protein significantly O diminished O SAM B-evidence - I-evidence binding I-evidence in O a O filter B-experimental_method binding I-experimental_method assay I-experimental_method compared O to O the O wild B-protein_state type I-protein_state ( O Figure O 5E O ). O Furthermore O , O a O W B-experimental_method to I-experimental_method A I-experimental_method mutation I-experimental_method at O the O equivalent O position O W114 B-residue_name_number in O ScTsr3 B-protein strongly O reduced O the O in O vivo O acp B-protein_type transferase I-protein_type activity O ( O Figure O 5F O ). O The O side O chain O hydroxyl O group O of O T19 B-residue_name_number seems O of O minor O importance O for O SAM B-chemical binding O since O mutations B-experimental_method of O T17 B-residue_name_number ( O T19 B-residue_name_number in O VdTsr3 B-protein ) O to O either O A B-residue_name or O D B-residue_name did O not O significantly O influence O the O SAM B-evidence - I-evidence binding I-evidence affinity I-evidence of O SsTsr3 B-protein ( O KD B-evidence ' O s O = O 3 O . O 9 O or O 11 O . O 2 O mM O , O respectively O ). O Nevertheless O , O a O mutation B-experimental_method of O the O equivalent O position O S62 B-residue_name_number of O ScTsr3 B-protein to O D B-residue_name , O but O not O to O A B-residue_name , O resulted O in O reduced O acp B-chemical modification O in O vivo O , O as O shown O by O primer B-experimental_method extension I-experimental_method analysis I-experimental_method ( O Figure O 5F O ). O The O acp B-chemical - O transfer O reaction O catalyzed O by O Tsr3 B-protein most O likely O requires O the O presence O of O a O catalytic O base O in O order O to O abstract O a O proton O from O the O N3 O imino O group O of O the O modified O pseudouridine B-chemical . O The O side O chain O of O D70 B-residue_name_number ( O VdTsr3 B-protein ) O located O in O β4 B-structure_element is O ∼ O 5 O Å O away O from O the O SAM B-chemical sulfur O atom O . O This O residue O is O conserved B-protein_state as I-protein_state D B-residue_name or O E B-residue_name both O in O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain Tsr3 B-protein homologs O . O Mutations B-experimental_method of O the O corresponding O residue O in O SsTsr3 B-protein to O A B-residue_name ( O D63 B-residue_name_number ) O does O not O significantly O alter O the O SAM B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O protein O ( O KD B-evidence = O 11 O . O 0 O μM O ). O However O , O the O mutation B-experimental_method of O the O corresponding O residue O of O ScTsr3 B-protein ( O E111A B-mutant ) O leads O to O a O significant O decrease O of O the O acp B-protein_type transferase I-protein_type activity O in O vivo O ( O Figure O 5F O ). O RNA O - O binding O of O Tsr3 B-protein Analysis B-experimental_method of I-experimental_method the I-experimental_method electrostatic I-experimental_method surface I-experimental_method properties I-experimental_method of O VdTsr3 B-protein clearly O identified O positively B-site charged I-site surface I-site patches I-site in O the O vicinity O of O the O SAM B-site - I-site binding I-site site I-site suggesting O a O putative O RNA B-site - I-site binding I-site site I-site ( O Figure O 6A O ). O Furthermore O , O a O negatively O charged O MES B-chemical - O ion O is O found O in O the O crystal B-evidence structure I-evidence of O VdTsr3 B-protein complexed B-protein_state to I-protein_state the O side O chain O of O K22 B-residue_name_number in O helix B-structure_element α1 B-structure_element . O Its O negatively O charged O sulfate B-chemical group O might O mimic O an O RNA B-chemical backbone O phosphate O . O Helix B-structure_element α1 B-structure_element contains O two O more O positively O charged O amino O acids O K17 B-residue_name_number and O R25 B-residue_name_number as O does O the O loop B-structure_element preceding O it O ( O R9 B-residue_name_number ). O A O second O cluster O of O positively O charged O residues O is O found O in O or O near O helix B-structure_element α3 B-structure_element ( O K74 B-residue_name_number , O R75 B-residue_name_number , O K82 B-residue_name_number , O R85 B-residue_name_number and O K87 B-residue_name_number ). O Some O of O these O amino O acids O are O conserved B-protein_state between O archaeal B-taxonomy_domain and O eukaryotic B-taxonomy_domain Tsr3 B-protein ( O Supplementary O Figure O S1A O ). O In O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O the O surface O exposed O α B-structure_element - I-structure_element helices I-structure_element α5 B-structure_element and O α7 B-structure_element carry O a O significant O amount O of O positively O charged O amino O acids O . O A O triple B-experimental_method mutation I-experimental_method of O the O conserved B-protein_state positively O charged O residues O R60 B-residue_name_number , O K65 B-residue_name_number and O R131 B-residue_name_number to O A B-residue_name in O ScTsr3 B-protein resulted O in O a O protein O with O a O significantly O impaired O acp B-protein_type transferase I-protein_type activity O in O vivo O ( O Figure O 6D O ) O in O line O with O an O important O functional O role O for O these O positively O charged O residues O . O RNA O - O binding O of O Tsr3 B-protein . O ( O A O ) O Electrostatic O charge O distribution O on O the O surface O of O VdTsr3 B-protein . O SAM B-chemical is O shown O in O a O stick O representation O . O Also O shown O in O stick O representation O is O a O negatively O charged O MES B-chemical ion O . O Conserved B-protein_state basic O amino B-chemical acids I-chemical are O labeled O . O ( O B O ) O Comparison O of O the O secondary O structures O of O helix B-structure_element 31 I-structure_element from O the O small O ribosomal O subunit O rRNAs B-chemical in O S B-species . I-species cerevisiae I-species and O S B-species . I-species solfataricus I-species with O the O location O of O the O hypermodified B-protein_state nucleotide B-chemical indicated O in O red O . O For O S B-species . I-species solfataricus I-species the O chemical O identity O of O the O hypermodified B-protein_state nucleotide B-chemical is O not O known O but O the O existence O of O NEP1 B-protein and O TSR3 B-protein homologs O suggest O that O it O is O indeed O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical acp I-chemical - I-chemical pseudouridine I-chemical . O ( O C O ) O Binding O of O SsTsr3 B-protein to O RNA B-chemical . O 5 O ′- O fluoresceine B-chemical labeled O RNA B-chemical oligonucleotides O corresponding O either O to O the O native B-protein_state ( O 20mer B-oligomeric_state – O see O inset O ) O or O a O stabilized B-protein_state ( O 20mer_GC B-oligomeric_state - O inset O ) O helix B-structure_element 31 I-structure_element of O the O small O ribosomal O subunit O rRNA B-chemical from O S B-species . I-species solfataricus I-species were O titrated B-experimental_method with I-experimental_method increasing I-experimental_method amounts I-experimental_method of O SsTsr3 B-protein and O the O changes O in O the O fluoresceine B-chemical fluorescence B-evidence anisotropy I-evidence were O measured O and O fitted O to O a O binding B-evidence curve I-evidence ( O 20mer B-oligomeric_state – O red O , O 20mer_GC B-oligomeric_state – O blue O ). O Oligo B-chemical - I-chemical U9 I-chemical - I-chemical RNA I-chemical was O used O for O comparison O ( O black O ). O The O 20mer_GC B-oligomeric_state RNA B-chemical was O also O titrated B-experimental_method with O SsTsr3 B-protein in O the O presence O of O 2 O mM O SAM B-chemical ( O purple O ). O ( O D O ) O Mutants B-protein_state of O ScTsr3 B-protein R60 B-residue_name_number , O K65 B-residue_name_number or O R131 B-residue_name_number ( O equivalent O to O K17 B-residue_name_number , O K22 B-residue_name_number and O R91 B-residue_name_number in O VdTsr3 B-protein ) O expressed B-experimental_method in O Δtsr3 B-mutant yeast B-taxonomy_domain cells O show O a O primer B-evidence extension I-evidence stop I-evidence comparable O to O the O wild B-protein_state type I-protein_state . O Combination B-experimental_method of I-experimental_method the I-experimental_method three I-experimental_method point I-experimental_method mutations I-experimental_method ( O R60A B-mutant / O K65A B-mutant / O R131A B-mutant ) O leads O to O a O strongly O reduced O acp B-chemical modification O of O 18S B-chemical rRNA I-chemical . O In O order O to O explore O the O RNA O - O ligand O specificity O of O Tsr3 B-protein we O titrated B-experimental_method SsTsr3 B-protein prepared O in O RNase B-protein_state - I-protein_state free I-protein_state form O with O 5 O ′- O fluoresceine B-chemical - O labeled O RNA B-chemical and O determined O the O affinity B-evidence by O fluorescence B-experimental_method anisotropy I-experimental_method measurements I-experimental_method . O SsTsr3 B-protein in O the O apo B-protein_state state O bound B-protein_state a O 20mer B-oligomeric_state RNA B-chemical corresponding O to O helix B-structure_element 31 I-structure_element of O S B-species . I-species solfataricus I-species 16S B-chemical rRNA I-chemical ( O Figure O 6B O ) O with O a O KD B-evidence of O 1 O . O 9 O μM O and O to O a O version O of O this O hairpin B-structure_element stabilized O by O additional O GC O base O pairs O ( O 20mer B-oligomeric_state - I-oligomeric_state GC I-oligomeric_state ) O with O a O KD B-evidence of O 0 O . O 6 O μM O ( O Figure O 6C O ). O A O single O stranded O oligoU B-chemical - I-chemical RNA I-chemical bound B-protein_state with O a O 10 O - O fold O - O reduced O affinity B-evidence ( O 6 O . O 0 O μM O ). O The O presence O of O saturating O amounts O of O SAM B-chemical ( O 2 O mM O ) O did O not O have O a O significant O influence O on O the O RNA B-evidence - I-evidence affinity I-evidence of O SsTsr3 B-protein ( O KD B-evidence of O 1 O . O 7 O μM O for O the O 20mer B-oligomeric_state - I-oligomeric_state GC I-oligomeric_state - O RNA B-chemical ) O suggesting O no O cooperativity O in O substrate O binding O . O U1191 B-residue_name_number is O the O only O hypermodified B-protein_state base O in O the O yeast B-taxonomy_domain 18S B-chemical rRNA I-chemical and O is O strongly B-protein_state conserved I-protein_state in O eukaryotes B-taxonomy_domain . O The O formation O of O 1 B-chemical - I-chemical methyl I-chemical - I-chemical 3 I-chemical -( I-chemical 3 I-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical )- I-chemical pseudouridine I-chemical ( O m1acp3Ψ B-chemical ) O is O very O complex O requiring O three O successive O modification O reactions O involving O one O H B-structure_element / I-structure_element ACA I-structure_element snoRNP B-complex_assembly ( O snR35 B-protein ) O and O two O protein O enzymes O ( O Nep1 B-protein / O Emg1 B-protein and O Tsr3 B-protein ). O This O makes O it O unique O in O eukaryotic B-taxonomy_domain rRNA B-chemical modification O . O The O m1acp3Ψ B-chemical base O is O located O at O the O tip O of O helix B-structure_element 31 I-structure_element on O the O 18S B-chemical rRNA I-chemical ( O Supplementary O Figure O S1B O ) O which O , O together O with O helices B-structure_element 18 I-structure_element , I-structure_element 24 I-structure_element , I-structure_element 34 I-structure_element and I-structure_element 44 I-structure_element , O contribute O to O building O the O decoding O center O of O the O small O ribosomal O subunit O . O A O similar O modification O ( O acp3U B-chemical ) O was O identified O in O Haloferax B-species volcanii I-species and O corresponding O modified O nucleotides B-chemical were O also O shown O to O occur O in O other O archaea B-taxonomy_domain . O As O shown O here O TSR3 B-protein encodes O the O transferase O catalyzing O the O acp B-chemical modification O as O the O last O step O in O the O biosynthesis O of O m1acp3Ψ B-chemical in O yeast B-taxonomy_domain and O human B-species cells O . O Unexpectedly O , O archaeal B-taxonomy_domain Tsr3 B-protein has O a O structure B-evidence similar O to O SPOUT B-protein_type - I-protein_type class I-protein_type RNA I-protein_type methyltransferases I-protein_type , O and O it O is O the O first O example O for O an O enzyme O of O this O class O transferring O an O acp B-chemical group O , O due O to O a O modified O SAM B-site - I-site binding I-site pocket I-site that O exposes O the O acp B-chemical instead O of O the O methyl O group O of O SAM B-chemical to O its O RNA B-chemical substrate O . O Similar O to O the O structurally O unrelated O Rossmann B-protein_type - I-protein_type fold I-protein_type Tyw2 I-protein_type acp I-protein_type transferase I-protein_type , O the O SAM B-chemical methyl O group O of O Tsr3 B-protein is O bound O in O an O inaccessible O hydrophobic B-site pocket I-site whereas O the O acp B-chemical side O chain O becomes O accessible O for O a O nucleophilic O attack O by O the O N3 O of O pseudouridine B-chemical . O In O contrast O , O in O the O structurally O closely O related O RNA B-protein_type methyltransferase I-protein_type Trm10 B-protein the O methyl O group O of O the O cofactor O SAM B-chemical is O accessible O whereas O its O acp B-chemical side O chain O is O buried O inside O the O protein O . O This O suggests O that O enzymes O with O a O SAM B-protein_type - I-protein_type dependent I-protein_type acp I-protein_type transferase I-protein_type activity O might O have O evolved O from O SAM B-protein_type - I-protein_type dependent I-protein_type methyltransferases I-protein_type by O slight O modifications O of O the O SAM B-site - I-site binding I-site pocket I-site . O Thus O , O additional O examples O for O acp B-protein_type transferase I-protein_type enzymes O might O be O found O with O similarities O to O other O structural O classes O of O methyltransferases B-protein_type . O In O contrast O to O Nep1 B-protein , O the O enzyme O preceding O Tsr3 B-protein in O the O m1acp3Ψ B-chemical biosynthesis O pathway O , O Tsr3 B-protein binds O rather O weakly O and O with O little O specificity O to O its O isolated O substrate O RNA B-chemical . O This O suggests O that O Tsr3 B-protein is O not O stably O incorporated O into O pre B-complex_assembly - I-complex_assembly ribosomal I-complex_assembly particles I-complex_assembly and O that O its O binding O to O the O nascent O ribosomal B-complex_assembly subunit I-complex_assembly possibly O requires O additional O interactions O with O other O pre O - O ribosomal O components O . O Consistently O , O in O sucrose B-experimental_method gradient I-experimental_method analysis I-experimental_method , O Tsr3 B-protein was O found O in O low O - O molecular O weight O fractions O rather O than O with O pre B-complex_assembly - I-complex_assembly ribosome I-complex_assembly containing O high O - O molecular O weight O fractions O . O In O contrast O to O several O enzymes O that O catalyze O base O specific O modifications O in O rRNAs B-chemical Tsr3 B-protein is O not O an O essential O protein O . O Typically O , O other O small B-protein_type subunit I-protein_type rRNA I-protein_type methyltransferases I-protein_type as O Dim1 B-protein , O Bud23 B-protein and O Nep1 B-protein / O Emg1 B-protein carry O dual O functions O , O in O ribosome O biogenesis O and O rRNA B-chemical modification O , O and O it O is O their O involvement O in O pre B-chemical - I-chemical RNA I-chemical processing O that O is O essential O rather O than O their O RNA O - O methylating O activity O (, O discussed O in O 7 O ). O In O contrast O , O for O several O Tsr3 B-protein mutants O ( O SAM B-protein_state - I-protein_state binding I-protein_state and O cysteine B-protein_state mutations I-protein_state ) O we O found O a O systematic O correlation O between O the O loss O of O acp B-chemical modification O and O the O efficiency O of O 18S B-chemical rRNA I-chemical maturation O . O This O demonstrates O that O , O unlike O the O other O small O subunit O rRNA B-chemical base O modifications O , O the O acp B-chemical modification O is O required O for O efficient O pre B-chemical - I-chemical rRNA I-chemical processing O . O Recently O , O structural B-experimental_method , I-experimental_method functional I-experimental_method , I-experimental_method and I-experimental_method CRAC I-experimental_method ( I-experimental_method cross I-experimental_method - I-experimental_method linking I-experimental_method and I-experimental_method cDNA I-experimental_method analysis I-experimental_method ) I-experimental_method experiments I-experimental_method of O late O assembly O factors O involved O in O cytoplasmic O processing O of O 40S B-complex_assembly subunits I-complex_assembly , O along O with O cryo B-experimental_method - I-experimental_method EM I-experimental_method studies O of O the O late B-protein_state pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly have O provided O important O insights O into O late O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly processing O . O Apart O from O most O of O the O ribosomal O proteins O , O cytoplasmic O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly particles I-complex_assembly contain O 20S B-chemical rRNA I-chemical and O at O least O seven O non B-protein_type - I-protein_type ribosomal I-protein_type proteins I-protein_type including O the O D B-protein_type - I-protein_type site I-protein_type endonuclease I-protein_type Nob1 B-protein as O well O as O Tsr1 B-protein , O a O putative O GTPase B-protein_type and O Rio2 B-protein which O block O the O mRNA B-site channel I-site and O the O initiator B-site tRNA I-site binding I-site site I-site , O respectively O , O thus O preventing O translation O initiation O . O After O structural O changes O , O possibly O driven O by O GTP B-chemical hydrolysis O , O which O go O together O with O the O formation O of O the O decoding B-site site I-site , O the O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical becomes O accessible O for O Nob1 B-protein cleavage O at O site B-site D I-site . O This O also O involves O joining O of O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly and O 60S B-complex_assembly subunits I-complex_assembly to O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly particles I-complex_assembly in O a O translation O - O like O cycle O promoted O by O eIF5B B-protein . O The O cleavage O step O most O likely O acts O as O a O quality O control O check O that O ensures O the O proper O 40S B-complex_assembly subunit I-complex_assembly assembly O with O only O completely O processed O precursors O . O Finally O , O termination B-protein_type factor I-protein_type Rli1 B-protein , O an O ATPase B-protein_type , O promotes O the O dissociation O of O assembly O factors O and O the O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly complex I-complex_assembly dissociates O and O releases O the O mature B-protein_state 40S B-complex_assembly subunit I-complex_assembly . O Interestingly O , O differences O in O the O level O of O acp B-chemical modification O were O demonstrated O for O different O steps O of O the O cytoplasmic O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunit I-complex_assembly maturation O after O analyzing O purified O 20S B-chemical pre I-chemical - I-chemical rRNAs I-chemical using O different O purification O bait O proteins O . O Early O cytoplasmic O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly still O containing O the O ribosome B-protein_type assembly I-protein_type factors I-protein_type Tsr1 B-protein , O Ltv1 B-protein , O Enp1 B-protein and O Rio2 B-protein were O not O or O only O partially O acp B-protein_state modified I-protein_state . O In O contrast O , O late O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunits I-complex_assembly containing O Nob1 B-protein and O Rio1 B-protein or O already O associated O with O 60S B-complex_assembly subunits I-complex_assembly in O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly particles I-complex_assembly showed O acp B-chemical modification O levels O comparable O to O mature B-protein_state 40S B-complex_assembly subunits I-complex_assembly . O Thus O , O the O acp B-chemical transfer O to O m1Ψ1191 B-residue_name_number occurs O during O the O step O at O which O Rio2 B-protein leaves O the O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly particle I-complex_assembly . O These O data O and O the O finding O that O a O missing O acp B-chemical modification O hinders O pre B-chemical - I-chemical 20S I-chemical rRNA I-chemical processing O , O suggest O that O the O acp B-chemical modification O together O with O the O release O of O Rio2 B-protein promotes O the O formation O of O the O decoding B-site site I-site and O thus O D B-site - I-site site I-site cleavage O by O Nob1 B-protein . O The O interrelation O between O acp B-chemical modification O and O Rio2 B-protein release O is O also O supported O by O CRAC B-experimental_method analysis I-experimental_method showing O that O Rio2 B-protein binds O to O helix B-structure_element 31 I-structure_element next O to O the O Ψ1191 B-residue_name_number residue O that O receives O the O acp B-chemical modification O . O Therefore O , O Rio2 B-protein either O blocks O the O access O of O Tsr3 B-protein to O helix B-structure_element 31 I-structure_element , O and O acp B-chemical modification O can O only O occur O after O Rio2 B-protein is O released O , O or O the O acp B-chemical modification O of O m1Ψ1191 B-residue_name_number and O putative O subsequent O conformational O changes O of O 20S B-chemical rRNA I-chemical weaken O the O binding O of O Rio2 B-protein to O helix B-structure_element 31 I-structure_element and O support O its O release O from O the O pre B-chemical - I-chemical rRNA I-chemical . O In O summary O , O by O identifying O Tsr3 B-protein as O the O enzyme O responsible O for O introducing O the O acp B-chemical group O to O the O hypermodified B-protein_state m1acp3Ψ B-chemical nucleotide B-chemical at O position O 1191 B-residue_number ( O yeast B-taxonomy_domain )/ O 1248 B-residue_number ( O humans B-species ) O of O 18S B-chemical rRNA I-chemical we O added O one O of O the O last O remaining O pieces O to O the O puzzle O of O eukaryotic B-taxonomy_domain small B-chemical ribosomal I-chemical subunit I-chemical rRNA I-chemical modifications O . O The O current O data O together O with O the O finding O that O acp B-chemical modification O takes O place O at O the O very O last O step O in O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunit I-complex_assembly maturation O indicate O that O the O acp B-chemical modification O probably O supports O the O formation O of O the O decoding B-site site I-site and O efficient O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical D B-site - I-site site I-site cleavage O . O Furthermore O , O our O structural B-evidence data I-evidence unravelled O how O the O regioselectivity O of O SAM B-chemical - O dependent O group O transfer O reactions O can O be O tuned O by O distinct O small O evolutionary O adaptions O of O the O ligand B-site binding I-site pocket I-site of O SAM B-protein_type - I-protein_type binding I-protein_type enzymes I-protein_type . O Biosynthesis O of O a O hypermodified B-protein_state nucleotide O in O Saccharomyces O carlsbergensis O 17S O and O HeLa O - O cell O 18S O ribosomal O ribonucleic O acid O Presence O of O a O hypermodified B-protein_state nucleotide O in O HeLa O cell O 18 O S O and O Saccharomyces O carlsbergensis O 17 O S O ribosomal O RNAs O Mutations O in O the O nucleolar O proteins O Tma23 O and O Nop6 O suppress O the O malfunction O of O the O Nep1 B-protein_type protein O The O yeast O ribosome O synthesis O factor O Emg1 B-protein_type is O a O novel O member O of O the O superfamily O of O alpha O / O beta O knot O fold O methyltransferases O Crystal B-evidence Structure I-evidence and O Activity B-experimental_method Studies I-experimental_method of O the O C11 B-protein_type Cysteine B-protein_type Peptidase I-protein_type from O Parabacteroides B-species merdae I-species in O the O Human B-species Gut O Microbiome O * O Clan B-protein_type CD I-protein_type cysteine I-protein_type peptidases I-protein_type , O a O structurally O related O group O of O peptidases B-protein_type that O include O mammalian B-taxonomy_domain caspases B-protein_type , O exhibit O a O wide O range O of O important O functions O , O along O with O a O variety O of O specificities O and O activation O mechanisms O . O However O , O for O the O clostripain B-protein_type family I-protein_type ( O denoted O C11 B-protein_type ), O little O is O currently O known O . O Here O , O we O describe O the O first O crystal B-evidence structure I-evidence of O a O C11 B-protein_type protein O from O the O human B-species gut O bacterium B-taxonomy_domain , O Parabacteroides B-species merdae I-species ( O PmC11 B-protein ), O determined O to O 1 O . O 7 O - O Å O resolution O . O PmC11 B-protein is O a O monomeric B-oligomeric_state cysteine B-protein_type peptidase I-protein_type that O comprises O an O extended B-structure_element caspase I-structure_element - I-structure_element like I-structure_element α I-structure_element / I-structure_element β I-structure_element / I-structure_element α I-structure_element sandwich I-structure_element and O an O unusual O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O It O shares O core O structural O elements O with O clan B-protein_type CD I-protein_type cysteine I-protein_type peptidases I-protein_type but O otherwise O structurally O differs O from O the O other O families O in O the O clan O . O These O studies O also O revealed O a O well O ordered O break O in O the O polypeptide O chain O at O Lys147 B-residue_name_number , O resulting O in O a O large O conformational O rearrangement O close O to O the O active B-site site I-site . O Biochemical B-experimental_method and I-experimental_method kinetic I-experimental_method analysis I-experimental_method revealed O Lys147 B-residue_name_number to O be O an O intramolecular B-site processing I-site site I-site at O which O cleavage B-ptm is O required O for O full B-protein_state activation I-protein_state of O the O enzyme B-protein , O suggesting O an O autoinhibitory O mechanism O for O self O - O preservation O . O PmC11 B-protein has O an O acidic B-site binding I-site pocket I-site and O a O preference O for O basic O substrates O , O and O accepts O substrates O with O Arg B-residue_name and O Lys B-residue_name in O P1 B-residue_number and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O Collectively O , O these O data O provide O insights O into O the O mechanism O and O activity O of O PmC11 B-protein and O a O detailed O framework O for O studies O on O C11 B-protein_type peptidases I-protein_type from O other O phylogenetic O kingdoms O . O Cysteine B-protein_type peptidases I-protein_type play O crucial O roles O in O the O virulence O of O bacterial B-taxonomy_domain and O other O eukaryotic B-taxonomy_domain pathogens O . O In O the O MEROPS O peptidase O database O , O clan B-protein_type CD I-protein_type contains O groups O ( O or O families O ) O of O cysteine B-protein_type peptidases I-protein_type that O share O some O highly B-protein_state conserved I-protein_state structural O elements O . O Clan B-protein_type CD I-protein_type families I-protein_type are O typically O described O using O the O name O of O their O archetypal O , O or O founding O , O member O and O also O given O an O identification O number O preceded O by O a O “ O C O ,” O to O denote O cysteine B-protein_type peptidase I-protein_type . O Although O seven O families O ( O C14 O is O additionally O split O into O three O subfamilies O ) O have O been O described O for O this O clan O , O crystal B-evidence structures I-evidence have O only O been O determined O from O four O : O legumain B-protein ( O C13 B-protein_type ), O caspase B-protein ( O C14a B-protein_type ), O paracaspase B-protein ( O C14b B-protein_type ( I-protein_type P I-protein_type ), O metacaspase B-protein ( O C14b B-protein_type ( I-protein_type M I-protein_type ), O gingipain B-protein ( O C25 B-protein_type ), O and O the O cysteine B-structure_element peptidase I-structure_element domain I-structure_element ( O CPD B-structure_element ) O of O various O toxins O ( O C80 B-protein_type ). O No O structural O information O is O available O for O clostripain B-protein ( O C11 B-protein_type ), O separase B-protein ( O C50 B-protein_type ), O or O PrtH B-protein - I-protein peptidase I-protein ( O C85 B-protein_type ). O Clan B-protein_type CD I-protein_type enzymes I-protein_type have O a O highly B-protein_state conserved I-protein_state His B-site / I-site Cys I-site catalytic I-site dyad I-site and O exhibit O strict O specificity O for O the O P1 B-residue_number residue O of O their O substrates O . O However O , O despite O these O similarities O , O clan B-protein_type CD I-protein_type forms O a O functionally O diverse O group O of O enzymes O : O the O overall O structural O diversity O between O ( O and O at O times O within O ) O the O various O families O provides O these O peptidases B-protein_type with O a O wide O variety O of O substrate O specificities O and O activation O mechanisms O . O The O archetypal O and O arguably O most O notable O family O in O the O clan O is O that O of O the O mammalian B-taxonomy_domain caspases B-protein_type ( O C14a B-protein_type ), O although O clan B-protein_type CD I-protein_type members O are O distributed O throughout O the O entire O phylogenetic O kingdom O and O are O often O required O in O fundamental O biological O processes O . O Interestingly O , O little O is O known O about O the O structure O or O function O of O the O C11 B-protein_type proteins O , O despite O their O widespread O distribution O and O its O archetypal O member O , O clostripain B-protein from O Clostridium B-species histolyticum I-species , O first O reported O in O the O literature O in O 1938 O . O Clostripain B-protein has O been O described O as O an O arginine B-protein_type - I-protein_type specific I-protein_type peptidase I-protein_type with O a O requirement O for O Ca2 B-chemical + I-chemical and O loss O of O an O internal B-structure_element nonapeptide I-structure_element for O full B-protein_state activation I-protein_state ; O lack O of O structural O information O on O the O family O appears O to O have O prohibited O further O investigation O . O As O part O of O an O ongoing O project O to O characterize O commensal O bacteria B-taxonomy_domain in O the O microbiome O that O inhabit O the O human B-species gut O , O the O structure B-evidence of O C11 B-protein_type peptidase I-protein_type , O PmC11 B-protein , O from O Parabacteroides B-species merdae I-species was O determined O using O the O Joint O Center O for O Structural O Genomics O ( O JCSG O ) O 4 O HTP O structural O biology O pipeline O . O The O structure B-experimental_method was I-experimental_method analyzed I-experimental_method , O and O the O enzyme O was O biochemically B-experimental_method characterized I-experimental_method to O provide O the O first O structure O / O function O correlation O for O a O C11 B-protein_type peptidase I-protein_type . O Structure B-evidence of O PmC11 B-protein The O crystal B-evidence structure I-evidence of O the O catalytically B-protein_state active I-protein_state form O of O PmC11 B-protein revealed O an O extended B-structure_element caspase I-structure_element - I-structure_element like I-structure_element α I-structure_element / I-structure_element β I-structure_element / I-structure_element α I-structure_element sandwich I-structure_element architecture O comprised O of O a O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O with O an O unusual O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ), O starting O at O Lys250 B-residue_name_number . O A O single B-ptm cleavage I-ptm was O observed O in O the O polypeptide O chain O at O Lys147 B-residue_name_number ( O Fig O . O 1 O , O A O and O B O ), O where O both O ends O of O the O cleavage B-site site I-site are O fully O visible O and O well O ordered O in O the O electron B-evidence density I-evidence . O The O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element – I-structure_element β9 I-structure_element ) O of O PmC11 B-protein consists O of O six O parallel B-structure_element and O three O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element with O 4 O ↑ O 3 O ↓ O 2 O ↑ O 1 O ↑ O 5 O ↑ O 6 O ↑ O 7 O ↓ O 8 O ↓ O 9 O ↑ O topology O ( O Fig O . O 1A O ) O and O the O overall O structure B-evidence includes O 14 O α B-structure_element - I-structure_element helices I-structure_element with O six O ( O α1 B-structure_element – I-structure_element α2 I-structure_element and O α4 B-structure_element – I-structure_element α7 I-structure_element ) O closely O surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element in O an O approximately O parallel O orientation O . O Helices B-structure_element α1 B-structure_element , O α7 B-structure_element , O and O α6 B-structure_element are O located O on O one O side O of O the O β B-structure_element - I-structure_element sheet I-structure_element with O α2 B-structure_element , O α4 B-structure_element , O and O α5 B-structure_element on O the O opposite O side O ( O Fig O . O 1A O ). O Helix B-structure_element α3 B-structure_element sits O at O the O end O of O the O loop B-structure_element following O β5 B-structure_element ( O L5 B-structure_element ), O just O preceding O the O Lys147 B-residue_name_number cleavage B-site site I-site , O with O both O L5 B-structure_element and O α3 B-structure_element pointing O away O from O the O central O β B-structure_element - I-structure_element sheet I-structure_element and O toward O the O CTD B-structure_element , O which O starts O with O α8 B-structure_element . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O Crystal B-evidence structure I-evidence of O a O C11 B-protein_type peptidase I-protein_type from O P B-species . I-species merdae I-species . O A O , O primary B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PmC11 B-protein ( O Uniprot O ID O A7A9N3 O ) O and O clostripain B-protein ( O Uniprot O ID O P09870 O ) O from O C B-species . I-species histolyticum I-species with O identical O residues O highlighted O in O gray O shading O . O The O secondary O structure O of O PmC11 B-protein from O the O crystal B-evidence structure I-evidence is O mapped O onto O its O sequence O with O the O position O of O the O PmC11 B-protein catalytic B-site dyad I-site , O autocatalytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number ), O and O S1 B-site binding I-site pocket I-site Asp B-residue_name ( O Asp177 B-residue_name_number ) O highlighted O by O a O red O star O , O a O red O downturned O triangle O , O and O a O red O upturned O triangle O , O respectively O . O Connecting O loops B-structure_element are O colored O gray O , O the O main O β B-structure_element - I-structure_element sheet I-structure_element is O in O orange O , O with O other O strands O in O olive O , O α B-structure_element - I-structure_element helices I-structure_element are O in O blue O , O and O the O nonapeptide B-structure_element linker I-structure_element of O clostripain B-protein that O is O excised O upon O autocleavage B-ptm is O underlined O in O red O . O Sequences O around O the O catalytic B-site site I-site of O clostripain B-protein and O PmC11 B-protein align O well O . O B O , O topology O diagram O of O PmC11 B-protein colored O as O in O A O except O that O additional O ( O non O - O core O ) O β B-structure_element - I-structure_element strands I-structure_element are O in O yellow O . O Helices O found O on O either O side O of O the O central O β B-structure_element - I-structure_element sheet I-structure_element are O shown O above O and O below O the O sheet B-structure_element , O respectively O . O The O position O of O the O catalytic B-site dyad I-site ( O H B-residue_name , O C B-residue_name ) O and O the O processing B-site site I-site ( O Lys147 B-residue_name_number ) O are O highlighted O . O Helices O ( O 1 O – O 14 O ) O and O β B-structure_element - I-structure_element strands I-structure_element ( O 1 O – O 9 O and O A O - O F O ) O are O numbered O from O the O N O terminus O . O The O core B-structure_element caspase I-structure_element - I-structure_element fold I-structure_element is O highlighted O in O a O box O . O C O , O tertiary O structure O of O PmC11 B-protein . O The O N O and O C O termini O ( O N O and O C O ) O of O PmC11 B-protein along O with O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O 1 O – O 9 O ), O helix B-structure_element α5 B-structure_element , O and O helices B-structure_element α8 B-structure_element , O α11 B-structure_element , O and O α13 B-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O are O all O labeled O . O Loops O are O colored O gray O , O the O main O β B-structure_element - I-structure_element sheet I-structure_element is O in O orange O , O with O other O β B-structure_element - I-structure_element strands I-structure_element in O yellow O , O and O α B-structure_element - I-structure_element helices I-structure_element are O in O blue O . O The O CTD B-structure_element of O PmC11 B-protein is O composed O of O a O tight B-structure_element helical I-structure_element bundle I-structure_element formed O from O helices B-structure_element α8 B-structure_element – I-structure_element α14 I-structure_element and O includes O strands B-structure_element βC B-structure_element and O βF B-structure_element , O and O β B-structure_element - I-structure_element hairpin I-structure_element βD B-structure_element – I-structure_element βE I-structure_element . O The O CTD B-structure_element sits O entirely O on O one O side O of O the O enzyme O interacting O only O with O α3 B-structure_element , O α5 B-structure_element , O β9 B-structure_element , O and O the O loops B-structure_element surrounding O β8 B-structure_element . O Of O the O interacting O secondary O structure O elements O , O α5 B-structure_element is O perhaps O the O most O interesting O . O This B-structure_element helix I-structure_element makes O a O total O of O eight O hydrogen O bonds O with O the O CTD B-structure_element , O including O one O salt O bridge O ( O Arg191 B-residue_name_number - O Asp255 B-residue_name_number ) O and O is O surrounded O by O the O CTD B-structure_element on O one O side O and O the O main B-structure_element core I-structure_element of O the O enzyme O on O the O other O , O acting O like O a O linchpin O holding O both O components O together O ( O Fig O . O 1C O ). O PmC11 B-protein is O , O as O expected O , O most O structurally O similar O to O other O members O of O clan B-protein_type CD I-protein_type with O the O top O hits O in O a O search O of O known O structures B-evidence being O caspase B-protein - I-protein 7 I-protein , O gingipain B-protein - I-protein K I-protein , O and O legumain B-protein ( O PBD O codes O 4hq0 O , O 4tkx O , O and O 4aw9 O , O respectively O ) O ( O Table O 2 O ). O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element is O unique O to O PmC11 B-protein within O clan B-protein_type CD I-protein_type and O structure B-experimental_method comparisons I-experimental_method for O this B-structure_element domain I-structure_element alone I-structure_element does O not O produce O any O hits O in O the O PDB O ( O DaliLite B-experimental_method , O PDBeFold B-experimental_method ), O suggesting O a O completely O novel O fold O . O As O the O archetypal O and O arguably O most O well O studied O member O of O clan B-protein_type CD I-protein_type , O the O caspases B-protein_type were O used O as O the O basis O to O investigate O the O structure O / O function O relationships O in O PmC11 B-protein , O with O caspase B-protein - I-protein 7 I-protein as O the O representative O member O . O Six O of O the O central O β B-structure_element - I-structure_element strands I-structure_element in O PmC11 B-protein ( O β1 B-structure_element – I-structure_element β2 I-structure_element and O β5 B-structure_element – I-structure_element β8 I-structure_element ) O share O the O same O topology O as O the O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element found O in O caspases B-protein_type , O with O strands B-structure_element β3 B-structure_element , O β4 B-structure_element , O and O β9 B-structure_element located O on O the O outside O of O this O core B-structure_element structure I-structure_element ( O Fig O . O 1B O , O box O ). O His133 B-residue_name_number and O Cys179 B-residue_name_number were O found O at O locations O structurally O homologous O to O the O caspase B-protein_type catalytic B-site dyad I-site , O and O other O clan B-protein_type CD I-protein_type structures B-evidence , O at O the O C O termini O of O strands B-structure_element β5 B-structure_element and O β6 B-structure_element , O respectively O ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O C11 B-protein_type proteins O revealed O that O these O residues O are O highly B-protein_state conserved I-protein_state ( O data O not O shown O ). O Summary O of O PDBeFOLD B-experimental_method superposition I-experimental_method of O structures O found O to O be O most O similar O to O PmC11 B-protein in O the O PBD O based O on O DaliLite B-experimental_method Biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O PmC11 B-protein . O A O , O ribbon O representation O of O the O overall O structure O of O PmC11 B-protein illustrating O the O catalytic B-site site I-site , O cleavage O site O displacement O , O and O potential O S1 B-site binding I-site site I-site . O The O overall O structure B-evidence of O PmC11 B-protein is O shown O in O gray O , O looking O down O into O the O catalytic B-site site I-site with O the O catalytic B-site dyad I-site in O red O . O The O two O ends O of O the O autolytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number and O Ala148 B-residue_name_number , O green O ) O are O displaced O by O 19 O . O 5 O Å O ( O thin O black O line O ) O from O one O another O and O residues O in O the O potential O substrate B-site binding I-site pocket I-site are O highlighted O in O blue O . O B O , O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PmC11 B-protein . O PmC11 O migrates O as O a O monomer B-oligomeric_state with O a O molecular O mass O around O 41 O kDa O calculated O from O protein O standards O of O known O molecular O weights O . O Elution O fractions O across O the O major O peak O ( O 1 O – O 6 O ) O were O analyzed O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method on O a O 4 O – O 12 O % O gel O in O MES O buffer O . O C O , O the O active B-protein_state form O of O PmC11 B-protein and O two O mutants O , O PmC11C179A B-mutant ( O C O ) O and O PmC11K147A B-mutant ( O K O ), O were O examined O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method ( O lane O 1 O ) O and O Western B-experimental_method blot I-experimental_method analysis O using O an O anti O - O His O antibody O ( O lane O 2 O ) O show O that O PmC11 B-protein autoprocesses B-ptm , O whereas O mutants O , O PmC11C179A B-mutant and O PmC11K147A B-mutant , O do O not O show O autoprocessing B-ptm in O vitro O . O D O , O cysteine O peptidase O activity O of O PmC11 B-protein . O Km O and O Vmax B-evidence of O PmC11 B-protein and O K147A B-mutant mutant O were O determined O by O monitoring O change O in O the O fluorescence O corresponding O to O AMC O release O from O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical . O E O , O intermolecular B-ptm processing I-ptm of O PmC11C179A B-mutant by O PmC11 B-protein . O PmC11C179A O ( O 20 O μg O ) O was O incubated O overnight O at O 37 O ° O C O with O increasing O amounts O of O processed O PmC11 B-protein and O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O Inactive O PmC11C179A B-mutant was O not O processed O to O a O major O extent O by O active B-protein_state PmC11 B-protein until O around O a O ratio O of O 1 O : O 4 O ( O 5 O μg O of O active B-protein_state PmC11 B-protein ). O A O single O lane O of O 20 O μg O of O active B-protein_state PmC11 B-protein ( O labeled O 20 O ) O is O shown O for O comparison O . O F O , O activity B-evidence of O PmC11 B-protein against O basic O substrates O . O G O , O electrostatic O surface O potential O of O PmC11 B-protein shown O in O a O similar O orientation O , O where O blue O and O red O denote O positively O and O negatively O charged O surface O potential O , O respectively O , O contoured O at O ± O 5 O kT O / O e O . O The O position O of O the O catalytic B-site dyad I-site , O one O potential O key B-site substrate I-site binding I-site residue I-site Asp177 B-residue_name_number , O and O the O ends O of O the O cleavage B-site site I-site Lys147 B-residue_name_number and O Ala148 B-residue_name_number are O indicated O . O Five O of O the O α B-structure_element - I-structure_element helices I-structure_element surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element of O PmC11 B-protein ( O α1 B-structure_element , O α2 B-structure_element , O α4 B-structure_element , O α6 B-structure_element , O and O α7 B-structure_element ) O are O found O in O similar O positions O to O the O five O structurally B-protein_state conserved I-protein_state helices B-structure_element in O caspases B-protein_type and O other O members O of O clan B-protein_type CD I-protein_type , O apart O from O family O C80 B-protein_type . O Other O than O its O more O extended B-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O PmC11 B-protein differs O most O significantly O from O other O clan B-protein_type CD I-protein_type members O at O its O C O terminus O , O where O the O CTD B-structure_element contains O a O further O seven O α B-structure_element - I-structure_element helices I-structure_element and O four O β B-structure_element - I-structure_element strands I-structure_element after O β8 B-structure_element . O Autoprocessing B-ptm of O PmC11 B-protein Purification B-experimental_method of O recombinant O PmC11 B-protein ( O molecular O mass O = O 42 O . O 6 O kDa O ) O revealed O partial O processing O into O two O cleavage O products O of O 26 O . O 4 O and O 16 O . O 2 O kDa O , O related O to O the O observed O cleavage B-ptm at O Lys147 B-residue_name_number in O the O crystal B-evidence structure I-evidence ( O Fig O . O 2A O ). O Incubation B-experimental_method of O PmC11 B-protein at O 37 O ° O C O for O 16 O h O , O resulted O in O a O fully B-protein_state processed I-protein_state enzyme O that O remained O as O an O intact B-protein_state monomer B-oligomeric_state when O applied O to O a O size O - O exclusion O column O ( O Fig O . O 2B O ). O The O single O cleavage B-site site I-site of O PmC11 B-protein at O Lys147 B-residue_name_number is O found O immediately O after O α3 B-structure_element , O in O loop B-structure_element L5 B-structure_element within O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O The O two O ends O of O the O cleavage B-site site I-site are O remarkably O well O ordered O in O the O crystal B-evidence structure I-evidence and O displaced O from O one O another O by O 19 O . O 5 O Å O ( O Fig O . O 2A O ). O Moreover O , O the O C O - O terminal O side O of O the O cleavage B-site site I-site resides O near O the O catalytic B-site dyad I-site with O Ala148 B-residue_name_number being O 4 O . O 5 O and O 5 O . O 7 O Å O from O His133 B-residue_name_number and O Cys179 B-residue_name_number , O respectively O . O Consequently O , O it O appears O feasible O that O the O helix B-structure_element attached O to O Lys147 B-residue_name_number ( O α3 B-structure_element ) O could O be O responsible O for O steric O autoinhibition O of O PmC11 B-protein when O Lys147 B-residue_name_number is O covalently O bonded O to O Ala148 B-residue_name_number . O Thus O , O the O cleavage B-ptm would O be O required O for O full B-protein_state activation I-protein_state of O PmC11 B-protein . O To O investigate O this O possibility O , O two O mutant O forms O of O the O enzyme O were O created O : O PmC11C179A B-mutant ( O a O catalytically B-protein_state inactive I-protein_state mutant I-protein_state ) O and O PmC11K147A B-mutant ( O a O cleavage B-protein_state - I-protein_state site I-protein_state mutant I-protein_state ). O Initial O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O Western B-experimental_method blot I-experimental_method analysis O of O both O mutants O revealed O no O discernible O processing O occurred O as O compared O with O active B-protein_state PmC11 B-protein ( O Fig O . O 2C O ). O The O PmC11K147A B-mutant mutant B-protein_state enzyme O had O a O markedly O different O reaction B-evidence rate I-evidence ( O Vmax B-evidence ) O compared O with O WT B-protein_state , O where O the O reaction B-evidence velocity I-evidence of O PmC11 B-protein was O 10 O times O greater O than O that O of O PmC11K147A B-mutant ( O Fig O . O 2D O ). O Taken O together O , O these O data O reveal O that O PmC11 B-protein requires O processing O at O Lys147 B-residue_name_number for O optimum O activity O . O To O investigate O whether O processing O is O a O result O of O intra O - O or O intermolecular O cleavage O , O the O PmC11C179A B-mutant mutant B-protein_state was O incubated B-experimental_method with I-experimental_method increasing I-experimental_method concentrations I-experimental_method of O processed B-protein_state and O activated B-protein_state PmC11 B-protein . O These O studies O revealed O that O there O was O no O apparent O cleavage O of O PmC11C179A B-mutant by O the O active B-protein_state enzyme O at B-experimental_method low I-experimental_method concentrations I-experimental_method of O PmC11 B-protein and O that O only O limited O cleavage O was O observed O when O the O ratio O of O active B-protein_state enzyme O ( O PmC11 B-protein : O PmC11C179A B-mutant ) O was O increased B-experimental_method to I-experimental_method ∼ I-experimental_method 1 I-experimental_method : I-experimental_method 10 I-experimental_method and I-experimental_method 1 I-experimental_method : I-experimental_method 4 I-experimental_method , O with O complete O cleavage O observed O at O a O ratio B-experimental_method of I-experimental_method 1 I-experimental_method : I-experimental_method 1 I-experimental_method ( O Fig O . O 2E O ). O This O suggests O that O cleavage B-ptm of O PmC11C179A B-mutant was O most O likely O an O effect O of O the O increasing O concentration O of O PmC11 B-protein and O intermolecular O cleavage O . O Collectively O , O these O data O suggest O that O the O pro B-protein_state - I-protein_state form I-protein_state of O PmC11 B-protein is O autoinhibited B-protein_state by O a O section O of O L5 B-structure_element blocking O access O to O the O active B-site site I-site , O prior O to O intramolecular B-ptm cleavage I-ptm at O Lys147 B-residue_name_number . O This O cleavage B-ptm subsequently O allows O movement O of O the O region O containing O Lys147 B-residue_name_number and O the O active B-site site I-site to O open B-protein_state up O for O substrate O access O . O Substrate O Specificity O of O PmC11 B-protein The O autocatalytic B-ptm cleavage I-ptm of O PmC11 B-protein at O Lys147 B-residue_name_number ( O sequence O KLK O ∧ O A O ) O demonstrates O that O the O enzyme O accepts O substrates O with O Lys B-residue_name in O the O P1 B-residue_number position O . O As O expected O , O PmC11 B-protein showed O no O activity O against O substrates O with O Pro B-residue_name or O Asp B-residue_name in O P1 B-residue_number but O was O active B-protein_state toward O substrates O with O a O basic O residue O in O P1 B-residue_number such O as O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical , O Z B-chemical - I-chemical GGR I-chemical - I-chemical AMC I-chemical , O and O BOC B-chemical - I-chemical VLK I-chemical - I-chemical AMC I-chemical . O The O rate O of O cleavage O was O ∼ O 3 O - O fold O greater O toward O the O single O Arg B-residue_name substrate O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical than O for O the O other O two O ( O Fig O . O 2F O ) O and O , O unexpectedly O , O PmC11 B-protein showed O no O activity O toward O BOC B-chemical - I-chemical K I-chemical - I-chemical AMC I-chemical . O These O results O confirm O that O PmC11 B-protein accepts O substrates O containing O Arg B-residue_name or O Lys B-residue_name in O P1 B-residue_number with O a O possible O preference O for O Arg B-residue_name . O The O catalytic B-site dyad I-site of O PmC11 B-protein sits O near O the O bottom O of O an O open B-protein_state pocket B-site on O the O surface O of O the O enzyme O at O a O conserved B-protein_state location I-protein_state in O the O clan O CD B-protein_type family I-protein_type . O The O PmC11 B-protein structure B-evidence reveals O that O the O catalytic B-site dyad I-site forms O part O of O a O large O acidic B-site pocket I-site ( O Fig O . O 2G O ), O consistent O with O a O binding B-site site I-site for O a O basic O substrate O . O This O pocket B-site is O lined O with O the O potential O functional O side O chains O of O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Thr204 B-residue_name_number with O Gly134 B-residue_name_number , O Asp207 B-residue_name_number , O and O Met205 B-residue_name_number also O contributing O to O the O pocket B-site ( O Fig O . O 2A O ). O Interestingly O , O these O residues O are O in O regions O that O are O structurally B-protein_state similar I-protein_state to O those O involved O in O the O S1 B-site binding I-site pockets I-site of O other O clan B-protein_type CD I-protein_type members I-protein_type ( O shown O in O Ref O .). O Because O PmC11 B-protein recognizes O basic O substrates O , O the O tetrapeptide O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O tested O as O an O enzyme O inhibitor O and O was O found O to O inhibit B-protein_state both O the O autoprocessing B-ptm and O activity O of O PmC11 B-protein ( O Fig O . O 3A O ). O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O also O shown O to O bind O to O the O enzyme O : O a O size B-evidence - I-evidence shift I-evidence was O observed O , O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O , O in O the O larger O processed O product O of O PmC11 B-protein suggesting O that O the O inhibitor B-protein_state bound I-protein_state to O the O active B-site site I-site ( O Fig O . O 3B O ). O A O structure B-experimental_method overlay I-experimental_method of O PmC11 B-protein with O the O MALT1 B-protein - I-protein paracacaspase I-protein ( O MALT1 B-protein - I-protein P I-protein ), O in O complex B-protein_state with O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical , O revealed O that O the O PmC11 B-protein dyad B-site sits O in O a O very O similar O position O to O that O of O active B-protein_state MALT1 B-protein - I-protein P I-protein and O that O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number superimpose O well O with O the O principal O MALT1 B-protein - I-protein P I-protein inhibitor B-site binding I-site residues I-site ( O Asp365 B-residue_name_number , O Asp462 B-residue_name_number , O and O Glu500 B-residue_name_number , O respectively O ( O VRPR B-chemical - I-chemical FMK I-chemical from O MALT1 B-protein - I-protein P I-protein with O the O corresponding O PmC11 B-protein residues O from O the O structural B-experimental_method overlay I-experimental_method is O shown O in O Fig O . O 1D O ), O as O described O in O Ref O .). O Asp177 B-residue_name_number is O located O near O the O catalytic B-protein_state cysteine B-residue_name and O is O conserved B-protein_state throughout I-protein_state the O C11 B-protein_type family I-protein_type , O suggesting O it O is O the O primary O S1 B-site binding I-site site I-site residue I-site . O In O the O structure B-evidence of O PmC11 B-protein , O Asp207 B-residue_name_number resides O on O a O flexible O loop B-structure_element pointing O away O from O the O S1 B-site binding I-site pocket I-site ( O Fig O . O 3C O ). O However O , O this O loop B-structure_element has O been O shown O to O be O important O for O substrate O binding O in O clan B-protein_type CD I-protein_type and O this O residue O could O easily O rotate O and O be O involved O in O substrate O binding O in O PmC11 B-protein . O Thus O , O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number are O most O likely O responsible O for O the O substrate O specificity O of O PmC11 B-protein . O Asp177 B-residue_name_number is O highly B-protein_state conserved I-protein_state throughout O the O clan B-protein_type CD I-protein_type C11 I-protein_type peptidases I-protein_type and O is O thought O to O be O primarily O responsible O for O substrate O specificity O of O the O clan B-protein_type CD I-protein_type enzymes I-protein_type , O as O also O illustrated O from O the O proximity O of O these O residues O relative O to O the O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical when O PmC11 B-protein is O overlaid B-experimental_method on O the O MALT1 B-protein - I-protein P I-protein structure B-evidence ( O Fig O . O 3C O ). O PmC11 B-protein binds O and O is O inhibited O by O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O A O , O PmC11 O activity O is O inhibited O by O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O Cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O a O fluorometric B-experimental_method activity I-experimental_method assay I-experimental_method with O (+, O purple O ) O and O without O (−, O red O ) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O B O , O gel B-experimental_method - I-experimental_method shift I-experimental_method assay I-experimental_method reveals O that O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical binds O to O PmC11 B-protein . O PmC11 O was O incubated B-experimental_method with O (+) O or O without O (−) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical and O the O samples O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O A O size B-evidence shift I-evidence can O be O observed O in O the O larger O processed O product O of O PmC11 B-protein ( O 26 O . O 1 O kDa O ). O C O , O PmC11 B-protein with O the O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical from O the O MALT1 B-protein - I-protein paracacaspase I-protein ( O MALT1 B-protein - I-protein P I-protein ) O superimposed B-experimental_method . O A O three B-experimental_method - I-experimental_method dimensional I-experimental_method structural I-experimental_method overlay I-experimental_method of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical from O the O MALT1 B-protein - I-protein P I-protein complex O onto O PmC11 B-protein . O The O position O and O orientation O of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O taken O from O superposition B-experimental_method of O the O PmC11 B-protein and O MALTI_P B-protein structures B-evidence and O indicates O the O presumed O active B-site site I-site of O PmC11 B-protein . O Residues O surrounding O the O inhibitor O are O labeled O and O represent O potentially O important O binding B-site site I-site residues I-site , O labeled O in O black O and O shown O in O an O atomic O representation O . O C O , O divalent O cations O do O not O increase O the O activity O of O PmC11 B-protein . O The O cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O the O presence O of O the O cations O Ca2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Cu2 B-chemical +, I-chemical Mg2 B-chemical +, I-chemical and O Fe3 B-chemical + I-chemical with O EGTA B-chemical as O a O negative O control O , O and O relative B-experimental_method fluorescence I-experimental_method measured I-experimental_method against I-experimental_method time I-experimental_method ( O min O ). O The O addition B-experimental_method of I-experimental_method cations I-experimental_method produced O no O improvement O in O activity O of O PmC11 B-protein when O compared O in O the O presence O of O EGTA B-chemical , O suggesting O that O PmC11 B-protein does O not O require O metal O ions O for O proteolytic O activity O . O Furthermore O , O Cu2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical appear O to O inhibit B-protein_state PmC11 B-protein . O Comparison O with O Clostripain B-protein Clostripain B-protein from O C B-species . I-species histolyticum I-species is O the O founding O member O of O the O C11 B-protein_type family I-protein_type of O peptidases B-protein_type and O contains O an O additional O 149 B-residue_range residues I-residue_range compared O with O PmC11 B-protein . O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method revealed O that O most O of O the O secondary B-structure_element structural I-structure_element elements I-structure_element are O conserved B-protein_state between O the O two O enzymes O , O although O they O are O only O ∼ O 23 O % O identical O ( O Fig O . O 1A O ). O Nevertheless O , O PmC11 B-protein may O be O a O good O model O for O the O core O structure O of O clostripain B-protein . O The O primary B-experimental_method structural I-experimental_method alignment I-experimental_method also O shows O that O the O catalytic B-site dyad I-site in O PmC11 B-protein is O structurally B-protein_state conserved I-protein_state in O clostripain B-protein ( O Fig O . O 1A O ). O Unlike O PmC11 B-protein , O clostripain B-protein has O two O cleavage B-site sites I-site ( O Arg181 B-residue_name_number and O Arg190 B-residue_name_number ), O which O results O in O the O removal O of O a O nonapeptide B-structure_element , O and O is O required O for O full B-protein_state activation I-protein_state of O the O enzyme O ( O highlighted O in O Fig O . O 1A O ). O Interestingly O , O Arg190 B-residue_name_number was O found O to O align O with O Lys147 B-residue_name_number in O PmC11 B-protein . O In O addition O , O the O predicted O primary O S1 B-site - I-site binding I-site residue I-site in O PmC11 B-protein Asp177 B-residue_name_number also O overlays B-experimental_method with O the O residue O predicted O to O be O the O P1 B-site specificity I-site determining I-site residue I-site in O clostripain B-protein ( O Asp229 B-residue_name_number , O Fig O . O 1A O ). O As O studies O on O clostripain B-protein revealed O addition O of O Ca2 B-chemical + I-chemical ions O are O required O for O full B-protein_state activation I-protein_state , O the O Ca2 B-chemical + I-chemical dependence O of O PmC11 B-protein was O examined O . O Surprisingly O , O Ca2 B-chemical + I-chemical did O not O enhance O PmC11 B-protein activity O and O , O furthermore O , O other O divalent O cations O , O Mg2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical and O Cu2 B-chemical +, I-chemical were O not O necessary O for O PmC11 B-protein activity O ( O Fig O . O 3D O ). O In O support O of O these O findings O , O EGTA B-chemical did O not O inhibit O PmC11 B-protein suggesting O that O , O unlike O clostripain B-protein , O PmC11 B-protein does O not O require O Ca2 B-chemical + I-chemical or O other O divalent O cations O , O for O activity O . O The O crystal B-evidence structure I-evidence of O PmC11 B-protein now O provides O three O - O dimensional O information O for O a O member O of O the O clostripain B-protein C11 B-protein_type family I-protein_type of O cysteine B-protein_type peptidases I-protein_type . O The O enzyme O exhibits O all O of O the O key O structural O elements O of O clan B-protein_type CD I-protein_type members I-protein_type , O but O is O unusual O in O that O it O has O a O nine O - O stranded O central O β B-structure_element - I-structure_element sheet I-structure_element with O a O novel O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O The O structural O similarity O of O PmC11 B-protein with O its O nearest O structural O neighbors O in O the O PDB O is O decidedly O low O , O overlaying O better O with O six O - O stranded O caspase B-protein - I-protein 7 I-protein than O any O of O the O other O larger O members O of O the O clan O ( O Table O 2 O ). O The O substrate O specificity O of O PmC11 B-protein is O Arg B-residue_name / O Lys B-residue_name and O the O crystal B-evidence structure I-evidence revealed O an O acidic B-site pocket I-site for O specific O binding O of O such O basic O substrates O . O In O addition O , O the O structure B-evidence suggested O a O mechanism O of O self O - O inhibition O in O both O PmC11 B-protein and O clostripain B-protein and O an O activation O mechanism O that O requires O autoprocessing B-ptm . O PmC11 B-protein differs O from O clostripain B-protein in O that O is O does O not O appear O to O require O divalent O cations O for O activation O . O Several O other O members O of O clan B-protein_type CD I-protein_type require O processing B-ptm for O full B-protein_state activation I-protein_state including O legumain B-protein , O gingipain B-protein - I-protein R I-protein , O MARTX B-protein - I-protein CPD I-protein , O and O the O effector B-protein_type caspases I-protein_type , O e O . O g O . O caspase B-protein - I-protein 7 I-protein . O To O date O , O the O effector B-protein_type caspases I-protein_type are O the O only O group O of O enzymes O that O require O cleavage B-ptm of O a O loop B-structure_element within O the O central O β B-structure_element - I-structure_element sheet I-structure_element . O This O is O also O the O case O in O PmC11 B-protein , O although O the O cleavage B-ptm loop B-structure_element is O structurally O different O to O that O found O in O the O caspases B-protein_type and O follows O the O catalytic B-protein_state His B-residue_name ( O Fig O . O 1A O ), O as O opposed O to O the O Cys B-residue_name in O the O caspases B-protein_type . O All O other O clan B-protein_type CD I-protein_type members I-protein_type requiring O cleavage B-ptm for O full B-protein_state activation I-protein_state do O so O at O sites B-site external O to O their O central O sheets B-structure_element . O The O caspases B-protein_type and O gingipain B-protein - I-protein R I-protein both O undergo O intermolecular B-ptm ( I-ptm trans I-ptm ) I-ptm cleavage I-ptm and O legumain B-protein and O MARTX B-protein - I-protein CPD I-protein are O reported O to O perform O intramolecular B-ptm ( I-ptm cis I-ptm ) I-ptm cleavage I-ptm . O In O addition O , O several O members O of O clan B-protein_type CD I-protein_type exhibit O self O - O inhibition O , O whereby O regions B-structure_element of O the O enzyme O block O access O to O the O active B-site site I-site . O Like O PmC11 B-protein , O these O structures O show O preformed O catalytic O machinery O and O , O for O a O substrate O to O gain O access O , O movement O and O / O or O cleavage B-ptm of O the O blocking B-structure_element region I-structure_element is O required O . O The O structure B-evidence of O PmC11 B-protein gives O the O first O insight O into O this O class O of O relatively O unexplored O family O of O proteins O and O should O allow O important O catalytic O and O substrate O binding O residues O to O be O identified O in O a O variety O of O orthologues O . O Indeed O , O insights O gained O from O an O analysis O of O the O PmC11 B-protein structure B-evidence revealed O the O identity O of O the O Trypanosoma B-species brucei I-species PNT1 B-protein protein O as O a O C11 B-protein_type cysteine I-protein_type peptidase I-protein_type with O an O essential O role O in O organelle O replication O . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O Structural O insights O into O the O regulatory O mechanism O of O the O Pseudomonas B-species aeruginosa I-species YfiBNR B-complex_assembly system O YfiBNR B-complex_assembly is O a O recently O identified O bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O signaling O system O in O opportunistic O pathogens O . O In O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O can O sequester O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O provoking O the O diguanylate O cyclase O activity O of O YfiN B-protein to O induce O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O . O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O of O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant complexed B-protein_state with I-protein_state YfiR B-protein with O 2 O : O 2 O stoichiometry O . O Structural B-experimental_method analyses I-experimental_method revealed O that O in O contrast O to O the O compact B-protein_state conformation I-protein_state of O the O dimeric B-oligomeric_state YfiB B-protein alone B-protein_state , O YfiBL43P B-mutant adopts O a O stretched B-protein_state conformation I-protein_state allowing O activated B-protein_state YfiB B-protein to O penetrate O the O peptidoglycan B-chemical ( O PG B-chemical ) O layer O and O access O YfiR B-protein . O YfiBL43P B-mutant shows O a O more O compact O PG B-site - I-site binding I-site pocket I-site and O much O higher O PG B-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O suggesting O a O tight O correlation O between O PG O binding O and O YfiB B-protein activation O . O In O addition O , O our O crystallographic B-experimental_method analyses I-experimental_method revealed O that O YfiR B-protein binds O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical at O a O YfiB B-site - I-site binding I-site site I-site and O that O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical are O able O to O reduce O YfiBL43P B-mutant - O induced O biofilm O formation O . O Based O on O the O structural B-evidence and I-evidence biochemical I-evidence data I-evidence , O we O propose O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O . O Bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O is O a O ubiquitous O second O messenger O that O bacteria B-taxonomy_domain use O to O facilitate O behavioral O adaptations O to O their O ever O - O changing O environment O . O An O increase O in O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical promotes O biofilm O formation O , O and O a O decrease O results O in O biofilm O degradation O ( O Boehm O et O al O .,; O Duerig O et O al O .,; O Hickman O et O al O .,; O Jenal O ,; O Romling O et O al O .,). O The O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O is O regulated O by O two O reciprocal O enzyme O systems O , O namely O , O diguanylate B-protein_type cyclases I-protein_type ( O DGCs B-protein_type ) O that O synthesize O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical and O phosphodiesterases B-protein_type ( O PDEs B-protein_type ) O that O hydrolyze O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ( O Kulasakara O et O al O .,; O Ross O et O al O .,; O Ross O et O al O .,). O Many O of O these O enzymes O are O multiple O - O domain O proteins O containing O a O variable O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element that O commonly O acts O as O a O signal O sensor O or O transduction O module O , O followed O by O the O relatively B-protein_state conserved I-protein_state GGDEF B-structure_element motif I-structure_element in O DGCs B-protein_type or O EAL B-structure_element / I-structure_element HD I-structure_element - I-structure_element GYP I-structure_element domains I-structure_element in O PDEs B-protein_type ( O Hengge O ,; O Navarro O et O al O .,; O Schirmer O and O Jenal O ,). O Intriguingly O , O studies O in O diverse O species O have O revealed O that O a O single O bacterium B-taxonomy_domain can O have O dozens O of O DGCs B-protein_type and O PDEs B-protein_type ( O Hickman O et O al O .,; O Kirillina O et O al O .,; O Kulasakara O et O al O .,; O Tamayo O et O al O .,). O In O Pseudomonas B-species aeruginosa I-species in O particular O , O 42 O genes O containing O putative O DGCs B-protein_type and O / O or O PDEs B-protein_type were O identified O ( O Kulasakara O et O al O .,). O The O functional O role O of O a O number O of O downstream O effectors O of O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical has O been O characterized O as O affecting O exopolysaccharide B-chemical ( O EPS B-chemical ) O production O , O transcription O , O motility O , O and O surface O attachment O ( O Caly O et O al O .,; O Camilli O and O Bassler O ,; O Ha O and O O O ’ O Toole O ,; O Pesavento O and O Hengge O ,). O However O , O due O to O the O intricacy O of O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O networks O and O the O diversity O of O experimental O cues O , O the O detailed O mechanisms O by O which O these O signaling O pathways O specifically O sense O and O integrate O different O inputs O remain O largely O elusive O . O Biofilm O formation O protects O pathogenic O bacteria B-taxonomy_domain from O antibiotic O treatment O , O and O c O - O di O - O GMP O - O regulated O biofilm O formation O has O been O extensively O studied O in O P B-species . I-species aeruginosa I-species ( O Evans O ,; O Kirisits O et O al O .,; O Malone O ,; O Reinhardt O et O al O .,). O In O the O lungs O of O cystic O fibrosis O ( O CF O ) O patients O , O adherent O biofilm O formation O and O the O appearance O of O small O colony O variant O ( O SCV O ) O morphologies O of O P B-species . I-species aeruginosa I-species correlate O with O prolonged O persistence O of O infection O and O poor O lung O function O ( O Govan O and O Deretic O ,; O Haussler O et O al O .,; O Haussler O et O al O .,; O Parsek O and O Singh O ,; O Smith O et O al O .,). O Recently O , O Malone O and O coworkers O identified O the O tripartite B-protein_state c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O module O system O YfiBNR B-complex_assembly ( O also O known O as O AwsXRO B-complex_assembly ( O Beaumont O et O al O .,; O Giddens O et O al O .,) O or O Tbp B-complex_assembly ( O Ueda O and O Wood O ,)) O by O genetic B-experimental_method screening I-experimental_method for O mutants O that O displayed O SCV O phenotypes O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,; O Malone O et O al O .,). O The O YfiBNR B-complex_assembly system O contains O three O protein O members O and O modulates O intracellular O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical levels O in O response O to O signals O received O in O the O periplasm O ( O Malone O et O al O .,). O More O recently O , O this O system O was O also O reported O in O other O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain , O such O as O Escherichia B-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O Klebsiella B-species pneumonia I-species ( O Huertas O et O al O .,) O and O Yersinia B-species pestis I-species ( O Ren O et O al O .,). O YfiN B-protein is O an O integral O inner O - O membrane O protein O with O two O potential O transmembrane B-structure_element helices I-structure_element , O a O periplasmic O Per B-structure_element - I-structure_element Arnt I-structure_element - I-structure_element Sim I-structure_element ( O PAS B-structure_element ) O domain O , O and O cytosolic O domains O containing O a O HAMP B-structure_element domain I-structure_element ( O mediate O input O - O output O signaling O in O histidine B-protein_type kinases I-protein_type , O adenylyl B-protein_type cyclases I-protein_type , O methyl B-protein_type - I-protein_type accepting I-protein_type chemotaxis I-protein_type proteins I-protein_type , O and O phosphatases B-protein_type ) O and O a O C O - O terminal O GGDEF B-structure_element domain I-structure_element indicating O a O DGC B-protein_type ’ O s O function O ( O Giardina O et O al O .,; O Malone O et O al O .,). O YfiN B-protein is O repressed B-protein_state by I-protein_state specific O interaction O between O its O periplasmic O PAS B-structure_element domain I-structure_element and O the O periplasmic O protein O YfiR B-protein ( O Malone O et O al O .,). O YfiB B-protein is O an O OmpA B-protein_type / I-protein_type Pal I-protein_type - I-protein_type like I-protein_type outer O - O membrane O lipoprotein B-protein_type ( O Parsons O et O al O .,) O that O can O activate O YfiN B-protein by O sequestering O YfiR B-protein ( O Malone O et O al O .,) O in O an O unknown O manner O . O Whether O YfiB B-protein directly O recruits O YfiR B-protein or O recruits O YfiR B-protein via O a O third O partner O is O an O open O question O . O After O the O sequestration O of O YfiR B-protein by O YfiB B-protein , O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical produced O by O activated B-protein_state YfiN B-protein increases O the O biosynthesis O of O the O Pel B-chemical and O Psl B-chemical EPSs B-chemical , O resulting O in O the O appearance O of O the O SCV O phenotype O , O which O indicates O enhanced O biofilm O formation O ( O Malone O et O al O .,). O It O has O been O reported O that O the O activation O of O YfiN B-protein may O be O induced O by O redox O - O driven O misfolding O of O YfiR B-protein ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O It O is O also O proposed O that O the O sequestration O of O YfiR B-protein by O YfiB B-protein can O be O induced O by O certain O YfiB B-protein - O mediated O cell O wall O stress O , O and O mutagenesis B-experimental_method studies I-experimental_method revealed O a O number O of O activation B-structure_element residues I-structure_element of O YfiB B-protein that O were O located O in O close O proximity O to O the O predicted B-protein_state first B-structure_element helix I-structure_element of O the O periplasmic B-structure_element domain I-structure_element ( O Malone O et O al O .,). O In O addition O , O quorum O sensing O - O related O dephosphorylation O of O the O PAS B-structure_element domain I-structure_element of O YfiN B-protein may O also O be O involved O in O the O regulation O ( O Ueda O and O Wood O ,; O Xu O et O al O .,). O Recently O , O we O solved O the O crystal B-evidence structure I-evidence of O YfiR B-protein in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O , O revealing O breakage O / O formation O of O one O disulfide B-ptm bond I-ptm ( O Cys71 B-residue_name_number - O Cys110 B-residue_name_number ) O and O local O conformational O change O around O the O other O one O ( O Cys145 B-residue_name_number - O Cys152 B-residue_name_number ), O indicating O that O Cys145 B-residue_name_number - O Cys152 B-residue_name_number plays O an O important O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O In O the O present O study O , O we O solved O the O crystal B-evidence structures I-evidence of O an O N O - O terminal O truncated B-protein_state form O of O YfiB B-protein ( O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant . O Most O recently O , O Li O and O coworkers O reported O the O crystal B-evidence structures I-evidence of O YfiB B-protein ( O 27 B-residue_range – I-residue_range 168 I-residue_range ) O alone B-protein_state and O YfiRC71S B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiB B-protein ( O 59 B-residue_range – I-residue_range 168 I-residue_range ) O ( O Li O et O al O .,). O Compared O with O the O reported O complex O structure O , O YfiBL43P B-mutant in O our O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O structure B-evidence has O additional O visible O N O - O terminal O residues O 44 B-residue_range – I-residue_range 58 I-residue_range that O are O shown O to O play O essential O roles O in O YfiB B-protein activation O and O biofilm O formation O . O Therefore O , O we O are O able O to O visualize O the O detailed O allosteric O arrangement O of O the O N O - O terminal O structure O of O YfiB B-protein and O its O important O role O in O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O . O In O addition O , O we O found O that O the O YfiBL43P B-mutant shows O a O much O higher O PG B-evidence - I-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O most O likely O due O to O its O more O compact O PG B-site - I-site binding I-site pocket I-site . O Moreover O , O we O found O that O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical can O bind O YfiR B-protein with O an O affinity B-evidence in O the O ten O millimolar O range O . O Together O with O functional O data O , O these O results O provide O new O mechanistic O insights O into O how O activated B-protein_state YfiB B-protein sequesters O YfiR B-protein and O releases O the O suppression O of O YfiN B-protein . O These O findings O may O facilitate O the O development O and O optimization O of O anti O - O biofilm O drugs O for O the O treatment O of O chronic O infections O . O Overall O structure B-evidence of O YfiB B-protein We O obtained O two O crystal B-evidence forms I-evidence of O YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element from O residues O 1 B-residue_range – I-residue_range 26 I-residue_range and O periplasmic O residues O 27 B-residue_range – I-residue_range 33 I-residue_range ), O crystal O forms O I O and O II O , O belonging O to O space O groups O P21 O and O P41 O , O respectively O . O Overall O structure B-evidence of O YfiB B-protein . O ( O A O ) O The O overall O structure B-evidence of O the O YfiB B-protein monomer B-oligomeric_state . O ( O B O ) O A O topology O diagram O of O the O YfiB B-protein monomer B-oligomeric_state . O ( O C O and O D O ) O The O analytical B-experimental_method ultracentrifugation I-experimental_method experiment O results O for O the O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant Two O dimeric B-oligomeric_state types O of O YfiB B-protein dimer B-oligomeric_state . O ( O A O – O C O ) O The O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state . O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state . O ( O A O ) O and O ( O E O ) O indicate O the O front O views O of O the O two O dimers B-oligomeric_state , O ( O B O ) O and O ( O F O ) O indicate O the O top O views O of O the O two O dimers B-oligomeric_state , O and O ( O C O ) O and O ( O D O ) O indicate O the O details O of O the O two O dimeric B-site interfaces I-site The O crystal B-evidence structure I-evidence of O YfiB B-protein monomer B-oligomeric_state consists O of O a O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element - I-structure_element 2 I-structure_element - I-structure_element 5 I-structure_element - I-structure_element 3 I-structure_element - I-structure_element 4 I-structure_element ) O flanked O by O five B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O α1 B-structure_element – I-structure_element 5 I-structure_element ) O on O one O side O . O In O addition O , O there O is O a O short O helix B-structure_element turn I-structure_element connecting O the O β4 B-structure_element strand I-structure_element and O α4 B-structure_element helix I-structure_element ( O Fig O . O 1A O and O 1B O ). O Each O crystal O form O contains O three O different O dimeric B-oligomeric_state types O of O YfiB B-protein , O two O of O which O are O present O in O both O , O suggesting O that O the O rest O of O the O dimeric B-oligomeric_state types O may O result O from O crystal O packing O . O Here O , O we O refer O to O the O two O dimeric B-oligomeric_state types O as O “ O head B-protein_state to I-protein_state head I-protein_state ” O and O “ O back B-protein_state to I-protein_state back I-protein_state ” O according O to O the O interacting O mode O ( O Fig O . O 2A O and O 2E O ), O with O the O total O buried O surface O areas O being O 316 O . O 8 O Å2 O and O 554 O . O 3 O Å2 O , O respectively O . O The O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state exhibits O a O clamp B-protein_state shape I-protein_state . O The O dimerization O occurs O mainly O via O hydrophobic O interactions O formed O by O A37 B-residue_name_number and O I40 B-residue_name_number on O the O α1 B-structure_element helices I-structure_element , O L50 B-residue_name_number on O the O β1 B-structure_element strands I-structure_element , O and O W55 B-residue_name_number on O the O β2 B-structure_element strands I-structure_element of O both O molecules O , O making O a O hydrophobic B-site interacting I-site core I-site ( O Fig O . O 2A O – O C O ). O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state presents O a O Y B-protein_state shape I-protein_state . O The O dimeric O interaction O is O mainly O hydrophilic O , O occurring O among O the O main O - O chain O and O side O - O chain O atoms O of O N68 B-residue_name_number , O L69 B-residue_name_number , O D70 B-residue_name_number and O R71 B-residue_name_number on O the O α2 B-structure_element - I-structure_element α3 I-structure_element loops I-structure_element and O R116 B-residue_name_number and O S120 B-residue_name_number on O the O α4 B-structure_element helices I-structure_element of O both O molecules O , O resulting O in O a O complex O hydrogen B-site bond I-site network I-site ( O Fig O . O 2D O – O F O ). O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O Overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O and O the O conserved B-site surface I-site in O YfiR B-protein . O ( O A O ) O The O overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O . O The O YfiBL43P B-mutant molecules O are O shown O in O cyan O and O yellow O . O The O YfiR B-protein molecules O are O shown O in O green O and O magenta O . O Two O interacting O regions O are O highlighted O by O red O rectangles O . O ( O B O ) O Structural B-experimental_method superposition I-experimental_method of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O To O illustrate O the O differences O between O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O apo B-protein_state YfiB B-protein is O shown O in O pink O , O except O residues O 34 B-residue_range – I-residue_range 70 I-residue_range are O shown O in O red O , O whereas O the O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O , O except O residues O 44 B-residue_range – I-residue_range 70 I-residue_range are O shown O in O blue O . O ( O C O ) O Close O - O up O view O of O the O differences O between O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O The O residues O proposed O to O contribute O to O YfiB B-protein activation O are O illustrated O in O sticks O . O The O key O residues O in O apo B-protein_state YfiB B-protein are O shown O in O red O and O those O in O YfiBL43P B-mutant are O shown O in O blue O . O ( O D O ) O Close O - O up O views O showing O interactions O in O regions B-structure_element I I-structure_element and I-structure_element II I-structure_element . O YfiBL43P B-mutant and O YfiR B-protein are O shown O in O cyan O and O green O , O respectively O . O ( O E O and O F O ) O The O conserved B-site surface I-site in O YfiR B-protein contributes O to O the O interaction O with O YfiB B-protein . O ( O G O ) O The O residues B-structure_element of O YfiR B-protein responsible O for O interacting O with O YfiB B-protein are O shown O in O green O sticks O , O and O the O proposed O YfiN B-site - I-site interacting I-site residues I-site are O shown O in O yellow O sticks O . O The O red O sticks O , O which O represent O the O YfiB B-site - I-site interacting I-site residues I-site , O are O also O responsible O for O the O proposed O interactions O with O YfiN B-protein To O gain O structural O insights O into O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O we O co B-experimental_method - I-experimental_method expressed I-experimental_method YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein ( O residues O 35 B-residue_range – I-residue_range 190 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element ), O but O failed O to O obtain O the O complex O , O in O accordance O with O a O previous O report O in O which O no B-protein_state stable I-protein_state complex O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly was O observed O ( O Malone O et O al O .,). O It O has O been O reported O that O single B-experimental_method mutants I-experimental_method of I-experimental_method Q39 B-residue_name_number , O L43 B-residue_name_number , O F48 B-residue_name_number and O W55 B-residue_name_number contribute O to O YfiB B-protein activation O leading O to O the O induction O of O the O SCV O phenotype O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,). O It O is O likely O that O these O residues O may O be O involved O in O the O conformational O changes O of O YfiB B-protein that O are O related O to O YfiR B-protein sequestration O ( O Fig O . O 3C O ). O Therefore O , O we O constructed B-experimental_method two I-experimental_method such I-experimental_method single I-experimental_method mutants I-experimental_method of O YfiB B-protein ( O YfiBL43P B-mutant and O YfiBF48S B-mutant ). O As O expected O , O both O mutants O form O a O stable B-protein_state complex B-protein_state with I-protein_state YfiR B-protein . O Finally O , O we O crystalized B-experimental_method YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state the O YfiBL43P B-mutant mutant B-protein_state and O solved O the O structure B-evidence at O 1 O . O 78 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method using O YfiR B-protein and O YfiB B-protein as O models O . O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O is O a O 2 O : O 2 O heterotetramer B-oligomeric_state ( O Fig O . O 3A O ) O in O which O the O YfiR B-protein dimer B-oligomeric_state is O clamped O by O two O separated O YfiBL43P B-mutant molecules O with O a O total O buried O surface O area O of O 3161 O . O 2 O Å2 O . O The O YfiR B-protein dimer B-oligomeric_state in O the O complex O is O identical O to O the O non B-protein_state - I-protein_state oxidized I-protein_state YfiR B-protein dimer B-oligomeric_state alone B-protein_state ( O Yang O et O al O .,), O with O only O Cys145 B-residue_name_number - O Cys152 B-residue_name_number of O the O two O disulfide B-ptm bonds I-ptm well O formed O , O suggesting O Cys71 B-residue_name_number - O Cys110 B-residue_name_number disulfide B-ptm bond I-ptm formation O is O not O essential O for O forming O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O . O The O N O - O terminal O structural O conformation O of O YfiBL43P B-mutant , O from O the O foremost O N O - O terminus O to O residue O D70 B-residue_name_number , O is O significantly O altered O compared O with O that O of O the O apo B-protein_state YfiB B-protein . O The O majority O of O the O α1 B-structure_element helix I-structure_element ( O residues O 34 B-residue_range – I-residue_range 43 I-residue_range ) O is O invisible O on O the O electron B-evidence density I-evidence map I-evidence , O and O the O α2 B-structure_element helix I-structure_element and O β1 B-structure_element and O β2 B-structure_element strands I-structure_element are O rearranged O to O form O a O long O loop B-structure_element containing O two O short O α B-structure_element - I-structure_element helix I-structure_element turns I-structure_element ( O Fig O . O 3B O and O 3C O ), O thus O embracing O the O YfiR B-protein dimer B-oligomeric_state . O The O observed O changes O in O conformation O of O YfiB B-protein and O the O results O of O mutagenesis B-experimental_method suggest O a O mechanism O by O which O YfiB B-protein sequesters O YfiR B-protein . O The O YfiB B-site - I-site YfiR I-site interface I-site can O be O divided O into O two O regions O ( O Fig O . O 3A O and O 3D O ). O Region B-structure_element I I-structure_element is O formed O by O numerous O main O - O chain O and O side O - O chain O hydrophilic O interactions O between O residues O E45 B-residue_name_number , O G47 B-residue_name_number and O E53 B-residue_name_number from O the O N O - O terminal O extended O loop B-structure_element of O YfiB B-protein and O residues O S57 B-residue_name_number , O R60 B-residue_name_number , O A89 B-residue_name_number and O H177 B-residue_name_number from O YfiR B-protein ( O Fig O . O 3D O - O I O ( O i O )). O Additionally O , O three O hydrophobic B-site anchoring I-site sites I-site exist O in O region B-structure_element I I-structure_element . O The O residues O F48 B-residue_name_number and O W55 B-residue_name_number of O YfiB B-protein are O inserted O into O the O hydrophobic B-site cores I-site mainly O formed O by O the O main O chain O and O side O chain O carbon O atoms O of O residues O S57 B-residue_name_number / O Q88 B-residue_name_number / O A89 B-residue_name_number / O N90 B-residue_name_number and O R60 B-residue_name_number / O R175 B-residue_name_number / O H177 B-residue_name_number of O YfiR B-protein , O respectively O ; O and O F57 B-residue_name_number of O YfiB B-protein is O inserted O into O the O hydrophobic B-site pocket I-site formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O In O region B-structure_element II I-structure_element , O the O side O chains O of O R96 B-residue_name_number , O E98 B-residue_name_number and O E157 B-residue_name_number from O YfiB B-protein interact O with O the O side O chains O of O E163 B-residue_name_number , O S146 B-residue_name_number and O R171 B-residue_name_number from O YfiR B-protein , O respectively O . O Additionally O , O the O main O chains O of O I163 B-residue_name_number and O V165 B-residue_name_number from O YfiB B-protein form O hydrogen O bonds O with O the O main O chains O of O L166 B-residue_name_number and O A164 B-residue_name_number from O YfiR B-protein , O respectively O , O and O the O main O chain O of O P166 B-residue_name_number from O YfiB B-protein interacts O with O the O side O chain O of O R185 B-residue_name_number from O YfiR B-protein ( O Fig O . O 3D O - O II O ). O These O two O regions O contribute O a O robust O hydrogen B-site - I-site bonding I-site network I-site to O the O YfiB B-site - I-site YfiR I-site interface I-site , O resulting O in O a O tightly O bound O complex O . O Based O on O the O observations O that O two O separated O YfiBL43P B-mutant molecules O form O a O 2 O : O 2 O complex O structure B-evidence with O YfiR B-protein dimer B-oligomeric_state , O we O performed O an O analytical B-experimental_method ultracentrifugation I-experimental_method experiment O to O check O the O oligomeric O states O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant . O The O results O showed O that O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein exists O in O both O monomeric B-oligomeric_state and O dimeric B-oligomeric_state states O in O solution O , O while O YfiBL43P B-mutant primarily O adopts O the O monomer B-oligomeric_state state O in O solution O ( O Fig O . O 1C O – O D O ). O This O suggests O that O the O N O - O terminus O of O YfiB B-protein plays O an O important O role O in O forming O the O dimeric B-oligomeric_state YfiB B-protein in O solution O and O that O the O conformational O change O of O residue O L43 B-residue_name_number is O associated O with O the O stretch O of O the O N O - O terminus O and O opening O of O the O dimer B-oligomeric_state . O Therefore O , O it O is O possible O that O both O dimeric B-oligomeric_state types O might O exist O in O solution O . O For O simplicity O , O we O only O discuss O the O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state in O the O following O text O . O The O PG B-site - I-site binding I-site site I-site of O YfiB B-protein The O PG B-site - I-site binding I-site site I-site in O YfiB B-protein . O ( O A O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O the O H B-species . I-species influenzae I-species Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant complexed B-protein_state with I-protein_state sulfate B-chemical ions O . O ( O B O ) O Close O - O up O view O showing O the O key O residues O of O Pal B-protein_type interacting O with O the O m B-chemical - I-chemical Dap5 I-chemical ε I-chemical - I-chemical carboxylate I-chemical group O of O PG B-chemical - I-chemical P I-chemical . O Pal B-protein_type is O shown O in O wheat O and O PG B-chemical - I-chemical P I-chemical is O in O magenta O . O ( O C O ) O Close O - O up O view O showing O the O key O residues O of O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant interacting O with O a O sulfate B-chemical ion O . O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O ; O the O sulfate B-chemical ion O , O in O green O ; O and O the O water B-chemical molecule O , O in O yellow O . O ( O D O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O key O residues O are O shown O in O stick O . O Apo B-protein_state YfiB B-protein is O shown O in O yellow O and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant in O cyan O . O ( O E O and O F O ) O MST B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state and O ( O F O ) O YfiBL43P B-mutant with O PG B-chemical . O ( O G O ) O The O sequence B-experimental_method alignment I-experimental_method of O P B-species . I-species aeruginosa I-species and O E B-species . I-species coli I-species sources O of O YfiB B-protein , O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type PG B-protein_type - I-protein_type associated I-protein_type lipoprotein I-protein_type ( O Pal B-protein_type ) O is O highly B-protein_state conserved I-protein_state in O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain and O anchors O to O the O outer O membrane O through O an O N O - O terminal O lipid O attachment O and O to O PG O layer O through O its O periplasmic B-structure_element domain I-structure_element , O which O is O implicated O in O maintaining O outer O membrane O integrity O . O Previous O homology B-experimental_method modeling I-experimental_method studies O suggested O that O YfiB B-protein contains O a O Pal B-site - I-site like I-site PG I-site - I-site binding I-site site I-site ( O Parsons O et O al O .,), O and O the O mutation B-experimental_method of I-experimental_method two I-experimental_method residues I-experimental_method at O this O site O , O D102 B-residue_name_number and O G105 B-residue_name_number , O reduces O the O ability O for O biofilm O formation O and O surface O attachment O ( O Malone O et O al O .,). O In O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O , O one O sulfate B-chemical ion O is O found O at O the O bottom O of O each O YfiBL43P B-mutant molecule O ( O Fig O . O 3A O ) O and O forms O a O strong O hydrogen O bond O with O D102 B-residue_name_number of O YfiBL43P B-mutant ( O Fig O . O 4A O and O 4C O ). O Structural B-experimental_method superposition I-experimental_method between O YfiBL43P B-mutant and O Haemophilus B-species influenzae I-species Pal B-protein_type complexed B-protein_state with I-protein_state biosynthetic O peptidoglycan B-chemical precursor I-chemical ( O PG B-chemical - I-chemical P I-chemical ), O UDP B-chemical - I-chemical N I-chemical - I-chemical acetylmuramyl I-chemical - I-chemical L I-chemical - I-chemical Ala I-chemical - I-chemical α I-chemical - I-chemical D I-chemical - I-chemical Glu I-chemical - I-chemical m I-chemical - I-chemical Dap I-chemical - I-chemical D I-chemical - I-chemical Ala I-chemical - I-chemical D I-chemical - I-chemical Ala I-chemical ( O m B-chemical - I-chemical Dap I-chemical is O meso B-chemical - I-chemical diaminopimelate I-chemical ) O ( O PDB O code O : O 2aiz O ) O ( O Parsons O et O al O .,), O revealed O that O the O sulfate B-chemical ion O is O located O at O the O position O of O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O in O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O ( O Fig O . O 4A O ). O In O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O structure B-evidence , O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O interacts O with O the O side O - O chain O atoms O of O D71 B-residue_name_number and O the O main O - O chain O amide O of O D37 B-residue_name_number ( O Fig O . O 4B O ). O Similarly O , O in O the O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant structure B-evidence , O the O sulfate B-chemical ion O interacts O with O the O side O - O chain O atoms O of O D102 B-residue_name_number ( O corresponding O to O D71 B-residue_name_number in O Pal B-protein_type ) O and O R117 B-residue_name_number ( O corresponding O to O R86 B-residue_name_number in O Pal B-protein_type ) O and O the O main O - O chain O amide O of O N68 B-residue_name_number ( O corresponding O to O D37 B-residue_name_number in O Pal B-protein_type ). O Moreover O , O a O water B-chemical molecule O was O found O to O bridge O the O sulfate B-chemical ion O and O the O side O chains O of O N67 B-residue_name_number and O D102 B-residue_name_number , O strengthening O the O hydrogen B-site bond I-site network I-site ( O Fig O . O 4C O ). O In O addition O , O sequence B-experimental_method alignment I-experimental_method of O YfiB B-protein with O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type ( O proteins O containing O PG B-site - I-site binding I-site site I-site ) O showed O that O N68 B-residue_name_number and O D102 B-residue_name_number are O highly B-protein_state conserved I-protein_state ( O Fig O . O 4G O , O blue O stars O ), O suggesting O that O these O residues O contribute O to O the O PG O - O binding O ability O of O YfiB B-protein . O Interestingly O , O superposition B-experimental_method of O apo B-protein_state YfiB B-protein with O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant revealed O that O the O PG B-site - I-site binding I-site region I-site is O largely O altered O mainly O due O to O different B-protein_state conformation I-protein_state of O the O N68 B-residue_name_number containing O loop B-structure_element . O Compared O to O YfiBL43P B-mutant , O the O N68 B-residue_name_number - O containing O loop B-structure_element of O the O apo B-protein_state YfiB B-protein flips O away O about O 7 O Å O , O and O D102 B-residue_name_number and O R117 B-residue_name_number swing O slightly O outward O ; O thus O , O the O PG B-site - I-site binding I-site pocket I-site is O enlarged O with O no O sulfate B-chemical ion O or O water B-chemical bound O ( O Fig O . O 4D O ). O Therefore O , O we O proposed O that O the O PG B-chemical - O binding O ability O of O inactive B-protein_state YfiB B-protein might O be O weaker O than O that O of O active B-protein_state YfiB B-protein . O To O validate O this O , O we O performed O a O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ) O assay O to O measure O the O binding B-evidence affinities I-evidence of O PG B-chemical to O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant , O respectively O . O The O results O indicated O that O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiBL43P B-mutant is O 65 O . O 5 O μmol O / O L O , O which O is O about O 16 O - O fold O stronger O than O that O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein ( O Kd O = O 1 O . O 1 O mmol O / O L O ) O ( O Fig O . O 4E O – O F O ). O As O the O experiment O is O performed O in B-protein_state the I-protein_state absence I-protein_state of I-protein_state YfiR B-protein , O it O suggests O that O an O increase O in O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiB B-protein is O not O a O result O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O and O is O highly O coupled O to O the O activation O of O YfiB B-protein characterized O by O a O stretched B-protein_state N I-protein_state - I-protein_state terminal I-protein_state conformation I-protein_state . O The O conserved B-site surface I-site in O YfiR B-protein is O functional O for O binding O YfiB B-protein and O YfiN B-protein Calculation O using O the O ConSurf B-experimental_method Server I-experimental_method ( O http O :// O consurf O . O tau O . O ac O . O il O /), O which O estimates O the O evolutionary B-evidence conservation I-evidence of O amino O acid O positions O and O visualizes O information O on O the O structure B-site surface I-site , O revealed O a O conserved B-site surface I-site on O YfiR B-protein that O contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O Interestingly O , O the O majority O of O this O conserved B-site surface I-site contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O Malone O JG O et O al O . O have O reported O that O F151 B-residue_name_number , O E163 B-residue_name_number , O I169 B-residue_name_number and O Q187 B-residue_name_number , O located O near O the O C O - O terminus O of O YfiR B-protein , O comprise O a O putative O YfiN B-site binding I-site site I-site ( O Malone O et O al O .,). O Interestingly O , O these O residues O are O part O of O the O conserved B-site surface I-site of O YfiR B-protein ( O Fig O . O 3G O ). O F151 B-residue_name_number , O E163 B-residue_name_number and O I169 B-residue_name_number form O a O hydrophobic B-site core I-site while O , O Q187 B-residue_name_number is O located O at O the O end O of O the O α6 B-structure_element helix I-structure_element . O E163 B-residue_name_number and O I169 B-residue_name_number are O YfiB B-site - I-site interacting I-site residues I-site of O YfiR B-protein , O in O which O E163 B-residue_name_number forms O a O hydrogen O bond O with O R96 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O II O ) O and O I169 B-residue_name_number is O involved O in O forming O the O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number hydrophobic B-site core I-site for O anchoring O F57 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O Collectively O , O a O part O of O the O YfiB B-site - I-site YfiR I-site interface I-site overlaps O with O the O proposed O YfiR B-site - I-site YfiN I-site interface I-site , O suggesting O alteration O in O the O association O - O disassociation O equilibrium O of O YfiR B-protein - O YfiN B-protein and O hence O the O ability O of O YfiB B-protein to O sequester O YfiR B-protein . O YfiR B-protein binds O small O molecules O Previous O studies O indicated O that O YfiR B-protein constitutes O a O YfiB B-protein - O independent O sensing O device O that O can O activate O YfiN B-protein in O response O to O the O redox O status O of O the O periplasm O , O and O we O have O reported O YfiR B-protein structures B-evidence in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O earlier O , O revealing O that O the O Cys145 B-residue_name_number - O Cys152 B-residue_name_number disulfide B-ptm bond I-ptm plays O an O essential O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O However O , O whether O YfiR B-protein is O involved O in O other O regulatory O mechanisms O is O still O an O open O question O . O Overall O Structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O A O ) O Superposition B-experimental_method of O the O overall O structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O B O ) O Close O - O up O views O showing O the O key O residues O of O YfiR B-protein that O bind O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical . O The O electron B-evidence densities I-evidence of O VB6 B-chemical and O Trp B-chemical are O countered O at O 3 O . O 0σ O and O 2 O . O 3σ O , O respectively O , O in O | B-evidence Fo I-evidence |-| I-evidence Fc I-evidence | I-evidence maps I-evidence . O ( O C O ) O Superposition B-experimental_method of O the O hydrophobic B-site pocket I-site of O YfiR B-protein with O VB6 B-chemical , O L B-chemical - I-chemical Trp I-chemical and O F57 B-residue_name_number of O YfiB B-protein Intriguingly O , O a O Dali B-experimental_method search I-experimental_method ( O Holm O and O Rosenstrom O ,) O indicated O that O the O closest O homologs O of O YfiR B-protein shared O the O characteristic O of O being O able O to O bind O several O structurally O similar O small O molecules O , O such O as O L B-chemical - I-chemical Trp I-chemical , O L B-chemical - I-chemical Phe I-chemical , O B O - O group O vitamins O and O their O analogs O , O encouraging O us O to O test O whether O YfiR B-protein can O recognize O these O molecules O . O For O this O purpose O , O we O co B-experimental_method - I-experimental_method crystallized I-experimental_method YfiR B-protein or O soaked B-experimental_method YfiR B-protein crystals B-evidence with O different O small O molecules O , O including O L B-chemical - I-chemical Trp I-chemical and O B O - O group O vitamins O . O Fortunately O , O we O found O obvious O small B-evidence - I-evidence molecule I-evidence density I-evidence in O the O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein crystal B-evidence structures I-evidence ( O Fig O . O 5A O and O 5B O ), O and O in O both O structures B-evidence , O the O YfiR B-protein dimers B-oligomeric_state resemble O the O oxidized B-protein_state YfiR B-protein structure B-evidence in O which O both O two O disulfide B-ptm bonds I-ptm are O well O formed O ( O Yang O et O al O .,). O Functional O analysis O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical . O ( O A O and O B O ) O The O effect B-experimental_method of I-experimental_method increasing I-experimental_method concentrations I-experimental_method of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical on O YfiBL43P B-mutant - O induced O attachment O ( O bars O ). O The O relative B-evidence optical I-evidence density I-evidence is O represented O as O curves O . O Wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein is O used O as O negative O control O . O ( O C O and O D O ) O BIAcore B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O C O ) O VB6 B-chemical and O ( O D O ) O L B-chemical - I-chemical Trp I-chemical with O YfiR B-protein . O ( O E O – O G O ) O ITC B-experimental_method data O and O analysis O for O titration B-experimental_method of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state , O ( O F O ) O YfiBL43P O , O and O ( O G O ) O YfiBL43P B-mutant / O F57A B-mutant into O YfiR B-protein Structural B-experimental_method analyses I-experimental_method revealed O that O the O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical molecules O are O bound B-protein_state at I-protein_state the O periphery O of O the O YfiR B-protein dimer B-oligomeric_state , O but O not O at O the O dimer B-site interface I-site . O Interestingly O , O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical were O found O to O occupy O the O same O hydrophobic B-site pocket I-site , O formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein , O which O is O also O a O binding B-site pocket I-site for O F57 B-residue_name_number of O YfiB B-protein , O as O observed O in O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O ( O Fig O . O 5C O ). O To O evaluate O the O importance O of O F57 B-residue_name_number in O YfiBL43P B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O binding B-evidence affinities I-evidence of O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant for O YfiR B-protein were O measured O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O The O results O showed O Kd B-evidence values O of O 1 O . O 4 O × O 10 O − O 7 O mol O / O L O and O 5 O . O 3 O × O 10 O − O 7 O mol O / O L O for O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant , O respectively O , O revealing O that O the O YfiBL43P B-mutant / O F57A B-mutant mutant B-protein_state caused O a O 3 O . O 8 O - O fold O reduction O in O the O binding B-evidence affinity I-evidence compared O with O the O YfiBL43P B-mutant mutant B-protein_state ( O Fig O . O 6F O and O 6G O ). O In O parallel O , O to O better O understand O the O putative O functional O role O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O yfiB B-gene was O deleted B-experimental_method in O a O PAO1 B-species wild B-protein_state - I-protein_state type I-protein_state strain O , O and O a O construct B-experimental_method expressing I-experimental_method the O YfiBL43P B-mutant mutant B-protein_state was O transformed B-experimental_method into I-experimental_method the O PAO1 B-species ΔyfiB B-mutant strain O to O trigger O YfiBL43P B-mutant - O induced O biofilm O formation O . O Growth B-experimental_method and I-experimental_method surface I-experimental_method attachment I-experimental_method assays I-experimental_method were O carried O out O for O the O yfiB B-mutant - I-mutant L43P I-mutant strain O in O the O presence O of O increasing B-experimental_method concentrations I-experimental_method of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical . O As O shown O in O Fig O . O 6A O and O 6B O , O the O over B-experimental_method - I-experimental_method expression I-experimental_method of O YfiBL43P B-mutant induced O strong O surface O attachment O and O much O slower O growth O of O the O yfiB B-mutant - I-mutant L43P I-mutant strain O , O and O as O expected O , O a O certain O amount O of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical ( O 4 O – O 6 O mmol O / O L O for O VB6 B-chemical and O 6 O – O 10 O mmol O / O L O for O L B-chemical - I-chemical Trp I-chemical ) O could O reduce O the O surface O attachment O . O Interestingly O , O at O a O concentration O higher O than O 8 O mmol O / O L O , O VB6 B-chemical lost O its O ability O to O inhibit O biofilm O formation O , O implying O that O the O VB6 B-chemical - O involving O regulatory O mechanism O is O highly O complicated O and O remains O to O be O further O investigated O . O Of O note O , O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical have O been O reported O to O correlate O with O biofilm O formation O in O certain O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain ( O Grubman O et O al O .,; O Shimazaki O et O al O .,). O In O Helicobacter B-species pylori I-species in O particular O , O VB6 B-chemical biosynthetic O enzymes O act O as O novel O virulence O factors O , O and O VB6 B-chemical is O required O for O full O motility O and O virulence O ( O Grubman O et O al O .,). O In O E B-species . I-species coli I-species , O mutants O with O decreased O tryptophan B-chemical synthesis O show O greater O biofilm O formation O , O and O matured O biofilm O is O degraded O by O L B-chemical - I-chemical tryptophan I-chemical addition O ( O Shimazaki O et O al O .,). O To O answer O the O question O whether O competition O of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical for O the O YfiB B-protein F57 B-site - I-site binding I-site pocket I-site of O YfiR B-protein plays O an O essential O role O in O inhibiting O biofilm O formation O , O we O measured O the O binding B-evidence affinities I-evidence of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical for O YfiR B-protein via O BIAcore B-experimental_method experiments O . O The O results O showed O relatively O weak O Kd B-evidence values O of O 35 O . O 2 O mmol O / O L O and O 76 O . O 9 O mmol O / O L O for O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O respectively O ( O Fig O . O 6C O and O 6D O ). O Based O on O our O results O , O we O concluded O that O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical can O bind O to O YfiR B-protein , O however O , O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical alone B-protein_state may O have O little O effects O in O interrupting O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O mechanism O by O which O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical inhibits O biofilm O formation O remains O unclear O and O requires O further O investigation O . O Previous O studies O suggested O that O in O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O sequesters O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O inducing O the O diguanylate O cyclase O activity O of O YfiN B-protein to O allow O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiR B-protein , O indicating O that O YfiR B-protein forms O a O 2 O : O 2 O complex B-protein_state with I-protein_state YfiB B-protein via O a O region O composed O of O conserved O residues O . O Our O structural B-experimental_method data I-experimental_method analysis I-experimental_method shows O that O the O activated B-protein_state YfiB B-protein has O an O N B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element that O is O largely O altered O , O adopting O a O stretched B-protein_state conformation I-protein_state compared O with O the O compact B-protein_state conformation I-protein_state of O the O apo B-protein_state YfiB B-protein . O The O apo B-protein_state YfiB B-protein structure B-evidence constructed O beginning O at O residue O 34 B-residue_number has O a O compact B-protein_state conformation I-protein_state of O approximately O 45 O Å O in O length O . O In O addition O to O the O preceding B-residue_range 8 I-residue_range aa I-residue_range loop B-structure_element ( O from O the O lipid O acceptor O Cys26 B-residue_range to I-residue_range Gly34 I-residue_range ), O the O full B-protein_state length I-protein_state of O the O periplasmic O portion O of O apo B-protein_state YfiB B-protein can O reach O approximately O 60 O Å O . O It O was O reported O that O the O distance O between O the O outer O membrane O and O the O cell O wall O is O approximately O 50 O Å O and O that O the O thickness O of O the O PG O layer O is O approximately O 70 O Å O ( O Matias O et O al O .,). O Thus O , O YfiB B-protein alone B-protein_state represents O an O inactive B-protein_state form O that O may O only O partially O insert O into O the O PG O matrix O . O By O contrast O , O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant ( O residues O 44 B-residue_range – I-residue_range 168 I-residue_range ) O has O a O stretched B-protein_state conformation I-protein_state of O approximately O 55 O Å O in O length O . O In O addition O to O the O 17 B-residue_range preceding I-residue_range intracellular I-residue_range residues I-residue_range ( O from O the O lipid O acceptor O Cys26 B-residue_range to I-residue_range Leu43 I-residue_range ), O the O length O of O the O intracellular O portion O of O active B-protein_state YfiB B-protein may O extend O over O 100 O Å O , O assuming O a O fully B-protein_state stretched I-protein_state conformation I-protein_state . O Provided O that O the O diameter O of O the O widest O part O of O the O YfiB B-protein dimer B-oligomeric_state is O approximately O 64 O Å O , O which O is O slightly O smaller O than O the O smallest O diameter O of O the O PG O pore O ( O 70 O Å O ) O ( O Meroueh O et O al O .,), O the O YfiB B-protein dimer B-oligomeric_state should O be O able O to O penetrate O the O PG O layer O . O Regulatory O model O of O the O YfiBNR B-complex_assembly tripartite B-protein_state system O . O The O periplasmic B-structure_element domain I-structure_element of O YfiB B-protein and O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O are O depicted O according O to O the O crystal B-evidence structures I-evidence . O The O lipid O acceptor O Cys26 B-residue_name_number is O indicated O as O blue O ball O . O The O loop B-structure_element connecting O Cys26 B-residue_name_number and O Gly34 B-residue_name_number of O YfiB B-protein is O modeled O . O The O PAS B-structure_element domain I-structure_element of O YfiN B-protein is O shown O as O pink O oval O . O Once O activated B-protein_state by O certain O cell O stress O , O the O dimeric B-oligomeric_state YfiB B-protein transforms O from O a O compact B-protein_state conformation I-protein_state to O a O stretched B-protein_state conformation I-protein_state , O allowing O the O periplasmic B-structure_element domain I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state , O thus O relieving O the O repression O of O YfiN B-protein These O results O , O together O with O our O observation O that O activated B-protein_state YfiB B-protein has O a O much O higher O cell B-evidence wall I-evidence binding I-evidence affinity I-evidence , O and O previous O mutagenesis O data O showing O that O ( O 1 O ) O both O PG B-chemical binding O and O membrane O anchoring O are O required O for O YfiB B-protein activity O and O ( O 2 O ) O activating O mutations O possessing O an O altered O N O - O terminal O loop B-structure_element length O are O dominant O over O the O loss O of O PG B-chemical binding O ( O Malone O et O al O .,), O suggest O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O ( O Fig O . O 7 O ). O In O this O model O , O in O response O to O a O particular O cell O stress O that O is O yet O to O be O identified O , O the O dimeric B-oligomeric_state YfiB B-protein is O activated B-protein_state from O a O compact B-protein_state , O inactive B-protein_state conformation B-protein_state to O a O stretched B-protein_state conformation I-protein_state , O which O possesses O increased O PG B-chemical binding O affinity O . O This O allows O the O C B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O reach O , O bind O and O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state . O The O YfiBNR B-complex_assembly system O provides O a O good O example O of O a O delicate O homeostatic O system O that O integrates O multiple O signals O to O regulate O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O . O Homologs O of O the O YfiBNR B-complex_assembly system O are O functionally B-protein_state conserved I-protein_state in O P B-species . I-species aeruginosa I-species ( O Malone O et O al O .,; O Malone O et O al O .,), O E B-species . I-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O K B-species . I-species pneumonia I-species ( O Huertas O et O al O .,) O and O Y B-species . I-species pestis I-species ( O Ren O et O al O .,), O where O they O affect O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O and O biofilm O formation O . O The O mechanism O by O which O activated B-protein_state YfiB B-protein relieves O the O repression O of O YfiN B-protein may O be O applicable O to O the O YfiBNR B-complex_assembly system O in O other O bacteria B-taxonomy_domain and O to O analogous O outside O - O in O signaling O for O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O , O which O in O turn O may O be O relevant O to O the O development O of O drugs O that O can O circumvent O complicated O antibiotic O resistance O . O Predictive O features O of O ligand O ‐ O specific O signaling O through O the O estrogen B-protein_type receptor I-protein_type Some O estrogen B-protein receptor I-protein ‐ I-protein α I-protein ( O ERα B-protein )‐ O targeted O breast O cancer O therapies O such O as O tamoxifen B-chemical have O tissue O ‐ O selective O or O cell O ‐ O specific O activities O , O while O others O have O similar O activities O in O different O cell O types O . O To O identify O biophysical O determinants O of O cell O ‐ O specific O signaling O and O breast O cancer O cell O proliferation O , O we O synthesized B-experimental_method 241 O ERα B-protein ligands O based O on O 19 O chemical O scaffolds O , O and O compared O ligand O response O using O quantitative B-experimental_method bioassays I-experimental_method for O canonical O ERα B-protein activities O and O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Ligands O that O regulate O the O dynamics O and O stability O of O the O coactivator B-site ‐ I-site binding I-site site I-site in O the O C O ‐ O terminal O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element , O called O activation B-structure_element function I-structure_element ‐ I-structure_element 2 I-structure_element ( O AF B-structure_element ‐ I-structure_element 2 I-structure_element ), O showed O similar O activity O profiles O in O different O cell O types O . O Such O ligands O induced O breast O cancer O cell O proliferation O in O a O manner O that O was O predicted O by O the O canonical O recruitment O of O the O coactivators O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein and O induction O of O the O GREB1 B-protein proliferative O gene O . O For O some O ligand O series O , O a O single O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence in O the O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element predicted O their O proliferative O effects O . O In O contrast O , O the O N O ‐ O terminal O coactivator B-site ‐ I-site binding I-site site I-site , O activation B-structure_element function I-structure_element ‐ I-structure_element 1 I-structure_element ( O AF B-structure_element ‐ I-structure_element 1 I-structure_element ), O determined O cell O ‐ O specific O signaling O induced O by O ligands O that O used O alternate O mechanisms O to O control O cell O proliferation O . O Thus O , O incorporating O systems B-experimental_method structural I-experimental_method analyses I-experimental_method with O quantitative B-experimental_method chemical I-experimental_method biology I-experimental_method reveals O how O ligands O can O achieve O distinct O allosteric O signaling O outcomes O through O ERα B-protein . O Many O drugs O are O small O ‐ O molecule O ligands O of O allosteric O signaling O proteins O , O including O G B-protein_type protein I-protein_type ‐ I-protein_type coupled I-protein_type receptors I-protein_type ( O GPCRs B-protein_type ) O and O nuclear B-protein_type receptors I-protein_type such O as O ERα B-protein . O Small O ‐ O molecule O ligands O control O receptor O activity O by O modulating O recruitment O of O effector O enzymes O to O distal O regions O of O the O receptor O , O relative O to O the O ligand B-site ‐ I-site binding I-site site I-site . O For O example O , O selective O estrogen B-protein_type receptor I-protein_type modulators I-protein_type ( O SERMs B-protein_type ) O such O as O tamoxifen B-chemical ( O Nolvadex B-chemical ®; I-chemical AstraZeneca O ) O or O raloxifene B-chemical ( O Evista B-chemical ®; I-chemical Eli O Lilly O ) O ( O Fig O 1A O ) O block O the O ERα B-protein ‐ O mediated O proliferative O effects O of O the O native O estrogen B-chemical , O 17β B-chemical ‐ I-chemical estradiol I-chemical ( O E2 B-chemical ), O on O breast O cancer O cells O , O but O promote O beneficial O estrogenic O effects O on O bone O mineral O density O and O adverse O estrogenic O effects O such O as O uterine O proliferation O , O fatty O liver O , O or O stroke O ( O Frolik O et O al O , O 1996 O ; O Fisher O et O al O , O 1998 O ; O McDonnell O et O al O , O 2002 O ; O Jordan O , O 2003 O ). O Allosteric O control O of O ERα B-protein activity O Chemical O structures O of O some O common O ERα B-protein ligands O . O E2 B-chemical ‐ O rings O are O numbered O A O ‐ O D O . O The O E O ‐ O ring O is O the O common O site O of O attachment O for O BSC O found O in O many O SERMS B-protein_type . O ERα B-protein domain O organization O lettered O , O A O ‐ O F O . O DBD B-structure_element , O DNA B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O LBD B-structure_element , O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ; O AF B-structure_element , O activation B-structure_element function I-structure_element Schematic O illustration O of O the O canonical O ERα B-protein signaling O pathway O . O Linear O causality O model O for O ERα B-protein ‐ O mediated O cell O proliferation O . O Branched O causality O model O for O ERα B-protein ‐ O mediated O cell O proliferation O . O ERα B-protein contains O structurally B-protein_state conserved I-protein_state globular B-structure_element domains I-structure_element of O the O nuclear B-protein_type receptor I-protein_type superfamily I-protein_type , O including O a O DNA B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ( O DBD B-structure_element ) O that O is O connected O by O a O flexible B-protein_state hinge B-structure_element region I-structure_element to O the O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element ( O LBD B-structure_element ), O as O well O as O unstructured B-protein_state AB B-structure_element and O F B-structure_element domains O at O its O amino O and O carboxyl O termini O , O respectively O ( O Fig O 1B O ). O The O LBD B-structure_element contains O a O ligand O ‐ O dependent O coactivator B-site ‐ I-site binding I-site site I-site called O activation B-structure_element function I-structure_element ‐ I-structure_element 2 I-structure_element ( O AF B-structure_element ‐ I-structure_element 2 I-structure_element ). O However O , O the O agonist O activity O of O SERMs B-protein_type derives O from O activation B-structure_element function I-structure_element ‐ I-structure_element 1 I-structure_element ( O AF B-structure_element ‐ I-structure_element 1 I-structure_element )— O a O coactivator B-site recruitment I-site site I-site located O in O the O AB B-structure_element domain O ( O Berry O et O al O , O 1990 O ; O Shang O & O Brown O , O 2002 O ; O Abot O et O al O , O 2013 O ). O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O AF B-structure_element ‐ I-structure_element 2 I-structure_element bind O distinct O but O overlapping O sets O of O coregulators O ( O Webb O et O al O , O 1998 O ; O Endoh O et O al O , O 1999 O ; O Delage O ‐ O Mourroux O et O al O , O 2000 O ; O Yi O et O al O , O 2015 O ). O AF B-structure_element ‐ I-structure_element 2 I-structure_element binds O the O signature O LxxLL B-structure_element motif I-structure_element peptides O of O coactivators O such O as O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein ( O also O known O as O SRC B-protein ‐ I-protein 1 I-protein / I-protein 2 I-protein / I-protein 3 I-protein ). O AF B-structure_element ‐ I-structure_element 1 I-structure_element binds O a O separate O surface O on O these O coactivators O ( O Webb O et O al O , O 1998 O ; O Yi O et O al O , O 2015 O ). O Yet O , O it O is O unknown O how O different O ERα B-protein ligands O control O AF B-structure_element ‐ I-structure_element 1 I-structure_element through O the O LBD B-structure_element , O and O whether O this O inter O ‐ O domain O communication O is O required O for O cell O ‐ O specific O signaling O or O anti O ‐ O proliferative O responses O . O In O the O canonical O model O of O the O ERα B-protein signaling O pathway O ( O Fig O 1C O ), O E2 B-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein forms O a O homodimer B-oligomeric_state that O binds O DNA O at O estrogen B-site ‐ I-site response I-site elements I-site ( O EREs B-site ), O recruits O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein ( O Metivier O et O al O , O 2003 O ; O Johnson O & O O O ' O Malley O , O 2012 O ), O and O activates O the O GREB1 B-protein gene O , O which O is O required O for O proliferation O of O ERα B-protein ‐ O positive O breast O cancer O cells O ( O Ghosh O et O al O , O 2000 O ; O Rae O et O al O , O 2005 O ; O Deschenes O et O al O , O 2007 O ; O Liu O et O al O , O 2012 O ; O Srinivasan O et O al O , O 2013 O ). O However O , O ERα B-protein ‐ O mediated O proliferative O responses O vary O in O a O ligand O ‐ O dependent O manner O ( O Srinivasan O et O al O , O 2013 O ); O thus O , O it O is O not O known O whether O this O canonical O model O is O widely O applicable O across O diverse O ERα B-protein ligands O . O Our O long O ‐ O term O goal O is O to O be O able O to O predict O proliferative O or O anti O ‐ O proliferative O activity O of O a O ligand O in O different O tissues O from O its O crystal B-evidence structure I-evidence by O identifying O different O structural O perturbations O that O lead O to O specific O signaling O outcomes O . O The O simplest O response O model O for O ligand O ‐ O specific O proliferative O effects O is O a O linear O causality O model O , O where O the O degree O of O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O in O turn O drives O ligand O ‐ O specific O cell O proliferation O ( O Fig O 1D O ). O In O this O signaling O model O , O multiple O coregulator O binding O events O and O target O genes O ( O Won O Jeong O et O al O , O 2012 O ; O Nwachukwu O et O al O , O 2014 O ), O LBD B-structure_element conformation O , O nucleocytoplasmic O shuttling O , O the O occupancy O and O dynamics O of O DNA O binding O , O and O other O biophysical O features O could O contribute O independently O to O cell O proliferation O ( O Lickwar O et O al O , O 2012 O ). O To O test O these O signaling O models O , O we O profiled O a O diverse O library O of O ERα B-protein ligands O using O systems O biology O approaches O to O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method and O chemical B-experimental_method biology I-experimental_method ( O Srinivasan O et O al O , O 2013 O ), O including O a O series O of O quantitative O bioassays O for O ERα B-protein function O that O were O statistically O robust O and O reproducible O , O based O on O the O Z B-evidence ’‐ I-evidence statistic I-evidence ( O Fig O EV1A O and O B O ; O see O Materials O and O Methods O ). O We O also O determined B-experimental_method the O structures B-evidence of O 76 O distinct O ERα B-protein LBD B-structure_element complexes O bound B-protein_state to I-protein_state different O ligand O types O , O which O allowed O us O to O understand O how O diverse O ligand O scaffolds O distort O the O active B-protein_state conformation O of O the O ERα B-protein LBD B-structure_element . O Our O findings O here O indicate O that O specific O structural O perturbations O can O be O tied O to O ligand O ‐ O selective O domain O usage O and O signaling O patterns O , O thus O providing O a O framework O for O structure O ‐ O based O design O of O improved O breast O cancer O therapeutics O , O and O understanding O the O different O phenotypic O effects O of O environmental O estrogens B-chemical . O High O ‐ O throughput O screens O for O ERα B-protein ligand O profiling O Summary O of O ligand B-experimental_method screening I-experimental_method assays I-experimental_method used O to O measure O ER O ‐ O mediated O activities O . O ERE B-structure_element , O estrogen B-structure_element ‐ I-structure_element response I-structure_element element I-structure_element ; O Luc B-experimental_method , O luciferase B-experimental_method reporter I-experimental_method gene I-experimental_method ; O M2H B-experimental_method , O mammalian B-experimental_method 2 I-experimental_method ‐ I-experimental_method hybrid I-experimental_method ; O UAS B-structure_element , O upstream B-structure_element ‐ I-structure_element activating I-structure_element sequence I-structure_element . O Strength O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element signaling O does O not O determine O cell O ‐ O specific O signaling O To O compare O ERα B-protein signaling O induced O by O diverse O ligand O types O , O we O synthesized B-experimental_method and I-experimental_method assayed I-experimental_method a O library O of O 241 O ERα B-protein ligands O containing O 19 O distinct O molecular O scaffolds O . O These O include O 15 O indirect O modulator O series O , O which O lack B-protein_state a O SERM B-protein_type ‐ I-protein_type like I-protein_type side O chain O and O modulate O coactivator O binding O indirectly O from O the O ligand B-site ‐ I-site binding I-site pocket I-site ( O Fig O 2A O – O E O ; O Dataset O EV1 O ) O ( O Zheng O et O al O , O 2012 O ) O ( O Zhu O et O al O , O 2012 O ) O ( O Muthyala O et O al O , O 2003 O ; O Seo O et O al O , O 2006 O ) O ( O Srinivasan O et O al O , O 2013 O ) O ( O Wang O et O al O , O 2012 O ) O ( O Liao O et O al O , O 2014 O ) O ( O Min O et O al O , O 2013 O ). O We O also O generated O four O direct O modulator O series O with O side O chains O designed O to O directly O dislocate O h12 B-structure_element and O thereby O completely O occlude O the O AF B-site ‐ I-site 2 I-site surface I-site ( O Fig O 2C O and O E O ; O Dataset O EV1 O ) O ( O Kieser O et O al O , O 2010 O ). O Ligand B-experimental_method profiling I-experimental_method using O our O quantitative B-experimental_method bioassays I-experimental_method revealed O a O wide O range O of O ligand O ‐ O induced O GREB1 B-protein expression O , O reporter O gene O activities O , O ERα B-protein ‐ O coactivator O interactions O , O and O proliferative O effects O on O MCF O ‐ O 7 O breast O cancer O cells O ( O Figs O EV1 O and O EV2A O – O J O ). O This O wide O variance O enabled O us O to O probe O specific O features O of O ERα B-protein signaling O using O ligand B-experimental_method class I-experimental_method analyses I-experimental_method , O and O identify O signaling O patterns O shared O by O specific O ligand O series O or O scaffolds O . O Classes O of O compounds O in O the O ERα B-protein ligand O library O Structure B-evidence of O the O E2 B-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBD B-structure_element in B-protein_state complex I-protein_state with I-protein_state an O NCOA2 B-protein peptide O of O ( O PDB O 1GWR O ). O Structural O details O of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state the O indicated O ligands O . O Unlike O E2 B-chemical ( O PDB O 1GWR O ), O TAM B-chemical is O a O direct O modulator O with O a O BSC O that O dislocates O h12 B-structure_element to O block O the O NCOA2 B-site ‐ I-site binding I-site site I-site ( O PDB O 3ERT O ). O OBHS B-chemical is O an O indirect O modulator O that O dislocates O the O h11 B-structure_element C O ‐ O terminus O to O destabilize O the O h11 B-site – I-site h12 I-site interface I-site ( O PDB O 4ZN9 O ). O The O ERα B-protein ligand O library O contains O 241 O ligands O representing O 15 O indirect O modulator O scaffolds O , O plus O 4 O direct O modulator O scaffolds O . O ERα B-protein ligands O induced O a O range O of O agonist O activity O profiles O To O this O end O , O we O compared O the O average O ligand O ‐ O induced O GREB1 B-protein mRNA O levels O in O MCF O ‐ O 7 O cells O and O 3 B-experimental_method × I-experimental_method ERE I-experimental_method ‐ I-experimental_method Luc I-experimental_method reporter O gene O activity O in O Ishikawa O endometrial O cancer O cells O ( O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method ) O or O in O HepG2 O cells O transfected O with O wild B-protein_state ‐ I-protein_state type I-protein_state ERα B-protein ( O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state ) O ( O Figs O 3A O and O EV2A O – O C O ). O Direct O modulators O showed O significant O differences O in O average O activity O between O cell O types O except O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O , O which O had O similar O low O agonist O activities O in O the O three O cell O types O . O While O it O was O known O that O direct O modulators O such O as O tamoxifen B-chemical drive O cell O ‐ O specific O signaling O , O these O experiments O reveal O that O indirect O modulators O also O drive O cell O ‐ O specific O signaling O , O since O eight O of O fourteen O classes O showed O significant O differences O in O average O activity O ( O Figs O 3A O and O EV2A O – O C O ). O Ligand O ‐ O specific O signaling O underlies O ERα B-protein ‐ O mediated O cell O proliferation O ( O A O ) O Ligand O ‐ O specific O ERα B-protein activities O in O HepG2 O , O Ishikawa O and O MCF O ‐ O 7 O cells O . O The O ligand O ‐ O induced O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O and O GREB1 B-protein mRNA O levels O are O shown O by O scaffold O ( O mean O + O SD O ). O ( O B O ) O Ligand O class B-experimental_method analysis I-experimental_method of O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state and O ERα B-mutant ‐ I-mutant ΔAB I-mutant activities O in O HepG2 O cells O . O Significant O sensitivity O to O AB B-structure_element domain O deletion O was O determined O by O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method ( O n O = O number O of O ligands O per O scaffold O in O Fig O 2 O ). O Correlation B-experimental_method and I-experimental_method regression I-experimental_method analyses I-experimental_method in O a O large O test O set O . O In O cluster O 1 O , O the O first O three O comparisons O ( O rows O ) O showed O significant O positive O correlations O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O , O P B-evidence ≤ O 0 O . O 05 O ). O In O cluster O 2 O , O only O one O of O these O comparisons O revealed O a O significant O positive O correlation O , O while O none O was O significant O in O cluster O 3 O . O +, O statistically O significant O correlations O gained O by O deletion B-experimental_method of O the O AB B-structure_element or O F B-structure_element domains O . O −, O significant O correlations O lost O upon O deletion O of O AB B-structure_element or O F B-structure_element domains O . O Tamoxifen B-chemical depends O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O its O cell O ‐ O specific O activity O ( O Sakamoto O et O al O , O 2002 O ); O therefore O , O we O asked O whether O cell O ‐ O specific O signaling O observed O here O is O due O to O a O similar O dependence O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O activity O ( O Fig O EV1 O ). O To O test O this O idea O , O we O compared O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O each O scaffold O in O HepG2 O cells O co B-experimental_method ‐ I-experimental_method transfected I-experimental_method with O wild B-protein_state ‐ I-protein_state type I-protein_state ERα B-protein or O with O ERα B-protein lacking B-protein_state the I-protein_state AB B-structure_element domain O ( O Figs O 1B O and O EV1 O ). O While O E2 B-chemical showed O similar O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state and O ERα B-mutant ‐ I-mutant ΔAB I-mutant activities O , O tamoxifen B-chemical showed O complete O loss O of O activity O without B-protein_state the O AB B-structure_element domain O ( O Fig O EV1B O ). O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O significantly O reduced O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O 14 O scaffolds O ( O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence ≤ O 0 O . O 05 O ) O ( O Fig O 3B O ). O These O “ O AF B-structure_element ‐ I-structure_element 1 I-structure_element ‐ O sensitive O ” O activities O were O exhibited O by O both O direct O and O indirect O modulators O , O and O were O not O limited O to O scaffolds O that O showed O cell O ‐ O specific O signaling O ( O Fig O 3A O and O B O ). O Thus O , O the O strength O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element signaling O does O not O determine O cell O ‐ O specific O signaling O . O Identifying O cell O ‐ O specific O signaling O clusters O in O ERα B-protein ligand O classes O For O each O ligand O class O or O scaffold O , O we O calculated O the O Pearson B-evidence ' I-evidence s I-evidence correlation I-evidence coefficient I-evidence , O r B-evidence , O for O pairwise O comparison O of O activity O profiles O in O breast O ( O GREB1 B-protein ), O liver O ( O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ), O and O endometrial O cells O ( O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method ). O The O value O of O r B-evidence ranges O from O − O 1 O to O 1 O , O and O it O defines O the O extent O to O which O the O data O fit O a O straight O line O when O compounds O show O similar O agonist O / O antagonist O activity O profiles O between O cell O types O ( O Fig O EV3A O ). O We O also O calculated O the O coefficient B-evidence of I-evidence determination I-evidence , O r B-evidence 2 I-evidence , O which O describes O the O percentage O of O variance O in O a O dependent O variable O such O as O proliferation O that O can O be O predicted O by O an O independent O variable O such O as O GREB1 B-protein expression O . O We O present O both O calculations O as O r B-evidence 2 I-evidence to O readily O compare O signaling O specificities O using O a O heat O map O on O which O the O red O – O yellow O palette O indicates O significant O positive O correlations O ( O P B-evidence ≤ O 0 O . O 05 O , O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O ), O while O the O blue O palette O denotes O negative O correlations O ( O Fig O 3C O – O F O ). O The O side O chain O of O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O induces O cell O ‐ O specific O signaling O Correlation O analysis O of O OBHS B-chemical versus O OBHS B-chemical ‐ I-chemical BSC I-chemical activity O across O cell O types O . O Correlation O analysis O of O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔAB I-mutant activity O versus O endogenous O ERα B-protein activity O of O OBHS B-chemical analogs O . O In O panel O ( O D O ), O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state activity O from O panel O ( O B O ) O is O shown O for O comparison O . O Correlation O analysis O of O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔF I-mutant activity O versus O endogenous O ERα B-protein activities O of O OBHS B-chemical analogs O . O Correlation O analysis O of O MCF O ‐ O 7 O cell O proliferation O versus O NCOA2 B-protein / I-protein 3 I-protein recruitment O or O GREB1 B-protein levels O observed O in O response O to O ( O G O ) O OBHS B-chemical ‐ I-chemical N I-chemical and O ( O H O ) O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O . O Scaffolds O in O cluster O 1 O exhibited O strongly O correlated O GREB1 B-protein levels O , O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O profiles O across O the O three O cell O types O ( O Fig O 3C O lanes O 1 O – O 4 O ), O suggesting O these O ligands O use O similar O ERα B-protein signaling O pathways O in O the O breast O , O endometrial O , O and O liver O cell O types O . O This O cluster O includes O WAY B-chemical ‐ I-chemical C I-chemical , O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O and O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O , O all O of O which O are O indirect O modulators O . O This O cluster O includes O two O classes O of O direct O modulators O ( O cyclofenil B-chemical ‐ I-chemical ASC I-chemical and O WAY B-chemical dimer I-chemical ), O and O six O classes O of O indirect O modulators O ( O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O furan B-chemical , O and O WAY B-chemical ‐ I-chemical D I-chemical ). O For O example O , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O furan B-chemical , O and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical drove O positively O correlated O GREB1 B-protein levels O and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method but O not O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state activity O ( O Fig O 3C O lanes O 5 O – O 7 O ). O In O contrast O , O WAY B-chemical dimer I-chemical and O WAY B-chemical ‐ I-chemical D I-chemical analogs O drove O positively O correlated O GREB1 B-protein levels O and O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state but O not O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O ( O Fig O 3C O lanes O 8 O and O 9 O ). O This O cluster O includes O two O direct O modulator O scaffolds O ( O OBHS B-chemical ‐ I-chemical ASC I-chemical and O OBHS B-chemical ‐ I-chemical BSC I-chemical ), O and O five O indirect O modulator O scaffolds O ( O A B-chemical ‐ I-chemical CD I-chemical , O cyclofenil B-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical , O imine B-chemical , O and O imidazopyridine B-chemical ). O These O results O suggest O that O addition O of O an O extended O side O chain O to O an O ERα B-protein ligand O scaffold O is O sufficient O to O induce O cell O ‐ O specific O signaling O , O where O the O relative O activity O profiles O of O the O individual O ligands O change O between O cell O types O . O This O is O demonstrated O by O directly O comparing O the O signaling O specificities O of O matched O OBHS B-chemical ( O indirect O modulator O , O cluster O 1 O ) O and O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O ( O direct O modulator O , O cluster O 3 O ), O which O differ O only O in O the O basic O side O chain O ( O Fig O 2E O ). O The O activities O of O OBHS B-chemical analogs O were O positively O correlated O across O the O three O cell O types O , O but O the O side O chain O of O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O was O sufficient O to O abolish O these O correlations O ( O Figs O 3C O lanes O 1 O and O 19 O , O and O EV3A O – O C O ). O Thus O , O examining O the O correlated O patterns O of O ERα B-protein activity O within O each O scaffold O demonstrates O that O an O extended O side O chain O is O not O required O for O cell O ‐ O specific O signaling O . O Modulation O of O signaling O specificity O by O AF B-structure_element ‐ I-structure_element 1 I-structure_element To O evaluate O the O role O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O the O F B-structure_element domain O in O ERα B-protein signaling O specificity O , O we O compared O activity O of O truncated O ERα B-protein constructs O in O HepG2 O liver O cells O with O endogenous O ERα B-protein activity O in O the O other O cell O types O . O The O positive O correlation O between O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O or O GREB1 B-protein levels O induced O by O scaffolds O in O cluster O 1 O was O generally O retained O without O the O AB B-structure_element domain O , O or O the O F B-structure_element domain O ( O Fig O 3D O lanes O 1 O – O 4 O ). O This O demonstrates O that O the O signaling O specificities O underlying O these O positive O correlations O are O not O modified O by O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O OBHS B-chemical analogs O showed O an O average O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔAB I-mutant activity O of O 3 O . O 2 O % O ± O 3 O ( O mean O + O SEM O ) O relative O to O E2 B-chemical . O Despite O this O nearly O complete O lack O of O activity O , O the O pattern O of O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-mutant ‐ I-mutant ΔAB I-mutant activity O was O still O highly O correlated O with O the O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O and O GREB1 B-protein expression O ( O Fig O EV3D O and O E O ), O demonstrating O that O very O small O AF B-structure_element ‐ I-structure_element 2 I-structure_element activities O can O be O amplified O by O AF B-structure_element ‐ I-structure_element 1 I-structure_element to O produce O robust O signals O . O Similarly O , O deletion B-experimental_method of I-experimental_method the O F B-structure_element domain O did O not O abolish O correlations O between O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method or O GREB1 B-protein levels O induced O by O OBHS B-chemical analogs O ( O Fig O EV3F O ). O These O similar O patterns O of O ligand O activity O in O the O wild B-protein_state ‐ I-protein_state type I-protein_state and O deletion O mutants B-protein_state suggest O that O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O the O F B-structure_element domain O purely O amplify O the O AF B-structure_element ‐ I-structure_element 2 I-structure_element activities O of O ligands O in O cluster O 1 O . O In O contrast O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element was O a O determinant O of O signaling O specificity O for O scaffolds O in O cluster O 2 O . O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element or O F B-structure_element domain O altered O correlations O for O six O of O the O eight O scaffolds O in O this O cluster O ( O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O WAY B-chemical ‐ I-chemical D I-chemical , O WAY B-chemical dimer I-chemical , O and O cyclofenil B-chemical ‐ I-chemical ASC I-chemical ) O ( O Fig O 3D O lanes O 5 O – O 12 O ). O Comparing O Fig O 3C O and O D O , O the O + O and O − O signs O indicate O where O the O deletion B-experimental_method mutant I-experimental_method assays I-experimental_method led O to O a O gain O or O loss O of O statically O significant O correlation O , O respectively O . O Thus O , O in O cluster O 2 O , O AF B-structure_element ‐ I-structure_element 1 I-structure_element substantially O modulated O the O specificity O of O ligands O with O cell O ‐ O specific O activity O ( O Fig O 3D O lanes O 5 O – O 12 O ). O For O ligands O in O cluster O 3 O , O we O could O not O eliminate O a O role O for O AF B-structure_element ‐ I-structure_element 1 I-structure_element in O determining O signaling O specificity O , O since O this O cluster O lacked O positively O correlated O activity O profiles O ( O Fig O 3C O ), O and O deletion B-experimental_method of I-experimental_method the O AB B-structure_element or O F B-structure_element domain O rarely O induced O such O correlations O ( O Fig O 3D O ), O except O for O A B-chemical ‐ I-chemical CD I-chemical and O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O , O where O deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O or O F B-structure_element domain O led O to O positive O correlations O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O and O / O or O GREB1 B-protein levels O ( O Fig O 3D O lanes O 13 O and O 18 O ). O Thus O , O ligands O in O cluster O 2 O rely O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O both O activity O ( O Fig O 3B O ) O and O signaling O specificity O ( O Fig O 3D O ). O Ligand O ‐ O specific O control O of O GREB1 B-protein expression O To O determine O whether O ligand O classes O control O expression O of O native O ERα B-protein target O genes O through O the O canonical O linear O signaling O pathway O , O we O performed O pairwise B-experimental_method linear I-experimental_method regression I-experimental_method analyses I-experimental_method using O ERα B-complex_assembly – I-complex_assembly NCOA1 I-complex_assembly / I-complex_assembly 2 I-complex_assembly / I-complex_assembly 3 I-complex_assembly interactions O in O M2H B-experimental_method assay I-experimental_method as O independent O predictors O of O GREB1 B-protein expression O ( O the O dependent O variable O ) O ( O Figs O EV1 O and O EV2A O , O F O – O H O ). O In O cluster O 1 O , O the O recruitment O of O NCOA1 B-protein and O NCOA2 B-protein was O highest O for O WAY B-chemical ‐ I-chemical C I-chemical , O followed O by O triaryl B-chemical ‐ I-chemical ethylene I-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O and O OBHS B-chemical series O , O while O for O NCOA3 B-protein , O OBHS B-chemical ‐ I-chemical N I-chemical compounds O induced O the O most O recruitment O and O OBHS B-chemical ligands O were O inverse O agonists O ( O Fig O EV2F O – O H O ). O The O average O induction O of O GREB1 B-protein by O cluster O 1 O ligands O showed O greater O variance O , O with O a O range O between O ~ O 25 O and O ~ O 75 O % O for O OBHS B-chemical and O a O range O from O full O agonist O to O inverse O agonist O for O the O others O in O cluster O 1 O ( O Fig O EV2A O ). O GREB1 B-protein levels O induced O by O OBHS B-chemical analogs O were O determined O by O recruitment O of O NCOA1 B-protein but O not O NCOA2 B-protein / I-protein 3 I-protein ( O Fig O 3E O lane O 1 O ), O suggesting O that O there O may O be O alternate O or O preferential O use O of O these O coactivators O by O different O classes O . O However O , O in O cluster O 1 O , O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O generally O predicted O GREB1 B-protein levels O ( O Fig O 3E O lanes O 1 O – O 4 O ), O consistent O with O the O canonical O signaling O model O ( O Fig O 1D O ). O For O clusters O 2 O and O 3 O , O GREB1 B-protein activity O was O generally O not O predicted O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O . O Direct O modulators O showed O low O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O EV2F O – O H O ), O but O only O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O had O NCOA2 B-protein recruitment O profiles O that O predicted O a O full O range O of O effects O on O GREB1 B-protein levels O ( O Figs O 3E O lanes O 9 O , O 11 O , O 18 O – O 19 O , O and O EV2A O ). O The O indirect O modulators O in O clusters O 2 O and O 3 O stimulated O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O and O GREB1 B-protein expression O with O substantial O variance O ( O Figs O 3A O and O EV2F O – O H O ). O However O , O ligand O ‐ O induced O GREB1 B-protein levels O were O generally O not O determined O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O 3E O lanes O 5 O – O 19 O ), O consistent O with O an O alternate O causality O model O ( O Fig O 1E O ). O Out O of O 11 O indirect O modulator O series O in O cluster O 2 O or O 3 O , O only O the O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical class O had O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O profiles O that O predicted O GREB1 B-protein levels O ( O Fig O 3E O lane O 12 O ). O These O results O suggest O that O compounds O that O show O cell O ‐ O specific O signaling O do O not O activate O GREB1 B-protein , O or O use O coactivators O other O than O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein to O control O GREB1 B-protein expression O ( O Fig O 1E O ). O To O determine O mechanisms O for O ligand O ‐ O dependent O control O of O breast O cancer O cell O proliferation O , O we O performed O linear B-experimental_method regression I-experimental_method analyses I-experimental_method across O the O 19 O scaffolds O using O MCF O ‐ O 7 O cell O proliferation O as O the O dependent O variable O , O and O the O other O activities O as O independent O variables O ( O Fig O 3F O ). O In O cluster O 1 O , O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O , O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O , O and O GREB1 B-protein levels O generally O predicted O the O proliferative O response O ( O Fig O 3F O lanes O 2 O – O 4 O ). O With O the O OBHS B-chemical ‐ I-chemical N I-chemical compounds O , O NCOA3 B-protein and O GREB1 B-protein showed O near O perfect O prediction O of O proliferation O ( O Fig O EV3G O ), O with O unexplained O variance O similar O to O the O noise O in O the O assays O . O The O lack O of O significant O predictors O for O OBHS B-chemical analogs O ( O Fig O 3F O lane O 1 O ) O reflects O their O small O range O of O proliferative O effects O on O MCF O ‐ O 7 O cells O ( O Fig O EV2I O ). O The O significant O correlations O with O GREB1 B-protein expression O and O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O observed O in O this O cluster O are O consistent O with O the O canonical O signaling O model O ( O Fig O 1D O ), O where O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O then O drives O proliferation O . O Despite O this O phenotypic O variance O , O proliferation O was O not O generally O predicted O by O correlated O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O and O GREB1 B-protein induction O ( O Figs O 3F O lanes O 5 O – O 19 O , O and O EV3H O ). O Out O of O 15 O ligand O series O in O these O clusters O , O only O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O induced O a O proliferative O response O that O was O predicted O by O GREB1 B-protein levels O , O which O were O not O determined O by O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O 3E O and O F O lane O 10 O ). O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O cyclofenil B-chemical , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical , O and O imidazopyridine B-chemical analogs O had O NCOA1 B-protein / I-protein 3 I-protein recruitment O profiles O that O predicted O their O proliferative O effects O , O without O determining O GREB1 B-protein levels O ( O Fig O 3E O and O F O , O lanes O 5 O and O 14 O – O 16 O ). O Similarly O , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O cyclofenil B-chemical ‐ I-chemical ASC I-chemical , O and O OBHS B-chemical ‐ I-chemical ASC I-chemical had O positively O correlated O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O and O GREB1 B-protein levels O , O but O none O of O these O activities O determined O their O proliferative O effects O ( O Fig O 3E O and O F O lanes O 11 O – O 12 O and O 18 O ). O For O ligands O that O show O cell O ‐ O specific O signaling O , O ERα B-protein ‐ O mediated O recruitment O of O other O coregulators O and O activation O of O other O target O genes O likely O determine O their O proliferative O effects O on O MCF O ‐ O 7 O cells O . O NCOA3 B-protein occupancy O at O GREB1 B-protein did O not O predict O the O proliferative O response O We O also O questioned O whether O promoter O occupancy O by O coactivators O is O statistically O robust O and O reproducible O for O ligand O class O analysis O using O a O chromatin B-experimental_method immunoprecipitation I-experimental_method ( I-experimental_method ChIP I-experimental_method )‐ I-experimental_method based I-experimental_method quantitative I-experimental_method assay I-experimental_method , I-experimental_method and O whether O it O has O a O better O predictive O power O than O the O M2H B-experimental_method assay I-experimental_method . O ERα B-protein and O NCOA3 B-protein cycle O on O and O off O the O GREB1 B-protein promoter O ( O Nwachukwu O et O al O , O 2014 O ). O Therefore O , O we O first O performed O a O time B-experimental_method ‐ I-experimental_method course I-experimental_method study I-experimental_method , O and O found O that O E2 B-chemical and O the O WAY B-chemical ‐ I-chemical C I-chemical analog O , O AAPII B-chemical ‐ I-chemical 151 I-chemical ‐ I-chemical 4 I-chemical , O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O in O a O temporal O cycle O that O peaked O after O 45 O min O in O MCF O ‐ O 7 O cells O ( O Fig O 4A O ). O At O this O time O point O , O other O WAY B-chemical ‐ I-chemical C I-chemical analogs O also O induced O recruitment O of O NCOA3 B-protein at O this O site O to O varying O degrees O ( O Fig O 4B O ). O The O Z B-evidence ’ I-evidence for O this O assay O was O 0 O . O 6 O , O showing O statistical O robustness O ( O see O Materials O and O Methods O ). O We O prepared O biological O replicates O with O different O cell O passage O numbers O and O separately O prepared O samples O , O which O showed O r B-evidence 2 I-evidence of O 0 O . O 81 O , O demonstrating O high O reproducibility O ( O Fig O 4C O ). O NCOA3 B-protein occupancy O at O GREB1 B-protein is O statistically O robust O but O does O not O predict O transcriptional O activity O Kinetic B-experimental_method ChIP I-experimental_method assay I-experimental_method examining O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein gene O in O MCF O ‐ O 7 O cells O stimulated O with O E2 B-chemical or O the O indicated O WAY B-chemical ‐ I-chemical C I-chemical analog O . O NCOA3 B-protein occupancy O at O GREB1 B-protein was O compared O by O ChIP B-experimental_method assay I-experimental_method 45 O min O after O stimulation O with O vehicle O , O E2 B-chemical , O or O the O WAY B-chemical ‐ I-chemical C I-chemical analogs O . O In O panel O ( O B O ), O the O average O recruitment O of O two O biological O replicates O are O shown O as O mean O + O SEM O , O and O the O Z B-evidence ‐ I-evidence score I-evidence is O indicated O . O In O panel O ( O C O ), O correlation B-experimental_method analysis I-experimental_method was O performed O for O two O biological O replicates O . O Linear B-experimental_method regression I-experimental_method analyses I-experimental_method comparing O the O ability O of O NCOA3 B-protein recruitment O , O measured O by O ChIP B-experimental_method or O M2H B-experimental_method , O to O predict O other O agonist O activities O of O WAY B-chemical ‐ I-chemical C I-chemical analogs O . O * O Significant O positive O correlation O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O , O P B-evidence ‐ I-evidence value I-evidence ). O The O M2H B-experimental_method assay I-experimental_method for O NCOA3 B-protein recruitment O broadly O correlated O with O the O other O assays O , O and O was O predictive O for O GREB1 B-protein expression O and O cell O proliferation O ( O Fig O 3E O ). O However O , O the O ChIP B-experimental_method assays I-experimental_method for O WAY B-chemical ‐ I-chemical C I-chemical ‐ O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O did O not O correlate O with O any O of O the O other O WAY B-chemical ‐ I-chemical C I-chemical activity O profiles O ( O Fig O 4D O ), O although O the O positive O correlation O between O ChIP B-experimental_method assays I-experimental_method and O NCOA3 B-protein recruitment O via O M2H B-experimental_method assay I-experimental_method showed O a O trend O toward O significance O with O r B-evidence 2 I-evidence = O 0 O . O 36 O and O P B-evidence = O 0 O . O 09 O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O ). O Thus O , O the O simplified O coactivator B-experimental_method ‐ I-experimental_method binding I-experimental_method assay I-experimental_method showed O much O greater O predictive O power O than O the O ChIP B-experimental_method assay I-experimental_method for O ligand O ‐ O specific O effects O on O GREB1 B-protein expression O and O cell O proliferation O . O ERβ B-protein activity O is O not O an O independent O predictor O of O cell O ‐ O specific O activity O One O difference O between O MCF O ‐ O 7 O breast O cancer O cells O and O Ishikawa O endometrial O cancer O cells O is O the O contribution O of O ERβ B-protein to O estrogenic O response O , O as O Ishikawa O cells O may O express O ERβ B-protein ( O Bhat O & O Pezzuto O , O 2001 O ). O When O overexpressed B-experimental_method in O MCF O ‐ O 7 O cells O , O ERβ B-protein alters O E2 B-chemical ‐ O induced O expression O of O only O a O subset O of O ERα B-protein ‐ O target O genes O ( O Wu O et O al O , O 2011 O ), O raising O the O possibility O that O ligand O ‐ O induced O ERβ B-protein activity O may O contribute O to O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O , O and O thus O underlie O the O lack O of O correlation O between O the O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state activities O or O GREB1 B-protein levels O induced O by O cell O ‐ O specific O modulators O in O cluster O 2 O and O cluster O 3 O ( O Fig O 3C O ). O To O test O this O idea O , O we O determined O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ O activity O profiles O of O the O ligands O ( O Fig O EV1 O ). O All O direct O modulator O and O two O indirect O modulator O scaffolds O ( O OBHS B-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical ) O lacked O ERβ O agonist O activity O . O For O most O scaffolds O , O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ O and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O were O not O correlated O , O except O for O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O , O which O showed O moderate O but O significant O correlations O ( O Fig O EV4A O ). O Nevertheless O , O the O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O of O both O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O were O better O predicted O by O their O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state than O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ B-protein activities O ( O Fig O EV4A O and O B O ). O ERβ B-protein activity O is O not O an O independent O predictor O of O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O ERβ B-protein activity O in O HepG2 O cells O rarely O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O ERα B-protein activity O of O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O Data O information O : O The O r O 2 O and O P B-evidence values I-evidence for O the O indicated O correlations O are O shown O in O both O panels O . O * O Significant O positive O correlation O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O , O P B-evidence ‐ I-evidence value I-evidence ) O To O overcome O barriers O to O crystallization B-experimental_method of O ERα B-protein LBD B-structure_element complexes O , O we O developed O a O conformation B-experimental_method ‐ I-experimental_method trapping I-experimental_method X I-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method approach O using O the O ERα B-mutant ‐ I-mutant Y537S I-mutant mutation O ( O Nettles O et O al O , O 2008 O ; O Bruning O et O al O , O 2010 O ; O Srinivasan O et O al O , O 2013 O ). O To O further O validate O this O approach O , O we O solved B-experimental_method the O structure B-evidence of O the O ERα B-mutant ‐ I-mutant Y537S I-mutant LBD B-structure_element in B-protein_state complex I-protein_state with I-protein_state diethylstilbestrol B-chemical ( O DES B-chemical ), O which O bound O identically O in O the O wild B-protein_state ‐ I-protein_state type I-protein_state and O ERα B-mutant ‐ I-mutant Y537S I-mutant LBDs B-structure_element , O demonstrating O again O that O this O surface O mutation O stabilizes O h12 B-structure_element dynamics O to O facilitate O crystallization O without O changing O ligand O binding O ( O Appendix O Fig O S1A O and O B O ) O ( O Nettles O et O al O , O 2008 O ; O Bruning O et O al O , O 2010 O ; O Delfosse O et O al O , O 2012 O ). O Using O this O approach O , O we O solved B-experimental_method 76 O ERα B-protein LBD B-structure_element structures B-evidence in O the O active B-protein_state conformation I-protein_state and O bound B-protein_state to I-protein_state ligands I-protein_state studied O here O ( O Appendix O Fig O S1C O ). O Eleven O of O these O structures B-evidence have O been O published O , O while O 65 O are O new O , O including O the O DES B-protein_state ‐ I-protein_state bound I-protein_state ERα B-mutant ‐ I-mutant Y537S I-mutant LBD B-structure_element . O We O present O 57 O of O these O new O structures B-evidence here O ( O Dataset O EV2 O ), O while O the O remaining O eight O new O structures B-evidence bound B-protein_state to I-protein_state OBHS B-chemical ‐ I-chemical N I-chemical analogs O will O be O published O elsewhere O ( O S O . O Srinivasan O et O al O , O in O preparation O ). O Examining O many O closely O related O structures B-evidence allows O us O to O visualize O subtle O structural O differences O , O in O effect O using O X B-experimental_method ‐ I-experimental_method ray I-experimental_method crystallography I-experimental_method as O a O systems O biology O tool O . O The O indirect O modulator O scaffolds O in O cluster O 1 O did O not O show O cell O ‐ O specific O signaling O ( O Fig O 3C O ), O but O shared O common O structural O perturbations O that O we O designed O to O modulate O h12 B-structure_element dynamics O . O Based O on O our O original O OBHS B-chemical structure B-evidence , O the O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O and O triaryl B-chemical ‐ I-chemical ethylene I-chemical compounds O were O modified O with O h11 B-structure_element ‐ O directed O pendant O groups O ( O Zheng O et O al O , O 2012 O ; O Zhu O et O al O , O 2012 O ; O Liao O et O al O , O 2014 O ). O Superposing B-experimental_method the O LBDs B-structure_element based O on O the O class O of O bound O ligands O provides O an O ensemble O view O of O the O structural O variance O and O clarifies O what O part O of O the O ligand B-site ‐ I-site binding I-site pocket I-site is O differentially O perturbed O or O targeted O . O The O 24 O structures B-evidence containing O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O or O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O showed O structural O diversity O in O the O same O part O of O the O scaffolds O ( O Figs O 5A O and O EV5A O ), O and O the O same O region O of O the O LBD B-structure_element — O the O C O ‐ O terminal O end O of O h11 B-structure_element ( O Figs O 5B O and O C O , O and O EV5B O ), O which O in O turn O nudges O h12 B-structure_element ( O Fig O 5C O and O D O ). O We O observed O that O the O OBHS B-chemical ‐ I-chemical N I-chemical analogs O displaced O h11 B-structure_element along O a O vector O away O from O Leu354 B-residue_name_number in O a O region O of O h3 B-structure_element that O is O unaffected O by O the O ligands O , O and O toward O the O dimer B-site interface I-site . O For O the O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O , O the O displacement O of O h11 B-structure_element was O in O a O perpendicular O direction O , O away O from O Ile424 B-residue_name_number in O h8 B-structure_element and O toward O h12 B-structure_element . O Remarkably O , O these O individual O inter B-evidence ‐ I-evidence atomic I-evidence distances I-evidence showed O a O ligand O class O ‐ O specific O ability O to O significantly O predict O proliferative O effects O ( O Fig O 5E O and O F O ), O demonstrating O the O feasibility O of O developing O a O minimal O set O of O activity O predictors O from O crystal B-evidence structures I-evidence . O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O . O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O bound B-protein_state to I-protein_state the O superposed B-experimental_method crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element are O shown O . O Arrows O indicate O chemical O variance O in O the O orientation O of O the O different O h11 B-structure_element ‐ O directed O ligand O side O groups O ( O PDB O 5DK9 O , O 5DKB O , O 5DKE O , O 5DKG O , O 5DKS O , O 5DL4 O , O 5DLR O , O 5DMC O , O 5DMF O and O 5DP0 O ). O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O induce O variance O of O ERα B-protein conformations O at O the O C O ‐ O terminal O region O of O h11 B-structure_element . O Panel O ( O B O ) O shows O the O crystal B-evidence structure I-evidence of O a O triaryl B-chemical ‐ I-chemical ethylene I-chemical analog O ‐ O bound O ERα B-protein LBD B-structure_element ( O PDB O 5DLR O ). O The O h11 B-site – I-site h12 I-site interface I-site ( O circled O ) O includes O the O C O ‐ O terminal O part O of O h11 B-structure_element . O This O region O was O expanded O in O panel O ( O C O ), O where O the O 10 O triaryl B-chemical ‐ I-chemical ethylene I-chemical analog O ‐ O bound O ERα B-protein LBD B-structure_element structures B-evidence ( O see O Datasets O EV1 O and O EV2 O ) O were O superposed B-experimental_method to O show O variations O in O the O h11 B-structure_element C O ‐ O terminus O ( O PDB O 5DK9 O , O 5DKB O , O 5DKE O , O 5DKG O , O 5DKS O , O 5DL4 O , O 5DLR O , O 5DMC O , O 5DMF O , O and O 5DP0 O ). O ERα B-protein LBDs B-structure_element in B-protein_state complex I-protein_state with I-protein_state diethylstilbestrol B-chemical ( O DES B-chemical ) O or O a O triaryl B-chemical ‐ I-chemical ethylene I-chemical analog O were O superposed B-experimental_method to O show O that O the O ligand O ‐ O induced O difference O in O h11 B-structure_element conformation O is O transmitted O to O the O C O ‐ O terminus O of O h12 B-structure_element ( O PDB O 4ZN7 O , O 5DMC O ). O Inter B-evidence ‐ I-evidence atomic I-evidence distances I-evidence predict O the O proliferative O effects O of O specific O ligand O series O . O Ile424 B-residue_name_number – O His524 B-residue_name_number distance B-evidence measured O in O the O crystal B-evidence structures I-evidence correlates O with O the O proliferative O effect O of O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O in O MCF O ‐ O 7 O cells O . O In O contrast O , O the O Leu354 B-residue_name_number – O Leu525 B-residue_name_number distance B-evidence correlates O with O the O proliferative O effects O of O OBHS B-chemical ‐ I-chemical N I-chemical analogs O in O MCF O ‐ O 7 O cells O . O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O WAY B-chemical ‐ I-chemical C I-chemical analogs O . O WAY B-chemical ‐ I-chemical C I-chemical side O groups O subtly O nudge O h12 B-structure_element Leu540 B-residue_name_number . O ERα B-protein LBD B-structure_element structures B-evidence bound B-protein_state to I-protein_state 4 O distinct O WAY B-chemical ‐ I-chemical C I-chemical analogs O were O superposed B-experimental_method ( O PDB O 4 O IU7 O , O 4IV4 O , O 4IVW O , O 4IW6 O ) O ( O see O Datasets O EV1 O and O EV2 O ). O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O indirect O modulators O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O indirect O modulators O in O cluster O 1 O . O Crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state OBHS B-chemical and O OBHS B-chemical ‐ I-chemical N I-chemical analogs O were O superposed B-experimental_method . O Arrows O indicate O chemical O variance O in O the O orientation O of O the O different O h11 B-structure_element ‐ O directed O ligand O side O groups O . O Panel O ( O B O ) O shows O the O ligand O ‐ O induced O conformational O variation O at O the O C O ‐ O terminal O region O of O h11 B-structure_element ( O OBHS B-chemical : O PDB O 4ZN9 O , O 4ZNH O , O 4ZNS O , O 4ZNT O , O 4ZNU O , O 4ZNV O , O and O 4ZNW O ; O OBHS B-chemical ‐ I-chemical N I-chemical : O PDB O 4ZUB O , O 4ZUC O , O 4ZWH O , O 4ZWK O , O 5BNU O , O 5BP6 O , O 5BPR O , O and O 5BQ4 O ). O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O indirect O modulators O in O clusters O 2 O and O 3 O . O Crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state ligands O with O cell O ‐ O specific O activities O were O superposed B-experimental_method . O The O bound O ligands O are O shown O , O and O arrows O indicate O considerable O variation O in O the O orientation O of O the O different O h3 B-structure_element ‐, O h8 B-structure_element ‐, O h11 B-structure_element ‐, O or O h12 B-structure_element ‐ O directed O ligand O side O groups O . O As O visualized O in O four O LBD B-structure_element structures B-evidence ( O Srinivasan O et O al O , O 2013 O ), O WAY B-chemical ‐ I-chemical C I-chemical analogs O were O designed O with O small O substitutions O that O slightly O nudge O h12 B-structure_element Leu540 B-residue_name_number , O without O exiting O the O ligand B-site ‐ I-site binding I-site pocket I-site ( O Fig O 5G O and O H O ). O Therefore O , O changing O h12 B-structure_element dynamics O maintains O the O canonical O signaling O pathway O defined O by O E2 B-chemical ( O Fig O 1D O ) O to O support O AF B-structure_element ‐ I-structure_element 2 I-structure_element ‐ O driven O signaling O and O recruit O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein for O GREB1 B-protein ‐ O stimulated O proliferation O . O Ligands O with O cell O ‐ O specific O activity O alter O the O shape O of O the O AF B-site ‐ I-site 2 I-site surface I-site Direct O modulators O like O tamoxifen B-chemical drive O AF B-structure_element ‐ I-structure_element 1 I-structure_element ‐ O dependent O cell O ‐ O specific O activity O by O completely O occluding O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O but O it O is O not O known O how O indirect O modulators O produce O cell O ‐ O specific O ERα B-protein activity O . O Therefore O , O we O examined O another O 50 O LBD B-structure_element structures B-evidence containing O ligands O in O clusters O 2 O and O 3 O . O These O structures B-evidence demonstrated O that O cell O ‐ O specific O activity O derived O from O altering O the O shape O of O the O AF B-site ‐ I-site 2 I-site surface I-site without O an O extended O side O chain O . O Ligands O in O cluster O 2 O and O cluster O 3 O showed O conformational O heterogeneity O in O parts O of O the O scaffold O that O were O directed O toward O multiple O regions O of O the O receptor O including O h3 B-structure_element , O h8 B-structure_element , O h11 B-structure_element , O h12 B-structure_element , O and O / O or O the O β B-structure_element ‐ I-structure_element sheets I-structure_element ( O Fig O EV5C O – O G O ). O For O instance O , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical analogs O ( O Fig O 2 O ) O had O similar O ERα B-protein activity O profiles O in O the O different O cell O types O ( O Fig O EV2A O – O C O ), O but O the O 2 O ‐ O versus O 3 O ‐ O methyl O substituted O phenol O rings O altered O the O correlated O signaling O patterns O in O different O cell O types O ( O Fig O 3B O lanes O 7 O and O 12 O ). O This O difference O in O ligand O positioning O altered O the O AF B-site ‐ I-site 2 I-site surface I-site via O a O shift O in O the O N O ‐ O terminus O of O h12 B-structure_element , O which O directly O contacts O the O coactivator O . O This O effect O is O evident O in O a O single O structure B-evidence due O to O its O 1 O Å O magnitude O ( O Fig O 6A O and O B O ). O The O shifts O in O h12 B-structure_element residues O Asp538 B-residue_name_number and O Leu539 B-residue_name_number led O to O rotation O of O the O coactivator O peptide O ( O Fig O 6C O ). O Thus O , O cell O ‐ O specific O activity O can O stem O from O perturbation O of O the O AF B-site ‐ I-site 2 I-site surface I-site without O an O extended O side O chain O , O which O presumably O alters O the O receptor O – O coregulator O interaction O profile O . O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical / I-chemical 3 I-chemical analogs O subtly O distort O the O AF B-site ‐ I-site 2 I-site surface I-site . O Panel O ( O A O ) O shows O the O crystal B-evidence structure I-evidence of O an O S B-protein_state ‐ I-protein_state OBHS I-protein_state ‐ I-protein_state 3 I-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBD B-structure_element ( O PDB O 5DUH O ). O The O h3 B-site – I-site h12 I-site interface I-site ( O circled O ) O at O AF B-structure_element ‐ I-structure_element 2 I-structure_element ( O pink O ) O was O expanded O in O panels O ( O B O , O C O ). O The O S B-protein_state ‐ I-protein_state OBHS I-protein_state ‐ I-protein_state 2 I-protein_state / I-protein_state 3 I-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBDs B-structure_element were O superposed B-experimental_method to O show O shifts O in O h3 B-structure_element ( O panel O B O ) O and O the O NCOA2 B-protein peptide O docked O at O the O AF B-site ‐ I-site 2 I-site surface I-site ( O panel O C O ). O Crystal B-evidence structures I-evidence show O that O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O shift O h3 B-structure_element and O h11 B-structure_element further O apart O compared O to O an O A O ‐ O CD O ‐ O ring O estrogen B-chemical ( O PDB O 4PPS O , O 5DRM O , O 5DRJ O ). O The O 2F O o O ‐ O F O c O electron O density O map O and O F O o O ‐ O F O c O difference O map O of O a O 2 B-protein_state , I-protein_state 5 I-protein_state ‐ I-protein_state DTP I-protein_state ‐ I-protein_state bound I-protein_state structure B-evidence ( O PDB O 5DRJ O ) O were O contoured O at O 1 O . O 0 O sigma O and O ± O 3 O . O 0 O sigma O , O respectively O . O Average O ( O mean O + O SEM O ) O α B-evidence ‐ I-evidence carbon I-evidence distance I-evidence measured O from O h3 B-structure_element Thr347 B-residue_name_number to O h11 B-structure_element Leu525 B-residue_name_number of O A B-protein_state ‐ I-protein_state CD I-protein_state ‐, I-protein_state 2 I-protein_state , I-protein_state 5 I-protein_state ‐ I-protein_state DTP I-protein_state ‐, I-protein_state and I-protein_state 3 I-protein_state , I-protein_state 4 I-protein_state ‐ I-protein_state DTPD I-protein_state ‐ I-protein_state bound I-protein_state ERα B-protein LBDs B-structure_element . O * O Two O ‐ O tailed O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence = O 0 O . O 002 O ( O PDB O A B-chemical ‐ I-chemical CD I-chemical : O 5DI7 O , O 5DID O , O 5DIE O , O 5DIG O , O and O 4PPS O ; O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical : O 4IWC O , O 5DRM O , O and O 5DRJ O ; O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical : O 5DTV O and O 5DU5 O ). O Crystal B-evidence structures I-evidence show O that O a O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analog O shifts O h3 B-structure_element ( O F B-structure_element ) O and O the O NCOA2 B-protein ( O G O ) O peptide O compared O to O an O A B-chemical ‐ I-chemical CD I-chemical ‐ O ring O estrogen B-chemical ( O PDB O 4PPS O , O 5DTV O ). O Hierarchical B-experimental_method clustering I-experimental_method of O ligand O ‐ O specific O binding O of O 154 O interacting O peptides O to O the O ERα B-protein LBD B-structure_element was O performed O in O triplicate O by O MARCoNI B-experimental_method analysis I-experimental_method . O The O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O showed O perturbation O of O h11 B-structure_element , O as O well O as O h3 B-structure_element , O which O forms O part O of O the O AF B-site ‐ I-site 2 I-site surface I-site . O These O compounds O bind O the O LBD B-structure_element in O an O unusual O fashion O because O they O have O a O phenol O ‐ O to O ‐ O phenol O length O of O ~ O 12 O Å O , O which O is O longer O than O steroids O and O other O prototypical O ERα B-protein agonists O that O are O ~ O 10 O Å O in O length O . O One O phenol O pushed O further O toward O h3 B-structure_element ( O Fig O 6D O ), O while O the O other O phenol O pushed O toward O the O C O ‐ O terminus O of O h11 B-structure_element to O a O greater O extent O than O A B-chemical ‐ I-chemical CD I-chemical ‐ O ring O estrogens B-chemical ( O Nwachukwu O et O al O , O 2014 O ), O which O are O close O structural O analogs O of O E2 B-chemical that O lack O a O B O ‐ O ring O ( O Fig O 2 O ). O To O quantify O this O difference O , O we O compared O the O distance B-evidence between O α O ‐ O carbons O at O h3 B-structure_element Thr347 B-residue_name_number and O h11 B-structure_element Leu525 B-residue_name_number in O the O set O of O structures B-evidence containing O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O ( O n O = O 3 O ) O or O A B-chemical ‐ I-chemical CD I-chemical ‐ O ring O analogs O ( O n O = O 5 O ) O ( O Fig O 6E O ). O We O observed O a O difference O of O 0 O . O 4 O Å O that O was O significant O ( O two O ‐ O tailed O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence = O 0 O . O 002 O ) O due O to O the O very O tight O clustering O of O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical ‐ O induced O LBD B-structure_element conformation O . O The O shifts O in O h3 B-structure_element suggest O these O compounds O are O positioned O to O alter O coregulator O preferences O . O The O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical scaffolds O are O isomeric O , O but O with O aryl O groups O at O obtuse O and O acute O angles O , O respectively O ( O Fig O 2 O ). O The O crystal B-evidence structure I-evidence of O ERα B-protein in B-protein_state complex I-protein_state with I-protein_state a O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical is O unknown O ; O however O , O we O solved B-experimental_method two O crystal B-evidence structures I-evidence of O ERα B-protein bound B-protein_state to I-protein_state 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analogs O and O one O structure B-evidence containing O a O furan B-chemical ligand O — O all O of O which O have O a O 3 O , O 4 O ‐ O diaryl O configuration O ( O Fig O 2 O ; O Datasets O EV1 O and O EV2 O ). O In O these O structures B-evidence , O the O A O ‐ O ring O mimetic O of O the O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical scaffold O bound O h3 B-structure_element Glu353 B-residue_name_number as O expected O , O but O the O other O phenol O wrapped O around O h3 B-structure_element to O form O a O hydrogen O bond O with O Thr347 B-residue_name_number , O indicating O a O change O in O binding O epitopes O in O the O ERα B-protein ligand B-site ‐ I-site binding I-site pocket I-site ( O Fig O 6F O ). O The O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analogs O also O induced O a O shift O in O h3 B-structure_element positioning O , O which O translated O again O into O a O shift O in O the O bound O coactivator O peptide O ( O Fig O 6F O ). O Therefore O , O these O indirect O modulators O , O including O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical , O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical , O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical , O and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analogs O — O all O of O which O show O cell O ‐ O specific O activity O profiles O — O induced O shifts O in O h3 B-structure_element and O h12 B-structure_element that O were O transmitted O to O the O coactivator O peptide O via O an O altered O AF B-site ‐ I-site 2 I-site surface I-site . O To O test O whether O the O AF B-site ‐ I-site 2 I-site surface I-site shows O changes O in O shape O in O solution O , O we O used O the O microarray B-experimental_method assay I-experimental_method for I-experimental_method real I-experimental_method ‐ I-experimental_method time I-experimental_method coregulator I-experimental_method – I-experimental_method nuclear I-experimental_method receptor I-experimental_method interaction I-experimental_method ( O MARCoNI B-experimental_method ) O analysis O ( O Aarts O et O al O , O 2013 O ). O Here O , O the O ligand O ‐ O dependent O interactions O of O the O ERα B-protein LBD B-structure_element with O over O 150 O distinct O LxxLL B-structure_element motif I-structure_element peptides O were O assayed O to O define O structural O fingerprints O for O the O AF B-site ‐ I-site 2 I-site surface I-site , O in O a O manner O similar O to O the O use O of O phage B-experimental_method display I-experimental_method peptides I-experimental_method as O structural O probes O ( O Connor O et O al O , O 2001 O ). O Despite O the O similar O average O activities O of O these O ligand O classes O ( O Fig O 3A O and O B O ), O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical analogs O displayed O remarkably O different O peptide O recruitment O patterns O ( O Fig O 6H O ), O consistent O with O the O structural B-experimental_method analyses I-experimental_method . O Hierarchical B-experimental_method clustering I-experimental_method revealed O that O many O of O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O recapitulated O most O of O the O peptide O recruitment O and O dismissal O patterns O observed O with O E2 B-chemical ( O Fig O 6H O ). O However O , O there O was O a O unique O cluster O of O peptides O that O were O recruited O by O E2 B-chemical but O not O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O . O In O contrast O , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical analogs O dismissed O most O of O the O peptides O from O the O AF B-site ‐ I-site 2 I-site surface I-site ( O Fig O 6H O ). O Thus O , O the O isomeric O attachment O of O diaryl O groups O to O the O thiophene B-chemical core O changed O the O AF B-site ‐ I-site 2 I-site surface I-site from O inside O the O ligand B-site ‐ I-site binding I-site pocket I-site , O as O predicted O by O the O crystal B-evidence structures I-evidence . O Together O , O these O findings O suggest O that O without O an O extended O side O chain O , O cell O ‐ O specific O activity O stems O from O different O coregulator O recruitment O profiles O , O due O to O unique O ligand O ‐ O induced O conformations O of O the O AF B-site ‐ I-site 2 I-site surface I-site , O in O addition O to O differential O usage O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O Indirect O modulators O in O cluster O 1 O avoid O this O by O perturbing O the O h11 B-site – I-site h12 I-site interface I-site , O and O modulating O the O dynamics O of O h12 B-structure_element without O changing O the O shape O of O AF B-structure_element ‐ I-structure_element 2 I-structure_element when O stabilized O . O Our O goal O was O to O identify O a O minimal O set O of O predictors O that O would O link O specific O structural O perturbations O to O ERα B-protein signaling O pathways O that O control O cell O ‐ O specific O signaling O and O proliferation O . O We O found O a O very O strong O set O of O predictors O , O where O ligands O in O cluster O 1 O , O defined O by O similar O signaling O across O cell O types O , O showed O indirect O modulation O of O h12 B-structure_element dynamics O via O the O h11 B-site – I-site 12 I-site interface I-site or O slight O contact O with O h12 B-structure_element . O This O perturbation O determined O proliferation O that O correlated O strongly O with O AF B-structure_element ‐ I-structure_element 2 I-structure_element activity O , O recruitment O of O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein family O members O , O and O induction O of O the O GREB1 B-protein gene O , O consistent O with O the O canonical O ERα B-protein signaling O pathway O ( O Fig O 1D O ). O For O ligands O in O cluster O 1 O , O deletion B-experimental_method of O AF B-structure_element ‐ I-structure_element 1 I-structure_element reduced O activity O to O varying O degrees O , O but O did O not O change O the O underlying O signaling O patterns O established O through O AF B-structure_element ‐ I-structure_element 2 I-structure_element . O In O contrast O , O an O extended O side O chain O designed O to O directly O reposition O h12 B-structure_element and O completely O disrupt O the O AF B-site ‐ I-site 2 I-site surface I-site results O in O cell O ‐ O specific O signaling O . O Compared O to O cluster O 1 O , O the O structural O rules O are O less O clear O in O clusters O 2 O and O 3 O , O but O a O number O of O indirect O modulator O classes O perturbed O the O LBD B-structure_element conformation O at O the O intersection O of O h3 B-structure_element , O the O h12 B-structure_element N O ‐ O terminus O , O and O the O AF B-site ‐ I-site 2 I-site surface I-site . O Ligands O in O these O classes O altered O the O shape O of O AF B-structure_element ‐ I-structure_element 2 I-structure_element to O affect O coregulator O preferences O . O For O direct O and O indirect O modulators O in O cluster O 2 O or O 3 O , O the O canonical O ERα B-protein signaling O pathway O involving O recruitment O of O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein and O induction O of O GREB1 B-protein did O not O generally O predict O their O proliferative O effects O , O indicating O an O alternate O causal O model O ( O Fig O 1E O ). O These O principles O outlined O above O provide O a O structural O basis O for O how O the O ligand B-site – I-site receptor I-site interface I-site leads O to O different O signaling O specificities O through O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O AF B-structure_element ‐ I-structure_element 2 I-structure_element . O It O is O noteworthy O that O regulation O of O h12 B-structure_element dynamics O indirectly O through O h11 B-structure_element can O virtually O abolish O AF B-structure_element ‐ I-structure_element 2 I-structure_element activity O , O and O yet O still O drive O robust O transcriptional O activity O through O AF B-structure_element ‐ I-structure_element 1 I-structure_element , O as O demonstrated O with O the O OBHS B-chemical series O . O This O finding O can O be O explained O by O the O fact O that O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein contain O distinct O binding B-site sites I-site for O interaction O with O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O AF B-structure_element ‐ I-structure_element 2 I-structure_element ( O McInerney O et O al O , O 1996 O ; O Webb O et O al O , O 1998 O ), O which O allows O ligands O to O nucleate O ERα B-complex_assembly – I-complex_assembly NCOA1 I-complex_assembly / I-complex_assembly 2 I-complex_assembly / I-complex_assembly 3 I-complex_assembly interaction O through O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O and O reinforce O this O interaction O with O additional O binding O to O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O Completely O blocking O AF B-structure_element ‐ I-structure_element 2 I-structure_element with O an O extended O side O chain O or O altering O the O shape O of O AF B-structure_element ‐ I-structure_element 2 I-structure_element changes O the O preference O away O from O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein for O determining O GREB1 B-protein levels O and O proliferation O of O breast O cancer O cells O . O AF B-structure_element ‐ I-structure_element 2 I-structure_element blockade O also O allows O AF B-structure_element ‐ I-structure_element 1 I-structure_element to O function O independently O , O which O is O important O since O AF B-structure_element ‐ I-structure_element 1 I-structure_element drives O tissue O ‐ O selective O effects O in O vivo O . O This O was O demonstrated O with O AF B-structure_element ‐ I-structure_element 1 I-structure_element knockout O mice O that O show O E2 B-chemical ‐ O dependent O vascular O protection O , O but O not O uterine O proliferation O , O thus O highlighting O the O role O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element in O tissue O ‐ O selective O or O cell O ‐ O specific O signaling O ( O Billon O ‐ O Gales O et O al O , O 2009 O ; O Abot O et O al O , O 2013 O ). O Here O , O we O examined O many O LBD B-structure_element structures B-evidence and O tested O several O variables O that O were O not O predictive O , O including O ERβ B-protein activity O , O the O strength O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element signaling O , O and O NCOA3 B-protein occupancy O at O the O GREB1 B-protein gene O . O Similarly O , O we O visualized O structures B-evidence to O identify O patterns O . O For O example O , O phage B-experimental_method display I-experimental_method was O used O to O identify O the O androgen O receptor O interactome O , O which O was O cloned O into O an O M2H B-experimental_method library O and O used O to O identify O clusters O of O ligand O ‐ O selective O interactions O ( O Norris O et O al O , O 2009 O ). O Also O , O we O have O used O siRNA B-experimental_method screening I-experimental_method to O identify O a O number O of O coregulators O required O for O ERα B-protein ‐ O mediated O repression O of O the O IL O ‐ O 6 O gene O ( O Nwachukwu O et O al O , O 2014 O ). O If O we O calculated O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence matrices I-evidence containing O 4 O , O 000 O atoms O per O structure O × O 76 O ligand O – O receptor O complexes O , O we O would O have O 3 O × O 105 O predictions O . O We O have O identified O atomic B-evidence vectors I-evidence for O the O OBHS B-chemical ‐ I-chemical N I-chemical and O triaryl B-chemical ‐ I-chemical ethylene I-chemical classes O that O predict O ligand O response O ( O Fig O 5E O and O F O ). O Indeed O , O the O most O anti O ‐ O proliferative O compound O in O the O OBHS B-chemical ‐ I-chemical N I-chemical series O had O a O fulvestrant O ‐ O like O profile O across O a O battery O of O assays O ( O S O . O Srinivasan O et O al O , O in O preparation O ). O Secondly O , O our O finding O that O WAY B-chemical ‐ I-chemical C I-chemical compounds O do O not O rely O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O signaling O efficacy O may O derive O from O the O slight O contacts O with O h12 B-structure_element observed O in O crystal B-evidence structures I-evidence ( O Figs O 3B O and O 5H O ), O unlike O other O compounds O in O cluster O 1 O that O dislocate O h11 B-structure_element and O rely O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O signaling O efficacy O ( O Figs O 3B O and O 5C O , O and O EV5B O ). O Some O of O these O ligands O altered O the O shape O of O the O AF B-site ‐ I-site 2 I-site surface I-site by O perturbing O the O h3 B-site – I-site h12 I-site interface I-site , O thus O providing O a O route O to O new O SERM O ‐ O like O activity O profiles O by O combining O indirect O and O direct O modulation O of O receptor O structure O . O Incorporation O of O statistical O approaches O to O understand O relationships O between O structure O and O signaling O variables O moves O us O toward O predictive O models O for O complex O ERα B-protein ‐ O mediated O responses O such O as O in O vivo O uterine O proliferation O or O tumor O growth O , O and O more O generally O toward O structure O ‐ O based O design O for O other O allosteric O drug O targets O including O GPCRs B-protein_type and O other O nuclear B-protein_type receptors I-protein_type . O Investigation O of O the O Interaction O between O Cdc42 B-protein and O Its O Effector O TOCA1 B-protein Transducer B-protein of I-protein Cdc42 I-protein - I-protein dependent I-protein actin I-protein assembly I-protein protein I-protein 1 I-protein ( O TOCA1 B-protein ) O is O an O effector O of O the O Rho B-protein_type family I-protein_type small I-protein_type G I-protein_type protein I-protein_type Cdc42 B-protein . O It O contains O a O membrane O - O deforming O F B-structure_element - I-structure_element BAR I-structure_element domain O as O well O as O a O Src B-structure_element homology I-structure_element 3 I-structure_element ( O SH3 B-structure_element ) O domain O and O a O G B-structure_element protein I-structure_element - I-structure_element binding I-structure_element homology I-structure_element region I-structure_element 1 I-structure_element ( O HR1 B-structure_element ) O domain O . O TOCA1 B-protein binding O to O Cdc42 B-protein leads O to O actin O rearrangements O , O which O are O thought O to O be O involved O in O processes O such O as O endocytosis O , O filopodia O formation O , O and O cell O migration O . O We O have O solved B-experimental_method the O structure B-evidence of O the O HR1 B-structure_element domain O of O TOCA1 B-protein , O providing O the O first O structural B-evidence data I-evidence for O this O protein O . O We O have O found O that O the O TOCA1 B-protein HR1 B-structure_element , O like O the O closely O related O CIP4 B-protein HR1 B-structure_element , O has O interesting O structural O features O that O are O not O observed O in O other O HR1 B-structure_element domains O . O We O have O also O investigated O the O binding O of O the O TOCA B-protein HR1 B-structure_element domain O to O Cdc42 B-protein and O the O potential O ternary O complex O between O Cdc42 B-protein and O the O G B-site protein I-site - I-site binding I-site regions I-site of O TOCA1 B-protein and O a O member O of O the O Wiskott B-protein_type - I-protein_type Aldrich I-protein_type syndrome I-protein_type protein I-protein_type family I-protein_type , O N B-protein - I-protein WASP I-protein . O TOCA1 B-protein binds O Cdc42 B-protein with O micromolar O affinity O , O in O contrast O to O the O nanomolar O affinity O of O the O N B-protein - I-protein WASP I-protein G B-site protein I-site - I-site binding I-site region I-site for O Cdc42 B-protein . O NMR B-experimental_method experiments O show O that O the O Cdc42 B-site - I-site binding I-site domain I-site from O N B-protein - I-protein WASP I-protein is O able O to O displace O TOCA1 B-protein HR1 B-structure_element from O Cdc42 B-protein , O whereas O the O N B-protein - I-protein WASP I-protein domain O but O not O the O TOCA1 B-protein HR1 B-structure_element domain O inhibits O actin O polymerization O . O This O suggests O that O TOCA1 B-protein binding O to O Cdc42 B-protein is O an O early O step O in O the O Cdc42 B-protein - O dependent O pathways O that O govern O actin O dynamics O , O and O the O differential O binding B-evidence affinities I-evidence of O the O effectors O facilitate O a O handover O from O TOCA1 B-protein to O N B-protein - I-protein WASP I-protein , O which O can O then O drive O recruitment O of O the O actin O - O modifying O machinery O . O The O Ras B-protein_type superfamily I-protein_type of O small B-protein_type GTPases I-protein_type comprises O over O 150 O members O that O regulate O a O multitude O of O cellular O processes O in O eukaryotes B-taxonomy_domain . O The O superfamily O can O be O divided O into O five O families O based O on O structural O and O functional O similarities O : O Ras B-protein_type , O Rho B-protein_type , O Rab B-protein_type , O Arf B-protein_type , O and O Ran B-protein_type . O All O members O share O a O well O defined O core O structure O of O ∼ O 20 O kDa O known O as O the O G B-structure_element domain I-structure_element , O which O is O responsible O for O guanine B-chemical nucleotide I-chemical binding O . O These O molecular O switches O cycle O between O active B-protein_state , O GTP B-protein_state - I-protein_state bound I-protein_state , O and O inactive B-protein_state , O GDP B-protein_state - I-protein_state bound I-protein_state , O states O with O the O help O of O auxiliary O proteins O . O The O guanine B-protein_type nucleotide I-protein_type exchange I-protein_type factors I-protein_type mediate O formation O of O the O active B-protein_state state O by O promoting O the O dissociation O of O GDP B-chemical , O allowing O GTP B-chemical to O bind O . O The O GTPase B-protein_type - I-protein_type activating I-protein_type proteins I-protein_type stimulate O the O rate O of O intrinsic O GTP B-chemical hydrolysis O , O mediating O the O return O to O the O inactive B-protein_state state O ( O reviewed O in O Ref O .). O The O overall O conformation O of O small B-protein_type G I-protein_type proteins I-protein_type in O the O active B-protein_state and O inactive B-protein_state states O is O similar O , O but O they O differ O significantly O in O two O main O regions O known O as O switch B-site I I-site and O switch B-site II I-site . O These O regions O are O responsible O for O “ O sensing O ” O the O nucleotide O state O , O with O the O GTP B-protein_state - I-protein_state bound I-protein_state state O showing O greater O rigidity O and O the O GDP B-protein_state - I-protein_state bound I-protein_state state O adopting O a O more O relaxed O conformation O ( O reviewed O in O Ref O .). O In O the O active B-protein_state state O , O G B-protein_type proteins I-protein_type bind O to O an O array O of O downstream O effectors O , O through O which O they O exert O their O extensive O roles O within O the O cell O . O The O structures B-evidence of O more O than O 60 O small O G B-protein_type protein I-protein_type · O effector O complexes O have O been O solved B-experimental_method , O and O , O not O surprisingly O , O the O switch B-site regions I-site have O been O implicated O in O a O large O proportion O of O the O G B-protein_type protein I-protein_type - O effector O interactions O ( O reviewed O in O Ref O .). O However O , O because O each O of O the O 150 O members O of O the O superfamily O interacts O with O multiple O effectors O , O there O are O still O a O huge O number O of O known O G B-protein_type protein I-protein_type - O effector O interactions O that O have O not O yet O been O studied O structurally O . O The O Rho B-protein_type family I-protein_type comprises O 20 O members O , O of O which O three O , O RhoA B-protein , O Rac1 B-protein , O and O Cdc42 B-protein , O have O been O relatively O well O studied O . O RhoA B-protein acts O to O rearrange O existing O actin O structures O to O form O stress O fibers O , O whereas O Rac1 B-protein and O Cdc42 B-protein promote O de O novo O actin O polymerization O to O form O lamellipodia O and O filopodia O , O respectively O . O A O number O of O RhoA B-protein and O Rac1 B-protein effector O proteins O , O including O the O formins O and O members O of O the O protein B-protein_type kinase I-protein_type C I-protein_type - I-protein_type related I-protein_type kinase I-protein_type ( O PRK B-protein_type ) O 6 B-protein_type family O , O along O with O Cdc42 B-protein effectors O , O including O the O Wiskott B-protein_type - I-protein_type Aldrich I-protein_type syndrome I-protein_type ( O WASP B-protein_type ) O family O and O the O transducer O of O Cdc42 B-protein_type - I-protein_type dependent I-protein_type actin I-protein_type assembly I-protein_type ( O TOCA B-protein_type ) O family O , O have O also O been O linked O to O the O pathways O that O govern O cytoskeletal O dynamics O . O Cdc42 B-protein effectors O , O TOCA1 B-protein and O the O ubiquitously O expressed O member O of O the O WASP B-protein_type family I-protein_type , O N B-protein - I-protein WASP I-protein , O have O been O implicated O in O the O regulation O of O actin O polymerization O downstream O of O Cdc42 B-protein and O phosphatidylinositol B-chemical 4 I-chemical , I-chemical 5 I-chemical - I-chemical bisphosphate I-chemical ( O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical ). O N B-protein - I-protein WASP I-protein exists O in O an O autoinhibited B-protein_state conformation I-protein_state , O which O is O released O upon O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical and O Cdc42 B-protein binding O or O by O other O factors O , O such O as O phosphorylation O . O Following O their O release O , O the O C B-structure_element - I-structure_element terminal I-structure_element regions I-structure_element of O N B-protein - I-protein WASP I-protein are O free O to O interact O with O G B-protein_type - I-protein_type actin I-protein_type and O a O known O nucleator O of O actin O assembly O , O the O Arp2 B-complex_assembly / I-complex_assembly 3 I-complex_assembly complex O . O The O importance O of O TOCA1 B-protein in O actin O polymerization O has O been O demonstrated O in O a O range O of O in O vitro O and O in O vivo O studies O , O but O the O exact O role O of O TOCA1 B-protein in O the O many O pathways O involving O actin O assembly O remains O unclear O . O The O most O widely O studied O role O of O TOCA1 B-protein is O in O membrane O invagination O and O endocytosis O , O although O it O has O also O been O implicated O in O filopodia O formation O , O neurite O elongation O , O transcriptional O reprogramming O via O nuclear O actin O , O and O interaction O with O ZO B-protein - I-protein 1 I-protein at O tight O junctions O . O TOCA1 B-protein comprises O an O N O - O terminal O F B-structure_element - I-structure_element BAR I-structure_element domain O , O a O central B-structure_element homology I-structure_element region I-structure_element 1 I-structure_element ( O HR1 B-structure_element ) O domain O , O and O a O C O - O terminal O SH3 B-structure_element domain O . O The O F B-structure_element - I-structure_element BAR I-structure_element domain O is O a O known O dimerization O , O membrane O - O binding O , O and O membrane O - O deforming O module O found O in O a O number O of O cell O signaling O proteins O . O The O TOCA1 B-protein SH3 B-structure_element domain O has O many O known O binding O partners O , O including O N B-protein - I-protein WASP I-protein and O dynamin B-protein . O The O HR1 B-structure_element domain O has O been O directly O implicated O in O the O interaction O between O TOCA1 B-protein and O Cdc42 B-protein , O representing O the O first O Cdc42 B-protein - O HR1 B-structure_element domain O interaction O to O be O identified O . O Other O HR1 B-structure_element domains O studied O so O far O , O including O those O from O the O PRK B-protein_type family I-protein_type , O have O been O found O to O bind O their O cognate O Rho O family O G B-protein_type protein I-protein_type - O binding O partner O with O high O specificity O and O affinities B-evidence in O the O nanomolar O range O . O The O structures B-evidence of O the O PRK1 B-protein HR1a B-structure_element domain O in O complex B-protein_state with I-protein_state RhoA B-protein and O the O HR1b B-structure_element domain O in O complex B-protein_state with I-protein_state Rac1 B-protein show O that O the O HR1 B-structure_element domain O comprises O an O anti B-structure_element - I-structure_element parallel I-structure_element coiled I-structure_element - I-structure_element coil I-structure_element that O interacts O with O its O G B-protein_type protein I-protein_type binding O partner O via O both O helices B-structure_element . O Both O of O the O G B-site protein I-site switch I-site regions I-site are O involved O in O the O interaction O . O The O coiled B-structure_element - I-structure_element coil I-structure_element fold I-structure_element is O shared O by O the O HR1 B-structure_element domain O of O the O TOCA B-protein_type family I-protein_type protein I-protein_type , O CIP4 B-protein , O and O , O based O on O sequence O homology O , O by O TOCA1 B-protein itself O . O These O HR1 B-structure_element domains O , O however O , O show O specificity O for O Cdc42 B-protein , O rather O than O RhoA B-protein or O Rac1 B-protein . O How O different O HR1 B-structure_element domain O proteins O distinguish O their O specific O G B-protein_type protein I-protein_type partners O remains O only O partially O understood O , O and O structural O characterization O of O a O novel O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interaction O would O add O to O the O growing O body O of O information O pertaining O to O these O protein O complexes O . O Furthermore O , O the O biological O function O of O the O interaction O between O TOCA1 B-protein and O Cdc42 B-protein remains O poorly O understood O , O and O so O far O there O has O been O no O biophysical O or O structural O insight O . O The O interactions O of O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein with O Cdc42 B-protein as O well O as O with O each O other O have O raised O questions O as O to O whether O the O two O Cdc42 B-protein effectors O can O interact O with O a O single O molecule O of O Cdc42 B-protein simultaneously O . O There O is O some O evidence O for O a O ternary O complex O between O Cdc42 B-protein , O N B-protein - I-protein WASP I-protein , O and O TOCA1 B-protein , O but O there O was O no O direct O demonstration O of O simultaneous O contacts O between O the O two O effectors O and O a O single O molecule O of O Cdc42 B-protein . O Nonetheless O , O the O substantial O difference O between O the O structures B-evidence of O the O G B-site protein I-site - I-site binding I-site regions I-site of O the O two O effectors O is O intriguing O and O implies O that O they O bind O to O Cdc42 B-protein quite O differently O , O providing O motivation O for O investigating O the O possibility O that O Cdc42 B-protein can O bind O both O effectors O concurrently O . O WASP B-protein_type interacts O with O Cdc42 B-protein via O a O conserved B-protein_state , O unstructured B-structure_element binding I-structure_element motif I-structure_element known O as O the O Cdc42 B-structure_element - I-structure_element and I-structure_element Rac I-structure_element - I-structure_element interactive I-structure_element binding I-structure_element region I-structure_element ( O CRIB B-structure_element ), O which O forms O an O intermolecular B-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O expanding O the O anti O - O parallel O β2 B-structure_element and I-structure_element β3 I-structure_element strands I-structure_element of O Cdc42 B-protein . O In O contrast O , O the O TOCA B-protein_type family I-protein_type proteins I-protein_type are O thought O to O interact O via O the O HR1 B-structure_element domain O , O which O may O form O a O triple B-structure_element coiled I-structure_element - I-structure_element coil I-structure_element with O switch B-site II I-site of O Rac1 B-protein , O like O the O HR1b B-structure_element domain O of O PRK1 B-protein . O Here O , O we O present O the O solution B-experimental_method NMR I-experimental_method structure B-evidence of O the O HR1 B-structure_element domain O of O TOCA1 B-protein , O providing O the O first O structural B-evidence data I-evidence for O this O protein O . O We O also O present O data O pertaining O to O binding O of O the O TOCA B-protein_type HR1 B-structure_element domain O to O Cdc42 B-protein , O which O is O the O first O biophysical O description O of O an O HR1 B-structure_element domain O binding O this O particular O Rho B-protein_type family I-protein_type small I-protein_type G I-protein_type protein I-protein_type . O Finally O , O we O investigate O the O potential O ternary O complex O between O Cdc42 B-protein and O the O G B-site protein I-site - I-site binding I-site regions I-site of O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein , O contributing O to O our O understanding O of O G B-protein_type protein I-protein_type - O effector O interactions O as O well O as O the O roles O of O Cdc42 B-protein , O N B-protein - I-protein WASP I-protein , O and O TOCA1 B-protein in O the O pathways O that O govern O actin O dynamics O . O Cdc42 B-protein - O TOCA1 B-protein Binding O TOCA1 B-protein was O identified O in O Xenopus B-taxonomy_domain extracts O as O a O protein O necessary O for O Cdc42 B-protein - O dependent O actin O assembly O and O was O shown O to O bind O to O Cdc42 B-complex_assembly · I-complex_assembly GTPγS I-complex_assembly but O not O to O Cdc42 B-complex_assembly · I-complex_assembly GDP I-complex_assembly or O to O Rac1 B-protein and O RhoA B-protein . O Given O its O homology O to O other O Rho B-site family I-site binding I-site modules I-site , O it O is O likely O that O the O HR1 B-structure_element domain O of O TOCA1 B-protein is O sufficient O to O bind O Cdc42 B-protein . O The O C B-species . I-species elegans I-species TOCA1 B-protein orthologues O also O bind O to O Cdc42 B-protein via O their O consensus O HR1 B-structure_element domain O . O The O HR1 B-structure_element domains O from O the O PRK B-protein_type family I-protein_type bind O their O G B-protein_type protein I-protein_type partners O with O a O high O affinity O , O exhibiting O a O range O of O submicromolar O dissociation B-evidence constants I-evidence ( O Kd B-evidence ) O as O low O as O 26 O nm O . O A O Kd B-evidence in O the O nanomolar O range O was O therefore O expected O for O the O interaction O of O the O TOCA1 B-protein HR1 B-structure_element domain O with O Cdc42 B-protein . O We O generated O an O X B-species . I-species tropicalis I-species TOCA1 B-protein HR1 B-structure_element domain O construct O encompassing O residues O 330 B-residue_range – I-residue_range 426 I-residue_range . O This O region O comprises O the O complete O HR1 B-structure_element domain O based O on O secondary O structure O predictions O and O sequence B-experimental_method alignments I-experimental_method with O another O TOCA B-protein_type family I-protein_type member O , O CIP4 B-protein , O whose O structure B-evidence has O been O determined O . O The O interaction O between O [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly and O a O C O - O terminally O His B-protein_state - I-protein_state tagged I-protein_state TOCA1 B-protein HR1 B-structure_element domain O construct O was O investigated O using O SPA B-experimental_method . O The O binding B-evidence isotherm I-evidence for O the O interaction O is O shown O in O Fig O . O 1A O , O together O with O the O Cdc42 B-protein - O PAK B-protein interaction O as O a O positive O control O . O The O binding O of O TOCA1 B-protein HR1 B-structure_element to O Cdc42 B-protein was O unexpectedly O weak O , O with O a O Kd B-evidence of O > O 1 O μm O . O It O was O not O possible O to O estimate O the O Kd B-evidence more O accurately O using O direct O SPA B-experimental_method experiments O , O because O saturation O could O not O be O reached O due O to O nonspecific O signal O at O higher O protein O concentrations O . O The O TOCA1 B-protein HR1 B-structure_element - O Cdc42 B-protein interaction O is O low O affinity O . O A O , O curves O derived O from O direct B-experimental_method binding I-experimental_method assays I-experimental_method in O which O the O indicated O concentrations O of O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly were O incubated B-experimental_method with O 30 O nm O GST B-mutant - I-mutant PAK I-mutant or O HR1 B-mutant - I-mutant His6 I-mutant in O SPAs B-experimental_method . O The O SPA B-experimental_method signal O was O corrected O by O subtraction O of O control O data O with O no O GST B-mutant - I-mutant PAK I-mutant or O HR1 B-mutant - I-mutant His6 I-mutant . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O ; O B O and O C O , O competition B-experimental_method SPA I-experimental_method experiments O were O carried O out O with O the O indicated O concentrations O of O ACK B-protein GBD B-structure_element ( O B O ) O or O HR1 B-structure_element domain O ( O C O ) O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O either O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly or O full B-protein_state - I-protein_state length I-protein_state Cdc42Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O The O Kd B-evidence values O derived O for O the O ACK B-protein GBD B-structure_element with O Cdc42Δ7 B-mutant and O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein were O 0 O . O 032 O ± O 0 O . O 01 O and O 0 O . O 011 O ± O 0 O . O 01 O μm O , O respectively O . O The O Kd B-evidence values O derived O for O the O TOCA1 B-protein HR1 B-structure_element with O Cdc42Δ7 B-mutant and O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein were O 6 O . O 05 O ± O 1 O . O 96 O and O 5 O . O 39 O ± O 1 O . O 69 O μm O , O respectively O . O It O was O possible O that O the O low O affinity O observed O was O due O to O negative O effects O of O immobilization O of O the O HR1 B-structure_element domain O , O so O other O methods O were O employed O , O which O utilized O untagged B-protein_state proteins O . O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method was O carried O out O , O but O no O heat O changes O were O observed O at O a O range O of O concentrations O and O temperatures O ( O data O not O shown O ), O suggesting O that O the O interaction O is O predominantly O entropically O driven O . O Other O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O have O also O failed O to O show O heat O changes O in O our O hands O . O 7 O Infrared B-experimental_method interferometry I-experimental_method with O immobilized B-protein_state Cdc42 B-protein was O also O attempted O but O was O unsuccessful O for O both O TOCA1 B-protein HR1 B-structure_element and O for O the O positive O control O , O ACK B-protein . O The O affinity B-evidence was O therefore O determined O using O competition B-experimental_method SPAs I-experimental_method . O A O complex O of O a O GST B-experimental_method fusion I-experimental_method of O the O GBD B-structure_element of O ACK B-protein , O which O binds O with O a O high O affinity O to O Cdc42 B-protein , O with O radiolabeled O [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly was O preformed O , O and O the O effect O of O increasing B-experimental_method concentrations I-experimental_method of O untagged B-protein_state TOCA1 B-protein HR1 B-structure_element domain O was O examined O . O Competition O of O GST B-mutant - I-mutant ACK I-mutant GBD B-structure_element bound B-protein_state to I-protein_state [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly by O free B-protein_state ACK B-protein GBD B-structure_element was O used O as O a O control O and O to O establish O the O value O of O background O counts O when O Cdc42 B-protein is O fully O displaced O . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence describing O competition O . O Free B-protein_state ACK B-protein competed O with O itself O with O an O affinity B-evidence of O 32 O nm O , O similar O to O the O value O obtained O by O direct B-experimental_method binding I-experimental_method of O 23 O nm O . O The O TOCA1 B-protein HR1 B-structure_element domain O also O fully O competed O with O the O GST B-mutant - I-mutant ACK I-mutant but O bound B-protein_state with O an O affinity B-evidence of O 6 O μm O ( O Fig O . O 1 O , O B O and O C O ), O in O agreement O with O the O low O affinity B-evidence observed O in O the O direct B-experimental_method binding I-experimental_method experiments I-experimental_method . O The O Cdc42 B-protein construct O used O in O the O binding B-experimental_method assays I-experimental_method has O seven B-residue_range residues I-residue_range deleted B-experimental_method from O the O C O terminus O to O facilitate O purification O . O These O residues O are O not O generally O required O for O G B-protein_type protein I-protein_type - O effector O interactions O , O including O the O interaction O between O RhoA B-protein and O the O PRK1 B-protein HR1a B-structure_element domain O . O In O contrast O , O the O C O terminus O of O Rac1 B-protein contains O a O polybasic O sequence O , O which O is O crucial O for O Rac1 B-protein binding O to O the O HR1b B-structure_element domain O from O PRK1 B-protein . O As O the O observed O affinity B-evidence between O TOCA1 B-protein HR1 B-structure_element and O Cdc42 B-protein was O much O lower O than O expected O , O we O reasoned O that O the O C O terminus O of O Cdc42 B-protein might O be O necessary O for O a O high O affinity B-evidence interaction O . O The O binding B-experimental_method experiments I-experimental_method were O repeated O with O full B-protein_state - I-protein_state length I-protein_state [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly , O but O the O affinity B-evidence of O the O HR1 B-structure_element domain O for O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein was O similar O to O its O affinity B-evidence for O truncated B-protein_state Cdc42 B-protein ( O Kd B-evidence ≈ O 5 O μm O ; O Fig O . O 1C O ). O Thus O , O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O Cdc42 B-protein is O not O required O for O maximal O binding O of O TOCA1 B-protein HR1 B-structure_element . O Another O possible O explanation O for O the O low O affinities B-evidence observed O was O that O the O HR1 B-structure_element domain O alone B-protein_state is O not O sufficient O for O maximal O binding O of O the O TOCA B-protein_type proteins I-protein_type to O Cdc42 B-protein and O that O the O other O domains O are O required O . O Indeed O , O GST B-experimental_method pull I-experimental_method - I-experimental_method downs I-experimental_method performed O with O in O vitro O translated O human B-species TOCA1 B-protein fragments O had O suggested O that O residues O N O - O terminal O to O the O HR1 B-structure_element domain O may O be O required O to O stabilize O the O HR1 B-structure_element domain O structure O . O Furthermore O , O both O BAR B-structure_element and O SH3 B-structure_element domains O have O been O implicated O in O interactions O with O small O G B-protein_type proteins I-protein_type ( O e O . O g O . O the O BAR B-structure_element domain O of O Arfaptin2 B-protein binds O to O Rac1 B-protein and O Arl1 B-protein ), O while O an O SH3 B-structure_element domain O mediates O the O interaction O between O Rac1 B-protein and O the O guanine B-protein nucleotide I-protein exchange I-protein factor I-protein , O β B-protein - I-protein PIX I-protein . O TOCA1 B-protein dimerizes B-oligomeric_state via O its O F B-structure_element - I-structure_element BAR I-structure_element domain O , O which O could O also O affect O Cdc42 B-protein binding O , O for O example O by O presenting O two O HR1 B-structure_element domains O for O Cdc42 B-protein interactions O . O Various O TOCA1 B-protein fragments O ( O Fig O . O 2A O ) O were O therefore O assessed O for O binding O to O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein by O direct O SPA B-experimental_method . O The O isolated O F B-structure_element - I-structure_element BAR I-structure_element domain O showed O no O binding O to O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein ( O Fig O . O 2B O ). O Full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O ΔSH3 B-mutant TOCA1 B-protein bound B-protein_state with O micromolar O affinity O ( O Fig O . O 2B O ), O in O a O similar O manner O to O the O isolated O HR1 B-structure_element domain O ( O Fig O . O 1A O ). O The O HR1 B-mutant - I-mutant SH3 I-mutant protein O could O not O be O purified O to O homogeneity O as O a O fusion O protein O , O so O it O was O assayed O in O competition B-experimental_method assays I-experimental_method after O cleavage O of O the O His O tag O . O This O construct O competed O with O GST B-mutant - I-mutant ACK I-mutant GBD B-structure_element to O give O a O similar O affinity O to O the O HR1 B-structure_element domain O alone B-protein_state ( O Kd B-evidence = O 4 O . O 6 O ± O 4 O μm O ; O Fig O . O 2C O ). O Taken O together O , O these O data O suggest O that O the O TOCA1 B-protein HR1 B-structure_element domain O is O sufficient O for O maximal O binding O and O that O this O binding O is O of O a O relatively O low O affinity O compared O with O many O other O Cdc42 B-protein · O effector O complexes O . O The O Cdc42 B-complex_assembly - I-complex_assembly HR1 I-complex_assembly interaction O is O of O low O affinity O in O the O context O of O full B-protein_state - I-protein_state length I-protein_state protein O and O in O TOCA1 B-protein paralogues O . O A O , O diagram O illustrating O the O TOCA1 B-protein constructs O assayed O for O Cdc42 B-protein binding O . O Domain O boundaries O are O derived O from O secondary O structure O predictions O ; O B O , O binding B-evidence curves I-evidence derived O from O direct B-experimental_method binding I-experimental_method assays I-experimental_method , O in O which O the O indicated O concentrations O of O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly were O incubated B-experimental_method with O 30 O nm O GST B-mutant - I-mutant ACK I-mutant or O His B-protein_state - I-protein_state tagged I-protein_state TOCA1 B-protein constructs O , O as O indicated O , O in O SPAs B-experimental_method . O The O SPA B-experimental_method signal O was O corrected O by O subtraction O of O control O data O with O no O fusion O protein O . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O . O C O – O E O , O representative O examples O of O competition B-experimental_method SPA I-experimental_method experiments O carried O out O with O the O indicated O concentrations O of O the O TOCA1 B-protein HR1 B-mutant - I-mutant SH3 I-mutant construct O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly ( O C O ) O or O HR1CIP4 B-structure_element ( O D O ) O or O HR1FBP17 B-structure_element ( O E O ) O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O 30 O nm O Cdc42FLQ61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O The O low O affinity O of O the O TOCA1 B-protein HR1 B-structure_element - O Cdc42 B-protein interaction O raised O the O question O of O whether O the O other O known O Cdc42 B-protein - O binding O TOCA B-protein_type family I-protein_type proteins I-protein_type , O FBP17 B-protein and O CIP4 B-protein , O also O bind O weakly O . O The O HR1 B-structure_element domains O from O FBP17 B-protein and O CIP4 B-protein were O purified B-experimental_method and O assayed O for O Cdc42 B-protein binding O in O competition B-experimental_method SPAs I-experimental_method , O analogous O to O those O carried O out O with O the O TOCA1 B-protein HR1 B-structure_element domain O . O The O affinities B-evidence of O both O the O FBP17 B-protein and O CIP4 B-protein HR1 B-structure_element domains O were O also O in O the O low O micromolar O range O ( O 10 O and O 5 O μm O , O respectively O ) O ( O Fig O . O 2 O , O D O and O E O ), O suggesting O that O low O affinity O interactions O with O Cdc42 B-protein are O a O common O feature O within O the O TOCA B-protein_type family I-protein_type . O Structure B-evidence of O the O TOCA1 B-protein HR1 B-structure_element Domain O Because O the O TOCA1 B-protein HR1 B-structure_element domain O was O sufficient O for O maximal O Cdc42 B-protein - O binding O , O we O used O this O construct O for O structural O studies O . O Initial O experiments O were O performed O with O TOCA1 B-protein residues O 324 B-residue_range – I-residue_range 426 I-residue_range , O but O we O observed O that O the O N O terminus O was O cleaved O during O purification O to O yield O a O new O N O terminus O at O residue O 330 B-residue_number ( O data O not O shown O ). O We O therefore O engineered O a O construct O comprising O residues O 330 B-residue_range – I-residue_range 426 I-residue_range to O produce O the O minimal B-protein_state , O stable B-protein_state HR1 B-structure_element domain O . O 2 O , O 778 O non O - O degenerate O NOE B-evidence restraints I-evidence were O used O in O initial O structure B-experimental_method calculations I-experimental_method ( O 1 O , O 791 O unambiguous O and O 987 O ambiguous O ), O derived O from O three O - O dimensional O 15N B-experimental_method - I-experimental_method separated I-experimental_method NOESY I-experimental_method and O 13C B-experimental_method - I-experimental_method separated I-experimental_method NOESY I-experimental_method experiments O . O There O were O 1 O , O 845 O unambiguous O NOEs B-evidence and O 757 O ambiguous O NOEs B-evidence after O eight O iterations O . O 100 O structures B-evidence were O calculated B-experimental_method in O the O final O iteration O ; O the O 50 O lowest O energy O structures B-evidence were O water O - O refined O ; O and O of O these O , O the O 35 O lowest O energy O structures B-evidence were O analyzed O . O Table O 1 O indicates O that O the O HR1 B-structure_element domain O structure B-evidence is O well O defined O by O the O NMR B-experimental_method data O . O a O < O SA O >, O the O average B-evidence root I-evidence mean I-evidence square I-evidence deviations I-evidence for O the O ensemble O ± O S O . O D O . O b O < O SA O > O c O , O values O for O the O structure B-evidence that O is O closest O to O the O mean O . O The O structure B-evidence closest O to O the O mean O is O shown O in O Fig O . O 3A O . O The O two O α B-structure_element - I-structure_element helices I-structure_element of O the O HR1 B-structure_element domain O interact O to O form O an O anti B-structure_element - I-structure_element parallel I-structure_element coiled I-structure_element - I-structure_element coil I-structure_element with O a O slight O left O - O handed O twist O , O reminiscent O of O the O HR1 B-structure_element domains O of O CIP4 B-protein ( O PDB O code O 2KE4 O ) O and O PRK1 B-protein ( O PDB O codes O 1CXZ O and O 1URF O ). O A O sequence B-experimental_method alignment I-experimental_method illustrating O the O secondary O structure O elements O of O the O TOCA1 B-protein and O CIP4 B-protein HR1 B-structure_element domains O and O the O HR1a B-structure_element and O HR1b B-structure_element domains O from O PRK1 B-protein is O shown O in O Fig O . O 3B O . O The O structure B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O . O A O , O the O backbone O trace B-evidence of O the O 35 O lowest O energy O structures B-evidence of O the O HR1 B-structure_element domain O overlaid O with O the O structure B-evidence closest O to O the O mean O is O shown O alongside O a O schematic O representation O of O the O structure B-evidence closest O to O the O mean O . O Flexible O regions O at O the O N O and O C O termini O ( O residues O 330 B-residue_range – I-residue_range 333 I-residue_range and O 421 B-residue_range – I-residue_range 426 I-residue_range ) O are O omitted O for O clarity O . O B O , O a O sequence B-experimental_method alignment I-experimental_method of O the O HR1 B-structure_element domains O from O TOCA1 B-protein , O CIP4 B-protein , O and O PRK1 B-protein . O The O secondary O structure O was O deduced O using O Stride B-experimental_method , O based O on O the O Ramachandran B-evidence angles I-evidence , O and O is O indicated O as O follows O : O gray O , O turn O ; O yellow O , O α B-structure_element - I-structure_element helix I-structure_element ; O blue O , O 310 B-structure_element helix I-structure_element ; O white O , O coil O . O C O , O a O close O - O up O of O the O N O - O terminal O region O of O TOCA1 B-protein HR1 B-structure_element , O indicating O some O of O the O NOEs B-evidence defining O its O position O with O respect O to O the O two O α B-structure_element - I-structure_element helices I-structure_element . O Dotted O lines O , O NOE B-evidence restraints I-evidence . O D O , O a O close O - O up O of O the O interhelix B-structure_element loop I-structure_element region O showing O some O of O the O contacts O between O the O loop B-structure_element and O helix B-structure_element 1 I-structure_element . O In O the O HR1a B-structure_element domain O of O PRK1 B-protein , O a O region O N O - O terminal O to O helix B-structure_element 1 I-structure_element forms O a O short B-structure_element α I-structure_element - I-structure_element helix I-structure_element , O which O packs O against O both O helices O of O the O HR1 B-structure_element domain O . O This O region O of O TOCA1 B-protein HR1 B-structure_element ( O residues O 334 B-residue_range – I-residue_range 340 I-residue_range ) O is O well O defined O in O the O family O of O structures B-evidence ( O Fig O . O 3A O ) O but O does O not O form O an O α B-structure_element - I-structure_element helix I-structure_element . O It O instead O forms O a O series O of O turns O , O defined O by O NOE B-evidence restraints I-evidence observed O between O residues O separated O by O one O ( O residues O 332 B-residue_range – I-residue_range 334 I-residue_range , O 333 B-residue_range – I-residue_range 335 I-residue_range , O etc O .) O or O two O ( O residues O 337 B-residue_range – I-residue_range 340 I-residue_range ) O residues O in O the O sequence O and O the O φ B-evidence and I-evidence ψ I-evidence angles I-evidence , O assessed O using O Stride B-experimental_method . O These O turns O cause O the O chain O to O reverse O direction O , O allowing O the O N O - O terminal O segment O ( O residues O 334 B-residue_range – I-residue_range 340 I-residue_range ) O to O contact O both O helices O of O the O HR1 B-structure_element domain O . O Long O range O NOEs B-evidence were O observed O linking O Leu B-residue_name_number - I-residue_name_number 334 I-residue_name_number , O Glu B-residue_name_number - I-residue_name_number 335 I-residue_name_number , O and O Asp B-residue_name_number - I-residue_name_number 336 I-residue_name_number with O Trp B-residue_name_number - I-residue_name_number 413 I-residue_name_number of O helix B-structure_element 2 I-structure_element , O Leu B-residue_name_number - I-residue_name_number 334 I-residue_name_number with O Lys B-residue_name_number - I-residue_name_number 409 I-residue_name_number of O helix B-structure_element 2 I-structure_element , O and O Phe B-residue_name_number - I-residue_name_number 337 I-residue_name_number and O Ser B-residue_name_number - I-residue_name_number 338 I-residue_name_number with O Arg B-residue_name_number - I-residue_name_number 345 I-residue_name_number , O Arg B-residue_name_number - I-residue_name_number 348 I-residue_name_number , O and O Leu B-residue_name_number - I-residue_name_number 349 I-residue_name_number of O helix B-structure_element 1 I-structure_element . O The O two O α B-structure_element - I-structure_element helices I-structure_element of O TOCA1 B-protein HR1 B-structure_element are O separated O by O a O long O loop B-structure_element of O 10 O residues O ( O residues O 380 B-residue_range – I-residue_range 389 I-residue_range ) O that O contains O two O short B-structure_element 310 I-structure_element helices I-structure_element ( O residues O 381 B-residue_range – I-residue_range 383 I-residue_range and O 386 B-residue_range – I-residue_range 389 I-residue_range ). O Interestingly O , O side O chains O of O residues O within O the O loop B-structure_element region I-structure_element point O back O toward O helix B-structure_element 1 I-structure_element ; O for O example O , O there O are O numerous O distinct O NOEs O between O the O side O chains O of O Asn B-residue_name_number - I-residue_name_number 380 I-residue_name_number and O Met B-residue_name_number - I-residue_name_number 383 I-residue_name_number of O the O loop B-structure_element region I-structure_element and O Tyr B-residue_name_number - I-residue_name_number 377 I-residue_name_number and O Val B-residue_name_number - I-residue_name_number 376 I-residue_name_number of O helix B-structure_element 1 I-structure_element ( O Fig O . O 3D O ). O The O backbone O NH O and O CHα O groups O of O Gly B-residue_name_number - I-residue_name_number 384 I-residue_name_number and O Asp B-residue_name_number - I-residue_name_number 385 I-residue_name_number also O show O NOEs O with O the O side O chain O of O Tyr B-residue_name_number - I-residue_name_number 377 I-residue_name_number . O Mapping O the O TOCA1 B-protein and O Cdc42 B-site Binding I-site Interfaces I-site The O HR1TOCA1 B-site - I-site Cdc42 I-site interface I-site was O investigated O using O NMR B-experimental_method spectroscopy I-experimental_method . O A O series O of O 15N B-experimental_method HSQC I-experimental_method experiments O was O recorded O on O 15N B-chemical - O labeled B-protein_state TOCA1 B-protein HR1 B-structure_element domain O in O the O presence B-protein_state of I-protein_state increasing B-experimental_method concentrations I-experimental_method of O unlabeled B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly to O map O the O Cdc42 B-site - I-site binding I-site surface I-site . O A O comparison O of O the O 15N B-experimental_method HSQC I-experimental_method spectra B-evidence of O free B-protein_state HR1 B-structure_element and O HR1 B-structure_element in O the O presence B-protein_state of I-protein_state excess O Cdc42 B-protein shows O that O although O some O peaks O were O shifted O , O several O were O much O broader O in O the O complex O , O and O a O considerable O subset O had O disappeared O ( O Fig O . O 4A O ). O This O behavior O cannot O be O explained O by O the O increase O in O molecular O mass O ( O from O 12 O to O 33 O kDa O ) O when O Cdc42 B-protein binds O and O is O more O likely O to O be O due O to O conformational O exchange O . O Overall O chemical B-experimental_method shift I-experimental_method perturbations I-experimental_method ( O CSPs B-experimental_method ) O were O calculated O for O each O residue O , O whereas O those O that O had O disappeared O were O assigned O a O shift O change O of O 0 O . O 2 O ( O Fig O . O 4B O ). O A O peak O that O disappeared O or O had O a O CSP B-experimental_method above O the O mean O CSP B-experimental_method for O the O spectrum O was O considered O to O be O significantly O affected O . O Mapping O the O binding B-site surface I-site of O Cdc42 B-protein onto O the O TOCA1 B-protein HR1 B-structure_element domain O . O A O , O the O 15N B-experimental_method HSQC I-experimental_method of O 200 O μm O TOCA1 B-protein HR1 B-structure_element domain O is O shown O in O the O free B-protein_state form I-protein_state ( O black O ) O and O in O the O presence B-protein_state of I-protein_state a O 4 O - O fold O molar O excess O of O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ( O red O ). O B O , O CSPs B-experimental_method were O calculated O as O described O under O “ O Experimental O Procedures O ” O and O are O shown O for O backbone O and O side O chain O NH O groups O . O The O mean O CSP B-experimental_method is O marked O with O a O red O line O . O Residues O that O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein were O assigned O a O CSP B-experimental_method of O 0 O . O 2 O but O were O excluded O when O calculating O the O mean O CSP B-experimental_method and O are O indicated O with O open O bars O . O Those O that O were O not O traceable O due O to O spectral O overlap O were O assigned O a O CSP B-experimental_method of O zero O and O are O marked O with O an O asterisk O below O the O bar O . O Residues O with O affected O side O chain O CSPs B-experimental_method derived O from O 13C B-experimental_method HSQCs I-experimental_method are O marked O with O green O asterisks O above O the O bars O . O C O , O a O schematic O representation O of O the O HR1 B-structure_element domain O . O Residues O with O significantly O affected O backbone O or O side O chain O chemical O shifts O when O Cdc42 B-protein_state bound I-protein_state and O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O yellow O . O Residues O with O significantly O affected O backbone O and O side O chain O groups O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O red O . O A O close O - O up O of O the O binding B-site region I-site is O shown O , O with O affected O side O chain O heavy O atoms O shown O as O sticks O . O D O , O the O G B-site protein I-site - I-site binding I-site region I-site is O marked O in O red O onto O structures B-evidence of O the O HR1 B-structure_element domains O as O indicated O . O 15N B-experimental_method HSQC I-experimental_method shift I-experimental_method mapping I-experimental_method experiments O report O on O changes O to O amide O groups O , O which O are O mainly O inaccessible O because O they O are O buried O inside O the O helices B-structure_element and O are O involved O in O hydrogen O bonds O . O Therefore O , O 13C B-experimental_method HSQC I-experimental_method and O methyl B-experimental_method - I-experimental_method selective I-experimental_method SOFAST I-experimental_method - I-experimental_method HMQC I-experimental_method experiments O were O also O recorded O on O 15N B-chemical , O 13C B-chemical - O labeled B-protein_state TOCA1 B-protein HR1 B-structure_element to O yield O more O information O on O side O chain O involvement O . O Side O chains O whose O CH O groups O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein are O marked O on O the O graph O in O Fig O . O 4B O with O green O asterisks O . O TOCA1 B-protein residues O whose O signals O were O affected O by O Cdc42 B-protein binding O were O mapped O onto O the O structure B-evidence of O TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 4C O ). O The O changes O were O localized O to O one O end O of O the O coiled B-structure_element - I-structure_element coil I-structure_element , O and O the O binding B-site site I-site appeared O to O include O residues O from O both O α B-structure_element - I-structure_element helices I-structure_element and O the O loop B-structure_element region I-structure_element that O joins O them O . O The O residues O in O the O interhelical B-structure_element loop I-structure_element and O helix B-structure_element 1 I-structure_element that O contact O each O other O ( O Fig O . O 3D O ) O show O shift O changes O in O their O backbone O NH O and O side O chains O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein . O For O example O , O the O side O chain O of O Asn B-residue_name_number - I-residue_name_number 380 I-residue_name_number and O the O backbones O of O Val B-residue_name_number - I-residue_name_number 376 I-residue_name_number and O Tyr B-residue_name_number - I-residue_name_number 377 I-residue_name_number were O significantly O affected O but O are O all O buried O in O the O free B-protein_state TOCA1 B-protein HR1 B-structure_element structure B-evidence , O indicating O that O local O conformational O changes O in O the O loop B-structure_element may O facilitate O complex O formation O . O The O chemical B-experimental_method shift I-experimental_method mapping I-experimental_method data O indicate O that O the O G B-site protein I-site - I-site binding I-site region I-site of O the O TOCA1 B-protein HR1 B-structure_element domain O is O broadly O similar O to O that O of O the O CIP4 B-protein and O PRK1 B-protein HR1 B-structure_element domains O ( O Figs O . O 3B O and O 4D O ). O The O corresponding O 15N B-experimental_method and O 13C B-experimental_method NMR I-experimental_method experiments O were O also O recorded O on O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly or O 15N B-chemical / O 13C B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly in O the O presence B-protein_state of I-protein_state unlabeled B-protein_state HR1 B-structure_element domain O . O The O overall O CSP B-experimental_method was O calculated O for O each O residue O . O As O was O the O case O when O labeled B-protein_state HR1 B-structure_element was O observed O , O several O peaks O were O shifted O in O the O complex O , O but O many O disappeared O , O indicating O exchange O on O an O unfavorable O , O millisecond O time O scale O ( O Fig O . O 5A O ). O Detailed O side O chain O data O could O not O be O obtained O for O all O residues O due O to O spectral O overlap O , O but O constant B-experimental_method time I-experimental_method 13C I-experimental_method HSQC I-experimental_method and O methyl B-experimental_method - I-experimental_method selective I-experimental_method SOFAST I-experimental_method - I-experimental_method HMQC I-experimental_method experiments O provided O further O information O on O certain O well O resolved O side O chains O ( O marked O with O green O asterisks O in O Fig O . O 5B O ). O Mapping O the O binding B-site surface I-site of O the O HR1 B-structure_element domain O onto O Cdc42 B-protein . O A O , O the O 15N B-experimental_method HSQC I-experimental_method of O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly is O shown O in O its O free B-protein_state form I-protein_state ( O black O ) O and O in O the O presence B-protein_state of I-protein_state excess O TOCA1 B-protein HR1 B-structure_element domain O ( O 1 O : O 2 O . O 2 O , O red O ). O B O , O CSPs B-experimental_method are O shown O for O backbone O NH O groups O . O The O red O line O indicates O the O mean O CSP B-experimental_method , O plus O one O S O . O D O . O Residues O that O disappeared O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein were O assigned O a O CSP B-experimental_method of O 0 O . O 1 O and O are O indicated O with O open O bars O . O Residues O with O disappeared O peaks O in O 13C B-experimental_method HSQC I-experimental_method experiments O are O marked O on O the O chart O with O green O asterisks O . O C O , O the O residues O with O significantly O affected O backbone O and O side O chain O groups O are O highlighted O on O an O NMR B-experimental_method structure B-evidence of O free B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ; O those O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O red O . O Residues O with O either O side O chain O or O backbone O groups O affected O are O colored O blue O if O buried O and O yellow O if O solvent B-protein_state - I-protein_state accessible I-protein_state . O Residues O without O information O from O shift B-experimental_method mapping I-experimental_method are O colored O gray O . O The O flexible B-protein_state switch B-site regions I-site are O circled O . O As O many O of O the O peaks O disappeared O , O the O mean B-evidence chemical I-evidence shift I-evidence change I-evidence was O relatively O low O , O so O a O threshold O of O the O mean O plus O one O S O . O D O . O value O was O used O to O define O a O significant O CSP B-experimental_method . O Parts O of O the O switch B-site regions I-site ( O Fig O . O 5 O , O B O and O C O ) O are O invisible O in O NMR B-experimental_method spectra B-evidence recorded O on O free B-protein_state Cdc42 B-protein due O to O conformational O exchange O . O These O switch B-site regions I-site become O visible O in O Cdc42 B-protein and O other O small O G B-protein_type protein I-protein_type · O effector O complexes O due O to O a O decrease O in O conformational O freedom O upon O complex O formation O . O The O switch B-site regions I-site of O Cdc42 B-protein did O not O , O however O , O become O visible O in O the O presence B-protein_state of I-protein_state the O TOCA1 B-protein HR1 B-structure_element domain O . O Indeed O , O Ser B-residue_name_number - I-residue_name_number 30 I-residue_name_number of O switch B-site I I-site and O Arg B-residue_name_number - I-residue_name_number 66 I-residue_name_number , O Arg B-residue_name_number - I-residue_name_number 68 I-residue_name_number , O Leu B-residue_name_number - I-residue_name_number 70 I-residue_name_number , O and O Ser B-residue_name_number - I-residue_name_number 71 I-residue_name_number of O switch B-site II I-site are O visible O in O free B-protein_state Cdc42 B-protein but O disappear O in O the O presence B-protein_state of I-protein_state the O HR1 B-structure_element domain O . O This O suggests O that O the O switch B-site regions I-site are O not O rigidified O in O the O HR1 B-structure_element complex O and O are O still O in O conformational O exchange O . O Nevertheless O , O mapping O of O the O affected O residues O onto O the O NMR B-experimental_method structure B-evidence of O free B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ( O Fig O . O 5C O ) O 8 O shows O that O , O although O they O are O relatively O widespread O compared O with O changes O in O the O HR1 B-structure_element domain O , O in O general O , O they O are O on O the O face O of O the O protein O that O includes O the O switches B-site . O Although O the O binding B-site interface I-site may O be O overestimated O , O this O suggests O that O the O switch B-site regions I-site are O involved O in O binding O to O TOCA1 B-protein . O Modeling O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly HR1 I-complex_assembly Complex O The O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O was O not O amenable O to O full O structural O analysis O due O to O the O weak O interaction O and O the O extensive O exchange O broadening O seen O in O the O NMR B-experimental_method experiments O . O HADDOCK B-experimental_method was O therefore O used O to O perform O rigid O body B-experimental_method docking I-experimental_method based O on O the O structures B-evidence of O free B-protein_state HR1 B-structure_element domain O and O Cdc42 B-protein and O ambiguous O interaction O restraints O derived O from O the O titration B-experimental_method experiments I-experimental_method described O above O . O The O orientation O of O the O HR1 B-structure_element domain O with O respect O to O Cdc42 B-protein cannot O be O definitively O concluded O in O the O absence O of O unambiguous O distance O restraints O ; O hence O , O HADDOCK B-experimental_method produced O a O set O of O models O in O which O the O HR1 B-structure_element domain O contacts O the O same O surface O on O Cdc42 B-protein but O is O in O various O orientations O with O respect O to O Cdc42 B-protein . O The O cluster O with O the O lowest O root B-evidence mean I-evidence square I-evidence deviation I-evidence from O the O lowest O energy O structure B-evidence is O assumed O to O be O the O best O model O . O By O these O criteria O , O in O the O best O model O , O the O HR1 B-structure_element domain O is O in O a O similar O orientation O to O the O HR1a B-structure_element domain O of O PRK1 B-protein bound B-protein_state to I-protein_state RhoA B-protein and O the O HR1b B-structure_element domain O bound B-protein_state to I-protein_state Rac1 B-protein . O A O representative O model O from O this O cluster O is O shown O in O Fig O . O 6A O alongside O the O Rac1 B-complex_assembly - I-complex_assembly HR1b I-complex_assembly structure B-evidence ( O PDB O code O 2RMK O ) O in O Fig O . O 6B O . O Model O of O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly complex O . O A O , O a O representative O model O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly complex O from O the O cluster O closest O to O the O lowest O energy O model O produced O using O HADDOCK B-experimental_method . O Residues O of O Cdc42 B-protein that O are O affected O in O the O presence B-protein_state of I-protein_state the O HR1 B-structure_element domain O but O are O not O in O close O proximity O to O it O are O colored O in O red O and O labeled O . O B O , O structure B-evidence of O Rac1 B-protein in B-protein_state complex I-protein_state with I-protein_state the O HR1b B-structure_element domain O of O PRK1 B-protein ( O PDB O code O 2RMK O ). O C O , O sequence B-experimental_method alignment I-experimental_method of O RhoA B-protein , O Cdc42 B-protein and O Rac1 B-protein . O Contact O residues O of O RhoA B-protein and O Rac1 B-protein to O PRK1 B-protein HR1a B-structure_element and O HR1b B-structure_element , O respectively O , O are O colored O cyan O . O Residues O of O Cdc42 B-protein that O disappear O or O show O chemical O shift O changes O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein are O colored O cyan O if O also O identified O as O contacts O in O RhoA B-protein and O Rac1 B-protein and O yellow O if O they O are O not O . O Residues O equivalent O to O Rac1 B-protein and O RhoA B-protein contact B-site sites I-site but O that O are O invisible O in O free B-protein_state Cdc42 B-protein are O gray O . O D O , O regions O of O interest O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1 I-complex_assembly domain O model O . O The O four O lowest O energy O structures B-evidence in O the O chosen O HADDOCK B-experimental_method cluster O are O shown O overlaid O , O with O the O residues O of O interest O shown O as O sticks O and O labeled O . O Cdc42 O is O shown O in O cyan O , O and O TOCA1 B-protein is O shown O in O purple O . O A O sequence B-experimental_method alignment I-experimental_method of O RhoA B-protein , O Cdc42 B-protein , O and O Rac1 B-protein is O shown O in O Fig O . O 6C O . O The O RhoA B-protein and O Rac1 B-protein contact O residues O in O the O switch B-site regions I-site are O invisible O in O the O spectra B-evidence of O Cdc42 B-protein , O but O they O are O generally O conserved B-protein_state between O all O three O G B-protein_type proteins I-protein_type . O Several O Cdc42 B-protein residues O identified O by O chemical B-experimental_method shift I-experimental_method mapping I-experimental_method are O not O in O close O contact O in O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly model O ( O Fig O . O 6A O ). O Some O of O these O can O be O rationalized O ; O for O example O , O Thr B-residue_name_number - I-residue_name_number 24Cdc42 I-residue_name_number , O Leu B-residue_name_number - I-residue_name_number 160Cdc42 I-residue_name_number , O and O Lys B-residue_name_number - I-residue_name_number 163Cdc42 I-residue_name_number all O pack O behind O switch B-site I I-site and O are O likely O to O be O affected O by O conformational O changes O within O the O switch B-site , O while O Glu B-residue_name_number - I-residue_name_number 95Cdc42 I-residue_name_number and O Lys B-residue_name_number - I-residue_name_number 96Cdc42 I-residue_name_number are O in O the O helix B-structure_element behind O switch B-site II I-site . O Other O residues O that O are O affected O in O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly complex O but O that O do O not O correspond O to O contact O residues O of O RhoA B-protein or O Rac1 B-protein ( O Fig O . O 6C O ) O include O Gln B-residue_name_number - I-residue_name_number 2Cdc42 I-residue_name_number , O Lys B-residue_name_number - I-residue_name_number 16Cdc42 I-residue_name_number , O Thr B-residue_name_number - I-residue_name_number 52Cdc42 I-residue_name_number , O and O Arg B-residue_name_number - I-residue_name_number 68Cdc42 I-residue_name_number . O Lys B-residue_name_number - I-residue_name_number 16Cdc42 I-residue_name_number is O unlikely O to O be O a O contact O residue O because O it O is O involved O in O nucleotide O binding O , O but O the O others O may O represent O specific O Cdc42 B-complex_assembly - I-complex_assembly TOCA1 I-complex_assembly contacts O . O Competition O between O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein From O the O known O interactions O and O effects O of O the O proteins O in O biological O systems O , O it O has O been O suggested O that O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein could O bind O Cdc42 B-protein simultaneously O . O Studies O in O CHO O cells O indicated O that O a O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly complex O existed O because O FRET B-evidence was O observed O between O RFP B-chemical - O TOCA1 B-protein and O GFP B-chemical - O N B-protein - I-protein WASP I-protein , O and O the O efficiency O was O decreased O when O an O N B-protein - I-protein WASP I-protein mutant B-protein_state was O used O that O no O longer O binds O Cdc42 B-protein . O An O overlay B-experimental_method of O the O HADDOCK B-experimental_method model B-evidence of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O and O the O structure B-evidence of O Cdc42 B-protein in B-protein_state complex I-protein_state with I-protein_state the O GBD B-structure_element of O the O N B-protein - I-protein WASP I-protein homologue O , O WASP B-protein ( O PDB O code O 1CEE O ), O shows O that O the O HR1 B-structure_element and O GBD B-site binding I-site sites I-site only O partly O overlap O , O and O , O therefore O , O a O ternary O complex O remained O possible O ( O Fig O . O 7A O ). O Interestingly O , O the O presence B-protein_state of I-protein_state the O TOCA1 B-protein HR1 B-structure_element would O not O prevent O the O core O CRIB B-structure_element of O WASP B-protein from O binding O to O Cdc42 B-protein , O although O the O regions O C O - O terminal O to O the O CRIB B-structure_element that O are O required O for O high O affinity O binding O of O WASP B-protein would O interfere O sterically O with O the O TOCA1 B-protein HR1 B-structure_element . O A O basic O region O in O WASP B-protein including O three O lysines B-residue_name ( O residues O 230 B-residue_range – I-residue_range 232 I-residue_range ), O N O - O terminal O to O the O core O CRIB B-structure_element , O has O been O implicated O in O an O electrostatic O steering O mechanism O , O and O these O residues O would O be O free O to O bind O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 7A O ). O The O N B-protein - I-protein WASP I-protein GBD B-structure_element displaces O the O TOCA1 B-protein HR1 B-structure_element domain O . O A O , O the O model O of O the O Cdc42 B-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly HR1 B-structure_element domain O complex O overlaid O with O the O Cdc42 B-complex_assembly - I-complex_assembly WASP I-complex_assembly structure B-evidence . O Cdc42 O is O shown O in O green O , O and O TOCA1 B-protein is O shown O in O purple O . O The O core O CRIB B-structure_element region O of O WASP B-protein is O shown O in O red O , O whereas O its O basic O region O is O shown O in O orange O and O the O C O - O terminal O region O required O for O maximal O affinity O is O shown O in O cyan O . O A O semitransparent O surface O representation O of O Cdc42 B-protein and O WASP B-protein is O shown O overlaid O with O the O schematic O . O B O , O competition B-experimental_method SPA I-experimental_method experiments O carried O out O with O indicated O concentrations O of O the O N B-protein - I-protein WASP I-protein GBD B-structure_element construct O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant or O GST B-mutant - I-mutant WASP I-mutant GBD B-structure_element and O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O C O , O Selected O regions O of O the O 15N B-experimental_method HSQC I-experimental_method of O 145 O μm O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly with O the O indicated O ratios O of O the O TOCA1 B-protein HR1 B-structure_element domain O , O the O N B-protein - I-protein WASP I-protein GBD B-structure_element , O or O both O , O showing O that O the O TOCA B-protein HR1 B-structure_element domain O does O not O displace O the O N B-protein - I-protein WASP I-protein GBD B-structure_element . O D O , O selected O regions O of O the O 15N B-experimental_method HSQC I-experimental_method of O 600 O μm O TOCA1 B-protein HR1 B-structure_element domain O in B-protein_state complex I-protein_state with I-protein_state Cdc42 B-protein in O the O absence B-protein_state and O presence B-protein_state of I-protein_state the O N B-protein - I-protein WASP I-protein GBD B-structure_element , O showing O displacement O of O Cdc42 B-protein from O the O HR1 B-structure_element domain O by O N B-protein - I-protein WASP I-protein . O An O N B-protein - I-protein WASP I-protein GBD B-structure_element construct O was O produced O , O and O its O affinity B-evidence for O Cdc42 B-protein was O measured O by O competition B-experimental_method SPA I-experimental_method ( O Fig O . O 7B O ). O The O Kd B-evidence that O was O determined O ( O 37 O nm O ) O is O consistent O with O the O previously O reported O affinity B-evidence . O Unlabeled B-protein_state N B-protein - I-protein WASP I-protein GBD B-structure_element was O titrated B-experimental_method into O 15N B-chemical - O Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly , O and O the O backbone O NH O groups O were O monitored O using O HSQCs B-experimental_method ( O Fig O . O 7C O ). O Unlabeled B-protein_state HR1TOCA1 B-structure_element was O then O added O to O the O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly complex O , O and O no O changes O were O seen O , O suggesting O that O the O N B-protein - I-protein WASP I-protein GBD B-structure_element was O not O displaced O even O in O the O presence B-protein_state of I-protein_state a O 5 O - O fold O excess O of O HR1TOCA1 B-structure_element . O These O experiments O were O recorded O at O sufficiently O high O protein O concentrations O ( O 145 O μm O Cdc42 B-protein , O 145 O μm O N B-protein - I-protein WASP I-protein GBD B-structure_element , O 725 O μm O TOCA1 B-protein HR1 B-structure_element domain O ) O to O be O far O in O excess O of O the O Kd B-evidence values O of O the O individual O interactions O ( O TOCA1 B-protein Kd B-evidence ≈ O 5 O μm O , O N B-protein - I-protein WASP I-protein Kd B-evidence = O 37 O nm O ). O A O comparison O of O the O HSQC B-experimental_method experiments O recorded O on O 15N B-chemical - O Cdc42 B-protein alone B-protein_state , O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O or O both O , O shows O that O the O spectra B-evidence in O the O presence B-protein_state of I-protein_state N B-protein - I-protein WASP I-protein and O in O the O presence B-protein_state of I-protein_state both O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein HR1 B-structure_element are O identical O ( O Fig O . O 7C O ). O Furthermore O , O 15N B-chemical - O TOCA1 B-protein HR1 B-structure_element was O monitored O in O the O presence B-protein_state of I-protein_state unlabeled B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ( O 1 O : O 1 O ) O before O and O after O the O addition O of O 0 O . O 25 O and O 1 O . O 0 O eq O of O unlabeled B-protein_state N B-protein - I-protein WASP I-protein GBD B-structure_element . O The O spectrum B-evidence when O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein were O equimolar O was O identical O to O that O of O the O free B-protein_state HR1 B-structure_element domain O , O whereas O the O spectrum B-evidence in O the O presence B-protein_state of I-protein_state 0 O . O 25 O eq O of O N B-protein - I-protein WASP I-protein was O intermediate O between O the O TOCA1 B-protein HR1 B-structure_element free B-protein_state and O complex B-protein_state spectra B-evidence ( O Fig O . O 7D O ). O When O in O fast O exchange O , O the O NMR B-experimental_method signal O represents O a O population O - O weighted O average O between O free B-protein_state and O bound B-protein_state states O , O so O the O intermediate O spectrum B-evidence indicates O that O the O population O comprises O a O mixture O of O free B-protein_state and O bound B-protein_state HR1 B-structure_element domain O . O Again O , O the O experiments O were O recorded O on O protein O samples O far O in O excess O of O the O individual O Kd B-evidence values O ( O 600 O μm O each O protein O ). O These O data O indicate O that O the O HR1 B-structure_element domain O is O displaced O from O Cdc42 B-protein by O N B-protein - I-protein WASP I-protein and O that O a O ternary O complex O comprising O TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O and O Cdc42 B-protein is O not O formed O . O Taken O together O , O the O data O in O Fig O . O 7 O , O C O and O D O , O indicate O unidirectional O competition O for O Cdc42 B-protein binding O in O which O the O N B-protein - I-protein WASP I-protein GBD B-structure_element displaces O TOCA1 B-protein HR1 B-structure_element but O not O vice O versa O . O To O extend O these O studies O to O a O more O complex O system O and O to O assess O the O ability O of O TOCA1 B-protein HR1 B-structure_element to O compete O with O full B-protein_state - I-protein_state length I-protein_state N B-protein - I-protein WASP I-protein , O pyrene B-experimental_method actin I-experimental_method assays I-experimental_method were O employed O . O These O assays O , O described O in O detail O elsewhere O , O were O carried O out O using O pyrene B-chemical actin I-chemical - O supplemented O Xenopus B-taxonomy_domain extracts O into O which O exogenous O TOCA1 B-protein HR1 B-structure_element domain O or O N B-protein - I-protein WASP I-protein GBD B-structure_element was O added O , O to O assess O their O effects O on O actin B-protein_type polymerization O . O Actin B-protein_type polymerization O in O all O cases O was O initiated O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O . O Actin B-protein_type polymerization O triggered O by O the O addition O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical - O containing O liposomes O has O previously O been O shown O to O depend O on O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein . O Endogenous O N B-protein - I-protein WASP I-protein is O present O at O ∼ O 100 O nm O in O Xenopus B-taxonomy_domain extracts O , O whereas O TOCA1 B-protein is O present O at O a O 10 O - O fold O lower O concentration O than O N B-protein - I-protein WASP I-protein . O The O addition B-experimental_method of O the O isolated O N B-protein - I-protein WASP I-protein GBD B-structure_element significantly O inhibited O the O polymerization O of O actin B-protein_type at O concentrations O as O low O as O 100 O nm O and O completely O abolished O polymerization O at O higher O concentrations O ( O Fig O . O 8 O ). O The O GBD B-structure_element presumably O acts O as O a O dominant O negative O , O sequestering O endogenous O Cdc42 B-protein and O preventing O endogenous B-protein_state full B-protein_state - I-protein_state length I-protein_state N B-protein - I-protein WASP I-protein from O binding O and O becoming O activated O . O The O addition B-experimental_method of O the O TOCA1 B-protein HR1 B-structure_element domain O to O 100 O μm O had O no O significant O effect O on O the O rate O of O actin B-protein_type polymerization O or O maximum B-evidence fluorescence I-evidence . O This O is O consistent O with O endogenous B-protein_state N B-protein - I-protein WASP I-protein , O activated O by O other O components O of O the O assay O , O outcompeting O the O TOCA1 B-protein HR1 B-structure_element domain O for O Cdc42 B-protein binding O . O Actin O polymerization O downstream O of O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly is O inhibited B-protein_state by O excess O N B-protein - I-protein WASP I-protein GBD B-structure_element but O not O by O the O TOCA1 B-protein HR1 B-structure_element domain O . O Fluorescence B-evidence curves I-evidence show O actin O polymerization O in O the O presence B-protein_state of I-protein_state increasing B-experimental_method concentrations I-experimental_method of O N B-protein - I-protein WASP I-protein GBD B-structure_element or O TOCA1 B-protein HR1 B-structure_element domain O as O indicated O . O The O Cdc42 B-protein - O TOCA1 B-protein Interaction O The O TOCA1 B-protein HR1 B-structure_element domain O alone B-protein_state is O sufficient O for O Cdc42 B-protein binding O in O vitro O , O yet O the O affinity B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O for O Cdc42 B-protein is O remarkably O low O ( O Kd B-evidence ≈ O 5 O μm O ). O This O is O over O 100 O times O lower O than O that O of O the O N B-protein - I-protein WASP I-protein GBD B-structure_element ( O Kd B-evidence = O 37 O nm O ) O and O considerably O lower O than O other O known O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O The O polybasic O tract O within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O Cdc42 B-protein does O not O appear O to O be O required O for O binding O to O TOCA1 B-protein , O which O is O in O contrast O to O the O interaction O between O Rac1 B-protein and O the O HR1b B-structure_element domain O of O PRK1 B-protein but O more O similar O to O the O PRK1 B-protein HR1a B-structure_element - O RhoA B-protein interaction O . O A O single O binding B-site interface I-site on O both O the O HR1 B-structure_element domain O and O Cdc42 B-protein can O be O concluded O from O the O data O presented O here O . O Furthermore O , O the O interfaces B-site are O comparable O with O those O of O other O G B-protein_type protein I-protein_type - O HR1 B-structure_element interactions O ( O Fig O . O 4 O ), O and O the O lowest O energy O model B-evidence produced O in O rigid B-experimental_method body I-experimental_method docking I-experimental_method resembles O previously O studied O G B-complex_assembly protein I-complex_assembly · I-complex_assembly HR1 I-complex_assembly complexes O ( O Fig O . O 6 O ). O It O seems O , O therefore O , O that O the O interaction O , O despite O its O relatively O low O affinity O , O is O specific O and O sterically O similar O to O other O HR1 B-structure_element domain O - O G B-protein_type protein I-protein_type interactions O . O The O TOCA1 B-protein HR1 B-structure_element domain O is O a O left O - O handed O coiled B-structure_element - I-structure_element coil I-structure_element comparable O with O other O known O HR1 B-structure_element domains O . O A O short O region O N O - O terminal O to O the O coiled B-structure_element - I-structure_element coil I-structure_element exhibits O a O series O of O turns O and O contacts O residues O of O both O helices O of O the O coiled B-structure_element - I-structure_element coil I-structure_element ( O Fig O . O 3 O ). O The O corresponding O sequence O in O CIP4 B-protein also O includes O a O series O of O turns O but O is O flexible O , O whereas O in O the O HR1a B-structure_element domain O of O PRK1 B-protein , O the O equivalent O region O adopts O an O α B-structure_element - I-structure_element helical I-structure_element structure I-structure_element that O packs O against O the O coiled B-structure_element - I-structure_element coil I-structure_element . O The O contacts O between O the O N O - O terminal O region O and O the O coiled B-structure_element - I-structure_element coil I-structure_element are O predominantly O hydrophobic O in O both O cases O , O but O sequence O - O specific O contacts O do O not O appear O to O be O conserved O . O This O region O is O distant O from O the O G B-site protein I-site - I-site binding I-site interface I-site of O the O HR1 B-structure_element domains O , O so O the O structural O differences O may O relate O to O the O structure O and O regulation O of O these O domains O rather O than O their O G B-protein_type protein I-protein_type interactions O . O The O interhelical B-structure_element loops I-structure_element of O TOCA1 B-protein and O CIP4 B-protein differ O from O the O same O region O in O the O HR1 B-structure_element domains O of O PRK1 B-protein in O that O they O are O longer O and O contain O two O short O stretches O of O 310 B-structure_element - I-structure_element helix I-structure_element . O This O region O lies O within O the O G B-site protein I-site - I-site binding I-site surface I-site of O all O of O the O HR1 B-structure_element domains O ( O Fig O . O 4D O ). O TOCA1 B-protein and O CIP4 B-protein both O bind O weakly O to O Cdc42 B-protein , O whereas O the O HR1a B-structure_element domain O of O PRK1 B-protein binds O tightly O to O RhoA B-protein and O Rac1 B-protein , O and O the O HR1b B-structure_element domain O binds O to O Rac1 B-protein . O The O structural O features O shared O by O TOCA1 B-protein and O CIP4 B-protein may O therefore O be O related O to O Cdc42 B-protein binding O specificity O and O the O low O affinities O . O In O free B-protein_state TOCA1 B-protein , O the O side O chains O of O the O interhelical B-structure_element region I-structure_element make O extensive O contacts O with O residues O in O helix B-structure_element 1 I-structure_element . O Many O of O these O residues O are O significantly O affected O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein , O so O it O is O likely O that O the O conformation O of O this O loop B-structure_element is O altered O in O the O Cdc42 B-protein complex O . O These O observations O therefore O provide O a O molecular O mechanism O whereby O mutation B-experimental_method of O Met383 B-residue_name_number - O Gly384 B-residue_name_number - O Asp385 B-residue_name_number to O Ile383 B-residue_name_number - O Ser384 B-residue_name_number - O Thr385 B-residue_name_number abolishes O TOCA1 B-protein binding O to O Cdc42 B-protein . O The O lowest O energy O model B-evidence produced O by O HADDOCK B-experimental_method using O ambiguous O interaction O restraints O from O the O titration B-evidence data O resembled O the O NMR B-experimental_method structures B-evidence of O RhoA B-protein and O Rac1 B-protein in B-protein_state complex I-protein_state with I-protein_state their O HR1 B-structure_element domain O partners O . O For O example O , O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number , O which O is O not O visible O in O free B-protein_state Cdc42 B-protein or O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly , O is O close O to O the O TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 6A O ). O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number , O which O is O a O Trp B-residue_name in O both O Rac1 B-protein and O RhoA B-protein ( O Fig O . O 6C O ), O is O thought O to O pack O behind O switch B-site I I-site when O Cdc42 B-protein interacts O with O ACK B-protein , O maintaining O the O switch O in O a O binding O - O competent O orientation O . O This O residue O has O also O been O identified O as O important O for O Cdc42 B-protein - O WASP B-protein binding O . O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number is O therefore O likely O to O be O involved O in O the O Cdc42 B-protein - O TOCA1 B-protein interaction O , O probably O by O stabilizing O the O position O of O switch B-site I I-site . O Some O residues O that O are O affected O in O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O but O do O not O correspond O to O contact O residues O of O RhoA B-protein or O Rac1 B-protein ( O Fig O . O 6C O ) O may O contact O HR1TOCA1 B-structure_element directly O ( O Fig O . O 6D O ). O Gln B-residue_name_number - I-residue_name_number 2Cdc42 I-residue_name_number , O which O has O also O been O identified O as O a O contact O residue O in O the O Cdc42 B-complex_assembly · I-complex_assembly ACK I-complex_assembly complex O , O contacts O Val B-residue_name_number - I-residue_name_number 376TOCA1 I-residue_name_number and O Asn B-residue_name_number - I-residue_name_number 380TOCA1 I-residue_name_number in O the O model O and O disrupts O the O contacts O between O the O interhelical B-structure_element loop I-structure_element and O the O first B-structure_element helix I-structure_element of O the O TOCA1 B-protein coiled B-structure_element - I-structure_element coil I-structure_element . O Thr B-residue_name_number - I-residue_name_number 52Cdc42 I-residue_name_number , O which O has O also O been O identified O as O making O minor O contacts O with O ACK B-protein , O falls O near O the O side O chains O of O HR1TOCA1 B-structure_element helix B-structure_element 1 I-structure_element , O particularly O Lys B-residue_name_number - I-residue_name_number 372TOCA1 I-residue_name_number , O whereas O the O equivalent O position O in O Rac1 B-protein is O Asn B-residue_name_number - I-residue_name_number 52Rac1 I-residue_name_number . O N52T B-mutant is O one O of O a O combination O of O seven O residues O found O to O confer O ACK B-protein binding O on O Rac1 B-protein and O so O may O represent O a O specific O Cdc42 B-protein - O effector O contact O residue O . O The O position O equivalent O to O Lys B-residue_name_number - I-residue_name_number 372TOCA1 I-residue_name_number in O PRK1 B-protein is O Glu B-residue_name_number - I-residue_name_number 58HR1a I-residue_name_number or O Gln B-residue_name_number - I-residue_name_number 151HR1b I-residue_name_number . O Thr B-residue_name_number - I-residue_name_number 52Cdc42 I-residue_name_number - O Lys B-residue_name_number - I-residue_name_number 372TOCA1 I-residue_name_number may O therefore O represent O a O specific O Cdc42 B-protein - O HR1TOCA1 B-structure_element contact O . O Arg B-residue_name_number - I-residue_name_number 68Cdc42 I-residue_name_number of O switch B-site II I-site is O positioned O close O to O Glu B-residue_name_number - I-residue_name_number 395TOCA1 I-residue_name_number ( O Fig O . O 6D O ), O suggesting O a O direct O electrostatic O contact O between O switch B-site II I-site of O Cdc42 B-protein and O helix B-structure_element 2 I-structure_element of O the O HR1 B-structure_element domain O . O The O equivalent O Arg B-residue_name in O Rac1 B-protein and O RhoA B-protein is O pointing O away O from O the O HR1 B-structure_element domains O of O PRK1 B-protein . O The O importance O of O this O residue O in O the O Cdc42 B-protein - O TOCA1 B-protein interaction O remains O unclear O , O although O its O mutation B-experimental_method reduces O binding O to O RhoGAP B-protein , O suggesting O that O it O can O be O involved O in O Cdc42 B-protein interactions O . O The O solution B-evidence structure I-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O presented O here O , O along O with O the O model O of O the O HR1TOCA1 B-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly complex O is O consistent O with O a O conserved O mode O of O binding O across O the O known O HR1 B-structure_element domain O - O Rho O family O interactions O , O despite O their O differing O affinities O . O The O weak O binding O prevented O detailed O structural B-experimental_method and I-experimental_method thermodynamic I-experimental_method studies I-experimental_method of O the O complex O . O Nonetheless O , O structural B-experimental_method studies I-experimental_method of O the O TOCA1 B-protein HR1 B-structure_element domain O , O combined O with O chemical B-experimental_method shift I-experimental_method mapping I-experimental_method , O have O highlighted O some O potentially O interesting O differences O between O Cdc42 B-protein - O HR1TOCA1 B-structure_element and O RhoA B-protein / O Rac1 B-protein - O HR1PRK1 B-structure_element binding O . O We O have O previously O postulated O that O the O inherent O flexibility O of O HR1 B-structure_element domains O contributes O to O their O ability O to O bind O to O different O Rho B-protein_type family I-protein_type G I-protein_type proteins I-protein_type , O with O Rho O - O binding O HR1 B-structure_element domains O displaying O increased O flexibility O , O reflected O in O their O lower O melting B-evidence temperatures I-evidence ( O Tm B-evidence ) O and O Rac B-protein_type binders O being O more O rigid O . O The O Tm B-evidence of O the O TOCA1 B-protein HR1 B-structure_element domain O is O 61 O . O 9 O ° O C O ( O data O not O shown O ), O which O is O the O highest O Tm B-evidence that O we O have O measured O for O an O HR1 B-structure_element domain O thus O far O . O As O such O , O the O ability O of O the O TOCA1 B-protein HR1 B-structure_element domain O to O bind O to O Cdc42 B-protein ( O a O close O relative O of O Rac1 B-protein rather O than O RhoA B-protein ) O fits O this O trend O . O An O investigation O into O the O local O motions O , O particularly O in O the O G B-site protein I-site - I-site binding I-site regions I-site , O may O offer O further O insight O into O the O differential O specificities O and O affinities O of O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O The O low O affinity O of O the O Cdc42 B-protein - O HR1TOCA1 B-structure_element interaction O is O consistent O with O a O tightly O spatially O and O temporally O regulated O pathway O , O requiring O combinatorial O signals O leading O to O a O series O of O coincident O weak O interactions O that O elicit O full O activation O . O The O HR1 B-structure_element domains O from O other O TOCA B-protein_type family I-protein_type members I-protein_type , O CIP4 B-protein and O FBP17 B-protein , O also O bind O at O low O micromolar O affinities O to O Cdc42 B-protein , O so O the O low O affinity O interaction O appears O to O be O commonplace O among O this O family O of O HR1 B-protein_type domain I-protein_type proteins I-protein_type , O in O contrast O to O the O PRK B-protein_type family I-protein_type . O The O low O affinity O of O the O HR1TOCA1 B-structure_element - O Cdc42 B-protein interaction O in O the O context O of O the O physiological O concentration O of O TOCA1 B-protein in O Xenopus B-taxonomy_domain extracts O (∼ O 10 O nm O ) O suggests O that O binding O between O TOCA1 B-protein and O Cdc42 B-protein is O likely O to O occur O in O vivo O only O when O TOCA1 B-protein is O at O high O local O concentrations O and O membrane O - O localized O and O therefore O in O close O proximity O to O activated B-protein_state Cdc42 B-protein . O Evidence O suggests O that O the O TOCA B-protein_type family I-protein_type of O proteins O are O recruited O to O the O membrane O via O an O interaction O between O their O F B-structure_element - I-structure_element BAR I-structure_element domain O and O specific O signaling O lipids O . O For O example O , O electrostatic O interactions O between O the O F B-structure_element - I-structure_element BAR I-structure_element domain O and O the O membrane O are O required O for O TOCA1 B-protein recruitment O to O membrane O vesicles O and O tubules O , O and O TOCA1 B-protein - O dependent O actin O polymerization O is O known O to O depend O specifically O on O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical . O Furthermore O , O the O isolated B-experimental_method F B-structure_element - I-structure_element BAR I-structure_element domain O of O FBP17 B-protein has O been O shown O to O induce O membrane O tubulation O of O brain O liposomes O and O BAR B-structure_element domain O proteins O that O promote O tubulation O cluster O on O membranes O at O high O densities O . O Once O at O the O membrane O , O high O local O concentrations O of O TOCA1 B-protein could O exceed O the O Kd B-evidence of O F B-structure_element - I-structure_element BAR I-structure_element dimerization B-oligomeric_state ( O likely O to O be O comparable O with O that O of O the O FCHo2 B-protein F B-structure_element - I-structure_element BAR I-structure_element domain O ( O 2 O . O 5 O μm O )) O and O that O of O the O Cdc42 B-protein - O HR1TOCA1 B-structure_element interaction O . O Cdc42 B-protein - O HR1TOCA1 B-structure_element binding O would O then O be O favorable O , O as O long O as O coincident O activation O of O Cdc42 B-protein had O occurred O , O leading O to O stabilization O of O TOCA1 B-protein at O the O membrane O and O downstream O activation O of O N B-protein - I-protein WASP I-protein . O It O has O been O postulated O that O WASP B-protein_type and O N B-protein - I-protein WASP I-protein exist O in O equilibrium O between O folded B-protein_state ( O inactive B-protein_state ) O and O unfolded B-protein_state ( O active B-protein_state ) O forms O , O and O the O affinity B-evidence of O Cdc42 B-protein for O the O unfolded B-protein_state WASP B-protein_type proteins O is O significantly O enhanced O . O The O unfolded B-protein_state , O high O affinity O state O of O WASP B-protein_type is O represented O by O a O short O peptide B-chemical , O the O GBD B-structure_element , O which O binds O with O a O low O nanomolar O affinity O to O Cdc42 B-protein . O In O contrast O , O the O best O estimate O of O the O affinity B-evidence of O full B-protein_state - I-protein_state length I-protein_state WASP B-protein_type for O Cdc42 B-protein is O low O micromolar O . O In O the O inactive B-protein_state state O of O WASP B-protein_type , O the O actin O - O and O Arp2 B-complex_assembly / I-complex_assembly 3 I-complex_assembly - O binding O VCA B-structure_element domain O contacts O the O GBD B-structure_element , O competing O for O Cdc42 B-protein binding O . O The O high O affinity O of O Cdc42 B-protein for O the O unfolded B-protein_state , O active B-protein_state form O pushes O the O equilibrium O in O favor O of O ( B-protein N I-protein -) I-protein WASP I-protein activation O . O Binding O of O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical to O the O basic O region O just O N O - O terminal O to O the O GBD B-structure_element further O favors O the O active B-protein_state conformation O . O A O substantial O body O of O data O has O illuminated O the O complex O regulation O of O WASP B-protein_type / I-protein_type N I-protein_type - I-protein_type WASP I-protein_type proteins I-protein_type , O and O current O evidence O suggests O that O these O allosteric O activation O mechanisms O and O oligomerization O combine O to O regulate O WASP B-protein_type activity O , O allowing O the O synchronization O and O integration O of O multiple O potential O activation O signals O ( O reviewed O in O Ref O .). O We O envisage O that O TOCA1 B-protein is O first O recruited O to O the O appropriate O membrane O in O response O to O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical via O its O F B-structure_element - I-structure_element BAR I-structure_element domain O , O where O the O local O increase O in O concentration O favors O F B-structure_element - I-structure_element BAR I-structure_element - O mediated O dimerization B-oligomeric_state of O TOCA1 B-protein . O Cdc42 B-protein is O activated O in O response O to O co O - O incident O signals O and O can O then O bind O to O TOCA1 B-protein , O further O stabilizing O TOCA1 B-protein at O the O membrane O . O TOCA1 B-protein can O then O recruit O N B-protein - I-protein WASP I-protein via O an O interaction O between O its O SH3 B-structure_element domain O and O the O N B-protein - I-protein WASP I-protein proline B-structure_element - I-structure_element rich I-structure_element region I-structure_element . O The O recruitment O of O N B-protein - I-protein WASP I-protein alone B-protein_state and O of O the O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly complex O by O TOCA1 B-protein and O FBP17 B-protein has O been O demonstrated O . O WIP B-protein inhibits O the O activation O of O N B-protein - I-protein WASP I-protein by O Cdc42 B-protein , O an O effect O that O is O reversed O by O TOCA1 B-protein . O It O may O therefore O be O envisaged O that O WIP B-protein and O TOCA1 B-protein exert O opposing O allosteric O effects O on O N B-protein - I-protein WASP I-protein , O with O TOCA1 B-protein favoring O the O unfolded B-protein_state , O active B-protein_state conformation O of O N B-protein - I-protein WASP I-protein and O increasing O its O affinity O for O Cdc42 B-protein . O TOCA1 B-protein may O also O activate O N B-protein - I-protein WASP I-protein by O effective O oligomerization O because O clustering O of O TOCA1 B-protein at O the O membrane O following O coincident O interactions O with O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical and O Cdc42 B-protein would O in O turn O lead O to O clustering O of O N B-protein - I-protein WASP I-protein , O in O addition O to O pushing O the O equilibrium O toward O the O unfolded B-protein_state , O active B-protein_state state O . O In O a O cellular O context O , O full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O N B-protein - I-protein WASP I-protein are O likely O to O have O similar O affinities B-evidence for O active B-protein_state Cdc42 B-protein , O but O in O the O unfolded B-protein_state , O active B-protein_state conformation O , O the O affinity B-evidence of O N B-protein - I-protein WASP I-protein for O Cdc42 B-protein dramatically O increases O . O Our O binding B-evidence data I-evidence suggest O that O TOCA1 B-protein HR1 B-structure_element binding O is O not O allosterically O regulated O , O and O our O NMR B-experimental_method data O , O along O with O the O high O stability B-protein_state of O TOCA1 B-protein HR1 B-structure_element , O suggest O that O there O is O no O widespread O conformational O change O in O the O presence B-protein_state of I-protein_state Cdc42 B-protein . O As O full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O the O isolated B-protein_state HR1 B-structure_element domain O bind O Cdc42 B-protein with O similar O affinities O , O the O N B-protein - I-protein WASP I-protein - O Cdc42 B-protein interaction O will O be O favored O because O the O N B-protein - I-protein WASP I-protein GBD B-structure_element can O easily O outcompete O the O TOCA1 B-protein HR1 B-structure_element for O Cdc42 B-protein . O A O combination O of O allosteric O activation O by O PI B-chemical ( I-chemical 4 I-chemical , I-chemical 5 I-chemical ) I-chemical P2 I-chemical , O activated B-protein_state Cdc42 B-protein and O TOCA1 B-protein , O and O oligomeric O activation O implemented O by O TOCA1 B-protein would O lead O to O full B-protein_state activation I-protein_state of O N B-protein - I-protein WASP I-protein and O downstream O actin O polymerization O . O In O such O an O array O of O molecules O localized O to O a O discrete O region O of O the O membrane O , O it O is O plausible O that O WASP B-protein could O bind O to O a O second O Cdc42 B-protein molecule O rather O than O displacing O TOCA1 B-protein from O its O cognate O Cdc42 B-protein . O Our O NMR B-experimental_method and O affinity B-evidence data I-evidence , O however O , O are O consistent O with O displacement O of O the O TOCA1 B-protein HR1 B-structure_element by O the O N B-protein - I-protein WASP I-protein GBD B-structure_element . O Furthermore O , O TOCA1 B-protein is O required O for O Cdc42 B-protein - O mediated O activation O of O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly , O implying O that O it O may O not O be O possible O for O Cdc42 B-protein to O bind O and O activate O N B-protein - I-protein WASP I-protein prior O to O TOCA1 B-protein - O Cdc42 B-protein binding O . O The O commonly O used O MGD B-mutant → I-mutant IST I-mutant ( O Cdc42 B-protein_state - I-protein_state binding I-protein_state deficient I-protein_state ) O mutant O of O TOCA1 B-protein has O a O reduced O ability O to O activate O the O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly complex O , O further O indicating O the O importance O of O the O Cdc42 B-protein - O HR1TOCA1 B-structure_element interaction O prior O to O downstream O activation O of O N B-protein - I-protein WASP I-protein . O In O light O of O this O , O we O favor O an O “ O effector O handover O ” O scheme O whereby O TOCA1 B-protein interacts O with O Cdc42 B-protein prior O to O N B-protein - I-protein WASP I-protein activation O , O after O which O N B-protein - I-protein WASP I-protein displaces O TOCA1 B-protein from O its O bound B-protein_state Cdc42 B-protein in O order O to O be O fully B-protein_state activated I-protein_state rather O than O binding O a O second O Cdc42 B-protein molecule O . O Potentially O , O the O TOCA1 B-protein - O Cdc42 B-protein interaction O functions O to O position O N B-protein - I-protein WASP I-protein and O Cdc42 B-protein such O that O they O are O poised O to O interact O with O high O affinity O . O The O concomitant O release O of O TOCA1 B-protein from O Cdc42 B-protein while O still O bound B-protein_state to I-protein_state N B-protein - I-protein WASP I-protein presumably O enhances O the O ability O of O TOCA1 B-protein to O further O activate O N B-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly WIP I-complex_assembly - O induced O actin O polymerization O . O There O is O an O advantage O to O such O an O effector O handover O , O in O that O N B-protein - I-protein WASP I-protein would O only O be O robustly O recruited O when O F B-structure_element - I-structure_element BAR I-structure_element domains O are O already O present O . O Hence O , O actin O polymerization O cannot O occur O until O F B-structure_element - I-structure_element BAR I-structure_element domains O are O poised O for O membrane O distortion O . O Our O model O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O indicates O a O mechanism O by O which O such O a O handover O could O take O place O ( O Fig O . O 9 O ) O because O it O shows O that O the O effector B-site binding I-site sites I-site only O partially O overlap O on O Cdc42 B-protein . O The O lysine B-residue_name residues O thought O to O be O involved O in O an O electrostatic O steering O mechanism O in O WASP B-protein - O Cdc42 B-protein binding O are O conserved O in O N B-protein - I-protein WASP I-protein and O would O be O able O to O interact O with O Cdc42 B-protein even O when O the O TOCA1 B-protein HR1 B-structure_element domain O is O already O bound B-protein_state . O It O has O been O postulated O that O the O initial O interactions O between O this O basic O region O and O Cdc42 B-protein could O stabilize O the O active B-protein_state conformation O of O WASP B-protein , O leading O to O high O affinity O binding O between O the O core O CRIB B-structure_element and O Cdc42 B-protein . O The O region O C O - O terminal O to O the O core O CRIB B-structure_element , O required O for O maximal O affinity O binding O , O would O then O fully O displace O the O TOCA1 B-protein HR1 B-structure_element . O A O simplified O model O of O the O early O stages O of O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly - O dependent O actin O polymerization O . O Step O 1 O , O TOCA1 B-protein is O recruited O to O the O membrane O via O its O F B-structure_element - I-structure_element BAR I-structure_element domain O and O / O or O Cdc42 B-protein interactions O . O F O - O BAR O oligomerization O is O expected O to O occur O following O membrane O binding O , O but O a O single O monomer B-oligomeric_state is O shown O for O clarity O . O Step O 2 O , O N B-protein - I-protein WASP I-protein exists O in O an O inactive B-protein_state , O folded B-protein_state conformation O . O The O TOCA1 B-protein SH3 B-structure_element domain O interacts O with O N B-protein - I-protein WASP I-protein , O causing O an O activatory O allosteric O effect O . O The O HR1TOCA1 B-structure_element - O Cdc42 O and O SH3TOCA1 B-structure_element - O N O - O WASP O interactions O position O Cdc42 B-protein and O N B-protein - I-protein WASP I-protein for O binding O . O Step O 3 O , O electrostatic O interactions O between O Cdc42 B-protein and O the O basic O region O upstream O of O the O CRIB B-structure_element initiate O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly binding O . O Step O 4 O , O the O core O CRIB B-structure_element binds O with O high O affinity O while O the O region O C O - O terminal O to O the O CRIB B-structure_element displaces O the O TOCA1 B-protein HR1 B-structure_element domain O and O increases O the O affinity O of O the O N B-protein - I-protein WASP I-protein - O Cdc42 O interaction O further O . O The O VCA B-structure_element domain O is O released O for O downstream O interactions O , O and O actin O polymerization O proceeds O . O WH1 O , O WASP B-structure_element homology I-structure_element 1 I-structure_element domain I-structure_element ; O PP B-structure_element , O proline B-structure_element - I-structure_element rich I-structure_element region I-structure_element ; O VCA B-structure_element , O verprolin B-structure_element homology I-structure_element , I-structure_element cofilin I-structure_element homology I-structure_element , I-structure_element acidic I-structure_element region I-structure_element . O In O conclusion O , O the O data O presented O here O show O that O the O TOCA1 B-protein HR1 B-structure_element domain O is O sufficient O for O Cdc42 B-protein binding O in O vitro O and O that O the O interaction O is O of O micromolar O affinity O , O lower O than O that O of O other O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interactions O . O The O analogous O HR1 B-structure_element domains O from O other O TOCA1 B-protein_type family I-protein_type members O , O FBP17 B-protein and O CIP4 B-protein , O also O exhibit O micromolar O affinity O for O Cdc42 B-protein . O A O role O for O the O TOCA1 B-protein -, O FBP17 B-protein -, O and O CIP4 B-protein - O Cdc42 B-protein interactions O in O the O recruitment O of O these O proteins O to O the O membrane O therefore O appears O unlikely O . O Instead O , O our O findings O agree O with O earlier O suggestions O that O the O F B-structure_element - I-structure_element BAR I-structure_element domain O is O responsible O for O membrane O recruitment O . O The O role O of O the O Cdc42 B-protein - O TOCA1 B-protein interaction O remains O somewhat O elusive O , O but O it O may O serve O to O position O activated B-protein_state Cdc42 B-protein and O N B-protein - I-protein WASP I-protein to O allow O full B-protein_state activation I-protein_state of O N B-protein - I-protein WASP I-protein and O as O such O serve O to O couple O F B-structure_element - I-structure_element BAR I-structure_element - O mediated O membrane O deformation O with O N B-protein - I-protein WASP I-protein activation O . O We O envisage O a O complex O interplay O of O equilibria O between O free B-protein_state and O bound B-protein_state , O active B-protein_state and O inactive B-protein_state Cdc42 B-protein , O TOCA B-protein_type family I-protein_type , O and O WASP B-protein_type family O proteins O , O facilitating O a O tightly O spatially O and O temporally O regulated O pathway O requiring O numerous O simultaneous O events O in O order O to O achieve O appropriate O and O robust O activation O of O the O downstream O pathway O . O Our O data O are O therefore O easily O reconciled O with O the O dynamic O instability O models O described O in O relation O to O the O formation O of O endocytic O vesicles O and O with O the O current O data O pertaining O to O the O complex O activation O of O WASP B-protein_type / O N B-protein - I-protein WASP I-protein pathways O by O allosteric O and O oligomeric O effects O . O It O is O clear O from O the O data O presented O here O that O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein do O not O bind O Cdc42 B-protein simultaneously O and O that O N B-protein - I-protein WASP I-protein is O likely O to O outcompete O TOCA1 B-protein for O Cdc42 B-protein binding O . O We O therefore O postulate O an O effector O handover O mechanism O based O on O current O evidence O surrounding O WASP B-protein / O N B-protein - I-protein WASP I-protein activation O and O our O model O of O the O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly complex O . O The O displacement O of O the O TOCA1 B-protein HR1 B-structure_element domain O from O Cdc42 B-protein by O N B-protein - I-protein WASP I-protein may O represent O a O unidirectional O step O in O the O pathway O of O Cdc42 B-complex_assembly · I-complex_assembly N I-complex_assembly - I-complex_assembly WASP I-complex_assembly · I-complex_assembly TOCA1 I-complex_assembly - O dependent O actin O assembly O . O The O dynamic B-protein_state organization O of O fungal B-taxonomy_domain acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O catalyse O the O committed O step O in O fatty O - O acid O biosynthesis O : O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O They O are O important O regulatory O hubs O for O metabolic O control O and O relevant O drug O targets O for O the O treatment O of O the O metabolic O syndrome O and O cancer O . O Eukaryotic B-taxonomy_domain ACCs B-protein_type are O single B-protein_type - I-protein_type chain I-protein_type multienzymes I-protein_type characterized O by O a O large O , O non B-protein_state - I-protein_state catalytic I-protein_state central B-structure_element domain I-structure_element ( O CD B-structure_element ), O whose O role O in O ACC B-protein_type regulation O remains O poorly O characterized O . O Here O we O report O the O crystal B-evidence structure I-evidence of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element , O revealing O a O unique O four O - O domain O organization O . O A O regulatory B-structure_element loop I-structure_element , O which O is O phosphorylated B-protein_state at O the O key O functional O phosphorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type , O wedges O into O a O crevice O between O two O domains O of O CD B-structure_element . O Combining O the O yeast B-taxonomy_domain CD B-structure_element structure B-evidence with O intermediate O and O low O - O resolution O data O of O larger B-mutant fragments I-mutant up O to O intact B-protein_state ACCs B-protein_type provides O a O comprehensive O characterization O of O the O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type architecture O . O In O contrast O to O related O carboxylases B-protein_type , O large O - O scale O conformational O changes O are O required O for O substrate O turnover O , O and O are O mediated O by O the O CD B-structure_element under O phosphorylation B-ptm control O . O Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type are O central O regulatory O hubs O of O fatty O acid O metabolism O and O are O important O targets O for O drug O development O in O obesity O and O cancer O . O Here O , O the O authors O demonstrate O that O the O regulation O of O these O highly B-protein_state dynamic I-protein_state enzymes B-protein_type in O fungi B-taxonomy_domain is O governed O by O a O mechanism O based O on O phosphorylation B-ptm - O dependent O conformational O variability O . O Biotin B-protein_type - I-protein_type dependent I-protein_type acetyl I-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O are O essential O enzymes O that O catalyse O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O This O reaction O provides O the O committed O activated O substrate O for O the O biosynthesis O of O fatty B-chemical acids I-chemical via O fatty B-protein_type - I-protein_type acid I-protein_type synthase I-protein_type . O By O catalysing O this O rate O - O limiting O step O in O fatty O - O acid O biosynthesis O , O ACC B-protein_type plays O a O key O role O in O anabolic O metabolism O . O ACC B-experimental_method inhibition I-experimental_method and I-experimental_method knock I-experimental_method - I-experimental_method out I-experimental_method studies I-experimental_method show O the O potential O of O targeting O ACC B-protein_type for O treatment O of O the O metabolic O syndrome O . O Furthermore O , O elevated O ACC B-protein_type activity O is O observed O in O malignant O tumours O . O A O direct O link O between O ACC B-protein_type and O cancer O is O provided O by O cancer O - O associated O mutations B-mutant in O the O breast B-protein cancer I-protein susceptibility I-protein gene I-protein 1 I-protein ( O BRCA1 B-protein ), O which O relieve O inhibitory O interactions O of O BRCA1 B-protein with O ACC B-protein_type . O Thus O , O ACC B-protein_type is O a O relevant O drug O target O for O type O 2 O diabetes O and O cancer O . O Microbial B-taxonomy_domain ACCs B-protein_type are O also O the O principal O target O of O antifungal O and O antibiotic O compounds O , O such O as O Soraphen B-chemical A I-chemical . O The O principal O functional O protein O components O of O ACCs B-protein_type have O been O described O already O in O the O late O 1960s O for O Escherichia B-species coli I-species ( O E B-species . I-species coli I-species ) O ACC B-protein_type : O Biotin B-protein_type carboxylase I-protein_type ( O BC B-protein_type ) O catalyses O the O ATP B-chemical - O dependent O carboxylation O of O a O biotin B-chemical moiety O , O which O is O covalently O linked O to O the O biotin B-protein_type carboxyl I-protein_type carrier I-protein_type protein I-protein_type ( O BCCP B-protein_type ). O Carboxyltransferase B-protein_type ( O CT B-protein_type ) O transfers O the O activated O carboxyl B-chemical group O from O carboxybiotin B-chemical to O acetyl B-chemical - I-chemical CoA I-chemical to O yield O malonyl B-chemical - I-chemical CoA I-chemical . O Prokaryotic B-taxonomy_domain ACCs B-protein_type are O transient B-protein_state assemblies O of O individual O BC B-protein_type , O CT B-protein_type and O BCCP B-protein_type subunits O . O Eukaryotic B-taxonomy_domain ACCs B-protein_type , O instead O , O are O multienzymes B-protein_type , O which O integrate O all O functional O components O into O a O single O polypeptide O chain O of O ∼ O 2 O , O 300 O amino O acids O . O Human B-species ACC B-protein_type occurs O in O two O closely O related O isoforms B-protein_state , O ACC1 B-protein and O 2 B-protein , O located O in O the O cytosol O and O at O the O outer O mitochondrial O membrane O , O respectively O . O In O addition O to O the O canonical O ACC B-structure_element components I-structure_element , O eukaryotic B-taxonomy_domain ACCs B-protein_type contain O two O non B-protein_state - I-protein_state catalytic I-protein_state regions B-structure_element , O the O large O central B-structure_element domain I-structure_element ( O CD B-structure_element ) O and O the O BC B-structure_element – I-structure_element CT I-structure_element interaction I-structure_element domain I-structure_element ( O BT B-structure_element ). O The O CD B-structure_element comprises O one O - O third O of O the O protein O and O is O a O unique B-protein_state feature I-protein_state of I-protein_state eukaryotic B-taxonomy_domain ACCs B-protein_type without O homologues O in O other O proteins O . O The O function O of O this O domain O remains O poorly O characterized O , O although O phosphorylation B-ptm of O several O serine B-residue_name residues O in O the O CD B-structure_element regulates O ACC B-protein_type activity O . O The O BT B-structure_element domain O has O been O visualized O in O bacterial B-taxonomy_domain carboxylases B-protein_type , O where O it O mediates O contacts O between O α B-structure_element - I-structure_element and O β B-structure_element - I-structure_element subunits I-structure_element . O Structural B-experimental_method studies I-experimental_method on O the O functional O architecture O of O intact B-protein_state ACCs B-protein_type have O been O hindered O by O their O huge O size O and O pronounced O dynamics O , O as O well O as O the O transient B-protein_state assembly O mode O of O bacterial B-taxonomy_domain ACCs B-protein_type . O However O , O crystal B-evidence structures I-evidence of O individual O components O or O domains O from O prokaryotic B-taxonomy_domain and O eukaryotic B-taxonomy_domain ACCs B-protein_type , O respectively O , O have O been O solved O . O The O structure B-experimental_method determination I-experimental_method of O the O holoenzymes B-protein_state of O bacterial B-taxonomy_domain biotin B-protein_type - I-protein_type dependent I-protein_type carboxylases I-protein_type , O which O lack B-protein_state the O characteristic O CD B-structure_element , O such O as O the O pyruvate B-protein_type carboxylase I-protein_type ( O PC B-protein_type ), O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type , O 3 B-protein_type - I-protein_type methyl I-protein_type - I-protein_type crotonyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type and O a O long B-protein_type - I-protein_type chain I-protein_type acyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type revealed O strikingly O divergent O architectures O despite O a O general O conservation O of O all O functional O components O . O In O these O structures B-evidence , O the O BC B-protein_type and O CT B-protein_type active B-site sites I-site are O at O distances O between O 40 O and O 80 O Å O , O such O that O substrate O transfer O could O be O mediated O solely O by O the O mobility O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-protein_type . O Human B-species ACC1 B-protein is O regulated B-protein_state allosterically I-protein_state , O via O specific O protein O – O protein O interactions O , O and O by O reversible O phosphorylation B-ptm . O Dynamic O polymerization O of O human B-species ACC1 B-protein is O linked O to O increased O activity O and O is O regulated B-protein_state allosterically I-protein_state by O the O activator O citrate B-chemical and O the O inhibitor O palmitate B-chemical , O or O by O binding O of O the O small O protein O MIG B-protein - I-protein 12 I-protein ( O ref O .). O Human B-species ACC1 B-protein is O further O regulated O by O specific O phosphorylation B-ptm - O dependent O binding O of O BRCA1 B-protein to O Ser1263 B-residue_name_number in O the O CD B-structure_element . O BRCA1 B-protein binds O only O to O the O phosphorylated B-protein_state form O of O ACC1 B-protein and O prevents O ACC B-protein_type activation O by O phosphatase B-protein_type - O mediated O dephosphorylation O . O Furthermore O , O phosphorylation B-ptm by O AMP B-protein - I-protein activated I-protein protein I-protein kinase I-protein ( O AMPK B-protein ) O and O cAMP B-protein - I-protein dependent I-protein protein I-protein kinase I-protein ( O PKA B-protein ) O leads O to O a O decrease O in O ACC1 B-protein activity O . O AMPK B-protein phosphorylates O ACC1 B-protein in O vitro O at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1216 B-residue_name_number and O PKA B-protein at O Ser78 B-residue_name_number and O Ser1201 B-residue_name_number . O However O , O regulatory O effects O on O ACC1 B-protein activity O are O mainly O mediated O by O phosphorylation B-ptm of O Ser80 B-residue_name_number and O Ser1201 B-residue_name_number ( O refs O ). O Phosphorylated B-protein_state Ser80 B-residue_name_number , O which O is O highly B-protein_state conserved I-protein_state only O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O presumably O binds O into O the O Soraphen B-site A I-site - I-site binding I-site pocket I-site . O The O regulatory O Ser1201 B-residue_name_number shows O only O moderate B-protein_state conservation I-protein_state across O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O while O the O phosphorylated B-protein_state Ser1216 B-residue_name_number is O highly B-protein_state conserved I-protein_state across O all O eukaryotes B-taxonomy_domain . O However O , O no O effect O of O Ser1216 B-residue_name_number phosphorylation B-ptm on O ACC B-protein_type activity O has O been O reported O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain . O For O fungal B-taxonomy_domain ACC B-protein_type , O neither O spontaneous O nor O inducible O polymerization O has O been O detected O despite O considerable O sequence O conservation O to O human B-species ACC1 B-protein . O The O BRCA1 B-protein - O interacting O phosphoserine B-residue_name position O is O not B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain ACC B-protein_type , O and O no O other O phospho O - O dependent O protein O – O protein O interactions O of O fungal B-taxonomy_domain ACC B-protein_type have O been O described O . O In O yeast B-taxonomy_domain ACC B-protein_type , O phosphorylation B-site sites I-site have O been O identified O at O Ser2 B-residue_name_number , O Ser735 B-residue_name_number , O Ser1148 B-residue_name_number , O Ser1157 B-residue_name_number and O Ser1162 B-residue_name_number ( O ref O .). O Of O these O , O only O Ser1157 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain ACC B-protein_type and O aligns B-experimental_method to I-experimental_method Ser1216 B-residue_name_number in O human B-species ACC1 B-protein . O Its O phosphorylation B-ptm by O the O AMPK B-protein homologue O SNF1 B-protein results O in O strongly O reduced O ACC B-protein_type activity O . O Despite O the O outstanding O relevance O of O ACC B-protein_type in O primary O metabolism O and O disease O , O the O dynamic O organization O and O regulation O of O the O giant O eukaryotic B-taxonomy_domain , O and O in O particular O fungal B-taxonomy_domain ACC B-protein_type , O remain O poorly O characterized O . O Here O we O provide O the O structure B-evidence of O Saccharomyces B-species cerevisiae I-species ( O Sce B-species ) O ACC B-protein_type CD B-structure_element , O intermediate O - O and O low O - O resolution O structures B-evidence of O human B-species ( O Hsa B-species ) O ACC B-protein_type CD B-structure_element and O larger B-mutant fragments I-mutant of O fungal B-taxonomy_domain ACC B-protein_type from O Chaetomium B-species thermophilum I-species ( O Cth B-species ; O Fig O . O 1a O ). O Integrating O these O data O with O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O and O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O observations O yield O a O comprehensive O representation O of O the O dynamic O structure O and O regulation O of O fungal B-taxonomy_domain ACC B-protein_type . O The O organization O of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element First O , O we O focused O on O structure B-experimental_method determination I-experimental_method of O the O 82 O - O kDa O CD B-structure_element . O The O crystal B-evidence structure I-evidence of O the O CD B-structure_element of O SceACC B-protein ( O SceCD B-species ) O was O determined O at O 3 O . O 0 O Å O resolution O by O experimental B-experimental_method phasing I-experimental_method and O refined B-experimental_method to O Rwork B-evidence / O Rfree B-evidence = O 0 O . O 20 O / O 0 O . O 24 O ( O Table O 1 O ). O The O overall O extent O of O the O SceCD B-species is O 70 O by O 75 O Å O ( O Fig O . O 1b O and O Supplementary O Fig O . O 1a O , O b O ), O and O the O attachment O points O of O the O N O - O terminal O 26 B-structure_element - I-structure_element residue I-structure_element linker I-structure_element to O the O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O separated O by O 46 O Å O ( O the O N O - O and O C O termini O are O indicated O with O spheres O in O Fig O . O 1b O ). O SceCD B-species comprises O four O distinct O domains O , O an O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element domain I-structure_element ( O CDN B-structure_element ), O and O a O central O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element linker I-structure_element domain I-structure_element ( O CDL B-structure_element ), O followed O by O two O α B-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element C I-structure_element - I-structure_element terminal I-structure_element domains I-structure_element ( O CDC1 B-structure_element / O CDC2 B-structure_element ). O CDN B-structure_element adopts O a O letter O C B-protein_state shape I-protein_state , O where O one O of O the O ends O is O a O regular B-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Nα3 B-structure_element - I-structure_element 6 I-structure_element ), O the O other O end O is O a O helical B-structure_element hairpin I-structure_element ( O Nα8 B-structure_element , I-structure_element 9 I-structure_element ) O and O the O bridging B-structure_element region I-structure_element comprises O six O helices B-structure_element ( O Nα1 B-structure_element , I-structure_element 2 I-structure_element , I-structure_element 7 I-structure_element , I-structure_element 10 I-structure_element – I-structure_element 12 I-structure_element ). O CDL B-structure_element is O composed O of O a O small B-structure_element , I-structure_element irregular I-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Lα1 B-structure_element – I-structure_element 4 I-structure_element ) O and O tightly O interacts O with O the O open O face O of O CDC1 B-structure_element via O an O interface B-site of O 1 O , O 300 O Å2 O involving O helices B-structure_element Lα3 B-structure_element and O Lα4 B-structure_element . O CDL B-structure_element does O not O interact O with O CDN B-structure_element apart O from O the O covalent O linkage O and O forms O only O a O small O contact O to O CDC2 B-structure_element via O a O loop B-structure_element between O Lα2 B-structure_element / I-structure_element α3 I-structure_element and O the O N O - O terminal O end O of O Lα1 B-structure_element , O with O an O interface B-site area O of O 400 O Å2 O . O CDC1 B-structure_element / O CDC2 B-structure_element share O a O common O fold O ; O they O are O composed O of O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheets I-structure_element flanked O on O one O side O by O two O long B-structure_element , I-structure_element bent I-structure_element helices I-structure_element inserted O between O strands B-structure_element β3 B-structure_element / I-structure_element β4 I-structure_element and O β4 B-structure_element / I-structure_element β5 I-structure_element . O CDC2 B-structure_element is O extended B-protein_state at O its O C O terminus O by O an O additional O β B-structure_element - I-structure_element strand I-structure_element and O an O irregular B-structure_element β I-structure_element - I-structure_element hairpin I-structure_element . O On O the O basis O of O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence of O main O chain O atom O positions O of O 2 O . O 2 O Å O , O CDC1 B-structure_element / O CDC2 B-structure_element are O structurally O more O closely O related O to O each O other O than O to O any O other O protein O ( O Fig O . O 1c O ); O they O may O thus O have O evolved O by O duplication O . O Close O structural O homologues O could O not O be O found O for O the O CDN B-structure_element or O the O CDC B-structure_element domains O . O A O regulatory B-structure_element loop I-structure_element mediates O interdomain O interactions O To O define O the O functional O state O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method ACC B-protein_type variants O , O we O employed O mass B-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O for O phosphorylation B-experimental_method site I-experimental_method detection I-experimental_method . O In O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state SceACC B-protein , O the O highly B-protein_state conserved I-protein_state Ser1157 B-residue_name_number is O the O only O fully B-protein_state occupied I-protein_state phosphorylation B-site site I-site with O functional O relevance O in O S B-species . I-species cerevisiae I-species . O Additional O phosphorylation B-ptm was O detected O for O Ser2101 B-residue_name_number and O Tyr2179 B-residue_name_number ; O however O , O these O sites O are O neither B-protein_state conserved I-protein_state across O fungal B-taxonomy_domain ACC B-protein_type nor B-protein_state natively I-protein_state phosphorylated I-protein_state in O yeast B-taxonomy_domain . O MS B-experimental_method analysis O of O dissolved B-experimental_method crystals I-experimental_method confirmed O the O phosphorylated B-protein_state state O of O Ser1157 B-residue_name_number also O in O SceCD B-species crystals B-evidence . O The O SceCD B-species structure B-evidence thus O authentically O represents O the O state O of O SceACC B-protein , O where O the O enzyme B-protein is O inhibited B-protein_state by O SNF1 B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm . O In O the O SceCD B-species crystal B-evidence structure I-evidence , O the O phosphorylated B-protein_state Ser1157 B-residue_name_number resides O in O a O regulatory B-structure_element 36 I-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element loop I-structure_element between O strands B-structure_element β2 B-structure_element and O β3 B-structure_element of O CDC1 B-structure_element ( O Fig O . O 1b O , O d O ), O which O contains O two O additional O less B-protein_state - I-protein_state conserved I-protein_state phosphorylation B-site sites I-site ( O Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number ) O confirmed O in O yeast B-taxonomy_domain , O but O not O occupied O here O . O This O regulatory B-structure_element loop I-structure_element wedges O between O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O and O provides O the O largest O contribution O to O the O interdomain B-site interface I-site . O The O N O - O terminal O region O of O the O regulatory B-structure_element loop I-structure_element also O directly O contacts O the O C O - O terminal O region O of O CDC2 B-structure_element leading O into O CT B-structure_element . O Phosphoserine B-residue_name_number 1157 I-residue_name_number is O tightly O bound O by O two O highly B-protein_state conserved I-protein_state arginines B-residue_name ( O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number ) O of O CDC1 B-structure_element ( O Fig O . O 1d O ). O Already O the O binding O of O phosphorylated B-protein_state Ser1157 B-residue_name_number apparently O stabilizes O the O regulatory B-structure_element loop I-structure_element conformation O ; O the O accessory O phosphorylation B-site sites I-site Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number in O the O same B-structure_element loop I-structure_element may O further O modulate O the O strength O of O interaction O between O the O regulatory B-structure_element loop I-structure_element and O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O . O Phosphorylation B-ptm of O the O regulatory B-structure_element loop I-structure_element thus O determines O interdomain O interactions O of O CDC1 B-structure_element and O CDC2 B-structure_element , O suggesting O that O it O may O exert O its O regulatory O function O by O modifying O the O overall O structure O and O dynamics O of O the O CD B-structure_element . O The O functional O role O of O Ser1157 B-residue_name_number was O confirmed O by O an O activity B-experimental_method assay I-experimental_method based O on O the O incorporation O of O radioactive O carbonate O into O acid O non O - O volatile O material O . O Phosphorylated B-protein_state SceACC B-protein shows O only O residual O activity O ( O kcat B-evidence = O 0 O . O 4 O ± O 0 O . O 2 O s O − O 1 O , O s O . O d O . O based O on O five O replicate O measurements O ), O which O increases O 16 O - O fold O ( O kcat B-evidence = O 6 O . O 5 O ± O 0 O . O 3 O s O − O 1 O ) O after O dephosphorylation O with O λ B-protein_type protein I-protein_type phosphatase I-protein_type . O The O values O obtained O for O dephosphorylated B-protein_state SceACC B-protein are O comparable O to O earlier O measurements O of O non B-protein_state - I-protein_state phosphorylated I-protein_state yeast B-taxonomy_domain ACC B-protein_type expressed B-experimental_method in I-experimental_method E B-species . I-species coli I-species . O The O variable O CD B-structure_element is O conserved B-protein_state between O yeast B-taxonomy_domain and O human B-species To O compare O the O organization O of O fungal B-taxonomy_domain and O human B-species ACC B-protein_type CD B-structure_element , O we O determined B-experimental_method the I-experimental_method structure I-experimental_method of O a O human B-species ACC1 B-mutant fragment I-mutant that O comprises O the O BT B-structure_element and O CD B-structure_element domains O ( O HsaBT B-mutant - I-mutant CD I-mutant ), O but O lacks B-protein_state the O mobile O BCCP B-structure_element in O between O ( O Fig O . O 1a O ). O An O experimentally B-evidence phased I-evidence map I-evidence was O obtained O at O 3 O . O 7 O Å O resolution O for O a O cadmium B-chemical - O derivatized O crystal O and O was O interpreted O by O a O poly O - O alanine O model O ( O Fig O . O 1e O and O Table O 1 O ). O Each O of O the O four O CD B-structure_element domains O in O HsaBT B-mutant - I-mutant CD I-mutant individually O resembles O the O corresponding O SceCD B-species domain O ; O however O , O human B-species and O yeast B-taxonomy_domain CDs B-structure_element exhibit O distinct O overall O structures B-evidence . O In O agreement O with O their O tight O interaction O in O SceCD B-species , O the O relative O spatial O arrangement O of O CDL B-structure_element and O CDC1 B-structure_element is O preserved O in O HsaBT B-mutant - I-mutant CD I-mutant , O but O the O human B-species CDL B-structure_element / O CDC1 B-structure_element didomain O is O tilted O by O 30 O ° O based O on O a O superposition B-experimental_method of O human B-species and O yeast B-taxonomy_domain CDC2 B-structure_element ( O Supplementary O Fig O . O 1c O ). O As O a O result O , O the O N O terminus O of O CDL B-structure_element at O helix B-structure_element Lα1 B-structure_element , O which O connects O to O CDN B-structure_element , O is O shifted O by O 12 O Å O . O Remarkably O , O CDN B-structure_element of O HsaBT B-mutant - I-mutant CD I-mutant adopts O a O completely O different O orientation O compared O with O SceCD B-species . O With O CDL B-structure_element / O CDC1 B-structure_element superposed B-experimental_method , O CDN B-structure_element in O HsaBT B-mutant - I-mutant CD I-mutant is O rotated O by O 160 O ° O around O a O hinge B-structure_element at O the O connection O of O CDN B-structure_element / O CDL B-structure_element ( O Supplementary O Fig O . O 1d O ). O This O rotation O displaces O the O N O terminus O of O CDN B-structure_element in O HsaBT B-mutant - I-mutant CD I-mutant by O 51 O Å O compared O with O SceCD B-species , O resulting O in O a O separation O of O the O attachment O points O of O the O N O - O terminal O linker B-structure_element to O the O BCCP B-structure_element domain I-structure_element and O the O C O - O terminal O CT B-structure_element domain O by O 67 O Å O ( O the O attachment O points O are O indicated O with O spheres O in O Fig O . O 1e O ). O The O BT B-structure_element domain O of O HsaBT B-mutant - I-mutant CD I-mutant consists O of O a O helix B-structure_element that O is O surrounded O at O its O N O terminus O by O an O antiparallel B-structure_element eight I-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element barrel I-structure_element . O It O resembles O the O BT B-structure_element of O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type ; O only O the O four O C O - O terminal O strands B-structure_element of I-structure_element the I-structure_element β I-structure_element - I-structure_element barrel I-structure_element are O slightly O tilted O . O On O the O basis O of O MS B-experimental_method analysis O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method human B-species full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O Ser80 B-residue_name_number shows O the O highest O degree O of O phosphorylation B-ptm ( O 90 O %). O Ser29 B-residue_name_number and O Ser1263 B-residue_name_number , O implicated O in O insulin B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm and O BRCA1 B-protein binding O , O respectively O , O are O phosphorylated B-protein_state at O intermediate O levels O ( O 40 O %). O The O highly B-protein_state conserved I-protein_state Ser1216 B-residue_name_number ( O corresponding O to O S B-species . I-species cerevisiae I-species Ser1157 B-residue_name_number ), O as O well O as O Ser1201 B-residue_name_number , O both O in O the O regulatory B-structure_element loop I-structure_element discussed O above O , O are O not B-protein_state phosphorylated I-protein_state . O However O , O residual O phosphorylation B-ptm levels O were O detected O for O Ser1204 B-residue_name_number ( O 7 O %) O and O Ser1218 B-residue_name_number ( O 7 O %) O in O the O same B-structure_element loop I-structure_element . O MS B-experimental_method analysis O of O the O HsaBT B-mutant - I-mutant CD I-mutant crystallization B-evidence sample I-evidence reveals O partial O proteolytic O digestion O of O the O regulatory B-structure_element loop I-structure_element . O Accordingly O , O most O of O this B-structure_element loop I-structure_element is O not O represented O in O the O HsaBT B-mutant - I-mutant CD I-mutant crystal B-evidence structure I-evidence . O The O absence B-protein_state of I-protein_state the O regulatory B-structure_element loop I-structure_element might O be O linked O to O the O less B-protein_state - I-protein_state restrained I-protein_state interface B-site of O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element and O altered O relative O orientations O of O these O domains B-structure_element . O Besides O the O regulatory B-structure_element loop I-structure_element , O also O the O phosphopeptide B-site target I-site region I-site for O BRCA1 B-protein interaction O is O not O resolved O presumably O because O of O pronounced O flexibility O . O At O the O level O of O isolated B-experimental_method yeast B-taxonomy_domain and O human B-species CD B-structure_element , O the O structural B-experimental_method analysis I-experimental_method indicates O the O presence O of O at O least O two O hinges B-structure_element , O one O with O large O - O scale O flexibility O at O the O CDN B-structure_element / I-structure_element CDL I-structure_element connection I-structure_element , O and O one O with O tunable O plasticity O between O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element , O plausibly O affected O by O phosphorylation B-ptm in O the O regulatory B-structure_element loop I-structure_element region O . O The O integration O of O CD B-structure_element into O the O fungal B-taxonomy_domain ACC B-protein_type multienzyme I-protein_type To O further O obtain O insights O into O the O functional O architecture O of O fungal B-taxonomy_domain ACC B-protein_type , O we O characterized O larger B-mutant multidomain I-mutant fragments I-mutant up O to O the O intact B-protein_state enzymes B-protein . O Using O molecular B-experimental_method replacement I-experimental_method based O on O fungal B-taxonomy_domain ACC B-protein_type CD B-structure_element and O CT B-structure_element models O , O we O obtained O structures B-evidence of O a O variant B-mutant comprising O CthCT B-species and O CDC1 B-structure_element / O CDC2 B-structure_element in O two B-evidence crystal I-evidence forms I-evidence at O resolutions O of O 3 O . O 6 O and O 4 O . O 5 O Å O ( O CthCD B-mutant - I-mutant CTCter1 I-mutant / I-mutant 2 I-mutant ), O respectively O , O as O well O as O of O a O CthCT B-species linked O to O the O entire O CD B-structure_element at O 7 O . O 2 O Å O resolution O ( O CthCD B-mutant - I-mutant CT I-mutant ; O Figs O 1a O and O 2 O , O Table O 1 O ). O No O crystals O diffracting O to O sufficient O resolution O were O obtained O for O larger B-mutant BC I-mutant - I-mutant containing I-mutant fragments I-mutant , O or O for O full B-protein_state - I-protein_state length I-protein_state Cth B-species or O SceACC B-protein . O To O improve B-experimental_method crystallizability I-experimental_method , O we O generated B-experimental_method ΔBCCP B-mutant variants I-mutant of O full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O which O , O based O on O SAXS B-experimental_method analysis I-experimental_method , O preserve O properties O of O intact B-protein_state ACC B-protein_type ( O Supplementary O Table O 1 O and O Supplementary O Fig O . O 2a O – O c O ). O For O CthΔBCCP B-mutant , O crystals B-evidence diffracting O to O 8 O . O 4 O Å O resolution O were O obtained O . O However O , O molecular B-experimental_method replacement I-experimental_method did O not O reveal O a O unique O positioning O of O the O BC B-structure_element domain O . O Owing O to O the O limited O resolution O the O discussion O of O structures B-evidence of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant is O restricted O to O the O analysis O of O domain O localization O . O Still O , O these B-evidence structures I-evidence contribute O considerably O to O the O visualization O of O an O intrinsically O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type . O In O all O these O crystal B-evidence structures I-evidence , O the O CT B-structure_element domains O build O a O canonical O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state , O with O active B-site sites I-site formed O by O contributions O from O both O protomers B-oligomeric_state ( O Fig O . O 2 O and O Supplementary O Fig O . O 3a O ). O The O connection B-structure_element of O CD B-structure_element and O CT B-structure_element is O provided O by O a O 10 B-residue_range - I-residue_range residue I-residue_range peptide I-residue_range stretch I-residue_range , O which O links O the O N O terminus O of O CT B-structure_element to O the O irregular B-structure_element β I-structure_element - I-structure_element hairpin I-structure_element / I-structure_element β I-structure_element - I-structure_element strand I-structure_element extension I-structure_element of O CDC2 B-structure_element ( O Supplementary O Fig O . O 3b O ). O The O connecting B-structure_element region I-structure_element is O remarkably O similar O in O isolated B-protein_state CD B-structure_element and O CthCD B-mutant - I-mutant CTCter I-mutant structures B-evidence , O indicating O inherent O conformational O stability O . O CD B-structure_element / O CT B-structure_element contacts O are O only O formed O in O direct O vicinity O of O the O covalent O linkage O and O involve O the O β B-structure_element - I-structure_element hairpin I-structure_element extension I-structure_element of O CDC2 B-structure_element as O well O as O the O loop B-structure_element between O strands B-structure_element β2 I-structure_element / I-structure_element β3 I-structure_element of O the O CT B-structure_element N I-structure_element - I-structure_element lobe I-structure_element , O which O contains O a O conserved B-protein_state RxxGxN B-structure_element motif I-structure_element . O The O neighbouring O loop B-structure_element on O the O CT B-structure_element side O ( O between O CT B-structure_element β1 B-structure_element / O β2 B-structure_element ) O is O displaced O by O 2 O . O 5 O Å O compared O to O isolated B-protein_state CT B-structure_element structures B-evidence ( O Supplementary O Fig O . O 3c O ). O On O the O basis O of O an O interface O area O of O ∼ O 600 O Å2 O and O its O edge O - O to O - O edge O connection O characteristics O , O the O interface B-site between O CT B-structure_element and O CD B-structure_element might O be O classified O as O conformationally O variable O . O Indeed O , O the O comparison O of O the O positioning O of O eight O instances O of O the O C O - O terminal O part O of O CD B-structure_element relative O to O CT B-structure_element in O crystal B-evidence structures I-evidence determined B-experimental_method here O , O reveals O flexible O interdomain O linking O ( O Fig O . O 3a O ). O The O CDC2 B-site / I-site CT I-site interface I-site acts O as O a O true B-structure_element hinge I-structure_element with O observed O rotation O up O to O 16 O °, O which O results O in O a O translocation O of O the O distal O end O of O CDC2 B-structure_element by O 8 O Å O . O The O interface B-site between O CDC2 B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element , O which O is O mediated O by O the O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element in O the O SceCD B-species structure B-evidence , O is O less O variable O than O the O CD B-structure_element – I-structure_element CT I-structure_element junction I-structure_element , O and O permits O only O limited O rotation O and O tilting O ( O Fig O . O 3b O ). O Analysis O of O the O impact O of O phosphorylation B-ptm on O the O interface B-site between O CDC2 B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element in O CthACC B-mutant variant I-mutant structures B-evidence is O precluded O by O the O limited O crystallographic O resolution O . O However O , O MS B-experimental_method analysis O of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant constructs O revealed O between O 60 O and O 70 O % O phosphorylation B-ptm of O Ser1170 B-residue_name_number ( O corresponding O to O SceACC B-protein Ser1157 B-residue_name_number ). O The O CDN B-structure_element domain O positioning O relative O to O CDL B-structure_element / O CDC1 B-structure_element is O highly O variable O with O three O main O orientations O observed O in O the O structures B-evidence of O SceCD B-species and O the O larger B-mutant CthACC I-mutant fragments I-mutant : O CDN B-structure_element tilts O , O resulting O in O a O displacement O of O its O N O terminus O by O 23 O Å O ( O Fig O . O 4a O , O observed O in O both O protomers B-oligomeric_state of O CthCD B-mutant - I-mutant CT I-mutant and O one O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthCD B-mutant - I-mutant CT1 I-mutant / I-mutant 2 I-mutant and O CthΔBCCP1 B-mutant , O respectively O ). O In O addition O , O CDN B-structure_element can O rotate O around O hinges B-structure_element in O the O connection O between O CDN B-structure_element / O CDL B-structure_element by O 70 O ° O ( O Fig O . O 4b O , O observed O in O the O second O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthΔBCCP2 B-mutant ) O and O 160 O ° O ( O Fig O . O 4c O , O observed O in O SceCD B-species ) O leading O to O displacement O of O the O anchor B-site site I-site for O the O BCCP B-structure_element linker I-structure_element by O up O to O 33 O and O 40 O Å O , O respectively O . O Conformational O variability O in O the O CD B-structure_element thus O contributes O considerably O to O variations O in O the O spacing O between O the O BC B-structure_element and O CT B-structure_element domains O , O and O may O extend O to O distance O variations O beyond O the O mobility O range O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-structure_element . O On O the O basis O of O the O occurrence O of O related O conformational O changes O between O fungal B-taxonomy_domain and O human B-species ACC B-mutant fragments I-mutant , O the O observed O set O of O conformations O may O well O represent O general O states O present O in O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O Large O - O scale O conformational O variability O of O fungal B-taxonomy_domain ACC B-protein_type To O obtain O a O comprehensive O view O of O fungal B-taxonomy_domain ACC B-protein_type dynamics O in B-protein_state solution I-protein_state , O we O employed O SAXS B-experimental_method and O EM B-experimental_method . O SAXS B-experimental_method analysis O of O CthACC B-protein agrees O with O a O dimeric B-oligomeric_state state O and O an O elongated B-protein_state shape I-protein_state with O a O maximum O extent O of O 350 O Å O ( O Supplementary O Table O 1 O ). O The O smooth O appearance O of O scattering B-evidence curves I-evidence and O derived B-evidence distance I-evidence distributions I-evidence might O indicate O substantial O interdomain O flexibility O ( O Supplementary O Fig O . O 2a O – O c O ). O Direct O observation O of O individual O full B-protein_state - I-protein_state length I-protein_state CthACC B-protein particles B-evidence , O according O to O MS B-experimental_method results O predominantly O in O a O phosphorylated B-protein_state low B-protein_state - I-protein_state activity I-protein_state state I-protein_state , O in O negative B-experimental_method stain I-experimental_method EM I-experimental_method reveals O a O large O set O of O conformations O from O rod B-protein_state - I-protein_state like I-protein_state extended I-protein_state to O U B-protein_state - I-protein_state shaped I-protein_state particles B-evidence . O Class B-evidence averages I-evidence , O obtained O by O maximum B-experimental_method - I-experimental_method likelihood I-experimental_method - I-experimental_method based I-experimental_method two I-experimental_method - I-experimental_method dimensional I-experimental_method ( I-experimental_method 2D I-experimental_method ) I-experimental_method classification I-experimental_method , O are O focused O on O the O dimeric B-oligomeric_state CT B-structure_element domain O and O the O full B-protein_state BC B-mutant – I-mutant BCCP I-mutant – I-mutant CD I-mutant domain O of O only O one O protomer B-oligomeric_state , O due O to O the O non O - O coordinated O motions O of O the O lateral O BC B-structure_element / O CD B-structure_element regions O relative O to O the O CT B-structure_element dimer B-oligomeric_state . O They O identify O the O connections O between O CDN B-structure_element / O CDL B-structure_element and O between O CDC2 B-structure_element / O CT B-structure_element as O major O contributors O to O conformational O heterogeneity O ( O Supplementary O Fig O . O 4a O , O b O ). O The O flexibility O in O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element appears O substantially O larger O than O the O variations O observed O in O the O set O of O crystal B-evidence structures I-evidence . O The O BC B-structure_element domain O is O not O completely O disordered O , O but O laterally O attached O to O BT B-structure_element / O CDN B-structure_element in O a O generally B-protein_state conserved I-protein_state position I-protein_state , O albeit O with O increased O flexibility O . O Surprisingly O , O in O both O the O linear B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state , O the O approximate O distances O between O the O BC B-structure_element and O CT B-structure_element active B-site sites I-site would O remain O larger O than O 110 O Å O . O These O observed O distances O are O considerably O larger O than O in O static B-protein_state structures B-evidence of O any O other O related O biotin B-protein_type - I-protein_type dependent I-protein_type carboxylase I-protein_type . O Furthermore O , O based O on O an O average O length O of O the O BCCP B-structure_element – I-structure_element CD I-structure_element linker I-structure_element in O fungal B-taxonomy_domain ACC B-protein_type of O 26 B-residue_range amino I-residue_range acids I-residue_range , O mobility O of O the O BCCP B-structure_element alone O would O not O be O sufficient O to O bridge O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O The O most O relevant O candidate O site O for O mediating O such O additional O flexibility O and O permitting O an O extended O set O of O conformations O is O the O CDC1 B-site / I-site CDC2 I-site interface I-site , O which O is O rigidified O by O the O Ser1157 B-residue_name_number - O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element , O as O depicted O in O the O SceCD B-species crystal B-evidence structure I-evidence . O Altogether O , O the O architecture O of O fungal B-taxonomy_domain ACC B-protein_type is O based O on O the O central O dimeric B-oligomeric_state CT B-structure_element domain O ( O Fig O . O 4d O ). O The O CD B-structure_element consists O of O four O distinct O subdomains B-structure_element and O acts O as O a O tether O from O the O CT B-structure_element to O the O mobile B-protein_state BCCP B-structure_element and O an O oriented B-protein_state BC B-structure_element domain O . O The O CD B-structure_element has O no O direct O role O in O substrate O recognition O or O catalysis O but O contributes O to O the O regulation O of O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O In O higher B-taxonomy_domain eukaryotic I-taxonomy_domain ACCs B-protein_type , O regulation O via O phosphorylation B-ptm is O achieved O by O combining O the O effects O of O phosphorylation B-ptm at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1263 B-residue_name_number . O In O fungal B-taxonomy_domain ACC B-protein_type , O however O , O Ser1157 B-residue_name_number in O the O regulatory B-structure_element loop I-structure_element of O the O CD B-structure_element is O the O only O phosphorylation B-site site I-site that O has O been O demonstrated O to O be O both O phosphorylated B-protein_state in O vivo O and O involved O in O the O regulation O of O ACC B-protein_type activity O . O In O its O phosphorylated B-protein_state state O , O the O regulatory B-structure_element loop I-structure_element containing O Ser1157 B-residue_name_number wedges O between O CDC1 B-structure_element / O CDC2 B-structure_element and O presumably O limits O the O conformational B-protein_state freedom I-protein_state at O this O interdomain B-site interface I-site . O However O , O flexibility O at O this O hinge B-structure_element may O be O required O for O full B-protein_state ACC I-protein_state activity I-protein_state , O as O the O distances O between O the O BCCP B-structure_element anchor I-structure_element points I-structure_element and O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element observed O here O are O such O large O that O mobility O of O the O BCCP B-structure_element alone O is O not O sufficient O for O substrate O transfer O . O The O current O data O thus O suggest O that O regulation O of O fungal B-taxonomy_domain ACC B-protein_type is O mediated O by O controlling O the O dynamics O of O the O unique B-protein_state CD B-structure_element , O rather O than O directly O affecting O catalytic O turnover O at O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O A O comparison O between O fungal B-taxonomy_domain and O human B-species ACC B-protein_type will O help O to O further O discriminate O mechanistic O differences O that O contribute O to O the O extended O control O and O polymerization O of O human B-species ACC B-protein_type . O Most O recently O , O a O crystal B-evidence structure I-evidence of O near B-protein_state full I-protein_state - I-protein_state length I-protein_state non B-protein_state - I-protein_state phosphorylated I-protein_state ACC B-protein_type from O S B-species . I-species cerevisae I-species ( O lacking B-protein_state only I-protein_state 21 B-residue_range N O - O terminal O amino O acids O , O here O denoted O as O flACC B-mutant ) O was O published O by O Wei O and O Tong O . O In O flACC B-mutant , O the O ACC B-protein_type dimer B-oligomeric_state obeys O twofold O symmetry O and O assembles O in O a O triangular B-protein_state architecture I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O ( O Supplementary O Fig O . O 5a O ). O In O their O study O , O mutational B-experimental_method data I-experimental_method indicate O a O requirement O for O BC O dimerization O for O catalytic O activity O . O The O transition O from O the O elongated B-protein_state open I-protein_state shape I-protein_state , O observed O in O our O experiments O , O towards O a O compact B-protein_state triangular I-protein_state shape I-protein_state is O based O on O an O intricate O interplay O of O several O hinge O - O bending O motions O in O the O CD B-structure_element ( O Fig O . O 4d O ). O Comparison B-experimental_method of O flACC B-mutant with O our O CthΔBCCP B-mutant structure B-evidence reveals O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element as O a O major O contributor O to O conformational O flexibility O ( O Supplementary O Fig O . O 5b O , O c O ). O In O flACC B-mutant , O CDC2 B-structure_element rotates O ∼ O 120 O ° O with O respect O to O the O CT B-structure_element domain O . O A O second B-structure_element hinge I-structure_element can O be O identified O between O CDC1 B-structure_element / O CDC2 B-structure_element . O On O the O basis O of O a O superposition B-experimental_method of O CDC2 B-structure_element , O CDC1 B-structure_element of O the O phosphorylated B-protein_state SceCD B-species is O rotated O by O 30 O ° O relative O to O CDC1 B-structure_element of O the O non B-protein_state - I-protein_state phosphorylated I-protein_state flACC B-mutant ( O Supplementary O Fig O . O 5d O ), O similar O to O what O we O have O observed O for O the O non B-protein_state - I-protein_state phosphorylated I-protein_state HsaBT B-mutant - I-mutant CD I-mutant ( O Supplementary O Fig O . O 1d O ). O When O inspecting B-experimental_method all O individual O protomer B-oligomeric_state and O fragment B-mutant structures B-evidence in O their O study O , O Wei O and O Tong O also O identify O the O CDN B-structure_element / I-structure_element CDC1 I-structure_element connection I-structure_element as O a O highly B-protein_state flexible I-protein_state hinge B-structure_element , O in O agreement O with O our O observations O . O The O only O bona O fide O regulatory B-protein_state phophorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type in O the O regulatory B-structure_element loop I-structure_element is O directly O participating O in O CDC1 B-structure_element / O CDC2 B-structure_element domain O interactions O and O thus O stabilizes O the O hinge B-structure_element conformation I-structure_element . O In O flACC B-mutant , O the O regulatory B-structure_element loop I-structure_element is O mostly B-protein_state disordered I-protein_state , O illustrating O the O increased O flexibility O due O to O the O absence O of O the O phosphoryl B-chemical group O . O Only O in O three O out O of O eight O observed O protomers B-oligomeric_state a O short B-structure_element peptide I-structure_element stretch O ( O including O Ser1157 B-residue_name_number ) O was O modelled B-evidence . O In O those O instances O the O Ser1157 B-residue_name_number residue O is O located O at O a O distance O of O 14 O – O 20 O Å O away O from O the O location O of O the O phosphorylated B-protein_state serine B-residue_name observed O here O , O based O on O superposition B-experimental_method of O either O CDC1 B-structure_element or O CDC2 B-structure_element . O Applying B-experimental_method the O conformation O of O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element observed O in O SceCD B-species on O flACC B-mutant leads O to O CDN B-structure_element sterically O clashing O with O CDC2 B-structure_element and O BT B-structure_element / O CDN B-structure_element clashing O with O CT B-structure_element ( O Supplementary O Fig O . O 6a O , O b O ). O Thus O , O in O accordance O with O the O results O presented O here O , O phosphorylation B-ptm of O Ser1157 B-residue_name_number in O SceACC B-protein most O likely O limits O flexibility O in O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element such O that O activation O through O BC B-structure_element dimerization O is O not O possible O ( O Fig O . O 4d O ), O which O however O does O not O exclude O intermolecular O dimerization O . O In O addition O , O EM B-experimental_method micrographs B-evidence of O phosphorylated B-protein_state and O dephosphorylated B-protein_state SceACC B-protein display O for O both O samples O mainly O elongated B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state and O reveal O no O apparent O differences O in O particle B-evidence shape I-evidence distributions I-evidence ( O Supplementary O Fig O . O 7 O ). O This O implicates O that O the O triangular B-protein_state shape I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O has O a O low O population O also O in O the O active B-protein_state form I-protein_state , O even O though O a O biasing O influence O of O grid O preparation O cannot O be O excluded O completely O . O Large O - O scale O conformational O variability O has O also O been O observed O in O most O other O carrier B-protein_type protein I-protein_type - I-protein_type based I-protein_type multienzymes I-protein_type , O including O polyketide B-protein_type and I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ( O with O the O exception O of O fungal B-protein_type - I-protein_type type I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ), O non B-protein_type - I-protein_type ribosomal I-protein_type peptide I-protein_type synthetases I-protein_type and O the O pyruvate B-protein_type dehydrogenase I-protein_type complexes I-protein_type , O although O based O on O completely O different O architectures O . O Together O , O this O structural B-evidence information I-evidence suggests O that O variable O carrier O protein O tethering O is O not O sufficient O for O efficient O substrate O transfer O and O catalysis O in O any O of O these O systems O . O The O determination B-experimental_method of I-experimental_method a I-experimental_method set I-experimental_method of I-experimental_method crystal B-evidence structures I-evidence of O SceACC B-protein in O two O states O , O unphosphorylated B-protein_state and O phosphorylated B-protein_state at O the O major B-site regulatory I-site site I-site Ser1157 B-residue_name_number , O provides O a O unique O depiction O of O multienzyme O regulation O by O post O - O translational O modification O ( O Fig O . O 4d O ). O The O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element binds O to O an O allosteric B-site site I-site at O the O interface B-site of O two O non B-protein_state - I-protein_state catalytic I-protein_state domains O and O restricts O conformational O freedom O at O several O hinges B-structure_element in O the O dynamic B-protein_state ACC B-protein_type . O It O disfavours O the O adoption O of O a O rare B-protein_state , I-protein_state compact I-protein_state conformation I-protein_state , O in O which O intramolecular O dimerization O of O the O BC B-structure_element domains O results O in O catalytic O turnover O . O The O regulation O of O activity O thus O results O from O restrained O large O - O scale O conformational O dynamics O rather O than O a O direct O or O indirect O influence O on O active B-site site I-site structure I-site . O To O our O best O knowledge O , O ACC B-protein_type is O the O first O multienzyme B-protein_type for O which O such O a O phosphorylation B-ptm - O dependent O mechanical O control O mechanism O has O been O visualized O . O However O , O the O example O of O ACC B-protein_type now O demonstrates O the O possibility O of O regulating O activity O by O controlled O dynamics O of O non B-structure_element - I-structure_element enzymatic I-structure_element linker I-structure_element regions I-structure_element also O in O other O families O of O carrier B-protein_type - I-protein_type dependent I-protein_type multienzymes I-protein_type . O The O phosphorylated B-protein_state central B-structure_element domain I-structure_element of O yeast B-taxonomy_domain ACC B-protein_type . O ( O a O ) O Schematic O overview O of O the O domain O organization O of O eukaryotic B-taxonomy_domain ACCs B-protein_type . O Crystallized B-evidence constructs I-evidence are O indicated O . O ( O b O ) O Cartoon O representation O of O the O SceCD B-species crystal B-evidence structure I-evidence . O CDN B-structure_element is O linked O by O a O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O CDL B-structure_element ) O to O two B-structure_element α I-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element domains I-structure_element ( O CDC1 B-structure_element and O CDC2 B-structure_element ). O The O regulatory B-structure_element loop I-structure_element is O shown O as O bold O cartoon O , O and O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O marked O by O a O red O triangle O . O ( O c O ) O Superposition B-experimental_method of O CDC1 B-structure_element and O CDC2 B-structure_element reveals O highly B-protein_state conserved I-protein_state folds B-structure_element . O ( O d O ) O The O regulatory B-structure_element loop I-structure_element with O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O bound O into O a O crevice O between O CDC1 B-structure_element and O CDC2 B-structure_element , O the O conserved B-protein_state residues O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number coordinate O the O phosphoryl B-chemical - O group O . O ( O e O ) O Structural O overview O of O HsaBT B-mutant - I-mutant CD I-mutant . O The O attachment O points O to O the O N O - O terminal O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O indicated O with O spheres O . O Architecture O of O the O CD B-structure_element – O CT B-structure_element core O of O fungal B-taxonomy_domain ACC B-protein_type . O Cartoon O representation O of O crystal B-evidence structures I-evidence of O multidomain B-mutant constructs I-mutant of O CthACC B-protein . O One O protomer B-oligomeric_state is O shown O in O colour O and O one O in O grey O . O Individual O domains O are O labelled O ; O the O active B-site site I-site of O CT B-structure_element and O the O position O of O the O conserved B-protein_state regulatory B-protein_state phosphoserine B-site site I-site based O on O SceCD B-species are O indicated O by O an O asterisk O and O a O triangle O , O respectively O . O Variability O of O the O connections O of O CDC2 B-structure_element to O CT B-structure_element and O CDC1 B-structure_element in O fungal B-taxonomy_domain ACC B-protein_type . O ( O a O ) O Hinge B-structure_element properties O of O the O CDC2 B-structure_element – I-structure_element CT I-structure_element connection I-structure_element analysed O by O a O CT B-experimental_method - I-experimental_method based I-experimental_method superposition I-experimental_method of O eight O instances O of O the O CDC2 B-mutant - I-mutant CT I-mutant segment I-mutant . O For O clarity O , O only O one O protomer B-oligomeric_state of O CthCD B-mutant - I-mutant CTCter1 I-mutant is O shown O in O full O colour O as O reference O . O For O other O instances O , O CDC2 B-structure_element domains O are O shown O in O transparent O tube O representation O with O only O one O helix O each O highlighted O . O The O range O of O hinge O bending O is O indicated O and O the O connection O points O between O CDC2 B-structure_element and O CT B-structure_element ( O blue O ) O as O well O as O between O CDC1 B-structure_element and O CDC2 B-structure_element ( O green O and O grey O ) O are O marked O as O spheres O . O ( O b O ) O The O interdomain B-site interface I-site of O CDC1 B-structure_element and O CDC2 B-structure_element exhibits O only O limited O plasticity O . O Representation O as O in O a O , O but O the O CDC1 B-structure_element and O CDC2 B-structure_element are O superposed B-experimental_method based O on O CDC2 B-structure_element . O One O protomer B-oligomeric_state of O CthΔBCCP B-mutant is O shown O in O colour O , O the O CDL B-structure_element domains O are O omitted O for O clarity O and O the O position O of O the O phosphorylated B-protein_state serine B-residue_name based O on O SceCD B-species is O indicated O with O a O red O triangle O . O The O connection O points O from O CDC1 B-structure_element to O CDC2 B-structure_element and O to O CDL B-structure_element are O represented O by O green O spheres O . O The O conformational O dynamics O of O fungal B-taxonomy_domain ACC B-protein_type . O ( O a O – O c O ) O Large O - O scale O conformational O variability O of O the O CDN B-structure_element domain O relative O to O the O CDL B-structure_element / O CDC1 B-structure_element domain O . O CthCD B-mutant - I-mutant CT1 I-mutant ( O in O colour O ) O serves O as O reference O , O the O compared B-experimental_method structures I-experimental_method ( O as O indicated O , O numbers O after O construct O name O differentiate O between O individual O protomers B-oligomeric_state ) O are O shown O in O grey O . O Domains O other O than O CDN B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element are O omitted O for O clarity O . O The O domains O are O labelled O and O the O distances O between O the O N O termini O of O CDN B-structure_element ( O spheres O ) O in O the O compared O structures O are O indicated O . O ( O d O ) O Schematic O model O of O fungal B-taxonomy_domain ACC B-protein_type showing O the O intrinsic O , O regulated O flexibility O of O CD B-structure_element in O the O phosphorylated B-protein_state inhibited B-protein_state or O the O non B-protein_state - I-protein_state phosphorylated I-protein_state activated B-protein_state state O . O Flexibility O of O the O CDC2 B-structure_element / O CT B-structure_element and O CDN B-structure_element / O CDL B-structure_element hinges B-structure_element is O illustrated O by O arrows O . O The O Ser1157 B-residue_name_number phosphorylation B-ptm site O and O the O regulatory B-structure_element loop I-structure_element are O schematically O indicated O in O magenta O . O Structural O insights O into O the O Escherichia B-species coli I-species lysine B-protein_type decarboxylases I-protein_type and O molecular O determinants O of O interaction O with O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein The O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein is O an O important O enterobacterial B-taxonomy_domain acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type whereas O LdcC B-protein is O its O close O paralogue O thought O to O play O mainly O a O metabolic O role O . O A O unique O macromolecular O cage O formed O by O two O decamers B-oligomeric_state of O the O Escherichia B-species coli I-species LdcI B-protein and O five O hexamers B-oligomeric_state of O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein was O shown O to O counteract O acid O stress O under O starvation O . O Previously O , O we O proposed O a O pseudoatomic B-evidence model I-evidence of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O based O on O its O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method map B-evidence and O crystal B-evidence structures I-evidence of O an O inactive B-protein_state LdcI B-protein decamer B-oligomeric_state and O a O RavA B-protein monomer B-oligomeric_state . O We O now O present O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method 3D B-evidence reconstructions I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein , O and O an O improved B-evidence map I-evidence of O the O LdcI B-protein bound B-protein_state to I-protein_state the O LARA B-structure_element domain I-structure_element of O RavA B-protein , O at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O . O Comparison B-experimental_method with O each O other O and O with O available O structures B-evidence uncovers O differences O between O LdcI B-protein and O LdcC B-protein explaining O why O only O the O acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type is O capable O of O binding O RavA B-protein . O We O identify O interdomain O movements O associated O with O the O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O with O the O RavA B-protein binding O . O Multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method reveals O that O certain O enterobacteria B-taxonomy_domain exert O evolutionary O pressure O on O the O lysine B-protein_type decarboxylase I-protein_type towards O the O cage O - O like O assembly O with O RavA B-protein , O implying O that O this O complex O may O have O an O important O function O under O particular O stress O conditions O . O Enterobacterial B-taxonomy_domain inducible B-protein_state decarboxylases B-protein_type of O basic B-protein_state amino B-chemical acids I-chemical lysine B-residue_name , O arginine B-residue_name and O ornithine B-residue_name have O a O common O evolutionary O origin O and O belong O to O the O α B-protein_type - I-protein_type family I-protein_type of O pyridoxal B-chemical - I-chemical 5 I-chemical ′- I-chemical phosphate I-chemical ( O PLP B-chemical )- O dependent O enzymes O . O They O counteract O acid O stress O experienced O by O the O bacterium B-taxonomy_domain in O the O host O digestive O and O urinary O tract O , O and O in O particular O in O the O extremely O acidic O stomach O . O Each O decarboxylase B-protein_type is O induced O by O an O excess O of O the O target O amino B-chemical acid I-chemical and O a O specific O range O of O extracellular O pH O , O and O works O in O conjunction O with O a O cognate O inner B-protein_type membrane I-protein_type antiporter I-protein_type . O Decarboxylation O of O the O amino B-chemical acid I-chemical into O a O polyamine B-chemical is O catalysed O by O a O PLP B-chemical cofactor O in O a O multistep O reaction O that O consumes O a O cytoplasmic O proton B-chemical and O produces O a O CO2 B-chemical molecule O passively O diffusing O out O of O the O cell O , O while O the O polyamine B-chemical is O excreted O by O the O antiporter B-protein_type in O exchange O for O a O new O amino B-chemical acid I-chemical substrate O . O Consequently O , O these O enzymes O buffer O both O the O bacterial B-taxonomy_domain cytoplasm O and O the O local O extracellular O environment O . O These O amino B-protein_type acid I-protein_type decarboxylases I-protein_type are O therefore O called O acid O stress O inducible B-protein_state or O biodegradative B-protein_state to O distinguish O them O from O their O biosynthetic B-protein_state lysine B-protein_type and I-protein_type ornithine I-protein_type decarboxylase I-protein_type paralogs O catalysing O the O same O reaction O but O responsible O for O the O polyamine B-chemical production O at O neutral B-protein_state pH I-protein_state . O Inducible B-protein_state enterobacterial B-taxonomy_domain amino B-protein_type acid I-protein_type decarboxylases I-protein_type have O been O intensively O studied O since O the O early O 1940 O because O the O ability O of O bacteria B-taxonomy_domain to O withstand O acid O stress O can O be O linked O to O their O pathogenicity O in O humans B-species . O In O particular O , O the O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein ( O or O CadA B-protein ) O attracts O attention O due O to O its O broad B-protein_state pH I-protein_state range I-protein_state of O activity O and O its O capacity O to O promote O survival O and O growth O of O pathogenic O enterobacteria B-taxonomy_domain such O as O Salmonella B-species enterica I-species serovar I-species Typhimurium I-species , O Vibrio B-species cholerae I-species and O Vibrio B-species vulnificus I-species under O acidic O conditions O . O Furthermore O , O both O LdcI B-protein and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcC B-protein of O uropathogenic B-species Escherichia I-species coli I-species ( O UPEC B-species ) O appear O to O play O an O important O role O in O increased O resistance O of O this O pathogen O to O nitrosative O stress O produced O by O nitric B-chemical oxide I-chemical and O other O damaging O reactive O nitrogen O intermediates O accumulating O during O the O course O of O urinary O tract O infections O ( O UTI O ). O This O effect O is O attributed O to O cadaverine B-chemical , O the O diamine O produced O by O decarboxylation O of O lysine B-residue_name by O LdcI B-protein and O LdcC B-protein , O that O was O shown O to O enhance O UPEC B-species colonisation O of O the O bladder O . O In O addition O , O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylase I-protein_type LdcC B-protein , O long O thought O to O be O constitutively O expressed O in O low O amounts O , O was O demonstrated O to O be O strongly O upregulated O by O fluoroquinolones B-chemical via O their O induction O of O RpoS B-protein . O A O direct O correlation O between O the O level O of O cadaverine B-chemical and O the O resistance O of O E B-species . I-species coli I-species to O these O antibiotics O commonly O used O as O a O first O - O line O treatment O of O UTI O could O be O established O . O Both O acid B-protein_state pH I-protein_state and O cadaverine B-chemical induce O closure O of O outer O membrane O porins B-protein_type thereby O contributing O to O bacterial B-taxonomy_domain protection O from O acid O stress O , O but O also O from O certain O antibiotics O , O by O reduction O in O membrane O permeability O . O The O crystal B-evidence structure I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein as O well O as O its O low O resolution O characterisation O by O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O showed O that O it O is O a O decamer B-oligomeric_state made O of O two O pentameric B-oligomeric_state rings B-structure_element . O Each O monomer B-oligomeric_state is O composed O of O three O domains O – O an O N O - O terminal O wing B-structure_element domain I-structure_element ( O residues O 1 B-residue_range – I-residue_range 129 I-residue_range ), O a O PLP B-structure_element - I-structure_element binding I-structure_element core I-structure_element domain I-structure_element ( O residues O 130 B-residue_range – I-residue_range 563 I-residue_range ), O and O a O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element , O residues O 564 B-residue_range – I-residue_range 715 I-residue_range ). O Monomers B-oligomeric_state tightly O associate O via O their O core B-structure_element domains I-structure_element into O 2 B-protein_state - I-protein_state fold I-protein_state symmetrical I-protein_state dimers B-oligomeric_state with O two O complete O active B-site sites I-site , O and O further O build O a O toroidal B-structure_element D5 I-structure_element - I-structure_element symmetrical I-structure_element structure I-structure_element held O by O the O wing B-structure_element and O core B-structure_element domain I-structure_element interactions O around O the O central B-structure_element pore I-structure_element , O with O the O CTDs B-structure_element at O the O periphery O . O Ten O years O ago O we O showed O that O the O E B-species . I-species coli I-species AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein , O involved O in O multiple O stress O response O pathways O , O tightly O interacted O with O LdcI B-protein but O was O not O capable O of O binding O to O LdcC B-protein . O We O described O how O two O double O pentameric B-oligomeric_state rings B-structure_element of O the O LdcI B-protein tightly O associate O with O five O hexameric B-oligomeric_state rings B-structure_element of O RavA B-protein to O form O a O unique O cage O - O like O architecture O that O enables O the O bacterium B-taxonomy_domain to O withstand O acid O stress O even O under O conditions O of O nutrient O deprivation O eliciting O stringent O response O . O Furthermore O , O we O recently O solved B-experimental_method the I-experimental_method structure I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O by O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method ( O cryoEM B-experimental_method ) O and O combined O it O with O the O crystal B-evidence structures I-evidence of O the O individual O proteins O . O This O allowed O us O to O make O a O pseudoatomic B-evidence model I-evidence of O the O whole O assembly O , O underpinned O by O a O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O ( O with O LARA B-structure_element standing O for O LdcI B-structure_element associating I-structure_element domain I-structure_element of I-structure_element RavA I-structure_element ), O and O to O identify O conformational O rearrangements O and O specific O elements O essential O for O complex O formation O . O The O main O determinants O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O assembly O appeared O to O be O the O N O - O terminal O loop B-structure_element of O the O LARA B-structure_element domain I-structure_element of O RavA B-protein and O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O In O spite O of O this O wealth O of O structural B-evidence information I-evidence , O the O fact O that O LdcC B-protein does O not O interact O with O RavA B-protein , O although O the O two O lysine B-protein_type decarboxylases I-protein_type are O 69 O % O identical O and O 84 O % O similar O , O and O the O physiological O significance O of O the O absence O of O this O interaction O remained O unexplored O . O To O solve O this O discrepancy O , O in O the O present O work O we O provided O a O three O - O dimensional O ( O 3D O ) O cryoEM B-experimental_method reconstruction B-evidence of O LdcC B-protein and O compared O it O with O the O available O LdcI B-protein and O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly structures B-evidence . O Given O that O the O LdcI B-protein crystal B-evidence structures I-evidence were O obtained O at O high B-protein_state pH I-protein_state where O the O enzyme O is O inactive B-protein_state ( O LdcIi B-protein , O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ), O whereas O the O cryoEM B-experimental_method reconstructions B-evidence of O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly were O done O at O acidic B-protein_state pH I-protein_state optimal I-protein_state for O the O enzymatic O activity O , O for O a O meaningful O comparison O , O we O also O produced O a O 3D B-evidence reconstruction I-evidence of O the O LdcI B-protein at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ). O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O Finally O , O we O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O 22 O lysine B-protein_type decarboxylases I-protein_type from O Enterobacteriaceae B-taxonomy_domain containing O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O Remarkably O , O this O analysis O revealed O that O several O specific B-structure_element residues I-structure_element in O the O above O - O mentioned O β B-structure_element - I-structure_element sheet I-structure_element , O independently O of O the O rest O of O the O protein O sequence O , O are O sufficient O to O define O if O a O particular O lysine B-protein_type decarboxylase I-protein_type should O be O classified O as O an O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O an O “ O LdcI B-protein_type - I-protein_type like I-protein_type ”. O This O fascinating O parallelism O between O the O propensity O for O RavA B-protein binding O and O the O genetic O environment O of O an O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylase I-protein_type , O as O well O as O the O high B-protein_state degree I-protein_state of I-protein_state conservation I-protein_state of O this O small B-structure_element structural I-structure_element motif I-structure_element , O emphasize O the O functional O importance O of O the O interaction O between O biodegradative B-protein_state enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type and O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein . O CryoEM B-experimental_method 3D B-evidence reconstructions I-evidence of O LdcC B-protein , O LdcIa B-protein and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly In O the O frame O of O this O work O , O we O produced O two O novel O subnanometer O resolution O cryoEM B-experimental_method reconstructions B-evidence of O the O E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O – O a O 5 O . O 5 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O pH B-protein_state 7 I-protein_state . I-protein_state 5 I-protein_state ) O for O which O no O 3D O structural O information O has O been O previously O available O ( O Figs O 1A O , O B O and O S1 O ), O and O a O 6 O . O 1 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcIa B-protein , O ( O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ) O ( O Figs O 1C O , O D O and O S2 O ). O In O addition O , O we O improved O our O earlier O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O from O 7 O . O 5 O Å O to O 6 O . O 2 O Å O resolution O ( O Figs O 1E O , O F O and O S3 O ). O Based O on O these O reconstructions B-evidence , O reliable O pseudoatomic B-evidence models I-evidence of O the O three O assemblies O were O obtained O by O flexible B-experimental_method fitting I-experimental_method of I-experimental_method either O the O crystal B-evidence structure I-evidence of O LdcIi B-protein or O a O derived O structural B-experimental_method homology I-experimental_method model I-experimental_method of O LdcC B-protein ( O Table O S1 O ). O Significant O differences O between O these O pseudoatomic B-evidence models I-evidence can O be O interpreted O as O movements O between O specific O biological O states O of O the O proteins O as O described O below O . O The O wing B-structure_element domains I-structure_element as O a O stable O anchor O at O the O center O of O the O double B-structure_element - I-structure_element ring I-structure_element As O a O first O step O of O a O comparative O analysis O , O we O superimposed B-experimental_method the O three O cryoEM B-experimental_method reconstructions B-evidence ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O and O the O crystal B-evidence structure I-evidence of O the O LdcIi B-protein decamer B-oligomeric_state ( O Fig O . O 2 O and O Movie O S1 O ). O This O superposition B-experimental_method reveals O that O the O densities B-evidence lining O the O central B-structure_element hole I-structure_element of O the O toroid B-structure_element are O roughly O at O the O same O location O , O while O the O rest O of O the O structure B-evidence exhibits O noticeable O changes O . O Specifically O , O at O the O center O of O the O double B-structure_element - I-structure_element ring I-structure_element the O wing B-structure_element domains I-structure_element of O the O subunits O provide O the O conserved B-protein_state basis O for O the O assembly O with O the O lowest B-evidence root I-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O ( O between O 1 O . O 4 O and O 2 O Å O for O the O Cα O atoms O only O ), O whereas O the O peripheral O CTDs B-structure_element containing O the O RavA B-site binding I-site interface I-site manifest O the O highest O RMSD B-evidence ( O up O to O 4 O . O 2 O Å O ) O ( O Table O S2 O ). O In O addition O , O the O wing B-structure_element domains I-structure_element of O all O structures B-evidence are O very O similar O , O with O the O RMSD B-evidence after O optimal O rigid O body O alignment O ( O RMSDmin B-evidence ) O less O than O 1 O . O 1 O Å O . O Thus O , O taking O the O limited O resolution O of O the O cryoEM B-experimental_method maps B-evidence into O account O , O we O consider O that O the O wing B-structure_element domains I-structure_element of O all O the O four O structures B-evidence are O essentially O identical O and O that O in O the O present O study O the O RMSD B-evidence of O less O than O 2 O Å O can O serve O as O a O baseline O below O which O differences O may O be O assumed O as O insignificant O . O This O preservation O of O the O central B-structure_element part I-structure_element of O the O double O - O ring O assembly O may O help O the O enzymes O to O maintain O their O decameric B-oligomeric_state state O upon O activation O and O incorporation O into O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O The O core B-structure_element domain I-structure_element and O the O active B-site site I-site rearrangements O upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA O binding O Both O visual B-experimental_method inspection I-experimental_method ( O Fig O . O 2 O ) O and O RMSD B-experimental_method calculations I-experimental_method ( O Table O S2 O ) O show O that O globally O the O three O structures B-evidence at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O are O more O similar O to O each O other O than O to O the O structure O determined O at O high B-protein_state pH I-protein_state conditions O ( O LdcIi B-protein ). O The O decameric B-oligomeric_state enzyme O is O built O of O five O dimers B-oligomeric_state associating O into O a O 5 B-structure_element - I-structure_element fold I-structure_element symmetrical I-structure_element double I-structure_element - I-structure_element ring I-structure_element ( O two O monomers B-oligomeric_state making O a O dimer B-oligomeric_state are O delineated O in O Fig O . O 1 O ). O As O common O for O the O α B-protein_type family I-protein_type of O the O PLP B-protein_type - I-protein_type dependent I-protein_type decarboxylases I-protein_type , O dimerization O is O required O for O the O enzymatic O activity O because O the O active B-site site I-site is O buried O in O the O dimer B-site interface I-site ( O Fig O . O 3A O , O B O ). O This O interface B-site is O formed O essentially O by O the O core B-structure_element domains I-structure_element with O some O contribution O of O the O CTDs B-structure_element . O The O core B-structure_element domain I-structure_element is O built O by O the O PLP B-structure_element - I-structure_element binding I-structure_element subdomain I-structure_element ( O PLP B-structure_element - I-structure_element SD I-structure_element , O residues O 184 B-residue_range – I-residue_range 417 I-residue_range ) O flanked O by O two O smaller O subdomains B-structure_element rich O in O partly B-protein_state disordered I-protein_state loops B-structure_element – O the O linker B-structure_element region I-structure_element ( O residues O 130 B-residue_range – I-residue_range 183 I-residue_range ) O and O the O subdomain B-structure_element 4 I-structure_element ( O residues O 418 B-residue_range – I-residue_range 563 I-residue_range ). O Zooming O in O the O variations O in O the O PLP B-structure_element - I-structure_element SD I-structure_element shows O that O most O of O the O structural O changes O concern O displacements O in O the O active B-site site I-site ( O Fig O . O 3C O – O F O ). O The O most O conspicuous O differences O between O the O PLP B-structure_element - I-structure_element SDs I-structure_element can O be O linked O to O the O pH B-protein_state - I-protein_state dependent I-protein_state activation O of O the O enzymes O . O The O resolution O of O the O cryoEM B-experimental_method maps B-evidence does O not O allow O modeling O the O position O of O the O PLP B-chemical moiety O and O calls O for O caution O in O detailed O mechanistic O interpretations O in O terms O of O individual O amino B-chemical acids I-chemical . O In O particular O , O transition O from O LdcIi B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly involves O ~ O 3 O . O 5 O Å O and O ~ O 4 O . O 5 O Å O shifts O away O from O the O 5 O - O fold O axis O in O the O active B-site site I-site α B-structure_element - I-structure_element helices I-structure_element spanning O residues O 218 B-residue_range – I-residue_range 232 I-residue_range and O 246 B-residue_range – I-residue_range 254 I-residue_range respectively O ( O Fig O . O 3C O – O E O ). O Between O these O two O extremes O , O the O PLP B-structure_element - I-structure_element SDs I-structure_element of O LdcIa B-protein and O LdcC B-protein are O similar O both O in O the O context O of O the O decamer B-oligomeric_state ( O Fig O . O 3F O ) O and O in O terms O of O RMSDmin B-evidence = O 0 O . O 9 O Å O , O which O probably O reflects O the O fact O that O , O at O the O optimal B-protein_state pH I-protein_state , O these O lysine B-protein_type decarboxylases I-protein_type have O a O similar O enzymatic O activity O . O In O addition O , O our O earlier O biochemical B-experimental_method observation I-experimental_method that O the O enzymatic O activity O of O LdcIa B-protein is O unaffected O by O RavA B-protein binding O is O consistent O with O the O relatively O small O changes O undergone O by O the O active B-site site I-site upon O transition O from O LdcIa B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly . O Worthy O of O note O , O our O previous O comparison O of O the O crystal B-evidence structure I-evidence of O LdcIi B-protein with O that O of O the O inducible B-protein_state arginine B-protein_type decarboxylase I-protein_type AdiA B-protein revealed O high B-protein_state conservation I-protein_state of O the O PLP B-site - I-site coordinating I-site residues I-site and O identified O a O patch B-site of I-site negatively I-site charged I-site residues I-site lining O the O active B-site site I-site channel I-site as O a O potential O binding B-site site I-site for O the O target O amino B-chemical acid I-chemical substrate O ( O Figs O S3 O and O S4 O in O ref O .). O Rearrangements O of O the O ppGpp B-site binding I-site pocket I-site upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O An O inhibitor O of O the O LdcI B-protein and O LdcC B-protein activity O , O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical , O is O known O to O bind O at O the O interface B-site between O neighboring O monomers B-oligomeric_state within O each O ring B-structure_element ( O Fig O . O S4 O ). O The O ppGpp B-site binding I-site pocket I-site is O made O up O by O residues O from O all O domains O and O is O located O approximately O 30 O Å O away O from O the O PLP B-chemical moiety O . O Whereas O the O crystal B-evidence structure I-evidence of O the O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly was O solved B-experimental_method to O 2 O Å O resolution O , O only O a O 4 O . O 1 O Å O resolution O structure B-evidence of O the O ppGpp B-protein_state - I-protein_state free I-protein_state LdcIi B-protein could O be O obtained O . O At O this O resolution O , O the O apo B-protein_state - O LdcIi B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly structures B-evidence ( O both O solved O at O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ) O appeared O indistinguishable O except O for O the O presence O of O ppGpp B-chemical ( O Fig O . O S11 O in O ref O . O ). O Thus O , O we O speculated O that O inhibition O of O LdcI B-protein by O ppGpp B-chemical would O be O accompanied O by O a O transduction O of O subtle O structural O changes O at O the O level O of O individual O amino B-chemical acid I-chemical side O chains O between O the O ppGpp B-site binding I-site pocket I-site and O the O active B-site site I-site of O the O enzyme O . O All O our O current O cryoEM B-experimental_method reconstructions B-evidence of O the O lysine B-protein_type decarboxylases I-protein_type were O obtained O in O the O absence B-protein_state of I-protein_state ppGpp B-chemical in O order O to O be O closer O to O the O active B-protein_state state O of O the O enzymes O under O study O . O While O differences O in O the O ppGpp B-site binding I-site site I-site could O indeed O be O visualized O ( O Fig O . O S4 O ), O the O level O of O resolution O warns O against O speculations O about O their O significance O . O The O fact O that O interaction O with O RavA B-protein reduces O the O ppGpp B-chemical affinity O for O LdcI B-protein despite O the O long O distance O of O ~ O 30 O Å O between O the O LARA B-site domain I-site binding I-site site I-site and O the O closest O ppGpp B-site binding I-site pocket I-site ( O Fig O . O S5 O ) O seems O to O favor O an O allosteric O regulation O mechanism O . O Interestingly O , O although O a O number O of O ppGpp B-site binding I-site residues I-site are O strictly B-protein_state conserved I-protein_state between O LdcI B-protein and O AdiA B-protein that O also O forms O decamers B-oligomeric_state at O low B-protein_state pH I-protein_state optimal I-protein_state for O its O arginine B-protein_type decarboxylase I-protein_type activity O , O no O ppGpp B-chemical regulation O of O AdiA B-protein could O be O demonstrated O . O Swinging O and O stretching O of O the O CTDs B-structure_element upon O pH B-protein_state - I-protein_state dependent I-protein_state LdcI B-protein activation O and O LARA B-structure_element binding O Inspection O of O the O superimposed B-experimental_method decameric B-oligomeric_state structures B-evidence ( O Figs O 2 O and O S6 O ) O suggests O a O depiction O of O the O wing B-structure_element domains I-structure_element as O an O anchor O around O which O the O peripheral O CTDs B-structure_element swing O . O This O swinging O movement O seems O to O be O mediated O by O the O core B-structure_element domains I-structure_element and O is O accompanied O by O a O stretching O of O the O whole O LdcI B-protein subunits B-structure_element attracted O by O the O RavA B-protein magnets O . O Indeed O , O all O CTDs B-structure_element have O very O similar O structures O ( O RMSDmin B-evidence < O 1 O Å O ). O Yet O the O superposition B-experimental_method of O the O decamers B-oligomeric_state lays O bare O a O progressive O movement O of O the O CTD B-structure_element as O a O whole O upon O enzyme O activation O by O pH O and O the O binding O of O LARA B-structure_element . O The O LdcIi B-protein monomer B-oligomeric_state is O the O most B-protein_state compact I-protein_state , O whereas O LdcIa B-protein and O especially O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly gradually B-protein_state extend I-protein_state their O CTDs B-structure_element towards O the O LARA B-structure_element domain I-structure_element of O RavA B-protein ( O Figs O 2 O and O 4 O ). O These O small O but O noticeable O swinging O and O stretching O ( O up O to O ~ O 4 O Å O ) O may O be O related O to O the O incorporation O of O the O LdcI B-protein decamer B-oligomeric_state into O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O a O lysine B-protein_type decarboxylase I-protein_type as O a O major O determinant O of O the O interaction O with O RavA B-protein In O our O previous O contribution O , O based O on O the O fit O of O the O LdcIi B-protein and O the O LARA B-structure_element crystal B-evidence structures I-evidence into O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly cryoEM B-experimental_method density B-evidence , O we O predicted O that O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O should O involve O the O C O - O terminal O two B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O the O LdcI B-protein . O Our O present O cryoEM B-experimental_method maps B-evidence and O pseudoatomic B-evidence models I-evidence provide O first O structure O - O based O insights O into O the O differences O between O the O inducible B-protein_state and O the O constitutive B-protein_state lysine B-protein_type decarboxylases I-protein_type . O Therefore O , O we O wanted O to O check O the O influence O of O the O primary O sequence O of O the O two O proteins O in O this O region O on O their O ability O to O interact O with O RavA B-protein . O To O this O end O , O we O swapped B-experimental_method the O relevant O β B-structure_element - I-structure_element sheets I-structure_element of O the O two O proteins O and O produced O their O chimeras B-mutant , O namely O LdcIC B-mutant ( O i O . O e O . O LdcI B-protein with O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcC B-protein ) O and O LdcCI B-mutant ( O i O . O e O . O LdcC B-protein with O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein ) O ( O Fig O . O 5A O – O C O ). O Both B-mutant constructs I-mutant could O be O purified O and O could O form O decamers B-oligomeric_state visually O indistinguishable O from O the O wild B-protein_state - I-protein_state type I-protein_state proteins O . O As O expected O , O binding O of O LdcI B-protein to O RavA B-protein was O completely O abolished O by O this O procedure O and O no O LdcIC B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O could O be O detected O . O On O the O contrary O , O introduction B-experimental_method of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein into O LdcC B-protein led O to O an O assembly O of O the O LdcCI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O . O On O the O negative B-experimental_method stain I-experimental_method EM I-experimental_method grid I-experimental_method , O the O chimeric B-protein_state cages O appeared O less O rigid O than O the O native B-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly , O which O probably O means O that O the O environment O of O the O β B-structure_element - I-structure_element sheet I-structure_element contributes O to O the O efficiency O of O the O interaction O and O the O stability O of O the O entire O architecture O ( O Fig O . O 5D O – O F O ). O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O a O lysine B-protein_type decarboxylase I-protein_type is O a O highly B-protein_state conserved I-protein_state signature O allowing O to O distinguish O between O LdcI B-protein and O LdcC B-protein Alignment B-experimental_method of I-experimental_method the I-experimental_method primary I-experimental_method sequences I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein shows O that O some O amino O acid O residues O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element are O the O same O in O the O two O proteins O , O whereas O others O are O notably O different O in O chemical O nature O . O Importantly O , O most O of O the O amino O acid O differences O between O the O two O enzymes O are O located O in O this O very B-structure_element region I-structure_element . O Thus O , O to O advance O beyond O our O experimental O confirmation O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element as O a O major O determinant O of O the O capacity O of O a O particular O lysine B-protein_type decarboxylase I-protein_type to O form O a O cage O with O RavA B-protein , O we O set O out O to O investigate O whether O certain B-structure_element residues I-structure_element in O this O β B-structure_element - I-structure_element sheet I-structure_element are O conserved B-protein_state in O lysine B-protein_type decarboxylases I-protein_type of O different O enterobacteria B-taxonomy_domain that O have O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O We O inspected B-experimental_method the I-experimental_method genetic I-experimental_method environment I-experimental_method of O lysine B-protein_type decarboxylases I-protein_type from O 22 O enterobacterial B-taxonomy_domain species O referenced O in O the O NCBI O database O , O corrected O the O gene O annotation O where O necessary O ( O Tables O S3 O and O S4 O ), O and O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method ( O see O Methods O ). O First O of O all O , O consensus B-evidence sequence I-evidence for O the O entire O lysine B-protein_type decarboxylase I-protein_type family O was O derived O . O Second O , O the O phylogenetic B-experimental_method analysis I-experimental_method clearly O split O the O lysine B-protein_type decarboxylases I-protein_type into O two O groups O ( O Fig O . O 6A O ). O All O lysine B-protein_type decarboxylases I-protein_type predicted O to O be O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O biodegradable B-protein_state based O on O their O genetic O environment O , O as O for O example O their O organization O in O an O operon O with O a O gene O encoding O the O CadB B-protein antiporter B-protein_type ( O see O Methods O ), O were O found O in O one O group O , O whereas O all O enzymes B-protein_type predicted O as O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O biosynthetic B-protein_state partitioned O into O another O group O . O Thus O , O consensus B-evidence sequences I-evidence could O also O be O determined O for O each O of O the O two O groups O ( O Figs O 6B O , O C O and O S7 O ). O Inspection O of O these O consensus B-evidence sequences I-evidence revealed O important O differences O between O the O groups O regarding O charge O , O size O and O hydrophobicity O of O several O residues O precisely O at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element that O is O responsible O for O the O interaction O with O RavA B-protein ( O Fig O . O 6B O – O D O ). O For O example O , O in O our O previous O study O , O site B-experimental_method - I-experimental_method directed I-experimental_method mutations I-experimental_method identified O Y697 B-residue_name_number as O critically O required O for O the O RavA B-protein binding O . O Our O current O analysis O shows O that O Y697 B-residue_name_number is O strictly B-protein_state conserved I-protein_state in O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O group O whereas O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enzymes O always B-protein_state have I-protein_state a O lysine B-residue_name in O this O position O ; O it O also O uncovers O several O other O residues O potentially O essential O for O the O interaction O with O RavA B-protein which O can O now O be O addressed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O The O third O and O most O remarkable O finding O was O that O exactly O the O same O separation O into O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type ”- I-protein_type like I-protein_type groups O can O be O obtained O based O on O a O comparison O of O the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element only O , O without O taking O the O rest O of O the O primary O sequence O into O account O . O Therefore O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element emerges O as O being O a O highly B-protein_state conserved I-protein_state signature B-structure_element sequence I-structure_element , O sufficient O to O unambiguously O discriminate O between O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type independently O of O any O other O information O ( O Figs O 6 O and O S7 O ). O Our O structures B-evidence show O that O this B-structure_element motif I-structure_element is O not O involved O in O the O enzymatic O activity O or O the O oligomeric O state O of O the O proteins O . O Thus O , O enterobacteria B-taxonomy_domain identified O here O ( O Fig O . O 6 O , O Table O S4 O ) O appear O to O exert O evolutionary O pressure O on O the O biodegradative B-protein_state lysine B-protein_type decarboxylase I-protein_type towards O the O RavA B-protein binding O . O One O of O the O elucidated O roles O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O is O to O maintain O LdcI B-protein activity O under O conditions O of O enterobacterial B-taxonomy_domain starvation O by O preventing O LdcI B-protein inhibition O by O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical . O Furthermore O , O the O recently O documented O interaction O of O both O LdcI B-protein and O RavA B-protein with O specific O subunits B-structure_element of O the O respiratory B-protein_type complex I-protein_type I I-protein_type , O together O with O the O unanticipated O link O between O RavA B-protein and O maturation O of O numerous O iron B-protein_type - I-protein_type sulfur I-protein_type proteins I-protein_type , O tend O to O suggest O an O additional O intriguing O function O for O this O 3 O . O 5 O MDa O assembly O . O The O conformational O rearrangements O of O LdcI B-protein upon O enzyme O activation O and O RavA B-protein binding O revealed O in O this O work O , O and O our O amazing O finding O that O the O molecular O determinant O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O is O the O one O that O straightforwardly O determines O if O a O particular O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylase I-protein_type belongs O to O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O proteins O , O should O give O a O new O impetus O to O functional O studies O of O the O unique O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O Besides O , O the O structures B-evidence and O the O pseudoatomic B-evidence models I-evidence of O the O active B-protein_state ppGpp B-protein_state - I-protein_state free I-protein_state states O of O both O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type offer O an O additional O tool O for O analysis O of O their O role O in O UPEC B-species infectivity O . O Together O with O the O apo B-protein_state - O LdcI B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly crystal B-evidence structures I-evidence , O our O cryoEM B-experimental_method reconstructions B-evidence provide O a O structural O framework O for O future O studies O of O structure O - O function O relationships O of O lysine B-protein_type decarboxylases I-protein_type from O other O enterobacteria B-taxonomy_domain and O even O of O their O homologues O outside O Enterobacteriaceae B-taxonomy_domain . O For O example O , O the O lysine B-protein_type decarboxylase I-protein_type of O Eikenella B-species corrodens I-species is O thought O to O play O a O major O role O in O the O periodontal O disease O and O its O inhibitors O were O shown O to O retard O gingivitis O development O . O Finally O , O cadaverine B-chemical being O an O important O platform O chemical O for O the O production O of O industrial O polymers O such O as O nylon O , O structural O information O is O valuable O for O optimisation O of O bacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type used O for O its O production O in O biotechnology O . O 3D O cryoEM B-experimental_method reconstructions B-evidence of O LdcC B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein . O ( O A O , O C O , O E O ) O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O A O ), O LdcIa B-protein ( O C O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ) O decamers B-oligomeric_state with O one O protomer B-oligomeric_state in O light O grey O . O In O the O rest O of O the O protomers B-oligomeric_state , O the O wing B-structure_element , O core B-structure_element and O C B-structure_element - I-structure_element terminal I-structure_element domains I-structure_element are O colored O from O light O to O dark O in O shades O of O green O for O LdcC B-protein ( O A O ), O pink O for O LdcIa B-protein ( O C O ) O and O blue O for O LdcI B-protein in O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ). O In O ( O E O ), O the O LARA B-structure_element domain I-structure_element density O is O shown O in O dark O grey O . O Two O monomers B-oligomeric_state making O a O dimer B-oligomeric_state are O delineated O . O Scale O bar O 50 O Å O . O ( O B O , O D O , O F O ) O One O protomer B-oligomeric_state from O the O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O B O ), O LdcIa B-protein ( O D O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O F O ) O in O light O grey O with O the O pseudoatomic B-evidence model I-evidence represented O as O cartoons O and O colored O as O the O densities O in O ( O A O , O C O , O E O ). O Superposition B-experimental_method of O the O pseudoatomic B-evidence models I-evidence of O LdcC B-protein , O LdcI B-protein from O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein colored O as O in O Fig O . O 1 O , O and O the O crystal B-evidence structure I-evidence of O LdcIi B-protein in O shades O of O yellow O . O Only O one O of O the O two O rings B-structure_element of O the O double B-structure_element toroid I-structure_element is O shown O for O clarity O . O The O dashed O circle O indicates O the O central O region B-structure_element that O remains O virtually O unchanged O between O all O the O structures B-evidence , O while O the O periphery O undergoes O visible O movements O . O Conformational O rearrangements O in O the O enzyme O active B-site site I-site . O ( O A O ) O LdcIi B-protein crystal B-evidence structure I-evidence , O with O one O ring B-structure_element represented O as O a O grey O surface O and O the O second O as O a O cartoon O . O A O monomer B-oligomeric_state with O its O PLP B-chemical cofactor O is O delineated O . O The O PLP B-chemical moieties O of O the O cartoon O ring B-structure_element are O shown O in O red O . O ( O B O ) O The O LdcIi B-protein dimer B-oligomeric_state extracted O from O the O crystal B-evidence structure I-evidence of O the O decamer B-oligomeric_state . O One O monomer B-oligomeric_state is O colored O in O shades O of O yellow O as O in O Figs O 1 O and O 2 O , O while O the O monomer B-oligomeric_state related O by O C2 O symmetry O is O grey O . O The O PLP B-chemical is O red O . O The O active B-site site I-site is O boxed O . O Stretching O of O the O LdcI B-protein monomer B-oligomeric_state upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O . O ( O A O – O C O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcI B-protein monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ) O The O rectangle O indicates O the O regions O enlarged O in O ( O D O – O F O ). O ( O A O ) O compares O LdcIi B-protein ( O yellow O ) O and O LdcIa B-protein ( O pink O ), O ( O B O ) O compares O LdcIa B-protein ( O pink O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O blue O ), O and O ( O C O ) O compares O LdcIi B-protein ( O yellow O ), O LdcIa B-protein ( O pink O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O blue O ) O simultaneously O in O order O to O show O the O progressive O stretching O described O in O the O text O . O The O cryoEM B-experimental_method density B-evidence of O the O LARA B-structure_element domain I-structure_element is O represented O as O a O grey O surface O to O show O the O position O of O the O binding B-site site I-site and O the O direction O of O the O movement O . O ( O D O – O F O ) O Inserts O zooming O at O the O CTD B-structure_element part O in O proximity O of O the O LARA B-site binding I-site site I-site . O Analysis O of O the O LdcIC B-mutant and O LdcCI B-mutant chimeras B-mutant . O ( O A O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcIa B-protein ( O purple O ) O and O LdcC B-protein ( O green O ) O monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ). O ( O B O ) O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element in O LdcIa B-protein and O LdcC B-protein enlarged O from O ( O A O , O C O ) O Exchanged O primary O sequences O ( O capital O letters O ) O and O their O immediate O vicinity O ( O lower O case O letters O ) O colored O as O in O ( O A O , O B O ), O with O the O corresponding O secondary O structure O elements O and O the O amino O acid O numbering O shown O . O ( O D O , O E O ) O A O gallery O of O negative O stain O EM O images O of O ( O D O ) O the O wild B-protein_state type I-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O and O ( O E O ) O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O ( O F O ) O Some O representative O class O averages O of O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O Sequence B-experimental_method analysis I-experimental_method of O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type . O ( O A O ) O Maximum B-evidence likelihood I-evidence tree I-evidence with O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O and O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O groups O highlighted O in O green O and O pink O , O respectively O . O ( O B O ) O Analysis O of O consensus O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O sequences O around O the O first O and O second O C O - O terminal O β B-structure_element - I-structure_element strands I-structure_element . O Numbering O as O in O E B-species . I-species coli I-species . O ( O C O ) O Signature O sequences O of O LdcI B-protein and O LdcC B-protein in O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element . O Polarity O differences O are O highlighted O . O ( O D O ) O Position O and O nature O of O these O differences O at O the O surface O of O the O respective O cryoEM B-experimental_method maps B-evidence with O the O color O code O as O in O B O . O See O also O Fig O . O S7 O and O Tables O S3 O and O S4 O . O Crystal B-evidence Structures I-evidence of O Putative O Sugar B-protein_type Kinases I-protein_type from O Synechococcus B-species Elongatus I-species PCC I-species 7942 I-species and O Arabidopsis B-species Thaliana I-species The O genome O of O the O Synechococcus B-species elongatus I-species strain I-species PCC I-species 7942 I-species encodes O a O putative O sugar B-protein_type kinase I-protein_type ( O SePSK B-protein ), O which O shares O 44 O . O 9 O % O sequence O identity O with O the O xylulose B-protein kinase I-protein - I-protein 1 I-protein ( O AtXK B-protein - I-protein 1 I-protein ) O from O Arabidopsis B-species thaliana I-species . O Sequence B-experimental_method alignment I-experimental_method suggests O that O both O kinases B-protein_type belong O to O the O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type , O a O sub O - O family O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Here O we O solved B-experimental_method the O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein in O both O their O apo B-protein_state forms O and O in B-protein_state complex I-protein_state with I-protein_state nucleotide B-chemical substrates O . O The O two O kinases O exhibit O nearly O identical O overall O architecture O , O with O both O kinases B-protein_type possessing O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrates I-protein_state . O In O addition O , O our O enzymatic B-experimental_method assays I-experimental_method suggested O that O SePSK B-protein has O the O capability O to O phosphorylate O D B-chemical - I-chemical ribulose I-chemical . O In O order O to O understand O the O catalytic O mechanism O of O SePSK B-protein , O we O solved B-experimental_method the O structure B-evidence of O SePSK B-protein in B-protein_state complex I-protein_state with I-protein_state D B-chemical - I-chemical ribulose I-chemical and O found O two O potential O substrate B-site binding I-site pockets I-site in O SePSK B-protein . O Using O mutation B-experimental_method and I-experimental_method activity I-experimental_method analysis I-experimental_method , O we O further O verified O the O key O residues O important O for O its O catalytic O activity O . O Moreover O , O our O structural B-experimental_method comparison I-experimental_method with O other O family O members O suggests O that O there O are O major O conformational O changes O in O SePSK B-protein upon O substrate O binding O , O facilitating O the O catalytic O process O . O Together O , O these O results O provide O important O information O for O a O more O detailed O understanding O of O the O cofactor O and O substrate O binding O mode O as O well O as O the O catalytic O mechanism O of O SePSK B-protein , O and O possible O similarities O with O its O plant B-taxonomy_domain homologue O AtXK B-protein - I-protein 1 I-protein . O Carbohydrates B-chemical are O essential O cellular O compounds O involved O in O the O metabolic O processes O present O in O all O organisms O . O Phosphorylation B-ptm is O one O of O the O various O pivotal O modifications O of O carbohydrates B-chemical , O and O is O catalyzed O by O specific O sugar B-protein_type kinases I-protein_type . O These O kinases B-protein_type exhibit O considerable O differences O in O their O folding O pattern O and O substrate O specificity O . O Based O on O sequence B-experimental_method analysis I-experimental_method , O they O can O be O divided O into O four O families O , O namely O HSP B-protein_type 70_NBD I-protein_type family I-protein_type , O FGGY B-protein_type family I-protein_type , O Mer_B B-protein_type like I-protein_type family I-protein_type and O Parm_like B-protein_type family I-protein_type . O The O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type contain O different O types O of O sugar B-protein_type kinases I-protein_type , O all O of O which O possess O different O catalytic O substrates O with O preferences O for O short O - O chained O sugar B-chemical substrates O , O ranging O from O triose B-chemical to O heptose B-chemical . O These O sugar B-chemical substrates O include O L B-chemical - I-chemical ribulose I-chemical , O erythritol B-chemical , O L B-chemical - I-chemical fuculose I-chemical , O D B-chemical - I-chemical glycerol I-chemical , O D B-chemical - I-chemical gluconate I-chemical , O L B-chemical - I-chemical xylulose I-chemical , O D B-chemical - I-chemical ribulose I-chemical , O L B-chemical - I-chemical rhamnulose I-chemical and O D B-chemical - I-chemical xylulose I-chemical . O Structures B-evidence reported O in O the O Protein O Data O Bank O of O the O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type exhibit O a O similar O overall O architecture O containing O two O protein O domains O , O one O of O which O is O responsible O for O the O binding O of O substrate O , O while O the O second O is O used O for O binding O cofactor O ATP B-chemical . O While O the O binding B-site pockets I-site for O substrates O are O at O the O same O position O , O each O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type uses O different O substrate B-site - I-site binding I-site residues I-site , O resulting O in O high O substrate O specificity O . O Synpcc7942_2462 B-gene from O the O cyanobacteria B-taxonomy_domain Synechococcus B-species elongatus I-species PCC I-species 7942 I-species encodes O a O putative O sugar B-protein_type kinase I-protein_type ( O SePSK B-protein ), O and O this O kinase B-protein_type contains O 426 B-residue_range amino O acids O . O The O At2g21370 B-gene gene O product O from O Arabidopsis B-species thaliana I-species , O xylulose B-protein kinase I-protein - I-protein 1 I-protein ( O AtXK B-protein - I-protein 1 I-protein ), O whose O mature B-protein_state form I-protein_state contains O 436 B-residue_range amino O acids O , O is O located O in O the O chloroplast O ( O ChloroP O 1 O . O 1 O Server O ). O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein display O a O sequence O identity O of O 44 O . O 9 O %, O and O belong O to O the O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type , O a O sub O - O family O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Members O of O this O sub O - O family O are O responsible O for O the O phosphorylation B-ptm of O sugars B-chemical similar O to O L B-chemical - I-chemical ribulose I-chemical and O D B-chemical - I-chemical ribulose I-chemical . O The O sequence O and O the O substrate O specificity O of O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type are O different O , O but O they O share O the O common O folding O feature O with O two O domains O . O Domain B-structure_element I I-structure_element exhibits O a O ribonuclease B-structure_element H I-structure_element - I-structure_element like I-structure_element folding I-structure_element pattern I-structure_element , O and O is O responsible O for O the O substrate O binding O , O while O domain B-structure_element II I-structure_element possesses O an O actin B-structure_element - I-structure_element like I-structure_element ATPase I-structure_element domain I-structure_element that O binds O cofactor O ATP B-chemical . O Two O possible O xylulose B-protein_type kinases I-protein_type ( O xylulose B-protein kinase I-protein - I-protein 1 I-protein : O XK B-protein - I-protein 1 I-protein and O xylulose B-protein kinase I-protein - I-protein 2 I-protein : O XK B-protein - I-protein 2 I-protein ) O from O Arabidopsis B-species thaliana I-species were O previously O proposed O . O It O was O shown O that O XK B-protein - I-protein 2 I-protein ( O At5g49650 B-gene ) O located O in O the O cytosol O is O indeed O xylulose B-protein_type kinase I-protein_type . O However O , O the O function O of O XK B-protein - I-protein 1 I-protein ( O At2g21370 B-gene ) O inside O the O chloroplast O stroma O has O remained O unknown O . O SePSK B-protein from O Synechococcus B-species elongatus I-species strain I-species PCC I-species 7942 I-species is O the O homolog O of O AtXK B-protein - I-protein 1 I-protein , O though O its O physiological O function O and O substrates O remain O unclear O . O In O order O to O obtain O functional O and O structural O information O about O these O two O proteins O , O here O we O reported O the O crystal B-evidence structures I-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O Our O findings O provide O new O details O of O the O catalytic O mechanism O of O SePSK B-protein and O lay O the O foundation O for O future O studies O into O its O homologs O in O eukaryotes B-taxonomy_domain . O Overall O structures B-evidence of O apo B-protein_state - O SePSK B-protein and O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein The O attempt O to O solve O the O SePSK B-protein structure B-evidence by O molecular B-experimental_method replacement I-experimental_method method I-experimental_method failed O with O ribulokinase B-protein from O Bacillus B-species halodurans I-species ( O PDB O code O : O 3QDK O , O 15 O . O 7 O % O sequence O identity O ) O as O an O initial O model O . O We O therefore O used O single B-experimental_method isomorphous I-experimental_method replacement I-experimental_method anomalous I-experimental_method scattering I-experimental_method method I-experimental_method ( O SIRAS B-experimental_method ) O for O successful O solution O of O the O apo B-protein_state - O SePSK B-protein structure B-evidence at O a O resolution O of O 2 O . O 3 O Å O . O Subsequently O , O the O apo B-protein_state - O SePSK B-protein structure B-evidence was O used O as O molecular B-experimental_method replacement I-experimental_method model I-experimental_method to O solve O all O other O structures B-evidence identified O in O this O study O . O Our O structural B-experimental_method analysis I-experimental_method showed O that O apo B-protein_state - O SePSK B-protein consists O of O one O SePSK B-protein protein O molecule O in O an O asymmetric O unit O . O The O amino O - O acid O residues O were O traced O from O Val2 B-residue_name_number to O His419 B-residue_name_number , O except O for O the O Met1 B-residue_name_number residue O and O the O seven O residues O at O the O C O - O termini O . O Apo B-protein_state - O SePSK B-protein contains O two O domains O referred O to O further O on O as O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element ( O Fig O 1A O ). O Domain B-structure_element I I-structure_element consists O of O non O - O contiguous O portions O of O the O polypeptide O chains O ( O aa O . O 2 B-residue_range – I-residue_range 228 I-residue_range and O aa O . O 402 B-residue_range – I-residue_range 419 I-residue_range ), O exhibiting O 11 O α B-structure_element - I-structure_element helices I-structure_element and O 11 O β B-structure_element - I-structure_element sheets I-structure_element . O Among O all O these O structural O elements O , O α4 B-structure_element / O α5 B-structure_element / O α11 B-structure_element / O α18 B-structure_element , O β3 B-structure_element / O β2 B-structure_element / O β1 B-structure_element / O β6 B-structure_element / O β19 B-structure_element / O β20 B-structure_element / O β17 B-structure_element and O α21 B-structure_element / O α32 B-structure_element form O three O patches O , O referred O to O as O A1 B-structure_element , O B1 B-structure_element and O A2 B-structure_element , O exhibiting O the O core B-structure_element region I-structure_element . O In O addition O , O four O β B-structure_element - I-structure_element sheets I-structure_element ( O β7 B-structure_element , O β10 B-structure_element , O β12 B-structure_element and O β16 B-structure_element ) O and O five O α B-structure_element - I-structure_element helices I-structure_element ( O α8 B-structure_element , O α9 B-structure_element , O α13 B-structure_element , O α14 B-structure_element and O α15 B-structure_element ) O flank O the O left O side O of O the O core B-structure_element region I-structure_element . O Domain B-structure_element II I-structure_element is O comprised O of O aa O . O 229 B-residue_range – I-residue_range 401 I-residue_range and O classified O into O B2 B-structure_element ( O β31 B-structure_element / O β29 B-structure_element / O β22 B-structure_element / O β23 B-structure_element / O β25 B-structure_element / O β24 B-structure_element ) O and O A3 B-structure_element ( O α26 B-structure_element / O α27 B-structure_element / O α28 B-structure_element / O α30 B-structure_element ) O ( O Fig O 1A O and O S1 O Fig O ). O In O the O SePSK B-protein structure B-evidence , O B1 B-structure_element and O B2 B-structure_element are O sandwiched O by O A1 B-structure_element , O A2 B-structure_element and O A3 B-structure_element , O and O the O whole O structure B-evidence shows O the O A1 B-structure_element / O B1 B-structure_element / O A2 B-structure_element / O B2 B-structure_element / O A3 B-structure_element ( O α B-structure_element / O β B-structure_element / O α B-structure_element / O β B-structure_element / O α B-structure_element ) O folding O pattern O , O which O is O in O common O with O other O members O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type ( O S2 O Fig O ). O The O overall O folding O of O SePSK B-protein resembles O a O clip O , O with O A2 B-structure_element of O domain B-structure_element I I-structure_element acting O as O a O hinge B-structure_element region I-structure_element . O Overall O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O ( O A O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O SePSK B-protein . O The O secondary O structural O elements O are O indicated O ( O α B-structure_element - I-structure_element helix I-structure_element : O cyan O , O β B-structure_element - I-structure_element sheet I-structure_element : O yellow O ). O ( O B O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein . O The O secondary O structural O elements O are O indicated O ( O α B-structure_element - I-structure_element helix I-structure_element : O green O , O β B-structure_element - I-structure_element sheet I-structure_element : O wheat O ). O Apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein exhibits O a O folding O pattern O similar O to O that O of O SePSK B-protein in O line O with O their O high O sequence O identity O ( O Fig O 1B O and O S1 O Fig O ). O However O , O superposition B-experimental_method of O structures B-evidence of O AtXK B-protein - I-protein 1 I-protein and O SePSK B-protein shows O some O differences O , O especially O at O the O loop B-structure_element regions I-structure_element . O A O considerable O difference O is O found O in O the O loop3 B-structure_element linking O β3 B-structure_element and O α4 B-structure_element , O which O is O stretched O out O in O the O AtXK B-protein - I-protein 1 I-protein structure B-evidence , O while O in O the O SePSK B-protein structure B-evidence , O it O is O bent O back O towards O the O inner O part O . O The O corresponding O residues O between O these O two O structures B-evidence ( O SePSK B-protein - O Lys35 B-residue_name_number and O AtXK B-protein - I-protein 1 I-protein - O Lys48 B-residue_name_number ) O have O a O distance O of O 15 O . O 4 O Å O ( O S3 O Fig O ). O Activity B-experimental_method assays I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein In O order O to O understand O the O function O of O these O two O kinases O , O we O performed O structural B-experimental_method comparison I-experimental_method using O Dali B-experimental_method server I-experimental_method . O The O structures B-evidence most O closely O related O to O SePSK B-protein are O xylulose B-protein_type kinase I-protein_type , O glycerol B-protein_type kinase I-protein_type and O ribulose B-protein_type kinase I-protein_type , O implying O that O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein might O function O similarly O to O these O kinases B-protein_type . O We O first O tested O whether O both O enzymes O possessed O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrates O . O As O shown O in O Fig O 2A O , O both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein exhibited O ATP B-chemical hydrolysis O activity O . O This O finding O is O in O agreement O with O a O previous O result O showing O that O xylulose B-protein_type kinase I-protein_type ( O PDB O code O : O 2ITM O ) O possessed O ATP B-chemical hydrolysis O activity O without O adding O substrate O . O To O further O identify O the O actual O substrate O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein , O five O different O sugar O molecules O , O including O D B-chemical - I-chemical ribulose I-chemical , O L B-chemical - I-chemical ribulose I-chemical , O D B-chemical - I-chemical xylulose I-chemical , O L B-chemical - I-chemical xylulose I-chemical and O Glycerol B-chemical , O were O used O in O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method . O As O shown O in O Fig O 2B O , O the O ATP B-chemical hydrolysis O activity O of O SePSK B-protein greatly O increased O upon O adding O D B-chemical - I-chemical ribulose I-chemical than O adding O other O potential O substrates O , O suggesting O that O it O has O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type activity O . O In O contrary O , O limited O increasing O of O ATP B-chemical hydrolysis O activity O was O detected O for O AtXK B-protein - I-protein 1 I-protein upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O Fig O 2C O ), O despite O its O structural O similarity O with O SePSK B-protein . O The O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O ( O A O ) O The O ATP B-chemical hydrolysis O activity O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O Both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrate O . O While O the O ATP B-chemical hydrolysis O activity O of O SePSK B-protein greatly O increases O upon O addition O of O D B-chemical - I-chemical ribulose I-chemical ( O DR B-chemical ). O ( O B O ) O The O ATP B-chemical hydrolysis O activity O of O SePSK B-protein with O addition O of O five O different O substrates O . O The O substrates O are O DR B-chemical ( O D B-chemical - I-chemical ribulose I-chemical ), O LR B-chemical ( O L B-chemical - I-chemical ribulose I-chemical ), O DX B-chemical ( O D B-chemical - I-chemical xylulose I-chemical ), O LX B-chemical ( O L B-chemical - I-chemical xylulose I-chemical ) O and O GLY B-chemical ( O Glycerol B-chemical ). O ( O C O ) O The O ATP B-chemical hydrolysis O activity O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein with O or O without O D B-chemical - I-chemical ribulose I-chemical . O ( O D O ) O The O ATP B-chemical hydrolysis O activity O of O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O and O single O - O site O mutants O of O SePSK B-protein . O Three O single O - O site O mutants O of O SePSK B-protein are O D8A B-mutant - O SePSK B-protein , O T11A B-mutant - O SePSK B-protein and O D221A B-mutant - O SePSK B-protein . O The O ATP B-chemical hydrolysis O activity O measured O via O luminescent B-experimental_method ADP I-experimental_method - I-experimental_method Glo I-experimental_method assay I-experimental_method ( O Promega O ). O To O understand O the O catalytic O mechanism O of O SePSK B-protein , O we O performed O structural B-experimental_method comparisons I-experimental_method among O xylulose B-protein_type kinase I-protein_type , O glycerol B-protein_type kinase I-protein_type , O ribulose B-protein_type kinase I-protein_type and O SePSK B-protein . O Our O results O suggested O that O three O conserved O residues O ( O D8 B-residue_name_number , O T11 B-residue_name_number and O D221 B-residue_name_number of O SePSK B-protein ) O play O an O important O role O in O SePSK B-protein function O . O Mutations B-experimental_method of O the O corresponding O residue O in O xylulose B-protein_type kinase I-protein_type and O glycerol B-protein_type kinase I-protein_type from O Escherichia B-species coli I-species greatly O reduced O their O activity O . O To O identify O the O function O of O these O three O residues O of O SePSK B-protein , O we O constructed O D8A B-mutant , O T11A B-mutant and O D221A B-mutant mutants B-protein_state . O Using O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method , O we O found O that O all O of O these O mutants O exhibit O much O lower O activity O of O ATP B-chemical hydrolysis O after O adding O D B-chemical - I-chemical ribulose I-chemical than O that O of O wild B-protein_state type I-protein_state , O indicating O the O possibility O that O these O three O residues O are O involved O in O the O catalytic O process O of O phosphorylation B-ptm D B-chemical - I-chemical ribulose I-chemical and O are O vital O for O the O function O of O SePSK B-protein ( O Fig O 2D O ). O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein possess O a O similar O ATP B-site binding I-site site I-site To O obtain O more O detailed O information O of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein in B-protein_state complex I-protein_state with I-protein_state ATP B-chemical , O we O soaked B-experimental_method the O apo B-protein_state - O crystals B-evidence in O the O reservoir O adding O cofactor O ATP B-chemical , O and O obtained O the O structures B-evidence of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein bound B-protein_state with I-protein_state ATP B-chemical at O the O resolution O of O 2 O . O 3 O Å O and O 1 O . O 8 O Å O , O respectively O . O In O both O structures B-evidence , O a O strong O electron B-evidence density I-evidence was O found O in O the O conserved B-protein_state ATP B-site binding I-site pocket I-site , O but O can O only O be O fitted O with O an O ADP B-chemical molecule O ( O S4 O Fig O ). O Thus O the O two O structures B-evidence were O named O ADP B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O ADP B-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O respectively O . O The O extremely O weak O electron B-evidence densities I-evidence of O ATP O γ O - O phosphate B-chemical in O both O structures B-evidence suggest O that O the O γ O - O phosphate B-chemical group O of O ATP B-chemical is O either O flexible O or O hydrolyzed O by O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein . O This O result O was O consistent O with O our O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method where O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O without O adding O any O substrates O ( O Fig O 2A O and O 2C O ). O To O avoid O hydrolysis O of O ATP B-chemical , O we O soaked B-experimental_method the O crystals B-evidence of O apo B-protein_state - O SePSK B-protein and O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein into O the O reservoir O adding O AMP B-chemical - I-chemical PNP I-chemical . O However O , O we O found O that O the O electron B-evidence densities I-evidence of O γ O - O phosphate B-chemical group O of O AMP B-chemical - I-chemical PNP I-chemical ( O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical ) O are O still O weak O in O the O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly structures B-evidence , O suggesting O high O flexibility O of O ATP B-chemical - O γ O - O phosphate B-chemical . O The O γ O - O phosphate B-chemical group O of O ATP B-chemical is O transferred O to O the O sugar B-chemical substrate O during O the O reaction O process O , O so O this O flexibility O might O be O important O for O the O ability O of O these O kinases B-protein_type . O The O overall O structures B-evidence as O well O as O the O coordination O modes O of O ADP B-chemical and O AMP B-chemical - I-chemical PNP I-chemical in O the O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O ADP B-complex_assembly - I-complex_assembly AtXK I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O ADP B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly structures B-evidence are O nearly O identical O ( O S5 O Fig O ), O therefore O the O structure B-evidence of O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly is O used O here O to O describe O the O structural O details O and O to O compare O with O those O of O other O family O members O . O As O shown O in O Fig O 3A O , O one O SePSK B-protein protein O molecule O is O in O an O asymmetric O unit O with O one O AMP B-chemical - I-chemical PNP I-chemical molecule O . O The O AMP B-chemical - I-chemical PNP I-chemical is O bound O at O the O domain B-structure_element II I-structure_element , O where O it O fits O well O inside O a O positively B-site charged I-site groove I-site . O The O AMP B-site - I-site PNP I-site binding I-site pocket I-site consists O of O four B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O α26 B-structure_element , O α28 B-structure_element , O α27 B-structure_element and O α30 B-structure_element ) O and O forms O a O shape B-protein_state resembling I-protein_state a I-protein_state half I-protein_state - I-protein_state fist I-protein_state ( O Fig O 3A O and O 3B O ). O The O head O group O of O the O AMP B-chemical - I-chemical PNP I-chemical is O embedded O in O a O pocket B-site surrounded O by O Trp383 B-residue_name_number , O Asn380 B-residue_name_number , O Gly376 B-residue_name_number and O Gly377 B-residue_name_number . O The O purine O ring O of O AMP B-chemical - I-chemical PNP I-chemical is O positioned O in O parallel O to O the O indole O ring O of O Trp383 B-residue_name_number . O In O addition O , O it O is O hydrogen O - O bonded O with O the O side O chain O amide O of O Asn380 B-residue_name_number ( O Fig O 3B O ). O The O tail O of O AMP B-chemical - I-chemical PNP I-chemical points O to O the O hinge B-structure_element region I-structure_element of O SePSK B-protein , O and O its O α O - O phosphate B-chemical and O β O - O phosphate B-chemical groups O are O stabilized O by O Gly376 B-residue_name_number and O Ser243 B-residue_name_number , O respectively O . O Together O , O this O structure B-evidence clearly O shows O that O the O AMP B-chemical - I-chemical PNP I-chemical - O β O - O phosphate B-chemical is O sticking O out O of O the O ATP B-site binding I-site pocket I-site , O thus O the O γ O - O phosphate B-chemical group O is O at O the O empty O space O between O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element and O is O unconstrained O in O its O movement O by O the O protein O . O Structure B-evidence of O SePSK B-protein in B-protein_state complex I-protein_state with I-protein_state AMP B-chemical - I-chemical PNP I-chemical . O ( O A O ) O The O electron B-evidence density I-evidence of O AMP B-chemical - I-chemical PNP I-chemical . O The O SePSK B-protein structure B-evidence is O shown O in O the O electrostatic O potential O surface O mode O . O The O AMP B-chemical - I-chemical PNP I-chemical is O depicted O as O sticks O with O its O ǀFoǀ B-evidence - I-evidence ǀFcǀ I-evidence map I-evidence contoured O at O 3 O σ O shown O as O cyan O mesh O . O ( O B O ) O The O AMP B-site - I-site PNP I-site binding I-site pocket I-site . O The O head O of O AMP B-chemical - I-chemical PNP I-chemical is O sandwiched O by O four O residues O ( O Leu293 B-residue_name_number , O Gly376 B-residue_name_number , O Gly377 B-residue_name_number and O Trp383 B-residue_name_number ). O The O four O α B-structure_element - I-structure_element helices I-structure_element ( O α26 B-structure_element , O α28 B-structure_element , O α27 B-structure_element and O α30 B-structure_element ) O are O labeled O in O red O . O The O AMP B-chemical - I-chemical PNP I-chemical and O coordinated O residues O are O shown O as O sticks O . O The O potential O substrate B-site binding I-site site I-site in O SePSK B-protein The O results O from O our O activity B-experimental_method assays I-experimental_method suggested O that O SePSK B-protein has O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type activity O . O To O better O understand O the O interaction O pattern O between O SePSK B-protein and O D B-chemical - I-chemical ribulose I-chemical , O the O apo B-protein_state - O SePSK B-protein crystals B-experimental_method were I-experimental_method soaked I-experimental_method into I-experimental_method the O reservoir B-experimental_method with O 10 O mM O D B-chemical - I-chemical ribulose I-chemical ( O RBL B-chemical ) O and O the O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence was O solved B-experimental_method . O As O shown O in O S6 O Fig O , O two O residual O electron B-evidence densities I-evidence are O visible O in O domain B-structure_element I I-structure_element , O which O can O be O interpreted O as O two O D B-chemical - I-chemical ribulose I-chemical molecules O with O reasonable O fit O . O As O shown O in O Fig O 4A O , O the O nearest O distance O between O the O carbon O skeleton O of O two O D B-chemical - I-chemical ribulose I-chemical molecules O are O approx O . O 7 O . O 1 O Å O ( O RBL1 B-residue_name_number - O C4 O and O RBL2 B-residue_name_number - O C1 O ). O RBL1 B-residue_name_number is O located O in O the O pocket B-site consisting O of O α21 B-structure_element and O the O loop B-structure_element between O β6 B-structure_element and I-structure_element β7 I-structure_element . O The O O4 O and O O5 O of O RBL1 B-residue_name_number are O coordinated O with O the O side O chain O carboxyl O group O of O Asp221 B-residue_name_number . O Furthermore O , O the O O2 O of O RBL1 B-residue_name_number interacts O with O the O main O chain O amide O nitrogen O of O Ser72 B-residue_name_number ( O Fig O 4B O ). O This O pocket B-site is O at O a O similar O position O of O substrate B-site binding I-site site I-site of O other O sugar B-protein_type kinase I-protein_type , O such O as O L B-protein - I-protein ribulokinase I-protein ( O PDB O code O : O 3QDK O ) O ( O S7 O Fig O ). O However O , O structural B-experimental_method comparison I-experimental_method shows O that O the O substrate O ligating O residues O between O the O two O structures B-evidence are O not B-protein_state strictly I-protein_state conserved I-protein_state . O Based O on O the O structures B-evidence , O the O ligating O residues O of O RBL1 B-residue_name_number in O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence are O Ser72 B-residue_name_number , O Asp221 B-residue_name_number and O Ser222 B-residue_name_number , O and O the O interacting O residues O of O L B-chemical - I-chemical ribulose I-chemical with O L B-protein - I-protein ribulokinase I-protein are O Ala96 B-residue_name_number , O Lys208 B-residue_name_number , O Asp274 B-residue_name_number and O Glu329 B-residue_name_number ( O S7 O Fig O ). O Glu329 B-residue_name_number in O 3QDK O has O no O counterpart O in O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence . O In O addition O , O although O Lys208 B-residue_name_number of O L B-protein - I-protein ribulokinase I-protein has O the O corresponding O residue O ( O Lys163 B-residue_name_number ) O in O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence , O the O hydrogen O bond O of O Lys163 B-residue_name_number is O broken O because O of O the O conformational O change O of O two O α B-structure_element - I-structure_element helices I-structure_element ( O α9 B-structure_element and O α13 B-structure_element ) O of O SePSK B-protein . O The O binding O of O D B-chemical - I-chemical ribulose I-chemical ( O RBL B-chemical ) O with O SePSK B-protein . O ( O A O ) O The O electrostatic B-evidence potential I-evidence surface I-evidence map I-evidence of O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O a O zoom O - O in O view O of O RBL B-site binding I-site site I-site . O The O RBL1 B-residue_name_number and O RBL2 B-residue_name_number are O depicted O as O sticks O . O ( O B O ) O Interaction O of O two O D B-chemical - I-chemical ribulose I-chemical molecules O ( O RBL1 B-residue_name_number and O RBL2 B-residue_name_number ) O with O SePSK B-protein . O The O RBL B-chemical molecules O ( O carbon O atoms O colored O yellow O ) O and O amino O acid O residues O of O SePSK B-protein ( O carbon O atoms O colored O green O ) O involved O in O RBL B-chemical interaction O are O shown O as O sticks O . O The O hydrogen O bonds O are O indicated O by O the O black O dashed O lines O and O the O numbers O near O the O dashed O lines O are O the O distances O ( O Å O ). O ( O C O ) O The O binding B-experimental_method affinity I-experimental_method assays I-experimental_method of O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical . O Single B-experimental_method - I-experimental_method cycle I-experimental_method kinetic I-experimental_method data I-experimental_method are O reflecting O the O interaction O of O SePSK B-protein and O D8A B-mutant - O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical . O It O shows O two O experimental O sensorgrams B-evidence after O minus O the O empty O sensorgrams B-evidence . O The O original O data O is O shown O as O black O curve O , O and O the O fitted O data O is O shown O as O different O color O ( O wild B-protein_state type I-protein_state SePSK B-protein : O red O curve O , O D8A B-mutant - O SePSK B-protein : O green O curve O ). O Dissociation B-evidence rate I-evidence constant I-evidence of O wild B-protein_state type I-protein_state and O D8A B-mutant - O SePSK B-protein are O 3 O ms O - O 1 O and O 9 O ms O - O 1 O , O respectively O . O The O binding B-site pocket I-site of O RBL2 B-residue_name_number with O relatively O weak O electron B-evidence density I-evidence is O near O the O N O - O terminal O region O of O SePSK B-protein and O is O negatively O charged O . O The O side O chain O of O Asp8 B-residue_name_number interacts O strongly O with O O3 O and O O4 O of O RBL2 B-residue_name_number . O The O hydroxyl O group O of O Ser12 B-residue_name_number coordinates O with O O2 O of O RBL2 B-residue_name_number . O The O backbone O amide O nitrogens O of O Gly13 B-residue_name_number and O Arg15 B-residue_name_number also O keep O hydrogen O bonds O with O RBL2 B-residue_name_number ( O Fig O 4B O ). O Structural B-experimental_method comparison I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O that O while O the O RBL1 B-site binding I-site pocket I-site is O conserved B-protein_state , O the O RBL2 B-site pocket I-site is O disrupted O in O AtXK B-protein - I-protein 1 I-protein structure B-evidence , O despite O the O fact O that O the O residues O interacting O with O RBL2 B-residue_name_number are O highly B-protein_state conserved I-protein_state between O the O two O proteins O . O In O the O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence , O a O 2 O . O 6 O Å O hydrogen O bond O is O present O between O RBL2 B-residue_name_number and O Ser12 B-residue_name_number ( O Fig O 4B O ), O while O in O the O AtXK B-protein - I-protein 1 I-protein structure B-evidence this O hydrogen O bond O with O the O corresponding O residue O ( O Ser22 B-residue_name_number ) O is O broken O . O This O break O is O probably O induced O by O the O conformational O change O of O the O two O β B-structure_element - I-structure_element sheets I-structure_element ( O β1 B-structure_element and O β2 B-structure_element ), O with O the O result O that O the O linking B-structure_element loop I-structure_element ( O loop B-structure_element 1 I-structure_element ) O is O located O further O away O from O the O RBL2 B-site binding I-site site I-site . O This O change O might O be O the O reason O that O AtXK B-protein - I-protein 1 I-protein only O shows O limited O increasing O in O its O ATP B-chemical hydrolysis O ability O upon O adding O D B-chemical - I-chemical ribulose I-chemical as O a O substrate O after O comparing O with O SePSK B-protein ( O Fig O 2C O ). O Our O SePSK B-protein structure B-evidence shows O that O the O Asp8 B-residue_name_number residue O forms O strong O hydrogen O bond O with O RBL2 B-residue_name_number ( O Fig O 4B O ). O In O addition O , O our O enzymatic B-experimental_method assays I-experimental_method indicated O that O Asp8 B-residue_name_number is O important O for O the O activity O of O SePSK B-protein ( O Fig O 2D O ). O To O further O verified O this O result O , O we O measured O the O binding B-evidence affinity I-evidence for O D B-chemical - I-chemical ribulose I-chemical of O both O wild B-protein_state type I-protein_state ( O WT B-protein_state ) O and O D8A B-mutant mutant B-protein_state of O SePSK B-protein using O a O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method method I-experimental_method . O The O results O showed O that O the O affinity B-evidence of O D8A B-mutant - O SePSK B-protein with O D B-chemical - I-chemical ribulose I-chemical is O weaker O than O that O of O WT B-protein_state with O a O reduction O of O approx O . O Dissociation B-evidence rate I-evidence constant I-evidence ( O Kd B-evidence ) O of O wild B-protein_state type I-protein_state and O D8A B-mutant - O SePSK B-protein are O 3 O ms O - O 1 O and O 9 O ms O - O 1 O , O respectively O . O The O results O implied O that O the O second B-site RBL I-site binding I-site site I-site plays O a O role O in O the O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type function O of O SePSK B-protein . O However O , O considering O the O high O concentration O of O D B-chemical - I-chemical ribulose I-chemical used O for O crystal B-experimental_method soaking I-experimental_method , O as O well O as O the O relatively O weak O electron B-evidence density I-evidence of O RBL2 B-residue_name_number , O it O is O also O possible O that O the O second B-site binding I-site site I-site of O D B-chemical - I-chemical ribulose I-chemical in O SePSK B-protein is O an O artifact O . O Simulated O conformational O change O of O SePSK B-protein during O the O catalytic O process O It O was O reported O earlier O that O the O crossing O angle O between O the O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element in O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type is O different O . O In O addition O , O this O difference O may O be O caused O by O the O binding O of O substrates O and O / O or O ATP B-chemical . O As O reported O previously O , O members O of O the O sugar B-protein_type kinase I-protein_type family O undergo O a O conformational O change O to O narrow O the O crossing O angle O between O two O domains O and O reduce O the O distance O between O substrate O and O ATP B-chemical in O order O to O facilitate O the O catalytic O reaction O of O phosphorylation B-ptm of O sugar O substrates O . O After O comparing O structures B-evidence of O apo B-protein_state - O SePSK B-protein , O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly , O we O noticed O that O these O structures B-evidence presented O here O are O similar O . O Superposing B-experimental_method the O structures B-evidence of O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly , O the O results O show O that O the O nearest O distance O between O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O RBL1 B-residue_name_number / O RBL2 B-residue_name_number is O 7 O . O 5 O Å O ( O RBL1 B-residue_name_number - O O5 O )/ O 6 O . O 7 O Å O ( O RBL2 B-residue_name_number - O O1 O ) O ( O S8 O Fig O ). O This O distance O is O too O long O to O transfer O the O γ O - O phosphate B-chemical group O from O ATP B-chemical to O the O substrate O . O Since O the O two O domains O of O SePSK B-protein are O widely O separated O in O this O structure B-evidence , O we O hypothesize O that O our O structures B-evidence of O SePSK B-protein represent O its O open B-protein_state form O , O and O that O a O conformational O rearrangement O must O occur O to O switch O to O the O closed B-protein_state state O in O order O to O facilitate O the O catalytic O process O of O phosphorylation B-ptm of O sugar O substrates O . O For O studying O such O potential O conformational O change O , O a O simulation B-experimental_method on O the O Hingeprot B-experimental_method Server I-experimental_method was O performed O to O predict O the O movement O of O different O SePSK B-protein domains O . O The O results O showed O that O domain B-structure_element I I-structure_element and O domain B-structure_element II I-structure_element are O closer O to O each O other O with O Ala228 B-residue_name_number and O Thr401 B-residue_name_number in O A2 B-structure_element as O Hinge B-structure_element - I-structure_element residues I-structure_element . O Based O on O the O above O results O , O SePSK B-protein is O divided O into O two O rigid O parts O . O The O domain B-structure_element I I-structure_element of O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O aa O . O 1 B-residue_range – I-residue_range 228 I-residue_range , O aa O . O 402 B-residue_range – I-residue_range 421 I-residue_range ) O and O the O domain B-structure_element II I-structure_element of O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O aa O . O 229 B-residue_range – I-residue_range 401 I-residue_range ) O were O superposed B-experimental_method with O structures B-evidence , O including O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein , O apo B-protein_state - O SePSK B-protein , O xylulose B-protein_type kinase I-protein_type from O Lactobacillus B-species acidophilus I-species ( O PDB O code O : O 3LL3 O ) O and O the O S58W B-mutant mutant B-protein_state form O of O glycerol B-protein_type kinase I-protein_type from O Escherichia B-species coli I-species ( O PDB O code O : O 1GLJ O ). O The O results O of O superposition B-experimental_method displayed O different O crossing O angle O between O these O two O domains O . O After O superposition B-experimental_method , O the O distances O of O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O the O fifth O hydroxyl O group O of O RBL1 B-residue_name_number are O 7 O . O 9 O Å O ( O superposed B-experimental_method with O AtXK B-protein - I-protein 1 I-protein ), O 7 O . O 4 O Å O ( O superposed B-experimental_method with O SePSK B-protein ), O 6 O . O 6 O Å O ( O superposed B-experimental_method with O 3LL3 O ) O and O 6 O . O 1 O Å O ( O superposed B-experimental_method with O 1GLJ O ). O Meanwhile O , O the O distances O of O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical and O the O first O hydroxyl O group O of O RBL2 B-residue_name_number are O 7 O . O 2 O Å O ( O superposed B-experimental_method with O AtXK B-protein - I-protein 1 I-protein ), O 6 O . O 7 O Å O ( O superposed B-experimental_method with O SePSK B-protein ), O 3 O . O 7 O Å O ( O superposed B-experimental_method with O 3LL3 O ), O until O AMP B-chemical - I-chemical PNP I-chemical γ O - O phosphate B-chemical fully O contacts O RBL2 B-residue_name_number after O superposition B-experimental_method with O 1GLJ O ( O Fig O 5 O ). O This O distance O between O RBL2 B-residue_name_number and O AMP B-chemical - I-chemical PNP I-chemical - O γ O - O phosphate B-chemical is O close O enough O to O facilitate O phosphate B-chemical transferring O . O Together O , O our O superposition B-experimental_method results O provided O snapshots O of O the O conformational O changes O at O different O catalytic O stages O of O SePSK B-protein and O potentially O revealed O the O closed B-protein_state form O of O SePSK B-protein . O Simulated O conformational O change O of O SePSK B-protein during O the O catalytic O process O . O The O structures B-evidence are O shown O as O cartoon O and O the O ligands O are O shown O as O sticks O . O Domain B-structure_element I I-structure_element from O D B-complex_assembly - I-complex_assembly ribulose I-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O green O ) O and O Domain B-structure_element II I-structure_element from O AMP B-complex_assembly - I-complex_assembly PNP I-complex_assembly - I-complex_assembly SePSK I-complex_assembly ( O cyan O ) O are O superposed B-experimental_method with O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein ( O 1st O ), O apo B-protein_state - O SePSK B-protein ( O 2nd O ), O 3LL3 O ( O 3rd O ) O and O 1GLJ O ( O 4th O ), O respectively O . O The O numbers O near O the O black O dashed O lines O show O the O distances O ( O Å O ) O between O two O nearest O atoms O of O RBL B-chemical and O AMP B-chemical - I-chemical PNP I-chemical . O In O summary O , O our O structural B-experimental_method and I-experimental_method enzymatic I-experimental_method analyses I-experimental_method provide O evidence O that O SePSK B-protein shows O D B-protein_type - I-protein_type ribulose I-protein_type kinase I-protein_type activity O , O and O exhibits O the O conserved O features O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Three O conserved B-site residues O in O SePSK B-protein were O identified O to O be O essential O for O this O function O . O Our O results O provide O the O detailed O information O about O the O interaction O of O SePSK B-protein with O ATP B-chemical and O substrates O . O Moreover O , O structural B-experimental_method superposition I-experimental_method results O enable O us O to O visualize O the O conformational O change O of O SePSK B-protein during O the O catalytic O process O . O In O conclusion O , O our O results O provide O important O information O for O a O more O detailed O understanding O of O the O mechanisms O of O SePSK B-protein and O other O members O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O Structural O basis O for O Mep2 B-protein_type ammonium B-protein_type transceptor I-protein_type activation O by O phosphorylation B-ptm Mep2 B-protein_type proteins I-protein_type are O fungal B-taxonomy_domain transceptors B-protein_type that O play O an O important O role O as O ammonium B-chemical sensors O in O fungal B-taxonomy_domain development O . O Mep2 B-protein_type activity O is O tightly O regulated O by O phosphorylation B-ptm , O but O how O this O is O achieved O at O the O molecular O level O is O not O clear O . O Here O we O report O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type orthologues O from O Saccharomyces B-species cerevisiae I-species and O Candida B-species albicans I-species and O show O that O under O nitrogen O - O sufficient O conditions O the O transporters B-protein_type are O not B-protein_state phosphorylated I-protein_state and O present O in O closed B-protein_state , O inactive B-protein_state conformations O . O Relative O to O the O open B-protein_state bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O non B-protein_state - I-protein_state phosphorylated I-protein_state Mep2 B-protein_type exhibits O shifts O in O cytoplasmic B-structure_element loops I-structure_element and O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O to O occlude O the O cytoplasmic O exit B-site of O the O channel B-site and O to O interact O with O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O phosphorylation B-site site I-site in O the O CTR B-structure_element is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O The O crystal B-evidence structure I-evidence of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state Mep2 B-mutant variants I-mutant from O C B-species . I-species albicans I-species show O large O conformational O changes O in O a O conserved B-protein_state and O functionally O important O region O of O the O CTR B-structure_element . O The O results O allow O us O to O propose O a O model O for O regulation O of O eukaryotic B-taxonomy_domain ammonium B-chemical transport O by O phosphorylation B-ptm . O Mep2 B-protein_type proteins I-protein_type are O tightly O regulated O fungal B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O Here O , O the O authors O report O the O crystal B-evidence structures I-evidence of O closed B-protein_state states O of O Mep2 B-protein_type proteins I-protein_type and O propose O a O model O for O their O regulation O by B-experimental_method comparing I-experimental_method them I-experimental_method with I-experimental_method the O open B-protein_state ammonium B-protein_type transporters I-protein_type of O bacteria B-taxonomy_domain . O Transceptors B-protein_type are O membrane B-protein_type proteins I-protein_type that O function O not O only O as O transporters O but O also O as O receptors O / O sensors O during O nutrient O sensing O to O activate O downstream O signalling O pathways O . O A O common O feature O of O transceptors B-protein_type is O that O they O are O induced O when O cells O are O starved O for O their O substrate O . O While O most O studies O have O focused O on O the O Saccharomyces B-species cerevisiae I-species transceptors B-protein_type for O phosphate B-chemical ( O Pho84 B-protein ), O amino B-chemical acids I-chemical ( O Gap1 B-protein ) O and O ammonium B-chemical ( O Mep2 B-protein ), O transceptors B-protein_type are O found O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain as O well O ( O for O example O , O the O mammalian B-taxonomy_domain SNAT2 B-protein amino B-protein_type - I-protein_type acid I-protein_type transporter I-protein_type and O the O GLUT2 B-protein glucose B-protein_type transporter I-protein_type ). O One O of O the O most O important O unresolved O questions O in O the O field O is O how O the O transceptors B-protein_type couple O to O downstream O signalling O pathways O . O One O hypothesis O is O that O downstream O signalling O is O dependent O on O a O specific O conformation O of O the O transporter B-protein_type . O Mep2 B-protein_type ( B-protein_type methylammonium I-protein_type ( I-protein_type MA I-protein_type ) I-protein_type permease I-protein_type ) I-protein_type proteins I-protein_type are O ammonium B-protein_type transceptors I-protein_type that O are O ubiquitous O in O fungi B-taxonomy_domain . O They O belong O to O the O Amt B-protein_type / I-protein_type Mep I-protein_type / I-protein_type Rh I-protein_type family I-protein_type of I-protein_type transporters I-protein_type that O are O present O in O all B-taxonomy_domain kingdoms I-taxonomy_domain of I-taxonomy_domain life I-taxonomy_domain and O they O take O up O ammonium B-chemical from O the O extracellular O environment O . O Fungi B-taxonomy_domain typically O have O more O than O one O Mep B-protein_type paralogue O , O for O example O , O Mep1 B-protein - I-protein 3 I-protein in O S B-species . I-species cerevisiae I-species . O Of O these O , O only O Mep2 B-protein_type proteins I-protein_type function O as O ammonium B-chemical receptors O / O sensors O in O fungal B-taxonomy_domain development O . O Under O conditions O of O nitrogen O limitation O , O Mep2 B-protein initiates O a O signalling O cascade O that O results O in O a O switch O from O the O yeast O form O to O filamentous O ( O pseudohyphal O ) O growth O that O may O be O required O for O fungal B-taxonomy_domain pathogenicity O . O As O is O the O case O for O other O transceptors B-protein_type , O it O is O not O clear O how O Mep2 B-protein interacts O with O downstream O signalling O partners O , O but O the O protein O kinase O A O and O mitogen O - O activated O protein O kinase O pathways O have O been O proposed O as O downstream O effectors O of O Mep2 B-protein ( O refs O ). O Compared O with O Mep1 B-protein and O Mep3 B-protein , O Mep2 B-protein is O highly B-protein_state expressed I-protein_state and O functions O as O a O low O - O capacity O , O high O - O affinity O transporter O in O the O uptake O of O MA B-chemical . O In O addition O , O Mep2 B-protein is O also O important O for O uptake O of O ammonium B-chemical produced O by O growth O on O other O nitrogen B-chemical sources O . O With O the O exception O of O the O human B-species RhCG B-protein structure B-evidence , O no O structural O information O is O available O for O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O By O contrast O , O several O bacterial B-taxonomy_domain Amt B-protein_type orthologues O have O been O characterized O in O detail O via O high O - O resolution O crystal B-evidence structures I-evidence and O a O number O of O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O studies O . O All O the O solved O structures B-evidence including O that O of O RhCG B-protein are O very O similar O , O establishing O the O basic O architecture O of O ammonium B-protein_type transporters I-protein_type . O The O proteins O form O stable B-protein_state trimers B-oligomeric_state , O with O each O monomer B-oligomeric_state having O 11 O transmembrane B-structure_element ( O TM B-structure_element ) O helices B-structure_element and O a O central B-site channel I-site for O the O transport O of O ammonium B-chemical . O All O structures B-evidence show O the O transporters B-protein_type in O open B-protein_state conformations O . O Where O earlier O studies O favoured O the O transport O of O ammonia B-chemical gas O , O recent O data O and O theoretical O considerations O suggest O that O Amt B-protein_type / I-protein_type Mep I-protein_type proteins I-protein_type are O instead O active B-protein_state , O electrogenic B-protein_type transporters I-protein_type of O either O NH4 B-chemical + I-chemical ( O uniport O ) O or O NH3 B-chemical / O H B-chemical + I-chemical ( O symport O ). O A O highly B-protein_state conserved I-protein_state pair O of O channel B-site - O lining O histidine B-residue_name residues O dubbed O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element may O serve O as O a O proton O relay O system O while O NH3 B-chemical moves O through O the O channel B-site during O NH3 B-chemical / O H B-chemical + I-chemical symport O . O Ammonium B-chemical transport O is O tightly O regulated O . O In O animals B-taxonomy_domain , O this O is O due O to O toxicity O of O elevated O intracellular O ammonium B-chemical levels O , O whereas O for O microorganisms B-taxonomy_domain ammonium B-chemical is O a O preferred O nitrogen O source O . O In O bacteria B-taxonomy_domain , O amt B-gene genes O are O present O in O an O operon O with O glnK B-gene , O encoding O a O PII B-protein_type - I-protein_type like I-protein_type signal I-protein_type transduction I-protein_type class I-protein_type protein I-protein_type . O By O binding O tightly O to O Amt B-protein_type proteins I-protein_type without O inducing O a O conformational O change O in O the O transporter B-protein_type , O GlnK B-protein_type sterically O blocks O ammonium B-chemical conductance O when O nitrogen O levels O are O sufficient O . O Under O conditions O of O nitrogen B-chemical limitation O , O GlnK B-protein_type becomes O uridylated B-protein_state , O blocking O its O ability O to O bind O and O inhibit O Amt B-protein_type proteins I-protein_type . O Importantly O , O eukaryotes B-taxonomy_domain do O not O have O GlnK B-protein_type orthologues O and O have O a O different O mechanism O for O regulation O of O ammonium B-chemical transport O activity O . O In O plants B-taxonomy_domain , O transporter B-protein_type phosphorylation B-ptm and O dephosphorylation B-ptm are O known O to O regulate O activity O . O In O S B-species . I-species cerevisiae I-species , O phosphorylation B-ptm of O Ser457 B-residue_name_number within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O in O the O cytoplasm O was O recently O proposed O to O cause O Mep2 B-protein_type opening O , O possibly O via O inducing O a O conformational O change O . O To O elucidate O the O mechanism O of O Mep2 B-protein_type transport O regulation O , O we O present O here O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type transceptors I-protein_type from O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species . O The O structures B-evidence are O similar O to O each O other O but O show O considerable O differences O to O all O other O ammonium B-protein_type transporter I-protein_type structures B-evidence . O The O most O striking O difference O is O the O fact O that O the O Mep2 B-protein_type proteins I-protein_type have O closed B-protein_state conformations O . O The O putative O phosphorylation B-site site I-site is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O The O channels B-site of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state mutants I-protein_state of O C B-species . I-species albicans I-species Mep2 B-protein are O still O closed B-protein_state but O show O large O conformational O changes O within O a O conserved B-protein_state part O of O the O CTR B-structure_element . O Together O with O a O structure B-evidence of O a O C O - O terminal O Mep2 B-mutant variant I-mutant lacking B-protein_state the O segment B-structure_element containing O the O phosphorylation B-site site I-site , O the O results O allow O us O to O propose O a O structural O model O for O phosphorylation O - O based O regulation O of O eukaryotic B-taxonomy_domain ammonium B-chemical transport O . O General O architecture O of O Mep2 B-protein_type ammonium B-protein_type transceptors I-protein_type The O Mep2 B-protein protein O of O S B-species . I-species cerevisiae I-species ( O ScMep2 B-protein ) O was O overexpressed B-experimental_method in O S B-species . I-species cerevisiae I-species in O high O yields O , O enabling O structure B-experimental_method determination I-experimental_method by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method using O data O to O 3 O . O 2 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O with O the O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein structure B-evidence ( O see O Methods O section O ). O Given O that O the O modest O resolution O of O the O structure B-evidence and O the O limited O detergent O stability O of O ScMep2 B-protein would O likely O complicate O structure B-experimental_method – I-experimental_method function I-experimental_method studies I-experimental_method , O several O other O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O were O subsequently O overexpressed B-experimental_method and I-experimental_method screened I-experimental_method for I-experimental_method diffraction O - O quality O crystals B-evidence . O Of O these O , O Mep2 B-protein from O C B-species . I-species albicans I-species ( O CaMep2 B-protein ) O showed O superior O stability O in O relatively O harsh O detergents O such O as O nonyl O - O glucoside O , O allowing O structure B-experimental_method determination I-experimental_method in O two O different O crystal B-evidence forms I-evidence to O high O resolution O ( O up O to O 1 O . O 5 O Å O ). O Despite O different O crystal O packing O ( O Supplementary O Table O 1 O ), O the O two O CaMep2 B-protein structures B-evidence are O identical O to O each O other O and O very O similar O to O ScMep2 B-protein ( O Cα O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence ( O root B-evidence mean I-evidence square I-evidence deviation I-evidence )= O 0 O . O 7 O Å O for O 434 O residues O ), O with O the O main O differences O confined O to O the O N O terminus O and O the O CTR B-structure_element ( O Fig O . O 1 O ). O Electron B-evidence density I-evidence is O visible O for O the O entire O polypeptide O chains O , O with O the O exception O of O the O C O - O terminal O 43 B-residue_range ( O ScMep2 B-protein ) O and O 25 B-residue_range residues O ( O CaMep2 B-protein ), O which O are O poorly B-protein_state conserved I-protein_state and O presumably O disordered B-protein_state . O Both O Mep2 B-protein_type proteins I-protein_type show O the O archetypal O trimeric B-oligomeric_state assemblies O in O which O each O monomer B-oligomeric_state consists O of O 11 O TM B-structure_element helices I-structure_element surrounding O a O central B-structure_element pore I-structure_element . O Important O functional O features O such O as O the O extracellular O ammonium B-site binding I-site site I-site , O the O Phe B-site gate I-site and O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element within O the O hydrophobic B-site channel I-site are O all O very O similar O to O those O present O in O the O bacterial B-taxonomy_domain transporters B-protein_type and O RhCG B-protein . O In O the O remainder O of O the O manuscript O , O we O will O specifically O discuss O CaMep2 B-protein due O to O the O superior O resolution O of O the O structure B-evidence . O Unless O specifically O stated O , O the O drawn O conclusions O also O apply O to O ScMep2 B-protein . O While O the O overall O architecture O of O Mep2 B-protein is O similar O to O that O of O the O prokaryotic B-taxonomy_domain transporters B-protein_type ( O Cα O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence with O Amt B-protein - I-protein 1 I-protein = O 1 O . O 4 O Å O for O 361 O residues O ), O there O are O large O differences O within O the O N O terminus O , O intracellular B-structure_element loops I-structure_element ( O ICLs B-structure_element ) O ICL1 B-structure_element and O ICL3 B-structure_element , O and O the O CTR B-structure_element . O The O N O termini O of O the O Mep2 B-protein_type proteins I-protein_type are O ∼ O 20 B-residue_range – I-residue_range 25 I-residue_range residues O longer O compared O with O their O bacterial B-taxonomy_domain counterparts O ( O Figs O 1 O and O 2 O ), O substantially O increasing O the O size O of O the O extracellular B-structure_element domain I-structure_element . O Moreover O , O the O N O terminus O of O one O monomer B-oligomeric_state interacts O with O the O extended O extracellular B-structure_element loop I-structure_element ECL5 B-structure_element of O a O neighbouring O monomer B-oligomeric_state . O Together O with O additional O , O smaller O differences O in O other O extracellular B-structure_element loops I-structure_element , O these O changes O generate O a O distinct O vestibule B-structure_element leading O to O the O ammonium B-site binding I-site site I-site that O is O much O more O pronounced O than O in O the O bacterial B-taxonomy_domain proteins O . O The O N O - O terminal O vestibule B-structure_element and O the O resulting O inter O - O monomer O interactions O likely O increase O the O stability O of O the O Mep2 B-protein trimer B-oligomeric_state , O in O support O of O data O for O plant B-taxonomy_domain AMT B-protein_type proteins I-protein_type . O However O , O given O that O an O N O - O terminal O deletion B-protein_state mutant I-protein_state ( O 2 B-mutant - I-mutant 27Δ I-mutant ) O grows O as O well O as O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Mep2 B-protein on O minimal O ammonium B-chemical medium O ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ), O the O importance O of O the O N O terminus O for O Mep2 B-protein activity O is O not O clear O . O Mep2 B-protein channels B-site are O closed B-protein_state by O a O two O - O tier O channel B-structure_element block I-structure_element The O largest O differences O between O the O Mep2 B-protein structures B-evidence and O the O other O known O ammonium B-protein_type transporter I-protein_type structures B-evidence are O located O on O the O intracellular O side O of O the O membrane O . O In O the O vicinity O of O the O Mep2 B-protein channel B-site exit I-site , O the O cytoplasmic O end O of O TM2 B-structure_element has O unwound O , O generating O a O longer O ICL1 B-structure_element even O though O there O are O no O insertions O in O this O region O compared O to O the O bacterial B-taxonomy_domain proteins O ( O Figs O 2 O and O 4 O ). O ICL1 B-structure_element has O also O moved O inwards O relative O to O its O position O in O the O bacterial B-taxonomy_domain Amts B-protein_type . O The O largest O backbone O movements O of O equivalent O residues O within O ICL1 B-structure_element are O ∼ O 10 O Å O , O markedly O affecting O the O conserved B-protein_state basic B-protein_state RxK B-structure_element motif I-structure_element ( O Fig O . O 4 O ). O The O head O group O of O Arg54 B-residue_name_number has O moved O ∼ O 11 O Å O relative O to O that O in O Amt B-protein - I-protein 1 I-protein , O whereas O the O shift O of O the O head O group O of O the O variable O Lys55 B-residue_name_number residue O is O almost O 20 O Å O . O The O side O chain O of O Lys56 B-residue_name_number in O the O basic B-protein_state motif B-structure_element points O in O an O opposite O direction O in O the O Mep2 B-protein structures B-evidence compared O with O that O of O , O for O example O , O Amt B-protein - I-protein 1 I-protein ( O Fig O . O 4 O ). O In O addition O to O changing O the O RxK B-structure_element motif I-structure_element , O the O movement O of O ICL1 B-structure_element has O another O , O crucial O functional O consequence O . O At O the O C O - O terminal O end O of O TM1 B-structure_element , O the O side O - O chain O hydroxyl O group O of O the O relatively B-protein_state conserved I-protein_state Tyr49 B-residue_name_number ( O Tyr53 B-residue_name_number in O ScMep2 B-protein ) O makes O a O strong O hydrogen O bond O with O the O ɛ2 O nitrogen O atom O of O the O absolutely B-protein_state conserved I-protein_state His342 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element ( O His348 B-residue_name_number in O ScMep2 B-protein ), O closing O the O channel B-site ( O Figs O 4 O and O 5 O ). O In O bacterial B-taxonomy_domain Amt B-protein_type proteins I-protein_type , O this O Tyr B-residue_name side O chain O is O rotated O ∼ O 4 O Å O away O as O a O result O of O the O different O conformation O of O TM1 B-structure_element , O leaving O the O channel B-site open B-protein_state and O the O histidine B-residue_name available O for O its O putative O role O in O substrate O transport O ( O Supplementary O Fig O . O 2 O ). O Compared O with O ICL1 B-structure_element , O the O backbone O conformational O changes O observed O for O the O neighbouring O ICL2 B-structure_element are O smaller O , O but O large O shifts O are O nevertheless O observed O for O the O conserved B-protein_state residues O Glu140 B-residue_name_number and O Arg141 B-residue_name_number ( O Fig O . O 4 O ). O Finally O , O the O important O ICL3 B-structure_element linking O the O pseudo B-structure_element - I-structure_element symmetrical I-structure_element halves I-structure_element ( O TM1 B-structure_element - I-structure_element 5 I-structure_element and O TM6 B-structure_element - I-structure_element 10 I-structure_element ) O of O the O transporter B-protein_type is O also O shifted O up O to O ∼ O 10 O Å O and O forms O an O additional O barrier O that O closes O the O channel B-site on O the O cytoplasmic O side O ( O Fig O . O 5 O ). O This O two O - O tier O channel B-structure_element block I-structure_element likely O ensures O that O very O little O ammonium B-chemical transport O will O take O place O under O nitrogen B-chemical - O sufficient O conditions O . O The O closed B-protein_state state O of O the O channel B-site might O also O explain O why O no B-evidence density I-evidence , O which O could O correspond O to O ammonium B-chemical ( O or O water B-chemical ), O is O observed O in O the O hydrophobic O part O of O the O Mep2 B-protein channel B-site close O to O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O Significantly O , O this O is O also O true O for O ScMep2 B-protein , O which O was O crystallized B-experimental_method in O the O presence O of O 0 O . O 2 O M O ammonium B-chemical ions O ( O see O Methods O section O ). O The O final O region O in O Mep2 B-protein that O shows O large O differences O compared O with O the O bacterial B-taxonomy_domain transporters B-protein_type is O the O CTR B-structure_element . O In O Mep2 B-protein , O the O CTR B-structure_element has O moved O away O and O makes O relatively O few O contacts O with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type , O generating O a O more O elongated B-protein_state protein O ( O Figs O 1 O and O 4 O ). O By O contrast O , O in O the O structures B-evidence of O bacterial B-taxonomy_domain proteins O , O the O CTR B-structure_element is O docked O tightly O onto O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O corresponding O to O TM1 B-structure_element - I-structure_element 5 I-structure_element ), O resulting O in O a O more O compact B-protein_state structure B-evidence . O This O is O illustrated O by O the O positions O of O the O five O universally B-protein_state conserved I-protein_state residues O within O the O CTR B-structure_element , O that O is O , O Arg415 B-residue_name_number ( O 370 B-residue_number ), O Glu421 B-residue_name_number ( O 376 B-residue_number ), O Gly424 B-residue_name_number ( O 379 B-residue_number ), O Asp426 B-residue_name_number ( O 381 B-residue_number ) O and O Tyr B-residue_name_number 435 I-residue_name_number ( O 390 B-residue_number ) O in O CaMep2 B-protein ( O Amt B-protein - I-protein 1 I-protein ) O ( O Fig O . O 2 O ). O These O residues O include O those O of O the O ‘ B-structure_element ExxGxD I-structure_element ' I-structure_element motif I-structure_element , O which O when O mutated B-experimental_method generate O inactive B-protein_state transporters B-protein_type . O In O Amt B-protein - I-protein 1 I-protein and O other O bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O these O CTR B-structure_element residues O interact O with O residues O within O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein O . O On O one O side O , O the O Tyr390 B-residue_name_number hydroxyl O in O Amt B-protein - I-protein 1 I-protein is O hydrogen O bonded O with O the O side O chain O of O the O conserved B-protein_state His185 B-residue_name_number at O the O C O - O terminal O end O of O loop B-structure_element ICL3 B-structure_element . O At O the O other O end O of O ICL3 B-structure_element , O the O backbone O carbonyl O groups O of O Gly172 B-residue_name_number and O Lys173 B-residue_name_number are O hydrogen O bonded O to O the O side O chain O of O Arg370 B-residue_name_number . O Similar O interactions O were O also O modelled B-experimental_method in O the O active B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state plant B-taxonomy_domain AtAmt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein structure B-evidence ( O for O example O , O Y467 B-residue_name_number - O H239 B-residue_name_number and O D458 B-residue_name_number - O K71 B-residue_name_number ). O The O result O of O these O interactions O is O that O the O CTR B-structure_element ‘ O hugs O ' O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O Fig O . O 4 O ). O Also O noteworthy O is O Asp381 B-residue_name_number , O the O side O chain O of O which O interacts O strongly O with O the O positive O dipole O on O the O N O - O terminal O end O of O TM2 B-structure_element . O This O interaction O in O the O centre O of O the O protein O may O be O particularly O important O to O stabilize O the O open B-protein_state conformations O of O ammonium B-protein_type transporters I-protein_type . O In O the O Mep2 B-protein structures B-evidence , O none O of O the O interactions O mentioned O above O are O present O . O Phosphorylation B-site target I-site site I-site is O at O the O periphery O of O Mep2 B-protein Recently O Boeckstaens O et O al O . O provided O evidence O that O Ser457 B-residue_name_number in O ScMep2 B-protein ( O corresponding O to O Ser453 B-residue_name_number in O CaMep2 B-protein ) O is O phosphorylated B-protein_state by O the O TORC1 B-protein_type effector I-protein_type kinase I-protein_type Npr1 B-protein under O nitrogen B-chemical - O limiting O conditions O . O In O the O absence B-protein_state of I-protein_state Npr1 B-protein , O plasmid B-experimental_method - I-experimental_method encoded I-experimental_method WT B-protein_state Mep2 B-protein in O a O S B-species . I-species cerevisiae I-species mep1 B-mutant - I-mutant 3Δ I-mutant strain O ( O triple B-mutant mepΔ I-mutant ) O does O not O allow O growth O on O low O concentrations O of O ammonium B-chemical , O suggesting O that O the O transporter B-protein_type is O inactive B-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ). O Conversely O , O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state S457D B-mutant variant O is O active B-protein_state both O in O the O triple B-mutant mepΔ I-mutant background O and O in O a O triple B-mutant mepΔ I-mutant npr1Δ I-mutant strain O ( O Fig O . O 3 O ). O Mutation B-experimental_method of O other O potential O phosphorylation B-site sites I-site in O the O CTR B-structure_element did O not O support O growth O in O the O npr1Δ B-mutant background O . O Collectively O , O these O data O suggest O that O phosphorylation B-ptm of O Ser457 B-residue_name_number opens O the O Mep2 B-protein channel B-site to O allow O ammonium B-chemical uptake O . O Ser457 B-residue_name_number is O located O in O a O part O of O the O CTR B-structure_element that O is O conserved B-protein_state in O a O subgroup O of O Mep2 B-protein_type proteins I-protein_type , O but O which O is O not O present O in O bacterial B-taxonomy_domain proteins O ( O Fig O . O 2 O ). O This O segment B-structure_element ( O residues O 450 B-residue_range – I-residue_range 457 I-residue_range in O ScMep2 B-protein and O 446 B-residue_range – I-residue_range 453 I-residue_range in O CaMep2 B-protein ) O was O dubbed O an O autoinhibitory B-structure_element ( I-structure_element AI I-structure_element ) I-structure_element region I-structure_element based O on O the O fact O that O its O removal B-experimental_method generates O an O active B-protein_state transporter B-protein_type in O the O absence B-protein_state of I-protein_state Npr1 B-protein ( O Fig O . O 3 O ). O Where O is O the O AI B-structure_element region I-structure_element and O the O Npr1 B-protein phosphorylation B-site site I-site located O ? O Our O structures B-evidence reveal O that O surprisingly O , O the O AI B-structure_element region I-structure_element is O folded O back O onto O the O CTR B-structure_element and O is O not O located O near O the O centre O of O the O trimer B-oligomeric_state as O expected O from O the O bacterial B-taxonomy_domain structures B-evidence ( O Fig O . O 4 O ). O The O AI B-structure_element region I-structure_element packs O against O the O cytoplasmic O ends O of O TM2 B-structure_element and O TM4 B-structure_element , O physically O linking O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type with O the O CTR B-structure_element via O main O chain O interactions O and O side O - O chain O interactions O of O Val447 B-residue_name_number , O Asp449 B-residue_name_number , O Pro450 B-residue_name_number and O Arg452 B-residue_name_number ( O Fig O . O 6 O ). O The O AI B-structure_element regions I-structure_element have O very O similar O conformations O in O CaMep2 B-protein and O ScMep2 B-protein , O despite O considerable O differences O in O the O rest O of O the O CTR B-structure_element ( O Fig O . O 6 O ). O Strikingly O , O the O Npr1 B-site target I-site serine I-site residue O is O located O at O the O periphery O of O the O trimer B-oligomeric_state , O far O away O (∼ O 30 O Å O ) O from O any O channel B-site exit I-site ( O Fig O . O 6 O ). O Despite O its O location O at O the O periphery O of O the O trimer B-oligomeric_state , O the O electron B-evidence density I-evidence for O the O serine B-residue_name is O well O defined O in O both O Mep2 B-protein structures B-evidence and O corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O Fig O . O 6 O ). O This O makes O sense O since O the O proteins O were O expressed O in O rich O medium O and O confirms O the O recent O suggestion O by O Boeckstaens O et O al O . O that O the O non B-protein_state - I-protein_state phosphorylated I-protein_state form O of O Mep2 B-protein corresponds O to O the O inactive B-protein_state state O . O For O ScMep2 B-protein , O Ser457 B-residue_name_number is O the O most O C O - O terminal O residue O for O which O electron B-evidence density I-evidence is O visible O , O indicating O that O the O region O beyond O Ser457 B-residue_name_number is O disordered B-protein_state . O In O CaMep2 B-protein , O the O visible O part O of O the O sequence O extends O for O two O residues O beyond O Ser453 B-residue_name_number ( O Fig O . O 6 O ). O The O peripheral O location O and O disorder B-protein_state of O the O CTR B-structure_element beyond O the O kinase B-site target I-site site I-site should O facilitate O the O phosphorylation B-ptm by O Npr1 B-protein . O The O disordered B-protein_state part O of O the O CTR B-structure_element is O not B-protein_state conserved I-protein_state in O ammonium B-protein_type transporters I-protein_type ( O Fig O . O 2 O ), O suggesting O that O it O is O not O important O for O transport O . O Interestingly O , O a O ScMep2 B-protein 457Δ B-mutant truncation B-protein_state mutant I-protein_state in O which O a O His O - O tag O directly O follows O Ser457 B-residue_name_number is O highly O expressed O but O has O low B-protein_state activity I-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1b O ), O suggesting O that O the O His O - O tag O interferes O with O phosphorylation B-ptm by O Npr1 B-protein . O The O same O mutant B-mutant lacking B-protein_state the I-protein_state His I-protein_state - I-protein_state tag I-protein_state has O WT B-protein_state properties O ( O Supplementary O Fig O . O 1b O ), O confirming O that O the O region O following O the O phosphorylation B-site site I-site is O dispensable O for O function O . O Mep2 B-protein lacking B-protein_state the O AI B-structure_element region I-structure_element is O conformationally B-protein_state heterogeneous I-protein_state Given O that O Ser457 B-residue_name_number / O 453 B-residue_number is O far O from O any O channel B-site exit I-site ( O Fig O . O 6 O ), O the O crucial O question O is O how O phosphorylation B-ptm opens O the O Mep2 B-protein channel B-site to O generate O an O active B-protein_state transporter B-protein_type . O Boeckstaens O et O al O . O proposed O that O phosphorylation B-ptm does O not O affect O channel O activity O directly O , O but O instead O relieves O inhibition O by O the O AI B-structure_element region I-structure_element . O The O data O behind O this O hypothesis O is O the O observation O that O a O ScMep2 B-protein 449 B-mutant - I-mutant 485Δ I-mutant deletion B-protein_state mutant I-protein_state lacking B-protein_state the O AI B-structure_element region I-structure_element is O highly B-protein_state active I-protein_state in O MA B-chemical uptake O both O in O the O triple B-mutant mepΔ I-mutant and O triple B-mutant mepΔ I-mutant npr1Δ I-mutant backgrounds O , O implying O that O this O Mep2 B-mutant variant I-mutant has O a O constitutively B-protein_state open I-protein_state channel B-site . O We O obtained O a O similar O result O for O ammonium O uptake O by O the O 446Δ B-mutant mutant B-protein_state ( O Fig O . O 3 O ), O supporting O the O data O from O Marini O et O al O . O We O then O constructed B-experimental_method and I-experimental_method purified I-experimental_method the O analogous O CaMep2 B-protein 442Δ B-mutant truncation B-protein_state mutant I-protein_state and O determined B-experimental_method the O crystal B-evidence structure I-evidence using O data O to O 3 O . O 4 O Å O resolution O . O The O structure B-evidence shows O that O removal B-experimental_method of I-experimental_method the O AI B-structure_element region I-structure_element markedly O increases O the O dynamics O of O the O cytoplasmic B-structure_element parts I-structure_element of O the O transporter B-protein_type . O This O is O not O unexpected O given O the O fact O that O the O AI B-structure_element region I-structure_element bridges O the O CTR B-structure_element and O the O main B-structure_element body I-structure_element of O Mep2 B-protein ( O Fig O . O 6 O ). O Density B-evidence for O ICL3 B-structure_element and O the O CTR B-structure_element beyond O residue O Arg415 B-residue_name_number is O missing O in O the O 442Δ B-mutant mutant B-protein_state , O and O the O density B-evidence for O the O other O ICLs B-structure_element including O ICL1 B-structure_element is O generally O poor O with O visible O parts O of O the O structure B-evidence having O high O B O - O factors O ( O Fig O . O 7 O ). O Interestingly O , O however O , O the O Tyr49 B-residue_name_number - O His342 B-residue_name_number hydrogen O bond O that O closes O the O channel O in O the O WT B-protein_state protein O is O still O present O ( O Fig O . O 7 O and O Supplementary O Fig O . O 2 O ). O Why O then O does O this O mutant O appear O to O be O constitutively O active B-protein_state ? O We O propose O two O possibilities O . O The O first O one O is O that O the O open B-protein_state state O is O disfavoured O by O crystallization B-experimental_method because O of O lower O stability O or O due O to O crystal O packing O constraints O . O The O second O possibility O is O that O the O Tyr B-site – I-site His I-site hydrogen I-site bond I-site has O to O be O disrupted O by O the O incoming O substrate O to O open B-protein_state the O channel O . O The O latter O model O would O fit O well O with O the O NH3 B-chemical / O H B-chemical + I-chemical symport O model O in O which O the O proton O is O relayed O by O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O importance O of O the O Tyr B-site – I-site His I-site hydrogen I-site bond I-site is O underscored O by O the O fact O that O its O removal B-experimental_method in O the O ScMep2 B-protein Y53A B-mutant mutant B-protein_state results O in O a O constitutively B-protein_state active I-protein_state transporter B-protein_type ( O Fig O . O 3 O ). O Phosphorylation B-ptm causes O a O conformational O change O in O the O CTR B-structure_element Do O the O Mep2 B-protein structures B-evidence provide O any O clues O regarding O the O potential O effect O of O phosphorylation B-ptm ? O The O side O - O chain O hydroxyl O of O Ser457 B-residue_name_number / O 453 B-residue_number is O located O in O a O well O - O defined O electronegative B-site pocket I-site that O is O solvent B-protein_state accessible I-protein_state ( O Fig O . O 6 O ). O The O closest O atoms O to O the O serine B-residue_name hydroxyl O group O are O the O backbone O carbonyl O atoms O of O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number , O which O are O 3 O – O 4 O Å O away O . O We O therefore O predict O that O phosphorylation B-ptm of O Ser453 B-residue_name_number will O result O in O steric O clashes O as O well O as O electrostatic O repulsion O , O which O in O turn O might O cause O substantial O conformational O changes O within O the O CTR B-structure_element . O To O test O this O hypothesis O , O we O determined B-experimental_method the O structure B-evidence of O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state R452D B-mutant / I-mutant S453D I-mutant protein O ( O hereafter O termed O ‘ O DD B-mutant mutant I-mutant '), O using O data O to O a O resolution O of O 2 O . O 4 O Å O . O The O additional B-experimental_method mutation I-experimental_method of I-experimental_method the O arginine B-residue_name preceding O the O phosphorylation B-site site I-site was O introduced O ( O i O ) O to O increase O the O negative O charge O density O and O make O it O more O comparable O to O a O phosphate B-chemical at O neutral O pH O , O and O ( O ii O ) O to O further O destabilize O the O interactions O of O the O AI B-structure_element region I-structure_element with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type ( O Fig O . O 6 O ). O The O ammonium B-chemical uptake O activity O of O the O S B-species . I-species cerevisiae I-species version O of O the O DD B-mutant mutant I-mutant is O the O same O as O that O of O WT B-protein_state Mep2 B-protein and O the O S453D B-mutant mutant B-protein_state , O indicating O that O the O mutations O do O not O affect O transporter O functionality O in O the O triple B-mutant mepΔ I-mutant background O ( O Fig O . O 3 O ). O Unexpectedly O , O the O AI B-structure_element segment I-structure_element containing O the O mutated O residues O has O only O undergone O a O slight O shift O compared O with O the O WT B-protein_state protein O ( O Fig O . O 8 O and O Supplementary O Fig O . O 3 O ). O By O contrast O , O the O conserved B-protein_state part O of O the O CTR B-structure_element has O undergone O a O large O conformational O change O involving O formation O of O a O 12 B-structure_element - I-structure_element residue I-structure_element - I-structure_element long I-structure_element α I-structure_element - I-structure_element helix I-structure_element from O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range . O In O addition O , O residues O Glu420 B-residue_range - I-residue_range Leu423 I-residue_range including O Glu421 B-residue_name_number of O the O ExxGxD B-structure_element motif I-structure_element are O now O disordered B-protein_state ( O Fig O . O 8 O and O Supplementary O Fig O . O 3 O ). O This O is O the O first O time O a O large O conformational O change O has O been O observed O in O an O ammonium B-protein_type transporter I-protein_type as O a O result O of O a O mutation B-experimental_method , O and O confirms O previous O hypotheses O that O phosphorylation B-ptm causes O structural O changes O in O the O CTR B-structure_element . O To O exclude O the O possibility O that O the O additional O R452D B-mutant mutation O is O responsible O for O the O observed O changes O , O we O also O determined B-experimental_method the O structure B-evidence of O the O ‘ O single B-mutant D I-mutant ' O S453D B-mutant mutant B-protein_state . O As O shown O in O Supplementary O Fig O . O 4 O , O the O consequence O of O the O single B-mutant D I-mutant mutation B-experimental_method is O very O similar O to O that O of O the O DD B-mutant substitution I-mutant , O with O conformational O changes O and O increased O dynamics O confined O to O the O conserved B-protein_state part O of O the O CTR B-structure_element ( O Supplementary O Fig O . O 4 O ). O To O supplement O the O crystal B-evidence structures I-evidence , O we O also O performed O modelling B-experimental_method and O MD B-experimental_method studies O of O WT B-protein_state CaMep2 B-protein , O the O DD B-mutant mutant I-mutant and O phosphorylated B-protein_state protein O ( O S453J B-mutant ). O In O the O WT B-protein_state structure B-evidence , O the O acidic O residues O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number are O within O hydrogen O bonding O distance O of O Ser453 B-residue_name_number . O After O 200 O ns O of O MD B-experimental_method simulation B-experimental_method , O the O interactions O between O these O residues O and O Ser453 B-residue_name_number remain O intact O . O The O protein O backbone O has O an O average O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence of O only O ∼ O 3 O Å O during O the O 200 O - O ns O simulation B-experimental_method , O indicating O that O the O protein O is O stable B-protein_state . O There O is O flexibility O in O the O side O chains O of O the O acidic O residues O so O that O they O are O able O to O form O stable B-protein_state hydrogen O bonds O with O Ser453 B-residue_name_number . O In O particular O , O persistent O hydrogen O bonds O are O observed O between O the O Ser453 B-residue_name_number hydroxyl O group O and O the O acidic O group O of O Glu420 B-residue_name_number , O and O also O between O the O amine O group O of O Ser453 B-residue_name_number and O the O backbone O carbonyl O of O Glu420 B-residue_name_number ( O Supplementary O Fig O . O 5 O ). O The O DD B-mutant mutant I-mutant is O also O stable B-protein_state during O the O simulations B-experimental_method , O but O the O average O backbone O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence of O ∼ O 3 O . O 6 O Å O suggests O slightly O more O conformational O flexibility O than O WT B-protein_state . O As O the O simulation B-experimental_method proceeds O , O the O side O chains O of O the O acidic O residues O move O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number , O presumably O to O avoid O electrostatic O repulsion O . O For O example O , O the O distance B-evidence between O the O Asp453 B-residue_name_number acidic O oxygens O and O the O Glu420 B-residue_name_number acidic O oxygens O increases O from O ∼ O 7 O to O > O 22 O Å O after O 200 O ns O simulations B-experimental_method , O and O thus O these O residues O are O not O interacting O . O The O protein O is O structurally B-protein_state stable I-protein_state throughout O the O simulation B-experimental_method with O little O deviation O in O the O other O parts O of O the O protein O . O Finally O , O the O S453J B-mutant mutant B-protein_state is O also O stable B-protein_state throughout O the O 200 O - O ns O simulation B-experimental_method and O has O an O average O backbone O deviation O of O ∼ O 3 O . O 8 O Å O , O which O is O similar O to O the O DD B-mutant mutant I-mutant . O The O movement O of O the O acidic O residues O away O from O Arg452 B-residue_name_number and O Sep453 B-residue_name_number is O more O pronounced O in O this O simulation B-experimental_method in O comparison O with O the O movement O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number in O the O DD B-mutant mutant I-mutant . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O The O short B-structure_element helix I-structure_element formed O by O residues O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range unravels O during O the O simulations B-experimental_method to O a O disordered B-protein_state state O . O Thus O , O the O MD B-experimental_method simulations B-experimental_method support O the O notion O from O the O crystal B-evidence structures I-evidence that O phosphorylation B-ptm generates O conformational O changes O in O the O conserved B-protein_state part O of O the O CTR B-structure_element . O However O , O the O conformational O changes O for O the O phosphomimetic B-mutant mutants I-mutant in O the O crystals B-evidence are O confined O to O the O CTR B-structure_element ( O Fig O . O 8 O ), O and O the O channels B-site are O still O closed B-protein_state ( O Supplementary O Fig O . O 2 O ). O One O possible O explanation O is O that O the O mutants B-mutant do O not O accurately O mimic O a O phosphoserine B-residue_name , O but O the O observation O that O the O S453D B-mutant and O DD B-mutant mutants I-mutant are O fully B-protein_state active I-protein_state in O the O absence B-protein_state of I-protein_state Npr1 B-protein suggests O that O the O mutations B-experimental_method do O mimic O the O effect O of O phosphorylation B-ptm ( O Fig O . O 3 O ). O The O fact O that O the O S453D B-mutant structure B-evidence was O obtained O in O the O presence O of O 10 O mM O ammonium B-chemical ions O suggests O that O the O crystallization B-experimental_method process O favours O closed B-protein_state states O of O the O Mep2 B-protein channels B-site . O Knowledge O about O ammonium B-protein_type transporter I-protein_type structure B-evidence has O been O obtained O from O experimental O and O theoretical O studies O on O bacterial B-taxonomy_domain family O members O . O In O addition O , O a O number O of O biochemical B-experimental_method and I-experimental_method genetic I-experimental_method studies I-experimental_method are O available O for O bacterial B-taxonomy_domain , O fungal B-taxonomy_domain and O plant B-taxonomy_domain proteins O . O These O efforts O have O advanced O our O knowledge O considerably O but O have O not O yet O yielded O atomic O - O level O answers O to O several O important O mechanistic O questions O , O including O how O ammonium B-chemical transport O is O regulated O in O eukaryotes B-taxonomy_domain and O the O mechanism O of O ammonium B-chemical signalling O . O In O Arabidopsis B-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein , O phosphorylation B-ptm of O the O CTR B-structure_element residue O T460 B-residue_name_number under O conditions O of O high O ammonium B-chemical inhibits O transport O activity O , O that O is O , O the O default O ( O non B-protein_state - I-protein_state phosphorylated I-protein_state ) O state O of O the O plant B-taxonomy_domain transporter B-protein_type is O open B-protein_state . O Interestingly O , O phosphomimetic B-mutant mutations I-mutant introduced O into O one O monomer B-oligomeric_state inactivate O the O entire O trimer B-oligomeric_state , O indicating O that O ( O i O ) O heterotrimerization O occurs O and O ( O ii O ) O the O CTR B-structure_element mediates O allosteric O regulation O of O ammonium B-chemical transport O activity O via O phosphorylation B-ptm . O Owing O to O the O lack O of O structural O information O for O plant B-taxonomy_domain AMTs B-protein_type , O the O details O of O channel B-site closure O and O inter O - O monomer O crosstalk O are O not O yet O clear O . O Contrasting O with O the O plant B-taxonomy_domain transporters B-protein_type , O the O inactive B-protein_state states O of O Mep2 B-protein_type proteins I-protein_type under O conditions O of O high O ammonium B-chemical are O non B-protein_state - I-protein_state phosphorylated I-protein_state , O with O channels B-site that O are O closed B-protein_state on O the O cytoplasmic O side O . O The O reason O why O similar O transporters B-protein_type such O as O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein and O Mep2 B-protein are O regulated O in O opposite O ways O by O phosphorylation B-ptm ( O inactivation B-protein_state in O plants B-taxonomy_domain and O activation B-protein_state in O fungi B-taxonomy_domain ) O is O not O known O . O In O fungi B-taxonomy_domain , O preventing O ammonium B-chemical entry O via O channel O closure O in O ammonium B-protein_type transporters I-protein_type would O be O one O way O to O alleviate O ammonium B-chemical toxicity O , O in O addition O to O ammonium B-chemical excretion O via O Ato B-protein_type transporters B-protein_type and O amino O - O acid O secretion O . O By O determining O the O first O structures B-evidence of O closed B-protein_state ammonium B-protein_type transporters I-protein_type and O comparing B-experimental_method those O structures B-evidence with O the O permanently B-protein_state open I-protein_state bacterial B-taxonomy_domain proteins O , O we O demonstrate O that O Mep2 B-protein_type channel B-site closure O is O likely O due O to O movements O of O the O CTR B-structure_element and O ICL1 B-structure_element and O ICL3 B-structure_element . O More O specifically O , O the O close O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element present O in O open B-protein_state transporters B-protein_type are O disrupted O , O causing O ICL3 B-structure_element to O move O outwards O and O block O the O channel B-site ( O Figs O 4 O and O 9a O ). O In O addition O , O ICL1 B-structure_element has O shifted O inwards O to O contribute O to O the O channel B-site closure O by O engaging O His2 B-residue_name_number from O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element via O hydrogen O bonding O with O a O highly B-protein_state conserved I-protein_state tyrosine B-residue_name hydroxyl O group O . O Upon O phosphorylation B-ptm by O the O Npr1 B-protein kinase B-protein_type in O response O to O nitrogen B-chemical limitation O , O the O region O around O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O opens O the O channel B-site ( O Fig O . O 9 O ). O Importantly O , O the O structural B-evidence similarities I-evidence in O the O TM B-structure_element parts I-structure_element of O Mep2 B-protein and O AfAmt B-protein - I-protein 1 I-protein ( O Fig O . O 5a O ) O suggest O that O channel B-site opening O / O closure O does O not O require O substantial O changes O in O the O residues O lining O the O channel B-site . O How O exactly O the O channel B-site opens O and O whether O opening O is O intra O - O monomeric O are O still O open B-protein_state questions O ; O it O is O possible O that O the O change O in O the O CTR B-structure_element may O disrupt O its O interactions O with O ICL3 B-structure_element of O the O neighbouring O monomer B-oligomeric_state ( O Fig O . O 9b O ), O which O could O result O in O opening O of O the O neighbouring O channel B-site via O inward O movement O of O its O ICL3 B-structure_element . O Owing O to O the O crosstalk O between O monomers B-oligomeric_state , O a O single O phosphorylation B-ptm event O might O lead O to O opening O of O the O entire O trimer B-oligomeric_state , O although O this O has O not O yet O been O tested O ( O Fig O . O 9b O ). O Whether O or O not O Mep2 B-protein_type channel B-site opening O requires O , O in O addition O to O phosphorylation B-ptm , O disruption O of O the O Tyr B-site – I-site His2 I-site interaction I-site by O the O ammonium B-chemical substrate O is O not O yet O clear O . O Is O our O model O for O opening O and O closing O of O Mep2 B-protein channels B-site valid O for O other O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ? O Our O structural B-evidence data I-evidence support O previous O studies O and O clarify O the O central O role O of O the O CTR B-structure_element and O cytoplasmic B-structure_element loops I-structure_element in O the O transition O between O closed B-protein_state and O open B-protein_state states O . O However O , O even O the O otherwise O highly O similar O Mep2 B-protein_type proteins I-protein_type of O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species have O different O structures B-evidence for O their O CTRs B-structure_element ( O Fig O . O 1 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O AI B-structure_element region I-structure_element of O the O CTR B-structure_element containing O the O Npr1 B-site kinase I-site site I-site is O conserved B-protein_state in O only O a O subset O of O fungal B-taxonomy_domain transporters B-protein_type , O suggesting O that O the O details O of O the O structural O changes O underpinning O regulation O vary O . O Nevertheless O , O given O the O central O role O of O absolutely B-protein_state conserved I-protein_state residues O within O the O ICL1 B-site - I-site ICL3 I-site - I-site CTR I-site interaction I-site network I-site ( O Fig O . O 4 O ), O we O propose O that O the O structural O basics O of O fungal B-taxonomy_domain ammonium B-chemical transporter O activation O are O conserved B-protein_state . O The O fact O that O Mep2 B-protein_type orthologues O of O distantly O related O fungi B-taxonomy_domain are O fully O functional O in O ammonium B-chemical transport O and O signalling O in O S B-species . I-species cerevisiae I-species supports O this O notion O . O It O should O also O be O noted O that O the O tyrosine B-residue_name residue O interacting O with O His2 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O , O suggesting O that O the O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site might O be O a O general O way O to O close B-protein_state Mep2 B-protein_type proteins I-protein_type . O With O regards O to O plant B-taxonomy_domain AMTs B-protein_type , O it O has O been O proposed O that O phosphorylation B-ptm at O T460 B-residue_name_number generates O conformational O changes O that O would O close O the O neighbouring O pore B-site via O the O C B-structure_element terminus I-structure_element . O This O assumption O was O based O partly O on O a O homology B-experimental_method model I-experimental_method for O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein based O on O the O ( O open B-protein_state ) O archaebacterial B-taxonomy_domain AfAmt B-protein - I-protein 1 I-protein structure B-evidence , O which O suggested O that O the O C B-structure_element terminus I-structure_element of O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein would O extend O further O to O the O neighbouring O monomer B-oligomeric_state . O Our O Mep2 B-protein structures B-evidence show O that O this O assumption O may O not O be O correct O ( O Fig O . O 4 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O considerable O differences O between O structurally O resolved O CTR B-structure_element domains O means O that O the O exact O environment O of O T460 B-residue_name_number in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O also O not O known O ( O Supplementary O Fig O . O 6 O ). O Based O on O the O available O structural B-evidence information I-evidence , O we O consider O it O more O likely O that O phosphorylation O - O mediated O pore O closure O in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O intra O - O monomeric O , O via O disruption O of O the O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element ( O for O example O , O Y467 B-residue_name_number - O H239 B-residue_name_number and O D458 B-residue_name_number - O K71 B-residue_name_number ). O There O is O generally O no O equivalent O for O CaMep2 B-protein Tyr49 B-residue_name_number in O plant B-taxonomy_domain AMTs B-protein_type , O indicating O that O a O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site as O observed O in O Mep2 B-protein may O not O contribute O to O the O closed B-protein_state state O in O plant B-taxonomy_domain transporters B-protein_type . O We O propose O that O intra B-site - I-site monomeric I-site CTR I-site - I-site ICL1 I-site / I-site ICL3 I-site interactions I-site lie O at O the O basis O of O regulation O of O both O fungal B-taxonomy_domain and O plant B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ; O close O interactions O generate O open B-protein_state channels B-site , O whereas O the O lack B-protein_state of I-protein_state ‘ O intra O -' O interactions O leads O to O inactive B-protein_state states O . O The O need O to O regulate O in O opposite O ways O may O be O the O reason O why O the O phosphorylation B-site sites I-site are O in O different O parts O of O the O CTR B-structure_element , O that O is O , O centrally O located O close O to O the O ExxGxD B-structure_element motif I-structure_element in O AMTs B-protein_type and O peripherally O in O Mep2 B-protein . O In O this O way O , O phosphorylation B-ptm can O either O lead O to O channel B-site closing O ( O in O the O case O of O AMTs B-protein_type ) O or O channel B-site opening O in O the O case O of O Mep2 B-protein . O Our O model O also O provides O an O explanation O for O the O observation O that O certain B-mutant mutations I-mutant within O the O CTR B-structure_element completely O abolish O transport O activity O . O An O example O of O an O inactivating O residue O is O the O glycine B-residue_name of O the O ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element . O Mutation B-experimental_method of O this O residue O ( O G393 B-residue_name_number in O EcAmtB B-protein ; O G456 B-residue_name_number in O AtAmt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein ) O inactivates O transporters B-protein_type as O diverse O as O Escherichia B-species coli I-species AmtB B-protein and O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein ( O refs O ). O Such O mutations O likely O cause O structural O changes O in O the O CTR B-structure_element that O prevent O close O contacts O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element , O thereby O stabilizing O a O closed B-protein_state state O that O may O be O similar O to O that O observed O in O Mep2 B-protein . O Regulation O and O modulation O of O membrane O transport O by O phosphorylation B-ptm is O known O to O occur O in O , O for O example O , O aquaporins B-protein_type and O urea B-protein_type transporters I-protein_type , O and O is O likely O to O be O a O common O theme O for O eukaryotic B-taxonomy_domain channels B-protein_type and O transporters B-protein_type . O Recently O , O phosphorylation B-ptm was O also O shown O to O modulate O substrate O affinity O in O nitrate B-protein_type transporters I-protein_type . O With O respect O to O ammonium B-chemical transport O , O phosphorylation B-ptm has O thus O far O only O been O shown O for O A B-species . I-species thaliana I-species AMTs B-protein_type and O for O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O refs O ). O However O , O the O absence B-protein_state of I-protein_state GlnK B-protein_type proteins I-protein_type in O eukaryotes B-taxonomy_domain suggests O that O phosphorylation B-ptm - O based O regulation O of O ammonium B-chemical transport O may O be O widespread O . O With O respect O to O Mep2 B-protein_type - O mediated O signalling O to O induce O pseudohyphal O growth O , O two O models O have O been O put O forward O as O to O how O this O occurs O and O why O it O is O specific O to O Mep2 B-protein_type proteins I-protein_type . O In O one O model O , O signalling O is O proposed O to O depend O on O the O nature O of O the O transported O substrate O , O which O might O be O different O in O certain O subfamilies O of O ammonium B-protein_type transporters I-protein_type ( O for O example O , O Mep1 B-protein / O Mep3 B-protein versus O Mep2 B-protein ). O For O example O , O NH3 B-chemical uniport O or O symport O of O NH3 B-chemical / O H B-chemical + I-chemical might O result O in O changes O in O local O pH O , O but O NH4 B-chemical + I-chemical uniport O might O not O , O and O this O difference O might O determine O signalling O . O In O the O other O model O , O signalling O is O thought O to O require O a O distinct O conformation O of O the O Mep2 B-protein transporter B-protein_type occurring O during O the O transport O cycle O . O While O the O current O study O does O not O specifically O address O the O mechanism O of O signalling O underlying O pseudohyphal O growth O , O our O structures B-evidence do O show O that O Mep2 B-protein_type proteins I-protein_type can O assume O different O conformations O . O It O is O clear O that O ammonium B-chemical transport O across O biomembranes O remains O a O fascinating O and O challenging O field O in O large O part O due O to O the O unique O properties O of O the O substrate O . O Our O Mep2 B-protein structural O work O now O provides O a O foundation O for O future O studies O to O uncover O the O details O of O the O structural O changes O that O occur O during O eukaryotic B-taxonomy_domain ammonium B-chemical transport O and O signaling O , O and O to O assess O the O possibility O to O utilize O small O molecules O to O shut O down O ammonium B-chemical sensing O and O downstream O signalling O pathways O in O pathogenic O fungi B-taxonomy_domain . O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O Mep2 B-protein transceptors B-protein_type . O ( O a O ) O Monomer B-oligomeric_state cartoon O models O viewed O from O the O side O for O ( O left O ) O A O . O fulgidus O Amt B-protein - I-protein 1 I-protein ( O PDB O ID O 2B2H O ), O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O middle O ) O and O C B-species . I-species albicans I-species Mep2 B-protein ( O right O ). O The O region O showing O ICL1 B-structure_element ( O blue O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O is O boxed O for O comparison O . O ( O b O ) O CaMep2 B-protein trimer B-oligomeric_state viewed O from O the O intracellular O side O ( O right O ). O One O monomer B-oligomeric_state is O coloured O as O in O a O and O one O monomer B-oligomeric_state is O coloured O by O B O - O factor O ( O blue O , O low O ; O red O ; O high O ). O The O CTR B-structure_element is O boxed O . O ( O c O ) O Overlay B-experimental_method of O ScMep2 B-protein ( O grey O ) O and O CaMep2 B-protein ( O rainbow O ), O illustrating O the O differences O in O the O CTRs B-structure_element . O Sequence B-evidence conservation I-evidence in O ammonium B-protein_type transporters I-protein_type . O ClustalW B-experimental_method alignment I-experimental_method of O CaMep2 B-protein , O ScMep2 B-protein , O A B-species . I-species fulgidus I-species Amt B-protein - I-protein 1 I-protein , O E O . O coli O AmtB B-protein and O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein . O The O secondary O structure O elements O observed O for O CaMep2 B-protein are O indicated O , O with O the O numbers O corresponding O to O the O centre O of O the O TM B-structure_element segment I-structure_element . O The O conserved B-protein_state RxK B-structure_element motif I-structure_element in O ICL1 B-structure_element is O boxed O in O blue O , O the O ER B-structure_element motif I-structure_element in O ICL2 B-structure_element in O cyan O , O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element in O red O and O the O AI B-structure_element region I-structure_element in O yellow O . O Coloured O residues O are O functionally O important O and O correspond O to O those O of O the O Phe B-site gate I-site ( O blue O ), O the O binding B-site site I-site Trp B-residue_name residue O ( O magenta O ) O and O the O twin O - O His O motif O ( O red O ). O The O Npr1 B-site kinase I-site site I-site in O the O AI B-structure_element region I-structure_element is O highlighted O pink O . O The O grey O sequences O at O the O C O termini O of O CaMep2 B-protein and O ScMep2 B-protein are O not O visible O in O the O structures B-evidence and O are O likely B-protein_state disordered I-protein_state . O Growth B-experimental_method of O ScMep2 B-mutant variants I-mutant on O low O ammonium O medium O . O ( O a O ) O The O triple B-mutant mepΔ I-mutant strain O ( O black O ) O and O triple O mepΔ O npr1Δ O strain O ( O grey O ) O containing O plasmids O expressing O WT B-protein_state and O variant B-mutant ScMep2 I-mutant were O grown B-experimental_method on I-experimental_method minimal I-experimental_method medium I-experimental_method containing O 1 O mM O ammonium B-chemical sulphate I-chemical . O The O quantified O cell B-evidence density I-evidence reflects O logarithmic O growth O after O 24 O h O . O Error O bars O are O the O s O . O d O . O for O three O replicates O of O each O strain O ( O b O ) O The O strains O used O in O a O were O also O serially O diluted O and O spotted O onto O minimal O agar O plates O containing O glutamate B-chemical ( O 0 O . O 1 O %) O or O ammonium B-chemical sulphate I-chemical ( O 1 O mM O ), O and O grown O for O 3 O days O at O 30 O ° O C O . O Structural O differences O between O Mep2 B-protein and O bacterial B-taxonomy_domain ammonium O transporters O . O ( O a O ) O ICL1 B-structure_element in O AfAmt B-protein - I-protein 1 I-protein ( O light O blue O ) O and O CaMep2 B-protein ( O dark O blue O ), O showing O unwinding O and O inward O movement O in O the O fungal B-taxonomy_domain protein O . O ( O b O ) O Stereo O diagram O viewed O from O the O cytosol O of O ICL1 B-structure_element , O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O in O AfAmt B-protein - I-protein 1 I-protein ( O light O colours O ) O and O CaMep2 B-protein ( O dark O colours O ). O The O side O chains O of O residues O in O the O RxK B-structure_element motif I-structure_element as O well O as O those O of O Tyr49 B-residue_name_number and O His342 B-residue_name_number are O labelled O . O The O numbering O is O for O CaMep2 B-protein . O ( O c O ) O Conserved B-protein_state residues O in O ICL1 B-structure_element - I-structure_element 3 I-structure_element and O the O CTR B-structure_element . O Views O from O the O cytosol O for O CaMep2 B-protein ( O left O ) O and O AfAmt B-protein - I-protein 1 I-protein , O highlighting O the O large O differences O in O conformation O of O the O conserved B-protein_state residues O in O ICL1 B-structure_element ( O RxK O motif O ; O blue O ), O ICL2 B-structure_element ( O ER B-structure_element motif I-structure_element ; O cyan O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ). O The O labelled O residues O are O analogous O within O both O structures B-evidence . O In O b O and O c O , O the O centre O of O the O trimer B-oligomeric_state is O at O top O . O Channel O closures O in O Mep2 B-protein . O ( O a O ) O Stereo O superposition B-experimental_method of O AfAmt B-protein - I-protein 1 I-protein and O CaMep2 B-protein showing O the O residues O of O the O Phe B-site gate I-site , O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element and O the O tyrosine B-residue_name residue O Y49 B-residue_name_number in O TM1 B-structure_element that O forms O a O hydrogen O bond O with O His2 B-residue_name_number in O CaMep2 B-protein . O ( O b O ) O Surface O views O from O the O side O in O rainbow O colouring O , O showing O the O two O - O tier O channel B-structure_element block I-structure_element ( O indicated O by O the O arrows O ) O in O CaMep2 B-protein . O The O Npr1 B-protein kinase B-protein_type target O Ser453 B-residue_name_number is O dephosphorylated B-protein_state and O located O in O an O electronegative B-site pocket I-site . O ( O a O ) O Stereoviews O of O CaMep2 B-protein showing O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O CTR B-structure_element residues O Asp419 B-residue_range - I-residue_range Met422 I-residue_range and O for O Tyr446 B-residue_range - I-residue_range Thr455 I-residue_range of O the O AI B-structure_element region I-structure_element . O The O phosphorylation B-ptm target O residue O Ser453 B-residue_name_number is O labelled O in O bold O . O ( O b O ) O Overlay B-experimental_method of O the O CTRs B-structure_element of O ScMep2 B-protein ( O grey O ) O and O CaMep2 B-protein ( O green O ), O showing O the O similar O electronegative O environment O surrounding O the O phosphorylation B-site site I-site ( O P O ). O The O AI B-structure_element regions I-structure_element are O coloured O magenta O . O ( O c O ) O Cytoplasmic O view O of O the O Mep2 B-protein trimer B-oligomeric_state indicating O the O large O distance O between O Ser453 B-residue_name_number and O the O channel B-site exits I-site ( O circles O ; O Ile52 B-residue_name_number lining O the O channel B-site exit I-site is O shown O ). O Effect O of O removal B-experimental_method of O the O AI B-structure_element region I-structure_element on O Mep2 B-protein structure B-evidence . O ( O a O ) O Side O views O for O WT B-protein_state CaMep2 B-protein ( O left O ) O and O the O truncation B-protein_state mutant I-protein_state 442Δ B-mutant ( O right O ). O The O latter O is O shown O as O a O putty O model O according O to O B O - O factors O to O illustrate O the O disorder B-protein_state in O the O protein O on O the O cytoplasmic O side O . O Missing O regions O are O labelled O . O ( O b O ) O Stereo O superpositions B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O truncation B-protein_state mutant I-protein_state . O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O residues O Tyr49 B-residue_name_number and O His342 B-residue_name_number is O shown O for O the O truncation B-protein_state mutant I-protein_state . O Phosphorylation B-ptm causes O conformational O changes O in O the O CTR B-structure_element . O ( O a O ) O Cytoplasmic O view O of O the O DD B-mutant mutant I-mutant trimer B-oligomeric_state , O with O WT B-protein_state CaMep2 B-protein superposed B-experimental_method in O grey O for O one O of O the O monomers B-oligomeric_state . O The O arrow O indicates O the O phosphorylation B-site site I-site . O The O AI B-structure_element region I-structure_element is O coloured O magenta O . O ( O b O ) O Monomer B-oligomeric_state side O - O view O superposition B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O DD B-mutant mutant I-mutant , O showing O the O conformational O change O and O disorder O around O the O ExxGxD B-structure_element motif I-structure_element . O Side O chains O for O residues O 452 B-residue_number and O 453 B-residue_number are O shown O as O stick O models O . O Schematic O model O for O phosphorylation O - O based O regulation O of O Mep2 B-protein ammonium O transporters O . O ( O a O ) O In O the O closed B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O i O ), O the O CTR B-structure_element ( O magenta O ) O and O ICL3 B-structure_element ( O green O ) O are O far O apart O with O the O latter O blocking O the O intracellular O channel B-site exit I-site ( O indicated O with O a O hatched O circle O ). O Upon O phosphorylation B-ptm and O mimicked B-protein_state by O the O CaMep2 B-protein S453D B-mutant and O DD B-mutant mutants I-mutant ( O ii O ), O the O region O around O the O ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O results O in O the O CTR B-structure_element interacting O with O the O inward O - O moving O ICL3 B-structure_element , O opening O the O channel B-site ( O full O circle O ) O ( O iii O ). O The O open B-protein_state - O channel B-site Mep2 B-protein structure B-evidence is O represented O by O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein and O shown O in O lighter O colours O consistent O with O Fig O . O 4 O . O As O discussed O in O the O text O , O similar O structural O arrangements O may O occur O in O plant B-taxonomy_domain AMTs B-protein_type . O In O this O case O however O , O the O open B-protein_state channel B-site corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ; O phosphorylation B-ptm breaks O the O CTR O – O ICL3 O interactions O leading O to O channel B-site closure O . O ( O b O ) O Model O based O on O AMT O transporter O analogy O showing O how O phosphorylation B-ptm of O a O Mep2 B-protein monomer B-oligomeric_state might O allosterically O open B-protein_state channels B-site in O the O entire O trimer B-oligomeric_state via O disruption O of O the O interactions O between O the O CTR B-structure_element and O ICL3 B-structure_element of O a O neighbouring O monomer B-oligomeric_state ( O arrow O ). O Visualizing O chaperone B-protein_type - O assisted O protein O folding O Challenges O in O determining O the O structures B-evidence of O heterogeneous O and O dynamic O protein O complexes O have O greatly O hampered O past O efforts O to O obtain O a O mechanistic O understanding O of O many O important O biological O processes O . O One O such O process O is O chaperone B-protein_type - O assisted O protein O folding O , O where O obtaining O structural O ensembles O of O chaperone B-protein_type : O substrate O complexes O would O ultimately O reveal O how O chaperones B-protein_type help O proteins O fold O into O their O native O state O . O To O address O this O problem O , O we O devised O a O novel O structural O biology O approach O based O on O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O termed O Residual B-experimental_method Electron I-experimental_method and I-experimental_method Anomalous I-experimental_method Density I-experimental_method ( O READ B-experimental_method ). O READ B-experimental_method enabled O us O to O visualize O even O sparsely O populated O conformations O of O the O substrate O protein O immunity B-protein protein I-protein 7 I-protein ( O Im7 B-protein ) O in B-protein_state complex I-protein_state with I-protein_state the O E B-species . I-species coli I-species chaperone B-protein_type Spy B-protein . O This O study O resulted O in O a O series O of O snapshots O depicting O the O various O folding O states O of O Im7 B-protein while O bound B-protein_state to I-protein_state Spy B-protein . O The O ensemble O shows O that O Spy B-protein_state - I-protein_state associated I-protein_state Im7 B-protein samples O conformations O ranging O from O unfolded B-protein_state to O partially O folded B-protein_state and O native B-protein_state - O like O states O , O and O reveals O how O a O substrate O can O explore O its O folding O landscape O while O bound B-protein_state to I-protein_state a O chaperone B-protein_type . O High O - O resolution O structural B-evidence models I-evidence of O protein O - O protein O interactions O are O critical O for O obtaining O mechanistic O insights O into O biological O processes O . O However O , O many O protein O - O protein O interactions O are O highly B-protein_state dynamic I-protein_state , O making O it O difficult O to O obtain O high O - O resolution O data O . O Particularly O challenging O are O interactions O of O intrinsically B-protein_state or I-protein_state conditionally I-protein_state disordered I-protein_state sections O of O proteins O with O their O partner O proteins O . O Recent O advances O in O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O NMR B-experimental_method spectroscopy I-experimental_method continue O to O improve O our O ability O to O analyze O biomolecules O that O exist O in O multiple O conformations O . O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method has O historically O provided O valuable O information O on O small O - O scale O conformational O changes O , O but O observing O large O - O amplitude O heterogeneous O conformational O changes O often O falls O beyond O the O reach O of O current O crystallographic O techniques O . O NMR B-experimental_method can O theoretically O be O used O to O determine O heterogeneous O ensembles O , O but O in O practice O , O this O proves O to O be O very O challenging O . O It O is O clear O that O molecular O chaperones B-protein_type aid O in O protein O folding O . O Structural O characterization O of O chaperone B-protein_type - O assisted O protein O folding O likely O would O help O bring O clarity O to O this O question O . O Structural B-evidence models I-evidence of O chaperone B-protein_type - O substrate O complexes O have O recently O begun O to O provide O information O as O to O how O a O chaperone B-protein_type can O recognize O its O substrate O . O However O , O the O impact O that O chaperones B-protein_type have O on O their O substrates O , O and O how O these O interactions O affect O the O folding O process O remain O largely O unknown O . O For O most O chaperones B-protein_type , O it O is O still O unclear O whether O the O chaperone B-protein_type actively O participates O in O and O affects O the O folding O of O the O substrate O proteins O , O or O merely O provides O a O suitable O microenvironment O enabling O the O substrate O to O fold O on O its O own O . O This O is O a O truly O fundamental O question O in O the O chaperone B-protein_type field O , O and O one O that O has O eluded O the O community O largely O because O of O the O highly B-protein_state dynamic I-protein_state nature O of O the O chaperone B-protein_type - O substrate O complexes O . O To O address O this O question O , O we O investigated O the O ATP B-protein_state - I-protein_state independent I-protein_state Escherichia B-species coli I-species periplasmic O chaperone B-protein_type Spy B-protein . O Spy B-protein prevents O protein O aggregation O and O aids O in O protein O folding O under O various O stress O conditions O , O including O treatment O with O tannin B-chemical and O butanol B-chemical . O We O originally O discovered O Spy B-protein by O its O ability O to O stabilize O the O protein O - O folding O model O Im7 B-protein in O vivo O and O recently O demonstrated O that O Im7 B-protein folds O while O associated O with O Spy B-protein . O The O crystal B-evidence structure I-evidence of O Spy B-protein revealed O that O it O forms O a O thin O α O - O helical O homodimeric B-oligomeric_state cradle B-site . O Crosslinking B-experimental_method and I-experimental_method genetic I-experimental_method experiments I-experimental_method suggested O that O Spy B-protein interacts O with O substrates O somewhere O on O its O concave O side O . O By O using O a O novel O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method - O based O approach O to O model O disorder O in O crystal B-evidence structures I-evidence , O we O have O now O determined O the O high O - O resolution O ensemble B-evidence of O the O dynamic B-protein_state Spy B-complex_assembly : I-complex_assembly Im7 I-complex_assembly complex O . O This O work O provides O a O detailed O view O of O chaperone B-protein_type - O mediated O protein O folding O and O shows O how O substrates O like O Im7 B-protein find O their O native O fold O while O bound B-protein_state to I-protein_state their O chaperones B-protein_type . O Crystallizing B-experimental_method the O Spy B-complex_assembly : I-complex_assembly Im7 I-complex_assembly complex O We O reasoned O that O to O obtain O crystals B-evidence of O complexes O between O Spy B-protein ( O domain O boundaries O in O Supplementary O Fig O . O 1 O ) O and O its O substrate O proteins O , O our O best O approach O was O to O identify O crystallization B-experimental_method conditions I-experimental_method that O yielded O Spy B-protein crystals B-evidence in O the O presence B-protein_state of I-protein_state protein O substrates O but O not O in O their O absence B-protein_state . O We O therefore O screened B-experimental_method crystallization B-experimental_method conditions I-experimental_method for O Spy B-protein with O four O different O substrate O proteins O : O a O fragment O of O the O largely O unfolded B-protein_state bovine B-taxonomy_domain α B-chemical - I-chemical casein I-chemical protein O , O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O E B-species . I-species coli I-species Im7 B-protein , O an O unfolded B-protein_state variant O of O Im7 B-protein ( O L18A B-mutant L19A B-mutant L37A B-mutant ), O and O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O Im7 B-protein ( O Im76 B-mutant - I-mutant 45 I-mutant ), O which O encompasses O the O entire O Spy B-structure_element - I-structure_element binding I-structure_element portion I-structure_element of O Im7 B-protein . O We O found O conditions O in O which O all O four O substrates O co B-experimental_method - I-experimental_method crystallized I-experimental_method with B-protein_state Spy B-protein , O but O in O which O Spy B-protein alone B-protein_state did O not O yield O crystals B-evidence . O Subsequent O crystal B-experimental_method washing I-experimental_method and I-experimental_method dissolution I-experimental_method experiments O confirmed O the O presence O of O the O substrates O in O the O co B-experimental_method - I-experimental_method crystals I-experimental_method ( O Supplementary O Fig O . O 2 O ). O The O crystals B-evidence diffracted O to O ~ O 1 O . O 8 O Å O resolution O . O We O used O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly selenomethionine B-chemical crystals B-evidence for O phasing O with O single B-experimental_method - I-experimental_method wavelength I-experimental_method anomalous I-experimental_method diffraction I-experimental_method ( O SAD B-experimental_method ) O experiments O , O and O used O this O solution O to O build O the O well O - O ordered O Spy B-protein portions O of O all O four O complexes O . O However O , O modeling O of O the O substrate O in O the O complex O proved O to O be O a O substantial O challenge O , O as O the O electron B-evidence density I-evidence of O the O substrate O was O discontinuous O and O fragmented O . O Even O the O minimal B-structure_element binding I-structure_element portion I-structure_element of O Im7 B-protein ( O Im76 B-mutant - I-mutant 45 I-mutant ) O showed O highly O dispersed O electron B-evidence density I-evidence ( O Fig O . O 1a O ). O We O hypothesized O that O the O fragmented O density B-evidence was O due O to O multiple O , O partially O occupied O conformations O of O the O substrate O bound O within O the O crystal B-evidence . O Such O residual O density O is O typically O not O considered O usable O by O traditional O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method methods O . O Thus O , O we O developed O a O new O approach O to O interpret O the O chaperone B-protein_state - I-protein_state bound I-protein_state substrate O in O multiple O conformations O . O READ B-experimental_method : O a O strategy O to O visualize O heterogeneous O and O dynamic O biomolecules O To O determine O the O structure B-evidence of O the O substrate O portion O of O these O Spy B-protein : O substrate O complexes O , O we O conceived O of O an O approach O that O we O term O READ B-experimental_method , O for O Residual B-experimental_method Electron I-experimental_method and I-experimental_method Anomalous I-experimental_method Density I-experimental_method . O We O split O this O approach O into O five O steps O : O ( O 1 O ) O By O using O a O well O - O diffracting O Spy B-protein : O substrate O co B-evidence - I-evidence crystal I-evidence , O we O first O determined O the O structure B-evidence of O the O folded B-protein_state domain B-structure_element of O Spy B-protein and O obtained O high O quality O residual B-evidence electron I-evidence density I-evidence within O the O dynamic B-protein_state regions O of O the O substrate O . O ( O 2 O ) O We O then O labeled O individual O residues O in O the O flexible B-protein_state regions O of O the O substrate O with O the O strong O anomalous O scatterer O iodine B-chemical , O which O serves O to O locate O these O residues O in O three O - O dimensional O space O using O their O anomalous B-evidence density I-evidence . O ( O 3 O ) O We O performed O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O simulations B-experimental_method to O generate O a O pool O of O energetically O reasonable O conformations O of O the O dynamic B-protein_state complex O and O ( O 4 O ) O applied O a O sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method algorithm I-experimental_method to O determine O the O minimal O set O of O substrate O conformations O that O fit O both O the O residual B-evidence and I-evidence anomalous I-evidence density I-evidence . O Importantly O , O even O though O we O only O labeled O a O subset O of O the O residues O in O the O flexible B-protein_state regions O of O the O substrate O with O iodine B-chemical , O the O residual B-evidence electron I-evidence density I-evidence can O provide O spatial O information O on O many O of O the O other O flexible B-protein_state residues O . O The O electron B-evidence density I-evidence then O allowed O us O to O connect O the O labeled O residues O of O the O substrate O by O confining O the O protein O chain O within O regions O of O detectable O density B-evidence . O In O this O way O , O the O two O forms O of O data O together O were O able O to O describe O multiple O conformations O of O the O substrate O within O the O crystal B-evidence . O As O described O in O detail O below O , O we O developed O the O READ B-experimental_method method O to O uncover O the O ensemble O of O conformations O that O the O Spy B-structure_element - I-structure_element binding I-structure_element domain I-structure_element of O Im7 B-protein ( O i O . O e O ., O Im76 B-mutant - I-mutant 45 I-mutant ) O adopts O while O bound B-protein_state to I-protein_state Spy B-protein . O However O , O we O believe O that O READ B-experimental_method will O prove O generally O applicable O to O visualizing O heterogeneous O and O dynamic O complexes O that O have O previously O escaped O detailed O structural O analysis O . O Collecting O READ B-experimental_method data O for O the O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complex O To O apply O the O READ B-experimental_method technique I-experimental_method to O the O folding O mechanism O employed O by O the O chaperone B-protein_type Spy B-protein , O we O selected O Im76 B-mutant - I-mutant 45 I-mutant for O further O investigation O because O NMR B-experimental_method data O suggested O that O Im76 B-mutant - I-mutant 45 I-mutant could O recapitulate O unfolded B-protein_state , O partially O folded B-protein_state , O and O native O - O like O states O of O Im7 B-protein ( O Supplementary O Fig O . O 3 O ). O Moreover O , O binding B-experimental_method experiments I-experimental_method indicated O that O Im76 B-mutant - I-mutant 45 I-mutant comprises O the O entire O Spy B-site - I-site binding I-site region I-site . O To O introduce O the O anomalous O scatterer O iodine B-chemical , O we O replaced B-experimental_method eight O Im76 B-mutant - I-mutant 45 I-mutant residues O with O the O non O - O canonical O amino O acid O 4 B-chemical - I-chemical iodophenylalanine I-chemical ( O pI B-chemical - I-chemical Phe I-chemical ). O Its O strong O anomalous B-evidence scattering I-evidence allowed O us O to O track O the O positions O of O these O individual O Im76 B-mutant - I-mutant 45 I-mutant residues O one O at O a O time O , O potentially O even O if O the O residue O was O found O in O several O locations O in O the O same O crystal B-evidence . O We O then O co B-experimental_method - I-experimental_method crystallized I-experimental_method Spy B-protein and O the O eight O Im76 B-mutant - I-mutant 45 I-mutant peptides O , O each O of O which O harbored O an O individual O pI B-chemical - I-chemical Phe I-chemical substitution B-experimental_method at O one O distinct O position O , O and O collected B-experimental_method anomalous B-evidence data I-evidence for O all O eight O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O ( O Fig O . O 1B O , O Supplementary O Table O 1 O Supplementary O Dataset O 1 O , O and O Supplementary O Table O 2 O ). O Consistent O with O our O electron B-evidence density I-evidence map I-evidence , O we O found O that O the O majority O of O anomalous B-evidence signals I-evidence emerged O in O the O cradle B-site of O Spy B-protein , O implying O that O this O is O the O likely O Im7 B-protein substrate B-site binding I-site site I-site . O Consistent O with O the O fragmented O density B-evidence , O however O , O we O observed O multiple O iodine B-chemical positions O for O seven O of O the O eight O substituted O residues O . O Together O , O these O results O indicated O that O the O Im7 B-protein substrate O binds O Spy B-protein in O multiple O conformations O . O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method procedure O To O determine O the O structural O ensemble O that O Im76 B-mutant - I-mutant 45 I-mutant adopts O while O bound B-protein_state to I-protein_state Spy B-protein , O we O combined O the O residual B-evidence electron I-evidence density I-evidence and O the O anomalous B-evidence signals I-evidence from O our O pI B-chemical - I-chemical Phe I-chemical substituted O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O . O To O generate O an O accurate O depiction O of O the O chaperone B-protein_type - O substrate O interactions O , O we O devised O a O selection O protocol O based O on O a O sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method procedure O employed O in O NMR B-experimental_method spectroscopy I-experimental_method . O During O each O round O of O the O selection O , O a O genetic B-experimental_method algorithm I-experimental_method alters O the O ensemble O and O its O agreement O to O the O experimental O data O is O re O - O evaluated O . O If O successful O , O the O selection O identifies O the O smallest O group O of O specific O conformations O that O best O fits O the O residual B-evidence electron I-evidence density I-evidence and O anomalous B-evidence signals I-evidence . O The O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method algorithm I-experimental_method is O diagrammed O in O Fig O . O 2 O . O Prior O to O performing O the O selection O , O we O generated O a O large O and O diverse O pool O of O chaperone B-protein_type - O substrate O complexes O using O coarse B-experimental_method - I-experimental_method grained I-experimental_method MD I-experimental_method simulations I-experimental_method in O a O pseudo B-experimental_method - I-experimental_method crystal I-experimental_method environment I-experimental_method ( O Fig O . O 2 O and O Supplementary O Fig O . O 4 O ). O The O coarse B-experimental_method - I-experimental_method grained I-experimental_method simulations I-experimental_method are O based O on O a O single O - O residue O resolution O model O for O protein O folding O and O were O extended O here O to O describe O Spy B-complex_assembly - I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly binding O events O ( O Online O Methods O ). O The O initial O conditions O of O the O binding B-experimental_method simulations I-experimental_method are O not O biased O toward O a O particular O conformation O of O the O substrate O or O any O specific O chaperone B-protein_type - O substrate O interaction O ( O Online O Methods O ). O Im76 B-mutant - I-mutant 45 I-mutant binds O and O unbinds O to O Spy B-protein throughout O the O simulations B-experimental_method . O This O strategy O allows O a O wide O range O of O substrate O conformations O to O interact O with O the O chaperone B-protein_type . O From O the O MD B-experimental_method simulations B-experimental_method , O we O extracted O ~ O 10 O , O 000 O diverse O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complexes O to O be O used O by O the O ensuing O selection O . O Each O complex O within O this O pool O comprises O one O Spy B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state a O single O Im76 B-mutant - I-mutant 45 I-mutant substrate O . O This O pool O was O then O used O by O the O selection O algorithm O to O identify O the O minimal O ensemble O that O best O satisfies O both O the O residual B-evidence electron I-evidence and I-evidence anomalous I-evidence crystallographic I-evidence data I-evidence . O The O anomalous B-evidence scattering I-evidence portion O of O the O selection O uses O our O basic O knowledge O of O pI B-chemical - I-chemical Phe I-chemical geometry O : O the O iodine B-chemical is O separated O from O its O respective O Cα O atom O in O each O coarse O - O grained O conformer O by O 6 O . O 5 O Å O . O The O selection O then O picks O ensembles O that O best O reproduce O the O collection O of O iodine B-chemical anomalous B-evidence signals I-evidence . O Simultaneously O , O it O uses O the O residual B-evidence electron I-evidence density I-evidence to O help O choose O ensembles O . O To O make O the O electron B-experimental_method density I-experimental_method selection I-experimental_method practical O , O we O needed O to O develop O a O method O to O rapidly O evaluate O the O agreement O between O the O selected O sub O - O ensembles O and O the O experimental O electron B-evidence density I-evidence on O - O the O - O fly O during O the O selection O procedure O . O To O accomplish O this O task O , O we O generated O a O compressed O version O of O the O experimental O 2mFo B-evidence − I-evidence DFc I-evidence electron I-evidence density I-evidence map I-evidence for O use O in O the O selection O . O This O process O provided O us O with O a O target O map B-evidence that O the O ensuing O selection O tried O to O recapitulate O . O To O reduce O the O extent O of O 3D O space O to O be O explored O , O this O compressed O map B-evidence was O created O by O only O using O density B-evidence from O regions O of O space O significantly O sampled O by O Im76 B-mutant - I-mutant 45 I-mutant in O the O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly MD B-experimental_method simulations B-experimental_method . O For O each O of O the O ~ O 10 O , O 000 O complexes O in O the O coarse B-experimental_method - I-experimental_method grained I-experimental_method MD B-experimental_method pool O , O the O electron B-evidence density I-evidence at O the O Cα O positions O of O Im76 B-mutant - I-mutant 45 I-mutant was O extracted O and O used O to O construct O an O electron B-evidence density I-evidence map I-evidence ( O Online O Methods O ). O These O individual O electron B-evidence density I-evidence maps I-evidence from O the O separate O conformers O could O then O be O combined O ( O Fig O . O 2 O ) O and O compared O to O the O averaged O experimental O electron B-evidence density I-evidence map I-evidence as O part O of O the O selection O algorithm O . O This O approach O allowed O us O to O simultaneously O use O both O the O iodine B-chemical anomalous B-evidence signals I-evidence and O the O residual B-evidence electron I-evidence density I-evidence in O the O selection O procedure O . O The O selection O resulted O in O small O ensembles O from O the O MD B-experimental_method pool O that O best O fit O the O READ B-experimental_method data O ( O Fig O . O 1c O , O d O ). O Before O analyzing O the O details O of O the O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complex O , O we O first O engaged O in O a O series O of O validation O tests O to O verify O the O ensemble O and O selection O procedure O ( O Supplementary O Note O 1 O , O Figures O 1c O , O d O , O Supplemental O Figures O 5 O - O 7 O ). O Of O note O , O the O final O six O - O membered O ensemble O was O the O largest O ensemble O that O could O simultaneously O decrease O the O RFree B-evidence and O pass O the O 10 B-experimental_method - I-experimental_method fold I-experimental_method cross I-experimental_method - I-experimental_method validation I-experimental_method test I-experimental_method . O This O ensemble O depicts O the O conformations O that O the O substrate O Im76 B-mutant - I-mutant 45 I-mutant adopts O while O bound B-protein_state to I-protein_state the O chaperone B-protein_type Spy B-protein ( O Fig O . O 3 O Supplementary O Movie O 1 O , O and O Table O 1 O ). O Folding O and O interactions O of O Im7 B-protein while O bound B-protein_state to I-protein_state Spy B-protein Our O results O showed O that O by O using O this O novel O READ B-experimental_method approach O , O we O were O able O to O obtain O structural O information O about O the O dynamic O interaction O of O a O chaperone B-protein_type with O its O substrate O protein O . O We O were O particularly O interested O in O finding O answers O to O one O of O the O most O fundamental O questions O in O chaperone B-protein_type biology O — O how O does O chaperone B-protein_type binding O affect O substrate O structure O and O vice O versa O . O By O analyzing O the O individual O structures B-evidence of O the O six O - O member O ensemble O of O Im76 B-mutant - I-mutant 45 I-mutant bound B-protein_state to I-protein_state Spy B-protein , O we O observed O that O Im76 B-mutant - I-mutant 45 I-mutant takes O on O several O different O conformations O while O bound B-protein_state . O We O found O these O conformations O to O be O highly O heterogeneous O and O to O include O unfolded B-protein_state , O partially B-protein_state folded I-protein_state , O and O native B-protein_state - I-protein_state like I-protein_state states O ( O Fig O . O 3 O ). O The O ensemble O primarily O encompasses O Im76 B-mutant - I-mutant 45 I-mutant laying O diagonally O within O the O Spy B-protein cradle B-site in O several O different O orientations O , O but O some O conformations O traverse O as O far O as O the O tips O or O even O extend O over O the O side O of O the O cradle B-site ( O Figs O . O 3 O , O 4a O ). O We O constructed O a O contact B-evidence map I-evidence of O the O complex O , O which O shows O the O frequency O of O interactions O for O chaperone B-protein_type - O substrate O residue O pairs O ( O Fig O . O 4 O ). O We O found O that O the O primary O interaction B-site sites I-site on O Spy B-protein reside O at O the O N O and O C O termini O ( O Arg122 B-residue_name_number , O Thr124 B-residue_name_number , O and O Phe29 B-residue_name_number ) O as O well O as O on O the O concave O face O of O the O chaperone B-protein_type ( O Arg61 B-residue_name_number , O Arg43 B-residue_name_number , O Lys47 B-residue_name_number , O His96 B-residue_name_number , O and O Met46 B-residue_name_number ). O The O Spy B-site - I-site contacting I-site residues I-site comprise O a O mixture O of O charged O , O polar O , O and O hydrophobic O residues O . O Surprisingly O , O we O noted O that O in O the O ensemble O , O Im76 B-mutant - I-mutant 45 I-mutant interacts O with O only O 38 O % O of O the O hydrophobic O residues O in O the O Spy B-protein cradle B-site , O but O interacts O with O 61 O % O of O the O hydrophilic O residues O in O the O cradle B-site . O This O mixture O suggests O the O importance O of O both O electrostatic O and O hydrophobic O components O in O binding O the O Im76 B-mutant - I-mutant 45 I-mutant ensemble O . O With O respect O to O the O substrate O , O we O observed O that O nearly O every O residue O in O Im76 B-mutant - I-mutant 45 I-mutant is O in O contact O with O Spy B-protein ( O Fig O . O 4a O ). O However O , O we O did O notice O that O despite O this O uniformity O , O regions O of O Im76 B-mutant - I-mutant 45 I-mutant preferentially O interact O with O different O regions O in O Spy B-protein ( O Fig O . O 4b O ). O For O example O , O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O Im76 B-mutant - I-mutant 45 I-mutant binds O more O consistently O in O the O Spy B-protein cradle B-site , O whereas O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element predominantly O binds O to O the O outer O edges O of O Spy B-protein ’ O s O concave B-site surface I-site . O Not O unexpectedly O , O we O found O that O as O Im76 B-mutant - I-mutant 45 I-mutant progresses O from O the O unfolded B-protein_state to O the O native B-protein_state state O , O its O interactions O with O Spy B-protein shift O accordingly O . O Whereas O the O least B-protein_state - I-protein_state folded I-protein_state Im76 B-mutant - I-mutant 45 I-mutant pose O in O the O ensemble O forms O the O most O hydrophobic O contacts O with O Spy B-protein ( O Fig O . O 3 O ), O the O two O most B-protein_state - I-protein_state folded I-protein_state conformations O form O the O fewest O hydrophobic O contacts O ( O Fig O . O 3 O ). O This O shift O in O contacts O is O likely O due O to O hydrophobic O residues O of O Im76 B-mutant - I-mutant 45 I-mutant preferentially O forming O intra O - O molecular O contacts O upon O folding O ( O i O . O e O ., O hydrophobic O collapse O ), O effectively O removing O themselves O from O the O interaction B-site sites I-site . O The O diversity O of O conformations O and O binding B-site sites I-site observed O here O emphasizes O the O dynamic O and O heterogeneous O nature O of O the O chaperone B-protein_type - O substrate O ensemble O . O Although O we O do O not O yet O have O time O resolution O data O of O these O various O snapshots O of O Im76 B-mutant - I-mutant 45 I-mutant , O this O ensemble O illustrates O how O a O substrate O samples O its O folding O landscape O while O bound B-protein_state to I-protein_state a O chaperone B-protein_type . O Spy B-protein changes O conformation O upon O substrate O binding O Comparing O the O structure B-evidence of O Spy B-protein in O its O substrate B-protein_state - I-protein_state bound I-protein_state and O apo B-protein_state states O revealed O that O the O Spy B-protein dimer B-oligomeric_state also O undergoes O significant O conformational O changes O upon O substrate O binding O ( O Fig O . O 5a O and O Supplementary O Movie O 2 O ). O Upon O substrate O binding O , O the O Spy B-protein dimer B-oligomeric_state twists O 9 O ° O about O its O center O relative O to O its O apo B-protein_state form O . O This O twist O yields O asymmetry O and O results O in O substantially O different O interaction O patterns O in O the O two O Spy B-protein monomers B-oligomeric_state ( O Fig O . O 4b O ). O It O is O possible O that O this O twist O serves O to O increase O heterogeneity O in O Spy B-protein by O providing O more O binding O poses O . O Additionally O , O we O observed O that O the O linker B-structure_element region I-structure_element ( O residues O 47 B-residue_range – I-residue_range 57 I-residue_range ) O of O Spy B-protein , O which O participates O in O substrate O interaction O , O becomes O mostly O disordered B-protein_state upon O binding O the O substrate O . O This O increased O disorder O might O explain O how O Spy B-protein is O able O to O recognize O and O bind O different O substrates O and O / O or O differing O conformations O of O the O same O substrate O . O Importantly O , O we O observed O the O same O structural O changes O in O Spy B-protein regardless O of O which O of O the O four O substrates O was O bound O ( O Fig O . O 5b O , O Table O 1 O ). O The O RMSD B-evidence between O the O well B-protein_state - I-protein_state folded I-protein_state sections O of O Spy B-protein in O the O four O chaperone B-protein_type - O substrate O complexes O was O very O small O , O less O than O 0 O . O 3 O Å O . O Combined O with O competition B-experimental_method experiments I-experimental_method showing O that O the O substrates O compete O in O solution O for O Spy B-protein binding O ( O Fig O . O 5c O and O Supplementary O Fig O . O 8 O ), O we O conclude O that O all O the O tested O substrates O share O the O same O overall O Spy B-site binding I-site site I-site . O To O shed O light O on O how O chaperones B-protein_type interact O with O their O substrates O , O we O developed O a O novel O structural O biology O method O ( O READ B-experimental_method ) O and O applied O it O to O determine O a O conformational B-evidence ensemble I-evidence of O the O chaperone B-protein_type Spy B-protein bound B-protein_state to I-protein_state substrate I-protein_state . O As O a O substrate O , O we O used O Im76 B-mutant - I-mutant 45 I-mutant , O the O chaperone B-structure_element - I-structure_element interacting I-structure_element portion I-structure_element of O the O protein O - O folding O model O protein O Im7 B-protein . O In O the O chaperone B-protein_state - I-protein_state bound I-protein_state ensemble O , O Im76 B-mutant - I-mutant 45 I-mutant samples O unfolded B-protein_state , O partially O folded B-protein_state , O and O native B-protein_state - O like O states O . O The O ensemble O provides O an O unprecedented O description O of O the O conformations O that O a O substrate O assumes O while O exploring O its O chaperone B-protein_type - O associated O folding O landscape O . O This O substrate O - O chaperone B-protein_type ensemble O helps O accomplish O the O longstanding O goal O of O obtaining O a O detailed O view O of O how O a O chaperone B-protein_type aids O protein O folding O . O We O recently O showed O that O Im7 B-protein can O fold O while O remaining O continuously B-protein_state bound I-protein_state to I-protein_state Spy B-protein . O The O high O - O resolution O ensemble B-evidence obtained O here O now O provides O insight O into O exactly O how O this O occurs O . O The O structures B-evidence of O our O ensemble B-evidence agree O well O with O lower O - O resolution O crosslinking O data O , O which O indicate O that O chaperone B-protein_type - O substrate O interactions O primarily O occur O on O the O concave B-site surface I-site of O Spy B-protein . O The O ensemble B-evidence suggests O a O model O in O which O Spy B-protein provides O an O amphipathic B-site surface I-site that O allows O substrate O proteins O to O assume O different O conformations O while O bound B-protein_state to I-protein_state the O chaperone B-protein_type . O This O model O is O consistent O with O previous O studies O postulating O that O the O flexible O binding O of O chaperones B-protein_type allows O for O substrate O protein O folding O . O The O amphipathic O concave B-site surface I-site of O Spy B-protein likely O facilitates O this O flexible O binding O and O may O be O a O crucial O feature O for O Spy B-protein and O potentially O other O chaperones B-protein_type , O allowing O them O to O bind O multiple O conformations O of O many O different O substrates O . O In O contrast O to O Spy B-protein ’ O s O binding B-site hotspots I-site , O Im76 B-mutant - I-mutant 45 I-mutant displays O substantially O less O specificity O in O its O binding B-site sites I-site . O Nearly O all O Im76 B-mutant - I-mutant 45 I-mutant residues O come O in O contact O with O Spy B-protein . O Unfolded B-protein_state substrate O conformers O interact O with O Spy B-protein through O both O hydrophobic O and O hydrophilic O interactions O , O whereas O the O binding O of O native B-protein_state - I-protein_state like I-protein_state states O is O mainly O hydrophilic O . O This O trend O suggests O that O complex O formation O between O an O ATP B-protein_state - I-protein_state independent I-protein_state chaperone B-protein_type and O its O unfolded B-protein_state substrate O may O initially O involve O hydrophobic O interactions O , O effectively O shielding O the O exposed O aggregation O - O sensitive O hydrophobic B-site regions I-site in O the O substrate O . O Once O the O substrate O begins O to O fold O within O this O protected O environment O , O it O progressively O buries O its O own O hydrophobic O residues O , O and O its O interactions O with O the O chaperone B-protein_type shift O towards O becoming O more O electrostatic O . O Notably O , O the O most O frequent O contacts O between O Spy B-protein and O Im76 B-mutant - I-mutant 45 I-mutant are O charge O - O charge O interactions O . O The O negatively O charged O Im7 B-protein residues O Glu21 B-residue_name_number , O Asp32 B-residue_name_number , O and O Asp35 B-residue_name_number reside O on O the O surface O of O Im7 B-protein and O form O interactions O with O Spy B-protein ’ O s O positively O charged O cradle B-site in O both O the O unfolded B-protein_state and O native B-protein_state - I-protein_state like I-protein_state states O . O Residues O Asp32 B-residue_name_number and O Asp35 B-residue_name_number are O close O to O each O other O in O the O folded B-protein_state state O of O Im7 B-protein . O This O proximity O likely O causes O electrostatic O repulsion O that O destabilizes O Im7 B-protein ’ O s O native B-protein_state state O . O Interaction O with O Spy B-protein ’ O s O positively O - O charged O residues O likely O relieves O the O charge O repulsion O between O Asp32 B-residue_name_number and O Asp35 B-residue_name_number , O promoting O their O compaction O into O a O helical B-protein_state conformation I-protein_state . O As O inter O - O molecular O hydrophobic O interactions O between O Spy B-protein and O the O substrate O become O progressively O replaced O by O intra O - O molecular O interactions O within O the O substrate O , O the O affinity O between O chaperone B-protein_type and O substrates O could O decrease O , O eventually O leading O to O release O of O the O folded B-protein_state client O protein O . O Recently O , O we O employed O a O genetic B-experimental_method selection I-experimental_method system I-experimental_method to O improve O the O chaperone B-protein_type activity O of O Spy B-protein . O This O selection O resulted O in O “ O Super O Spy B-protein ” O variants B-protein_state that O were O more O effective O at O both O preventing O aggregation O and O promoting O protein O folding O . O In O conjunction O with O our O bound B-protein_state Im76 B-mutant - I-mutant 45 I-mutant ensemble B-evidence , O these O mutants O now O allowed O us O to O investigate O structural O features O important O to O chaperone B-protein_type function O . O Previous O analysis O revealed O that O the O Super O Spy B-protein variants B-protein_state either O bound B-protein_state Im7 B-protein tighter O than O WT B-protein_state Spy B-protein , O increased O chaperone B-protein_type flexibility O as O measured O via O H B-experimental_method / I-experimental_method D I-experimental_method exchange I-experimental_method , O or O both O . O Our O ensemble B-evidence revealed O that O two O of O the O Super O Spy B-protein mutations B-protein_state ( O H96L B-mutant and O Q100L B-mutant ) O form O part O of O the O chaperone B-site contact I-site surface I-site that O binds O to O Im76 B-mutant - I-mutant 45 I-mutant ( O Fig O . O 4a O ). O Moreover O , O our O co B-evidence - I-evidence structure I-evidence suggests O that O the O L32P B-mutant substitution O , O which O increases O Spy B-protein ’ O s O flexibility O , O could O operate O by O unhinging O the O N B-structure_element - I-structure_element terminal I-structure_element helix I-structure_element and O effectively O expanding O the O size O of O the O disordered B-protein_state linker B-structure_element . O This O possibility O is O supported O by O the O Spy B-protein : O substrate O structures B-evidence , O in O which O the O linker B-structure_element region I-structure_element becomes O more O flexible O compared O to O the O apo B-protein_state state O ( O Fig O . O 6a O ). O By O sampling O multiple O conformations O , O this O linker B-structure_element region I-structure_element may O allow O diverse O substrate O conformations O to O be O accommodated O . O Other O Super O Spy B-protein mutations B-protein_state ( O F115I B-mutant and O F115L B-mutant ) O caused O increased O flexibility O but O not O tighter O substrate O binding O . O This O residue O does O not O directly O contact O Im76 B-mutant - I-mutant 45 I-mutant in O our O READ B-experimental_method - O derived O ensemble B-evidence . O Instead O , O when O Spy B-protein is O bound B-protein_state to I-protein_state substrate O , O F115 B-residue_name_number engages O in O close O CH O ⋯ O π O hydrogen O bonds O with O Tyr104 B-residue_name_number ( O Fig O . O 6b O ). O This O interaction O presumably O reduces O the O mobility O of O the O C B-structure_element - I-structure_element terminal I-structure_element helix I-structure_element . O The O F115I B-mutant / O L B-mutant substitutions O would O replace O these O hydrogen O bonds O with O hydrophobic O interactions O that O have O little O angular O dependence O . O As O a O result O , O the O C O - O terminus O , O and O possibly O also O the O flexible B-protein_state linker B-structure_element , O is O likely O to O become O more O flexible O and O thus O more O accommodating O of O different O conformations O of O substrates O . O Overall O , O comparison O of O our O ensemble B-evidence to O the O Super O Spy B-protein variants B-protein_state provides O specific O examples O to O corroborate O the O importance O of O conformational O flexibility O in O chaperone B-protein_type - O substrate O interactions O . O Despite O extensive O studies O , O exactly O how O complex O chaperone B-protein_type machines O help O proteins O fold O remains O controversial O . O Our O study O indicates O that O the O chaperone B-protein_type Spy B-protein employs O a O simple O surface O binding O approach O that O allows O the O substrate O to O explore O various O conformations O and O form O transiently O favorable O interactions O while O being O protected O from O aggregation O . O We O speculate O that O many O other O chaperones B-protein_type could O utilize O a O similar O strategy O . O ATP B-chemical and O co O - O chaperone B-protein_type dependencies O may O have O emerged O later O through O evolution O to O better O modulate O and O control O chaperone B-protein_type action O . O In O addition O to O insights O into O chaperone B-protein_type function O , O this O work O presents O a O new O method O for O determining O heterogeneous O structural O ensembles O via O a O hybrid O methodology O of O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O computational B-experimental_method modeling I-experimental_method . O Heterogeneous O dynamic O complexes O or O disordered B-protein_state regions O of O single O proteins O , O once O considered O solely O approachable O by O NMR B-experimental_method spectroscopy I-experimental_method , O can O now O be O visualized O through O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method . O Crystallographic O data O and O ensemble O selection O . O ( O a O ) O 2mFo B-evidence − I-evidence DFc I-evidence omit I-evidence map I-evidence of O residual O Im76 B-mutant - I-mutant 45 I-mutant and O flexible B-structure_element linker I-structure_element electron B-evidence density I-evidence contoured O at O 0 O . O 5 O σ O . O This O is O the O residual O density B-evidence that O is O used O in O the O READ B-experimental_method selection O . O ( O b O ) O Composites O of O iodine B-chemical positions O detected O from O anomalous B-evidence signals I-evidence using O pI B-chemical - I-chemical Phe I-chemical substitutions B-experimental_method , O colored O and O numbered O by O sequence O . O Multiple O iodine B-chemical positions O were O detected O for O most O residues O . O Agreement O to O the O residual O Im76 B-mutant - I-mutant 45 I-mutant electron B-evidence density I-evidence ( O c O ) O and O anomalous B-evidence iodine I-evidence signals I-evidence ( O d O ) O for O ensembles O of O varying O size O generated O by O randomly O choosing O from O the O MD B-experimental_method pool O ( O blue O ) O and O from O the O selection O procedure O ( O black O ). O The O cost B-evidence function I-evidence , O χ2 B-evidence , O decreases O as O the O agreement O to O the O experimental O data O increases O and O is O defined O in O the O Online O Methods O . O Flowchart O of O the O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method process O . O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly ensemble O , O arranged O by O RMSD B-evidence to O native B-protein_state state O of O Im76 B-mutant - I-mutant 45 I-mutant . O Although O the O six O - O membered O ensemble O from O the O READ B-experimental_method selection O should O be O considered O only O as O an O ensemble O , O for O clarity O , O the O individual O conformers O are O shown O separately O here O . O Spy B-protein is O depicted O as O a O gray O surface O and O the O Im76 B-mutant - I-mutant 45 I-mutant conformer O is O shown O as O orange O balls O . O Atoms O that O were O either O not O directly O selected O in O the O READ B-experimental_method procedure O , O or O whose O position O could O not O be O justified O based O on O agreement O with O the O residual B-evidence electron I-evidence density I-evidence were O removed O , O leading O to O non O - O contiguous O sections O . O Dashed O lines O connect O non O - O contiguous O segments O of O the O Im76 B-mutant - I-mutant 45 I-mutant substrate O . O Residues O of O the O Spy B-protein flexible O linker B-structure_element region I-structure_element that O fit O the O residual B-evidence electron I-evidence density I-evidence are O shown O as O larger O gray O spheres O . O Shown O below O each O ensemble O member O is O the O RMSD B-evidence of O each O conformer O to O the O native B-protein_state state O of O Im76 B-mutant - I-mutant 45 I-mutant , O as O well O as O the O percentage O of O contacts O between O Im76 B-mutant - I-mutant 45 I-mutant and O Spy B-protein that O are O hydrophobic O . O Contact B-evidence maps I-evidence of O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly complex O . O ( O a O ) O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly contact B-evidence map I-evidence projected O onto O the O bound B-protein_state Spy B-protein dimer B-oligomeric_state ( O above O ) O and O Im76 B-mutant - I-mutant 45 I-mutant ( O below O ) O structures B-evidence . O For O clarity O , O Im76 B-mutant - I-mutant 45 I-mutant is O represented O with O a O single O conformation O . O The O frequency O plotted O is O calculated O as O the O average O contact B-evidence frequency I-evidence from O Spy B-protein to O every O residue O of O Im76 B-mutant - I-mutant 45 I-mutant and O vice O - O versa O . O As O the O residues O involved O in O contacts O are O more O evenly O distributed O in O Im76 B-mutant - I-mutant 45 I-mutant compared O to O Spy B-protein , O its O contact B-evidence map I-evidence was O amplified O . O ( O b O ) O Detailed O contact B-evidence maps I-evidence of O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly . O Contacts O to O the O two O Spy B-protein monomers B-oligomeric_state are O depicted O separately O . O Note O that O the O flexible B-protein_state linker B-structure_element region I-structure_element of O Spy B-protein ( O residues O 47 B-residue_range – I-residue_range 57 I-residue_range ) O is O not O represented O in O the O 2D O contact B-evidence maps I-evidence . O Spy B-protein conformation O changes O upon O substrate O binding O . O ( O a O ) O Overlay B-experimental_method of O apo B-protein_state Spy B-protein ( O PDB O ID O : O 3O39 O , O gray O ) O and O bound B-protein_state Spy B-protein ( O green O ). O ( O b O ) O Overlay B-experimental_method of O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state Im76 B-mutant - I-mutant 45 I-mutant ( O green O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state Im7 B-protein L18A B-mutant L19 B-mutant AL13A I-mutant ( O blue O ), O H96L B-mutant Spy B-protein bound B-protein_state to I-protein_state WT B-protein_state Im7 B-protein ( O yellow O ), O and O WT B-protein_state Spy B-protein bound B-protein_state to I-protein_state casein B-chemical ( O salmon O ). O ( O c O ) O Competition B-experimental_method assay I-experimental_method showing O Im76 B-mutant - I-mutant 45 I-mutant competes O with O Im7 B-protein L18A B-mutant L19A B-mutant L37A B-mutant H40W B-mutant for O the O same O binding B-site site I-site on O Spy B-protein ( O further O substrate B-experimental_method competition I-experimental_method assays I-experimental_method are O shown O in O Supplementary O Fig O . O 8 O ). O Flexibility O of O Spy B-protein linker B-structure_element region I-structure_element and O effect O of O Super O Spy B-protein mutants O . O ( O a O ) O The O Spy B-protein linker B-structure_element region I-structure_element adopts O one O dominant O conformation O in O its O apo B-protein_state state O ( O PDB O ID O 3039 O , O gray O ), O but O expands O and O adopts O multiple O conformations O in O bound B-protein_state states O ( O green O ). O ( O b O ) O F115 B-residue_name_number and O L32 B-residue_name_number tether O Spy B-protein ’ O s O linker B-structure_element region I-structure_element to O its O cradle B-site , O decreasing O Spy B-protein activity O by O limiting O linker B-structure_element region I-structure_element flexibility O . O The O Super O Spy B-protein mutants O F115L B-mutant , O F115I B-mutant , O and O L32P B-mutant are O proposed O to O gain O activity O by O increasing O the O flexibility O or O size O of O this O linker B-structure_element region I-structure_element . O L32 B-residue_name_number , O F115 B-residue_name_number , O and O Y104 B-residue_name_number are O rendered O in O purple O to O illustrate O residues O that O are O most O affected O by O Super O Spy B-protein mutations B-protein_state ; O CH O ⋯ O π O hydrogen O bonds O are O depicted O by O orange O dashes O . O Structural O diversity O in O a O human B-species antibody B-protein_type germline O library O To O support O antibody B-protein_type therapeutic O development O , O the O crystal B-evidence structures I-evidence of O a O set O of O 16 O germline O variants O composed O of O 4 O different O kappa B-structure_element light I-structure_element chains I-structure_element paired O with O 4 O different O heavy B-structure_element chains I-structure_element have O been O determined O . O All O four O heavy B-structure_element chains I-structure_element of O the O antigen B-structure_element - I-structure_element binding I-structure_element fragments I-structure_element ( O Fabs B-structure_element ) O have O the O same O complementarity B-structure_element - I-structure_element determining I-structure_element region I-structure_element ( O CDR B-structure_element ) O H3 B-structure_element that O was O reported O in O an O earlier O Fab B-structure_element structure B-evidence . O The O structure B-experimental_method analyses I-experimental_method include O comparisons O of O the O overall O structures B-evidence , O canonical O structures B-evidence of O the O CDRs B-structure_element and O the O VH B-site : I-site VL I-site packing I-site interactions I-site . O The O CDR B-structure_element conformations O for O the O most O part O are O tightly O clustered O , O especially O for O the O ones O with O shorter O lengths O . O The O longer B-protein_state CDRs B-structure_element with O tandem O glycines B-residue_name or O serines B-residue_name have O more O conformational O diversity O than O the O others O . O CDR B-structure_element H3 B-structure_element , O despite O having O the O same O amino O acid O sequence O , O exhibits O the O largest O conformational O diversity O . O About O half O of O the O structures B-evidence have O CDR B-structure_element H3 B-structure_element conformations O similar O to O that O of O the O parent O ; O the O others O diverge O significantly O . O One O conclusion O is O that O the O CDR B-structure_element H3 B-structure_element conformations O are O influenced O by O both O their O amino O acid O sequence O and O their O structural O environment O determined O by O the O heavy B-structure_element and O light B-structure_element chain I-structure_element pairing O . O The O stem B-structure_element regions I-structure_element of O 14 O of O the O variant O pairs O are O in O the O ‘ O kinked B-protein_state ’ O conformation O , O and O only O 2 O are O in O the O extended B-protein_state conformation O . O The O packing O of O the O VH B-structure_element and O VL B-structure_element domains O is O consistent O with O our O knowledge O of O antibody B-protein_type structure B-evidence , O and O the O tilt B-evidence angles I-evidence between O these O domains O cover O a O range O of O 11 O degrees O . O Two O of O 16 O structures B-evidence showed O particularly O large O variations O in O the O tilt B-evidence angles I-evidence when O compared O with O the O other O pairings O . O The O structures B-evidence and O their O analyses O provide O a O rich O foundation O for O future O antibody B-protein_type modeling O and O engineering O efforts O . O At O present O , O therapeutic O antibodies B-protein_type are O the O largest O class O of O biotherapeutic O proteins O that O are O in O clinical O trials O . O The O use O of O monoclonal O antibodies B-protein_type as O therapeutics O began O in O the O early O 1980s O , O and O their O composition O has O transitioned O from O murine B-taxonomy_domain antibodies B-protein_type to O generally O less O immunogenic O humanized O and O human B-species antibodies B-protein_type . O The O technologies O currently O used O to O obtain O human B-species antibodies B-protein_type include O transgenic O mice B-taxonomy_domain containing O human B-species antibody B-protein_type repertoires O , O cloning O directly O from O human B-species B O cells O , O and O in B-experimental_method vitro I-experimental_method selection I-experimental_method from O antibody B-experimental_method libraries I-experimental_method using O various O display O technologies O . O Once O a O candidate O antibody B-protein_type is O identified O , O protein B-experimental_method engineering I-experimental_method is O usually O required O to O produce O a O molecule O with O the O right O biophysical O and O functional O properties O . O All O engineering O efforts O are O guided O by O our O understanding O of O the O atomic B-evidence structures I-evidence of O antibodies B-protein_type . O In O such O efforts O , O the O crystal B-evidence structure I-evidence of O the O specific O antibody B-protein_type may O not O be O available O , O but O modeling O can O be O used O to O guide O the O engineering O efforts O . O Today O ' O s O antibody B-protein_type modeling O approaches O , O which O normally O focus O on O the O variable B-structure_element region I-structure_element , O are O being O developed O by O the O application O of O structural O principles O and O insights O that O are O evolving O as O our O knowledge O of O antibody B-protein_type structures B-evidence continues O to O expand O . O Our O current O structural O knowledge O of O antibodies B-protein_type is O based O on O a O multitude O of O studies O that O used O many O techniques O to O gain O insight O into O the O functional O and O structural O properties O of O this O class O of O macromolecule O . O Five O different O antibody B-protein_type isotypes O occur O , O IgG B-protein , O IgD B-protein , O IgE B-protein , O IgA B-protein and O IgM B-protein , O and O each O isotype O has O a O unique O role O in O the O adaptive O immune O system O . O IgG B-protein , O IgD B-protein and O IgE B-protein isotypes O are O composed O of O 2 O heavy B-structure_element chains I-structure_element ( O HCs B-structure_element ) O and O 2 O light B-structure_element chains I-structure_element ( O LCs B-structure_element ) O linked O through O disulfide B-ptm bonds I-ptm , O while O IgA B-protein and O IgM B-protein are O double O and O quintuple O versions O of O antibodies B-protein_type , O respectively O . O Isotypes O IgG B-protein , O IgD B-protein and O IgA B-protein each O have O 4 O domains O , O one O variable B-structure_element ( O V B-structure_element ) O and O 3 O constant B-structure_element ( O C B-structure_element ) O domains O , O while O IgE B-protein and O IgM B-protein each O have O the O same O 4 O domains O along O with O an O additional O C B-structure_element domain I-structure_element . O These O multimeric O forms O are O linked O with O an O additional O J B-structure_element chain O . O The O LCs B-structure_element that O associate O with O the O HCs B-structure_element are O divided O into O 2 O functionally O indistinguishable O classes O , O κ B-structure_element and O λ B-structure_element . O Both O κ B-structure_element and O λ B-structure_element polypeptide O chains O are O composed O of O a O single O V B-structure_element domain I-structure_element and O a O single O C B-structure_element domain I-structure_element . O The O heavy B-structure_element and O light B-structure_element chains I-structure_element are O composed O of O structural B-structure_element domains I-structure_element that O have O ∼ B-residue_range 110 I-residue_range amino I-residue_range acid I-residue_range residues I-residue_range . O These O domains O have O a O common O folding O pattern O often O referred O to O as O the O “ O immunoglobulin B-structure_element fold I-structure_element ,” O formed O by O the O packing O together O of O 2 O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O All O immunoglobulin B-protein_type chains I-protein_type have O an O N O - O terminal O V B-structure_element domain I-structure_element followed O by O 1 O to O 4 O C B-structure_element domains I-structure_element , O depending O upon O the O chain O type O . O In O antibodies B-protein_type , O the O heavy B-structure_element and I-structure_element light I-structure_element chain I-structure_element V B-structure_element domains I-structure_element pack O together O forming O the O antigen B-site combining I-site site I-site . O This O site O , O which O interacts O with O the O antigen O ( O or O target O ), O is O the O focus O of O current O antibody B-protein_type modeling O efforts O . O This O interaction B-site site I-site is O composed O of O 6 O complementarity B-structure_element - I-structure_element determining I-structure_element regions I-structure_element ( O CDRs B-structure_element ) O that O were O identified O in O early O antibody B-experimental_method amino I-experimental_method acid I-experimental_method sequence I-experimental_method analyses I-experimental_method to O be O hypervariable B-protein_state in O nature O , O and O thus O are O responsible O for O the O sequence O and O structural O diversity O of O our O antibody B-protein_type repertoire O . O The O sequence O diversity O of O the O CDR B-structure_element regions I-structure_element presents O a O substantial O challenge O to O antibody B-protein_type modeling O . O However O , O an O initial O structural B-experimental_method analysis I-experimental_method of O the O combining B-site sites I-site of O the O small O set O of O structures B-evidence of O immunoglobulin O fragments O available O in O the O 1980s O found O that O 5 O of O the O 6 O hypervariable B-structure_element loops I-structure_element or O CDRs B-structure_element had O canonical O structures O ( O a O limited O set O of O main O - O chain O conformations O ). O A O CDR B-structure_element canonical O structure O is O defined O by O its O length O and O conserved O residues O located O in O the O hypervariable B-structure_element loop I-structure_element and O framework B-structure_element residues I-structure_element ( O V B-structure_element - I-structure_element region I-structure_element residues O that O are O not O part O of O the O CDRs B-structure_element ). O Furthermore O , O studies O of O antibody B-protein_type sequences O revealed O that O the O total O number O of O canonical O structures O are O limited O for O each O CDR B-structure_element , O indicating O possibly O that O antigen O recognition O may O be O affected O by O structural O restrictions O at O the O antigen B-site - I-site binding I-site site I-site . O Later O studies O found O that O the O CDR B-structure_element loop I-structure_element length O is O the O primary O determining O factor O of O antigen B-site - I-site binding I-site site I-site topography O because O it O is O the O primary O factor O for O determining O a O canonical O structure O . O Additional O efforts O have O led O to O our O current O understanding O that O the O LC B-structure_element CDRs B-structure_element L1 B-structure_element , O L2 B-structure_element , O and O L3 B-structure_element have O preferred O sets O of O canonical O structures O based O on O length O and O amino O acid O sequence O composition O . O This O was O also O found O to O be O the O case O for O the O H1 B-structure_element and O H2 B-structure_element CDRs B-structure_element . O Classification O schemes O for O the O canonical O structures O of O these O 5 O CDRs B-structure_element have O emerged O and O evolved O as O the O number O of O depositions O in O the O Protein O Data O Bank O of O Fab B-structure_element fragments O of O antibodies B-protein_type grow O . O Recently O , O a O comprehensive O CDR B-structure_element classification O scheme O was O reported O identifying O 72 O clusters O of O conformations O observed O in O antibody B-protein_type structures B-evidence . O The O knowledge O and O predictability O of O these O CDR B-structure_element canonical O structures B-evidence have O greatly O advanced O antibody B-protein_type modeling O efforts O . O In O contrast O to O CDRs B-structure_element L1 B-structure_element , O L2 B-structure_element , O L3 B-structure_element , O H1 B-structure_element and O H2 B-structure_element , O no O canonical O structures B-evidence have O been O observed O for O CDR B-structure_element H3 B-structure_element , O which O is O the O most O variable O in O length O and O amino O acid O sequence O . O Some O clustering O of O conformations O was O observed O for O the O shortest O lengths O ; O however O , O for O the O longer O loops B-structure_element , O only O the O portions O nearest O the O framework B-structure_element ( O torso B-structure_element , O stem B-structure_element or O anchor B-structure_element region I-structure_element ) O were O found O to O have O defined O conformations O . O In O the O torso B-structure_element region I-structure_element , O 2 O primary O groups O could O be O identified O , O which O led O to O sequence O - O based O rules O that O can O predict O with O some O degree O of O reliability O the O conformation O of O the O stem B-structure_element region I-structure_element . O The O “ O kinked B-protein_state ” O or O “ O bulged B-protein_state ” O conformation O is O the O most O prevalent O , O but O an O “ O extended B-protein_state ” O or O “ O non B-protein_state - I-protein_state bulged I-protein_state ” O conformation O is O also O , O but O less O frequently O , O observed O . O The O cataloging O and O development O of O the O rules O for O predicting O the O conformation O of O the O anchor B-structure_element region I-structure_element of O CDR B-structure_element H3 B-structure_element continue O to O be O refined O , O producing O new O insight O into O the O CDR B-structure_element H3 B-structure_element conformations O and O new O tools O for O antibody B-protein_type engineering O . O Current O antibody B-protein_type modeling O approaches O take O advantage O of O the O most O recent O advances O in O homology B-experimental_method modeling I-experimental_method , O the O evolving O understanding O of O the O CDR B-structure_element canonical O structures B-evidence , O the O emerging O rules O for O CDR B-structure_element H3 B-structure_element modeling O and O the O growing O body O of O antibody B-protein_type structural O data O available O from O the O PDB O . O Recent O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method show O continued O improvement O in O the O quality O of O the O models O being O generated O by O a O variety O of O modeling O methods O . O Although O antibody B-protein_type modeling O is O improving O , O the O latest O assessment O revealed O a O number O of O challenges O that O need O to O be O overcome O to O provide O accurate O 3 O - O dimensional O models O of O antibody B-protein_type V B-structure_element regions I-structure_element , O including O accuracies O in O the O modeling O of O CDR B-structure_element H3 B-structure_element . O The O need O for O improvement O in O this O area O was O also O highlighted O in O a O recent O study O reporting O an O approach O and O results O that O may O influence O future O antibody B-protein_type modeling O efforts O . O One O important O finding O of O the O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method was O that O errors O in O the O structural O templates O that O are O used O as O the O basis O for O homology B-experimental_method models I-experimental_method can O propagate O into O the O final O models O , O producing O inaccuracies O that O may O negatively O influence O the O predictive O nature O of O the O V B-structure_element region I-structure_element model O . O To O support O antibody B-protein_type engineering O and O therapeutic O development O efforts O , O a O phage B-experimental_method library I-experimental_method was O designed O and O constructed O based O on O a O limited O number O of O scaffolds O built O with O frequently O used O human B-species germ O - O line O IGV B-structure_element and O IGJ B-structure_element gene O segments O that O encode O antigen B-site combining I-site sites I-site suitable O for O recognition O of O peptides O and O proteins O . O This O Fab B-structure_element library O is O composed O of O 3 O HC B-structure_element germlines O , O IGHV1 B-mutant - I-mutant 69 I-mutant ( O H1 B-mutant - I-mutant 69 I-mutant ), O IGHV3 B-mutant - I-mutant 23 I-mutant ( O H3 B-mutant - I-mutant 23 I-mutant ) O and O IGHV5 B-mutant - I-mutant 51 I-mutant ( O H5 B-mutant - I-mutant 51 I-mutant ), O and O 4 O LC B-structure_element germlines O ( O all O κ B-structure_element ), O IGKV1 B-mutant - I-mutant 39 I-mutant ( O L1 B-mutant - I-mutant 39 I-mutant ), O IGKV3 B-mutant - I-mutant 11 I-mutant ( O L3 B-mutant - I-mutant 11 I-mutant ), O IGKV3 B-mutant - I-mutant 20 I-mutant ( O L3 B-mutant - I-mutant 20 I-mutant ) O and O IGKV4 B-mutant - I-mutant 1 I-mutant ( O L4 B-mutant - I-mutant 1 I-mutant ). O Selection O of O these O genes O was O based O on O the O high O frequency O of O their O use O and O their O cognate O canonical O structures B-evidence that O were O found O binding O to O peptides O and O proteins O , O as O well O as O their O ability O to O be O expressed B-experimental_method in I-experimental_method bacteria I-experimental_method and O displayed B-experimental_method on I-experimental_method filamentous I-experimental_method phage I-experimental_method . O The O implementation O of O the O library O involves O the O diversification O of O the O human B-species germline O genes O to O mimic O that O found O in O natural O human B-species libraries O . O The O crystal B-experimental_method structure I-experimental_method determinations I-experimental_method and O structural B-experimental_method analyses I-experimental_method of O all O germline O Fabs B-structure_element in O the O library O described O above O along O with O the O structures B-evidence of O a O fourth O HC B-structure_element germline O , O IGHV3 B-mutant - I-mutant 53 I-mutant ( O H3 B-mutant - I-mutant 53 I-mutant ), O paired O with O the O 4 O LCs B-structure_element of O the O library O have O been O carried O out O to O support O antibody B-protein_type therapeutic O development O . O All O 16 O HCs B-structure_element of O the O Fabs B-structure_element have O the O same O CDR B-structure_element H3 B-structure_element that O was O reported O in O an O earlier O Fab B-structure_element structure B-evidence . O This O is O the O first O systematic O study O of O the O same O VH B-structure_element and O VL B-structure_element structures B-evidence in O the O context O of O different O pairings O . O The O structure O analyses O include O comparisons O of O the O overall O structures B-evidence , O canonical O structures B-evidence of O the O L1 B-structure_element , O L2 B-structure_element , O L3 B-structure_element , O H1 B-structure_element and O H2 B-structure_element CDRs B-structure_element , O the O structures B-evidence of O all O CDR B-structure_element H3s B-structure_element , O and O the O VH B-site : I-site VL I-site packing I-site interactions I-site . O The O structures B-evidence and O their O analyses O provide O a O foundation O for O future O antibody B-protein_type engineering O and O structure O determination O efforts O . O Crystal B-evidence structures I-evidence Crystal B-evidence data I-evidence , O X B-evidence - I-evidence ray I-evidence data I-evidence , O and O refinement B-evidence statistics I-evidence . O ( O Continued O ) O Crystal B-evidence data I-evidence , O X B-evidence - I-evidence ray I-evidence data I-evidence , O and O refinement B-evidence statistics I-evidence . O The O crystal B-evidence structures I-evidence of O a O germline B-experimental_method library I-experimental_method composed O of O 16 O Fabs B-structure_element generated O by O combining O 4 O HCs B-structure_element ( O H1 B-mutant - I-mutant 69 I-mutant , O H3 B-mutant - I-mutant 23 I-mutant , O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant ) O and O 4 O LCs B-structure_element ( O L1 B-mutant - I-mutant 39 I-mutant , O L3 B-mutant - I-mutant 11 I-mutant , O L3 B-mutant - I-mutant 20 I-mutant and O L4 B-mutant - I-mutant 1 I-mutant ) O have O been O determined O . O The O Fab B-structure_element heavy O and O light B-structure_element chain I-structure_element sequences O for O the O variants O numbered O according O to O Chothia O are O shown O in O Fig O . O S1 O . O The O four O different O HCs B-structure_element all O have O the O same O CDR B-structure_element H3 B-structure_element sequence O , O ARYDGIYGELDF B-structure_element . O Crystallization B-experimental_method of O the O 16 O Fabs B-structure_element was O previously O reported O . O Three O sets O of O the O crystals B-evidence were O isomorphous O with O nearly O identical O unit O cells O ( O Table O 1 O ). O These O include O ( O 1 O ) O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly in O P212121 O , O ( O 2 O ) O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly in O P6522 O , O and O ( O 3 O ) O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly in O P212121 O . O Variations O occur O in O the O pH O ( O buffer O ) O and O the O additives O , O and O , O in O group O 3 O , O PEG B-chemical 3350 I-chemical is O the O precipitant O for O one O variants O while O ammonium B-chemical sulfate I-chemical is O the O precipitant O for O the O other O two O . O The O similarity O in O the O crystal B-evidence forms I-evidence is O attributed O in O part O to O cross O - O seeding O using O the O microseed B-experimental_method matrix I-experimental_method screening I-experimental_method for O groups O 2 O and O 3 O . O The O crystal B-evidence structures I-evidence of O the O 16 O Fabs B-structure_element have O been O determined O at O resolutions O ranging O from O 3 O . O 3 O Å O to O 1 O . O 65 O Å O ( O Table O 1 O ). O The O number O of O Fab B-structure_element molecules O in O the O crystallographic O asymmetric O unit O varies O from O 1 O ( O for O 12 O Fabs B-structure_element ) O to O 2 O ( O for O 4 O Fabs B-structure_element ). O Overall O the O structures B-evidence are O fairly O complete O , O and O , O as O can O be O expected O , O the O models O for O the O higher O resolution O structures B-evidence are O more O complete O than O those O for O the O lower O resolution O structures B-evidence ( O Table O S1 O ). O Invariably O , O the O HCs B-structure_element have O more O disorder B-protein_state than O the O LCs B-structure_element . O For O the O LC B-structure_element , O the O disorder B-protein_state is O observed O at O 2 O of O the O C O - O terminal O residues O with O few O exceptions O . O Apart O from O the O C O - O terminus O , O only O a O few O surface O residues O in O LC B-structure_element are O disordered B-protein_state . O The O HCs B-structure_element feature O the O largest O number O of O disordered B-protein_state residues O , O with O the O lower O resolution O structures B-evidence having O the O most O . O The O C O - O terminal O residues O including O the O 6xHis O tags O are O disordered B-protein_state in O all O 16 O structures B-evidence . O In O addition O to O these O , O 2 O primary O disordered O stretches O of O residues O are O observed O in O a O number O of O structures B-evidence ( O Table O S1 O ). O One O involves O the O loop B-structure_element connecting O the O first O 2 O β B-structure_element - I-structure_element strands I-structure_element of O the O constant B-structure_element domain I-structure_element ( O in O all O Fabs B-structure_element except O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ). O The O other O is O located O in O CDR B-structure_element H3 B-structure_element ( O in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O in O one O of O 2 O copies O of O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly ). O CDR B-structure_element H1 B-structure_element and O CDR B-structure_element H2 B-structure_element also O show O some O degree O of O disorder B-protein_state , O but O to O a O lesser O extent O . O CDR B-structure_element canonical O structures B-evidence Several O CDR B-structure_element definitions O have O evolved O over O decades O of O antibody B-protein_type research O . O Depending O on O the O focus O of O the O study O , O the O CDR B-structure_element boundaries O differ O slightly O between O various O definitions O . O In O this O work O , O we O use O the O CDR B-structure_element definition O of O North O et O al O ., O which O is O similar O to O that O of O Martin O with O the O following O exceptions O : O 1 O ) O CDRs B-structure_element H1 B-structure_element and O H3 B-structure_element begin O immediately O after O the O Cys B-residue_name ; O and O 2 O ) O CDR B-structure_element L2 B-structure_element includes O an O additional O residue O at O the O N O - O terminal O side O , O typically O Tyr B-residue_name . O CDR B-structure_element H1 B-structure_element The O superposition B-experimental_method of O CDR B-structure_element H1 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O heavy B-structure_element chains I-structure_element : O ( O A O ) O H1 B-mutant - I-mutant 69 I-mutant , O ( O B O ) O H3 B-mutant - I-mutant 23 I-mutant , O ( O C O ) O H3 B-mutant - I-mutant 53 I-mutant and O ( O D O ) O H5 B-mutant - I-mutant 51 I-mutant . O CDRs B-structure_element are O defined O using O the O Dunbrack O convention O [ O 12 O ]. O Assignments O for O 2 O copies O of O the O Fab B-structure_element in O the O asymmetric O unit O are O given O for O 5 O structures B-evidence . O No O assignment O ( O NA O ) O for O CDRs B-structure_element with O missing O residues O . O The O four O HCs B-structure_element feature O CDR B-structure_element H1 B-structure_element of O the O same O length O , O and O their O sequences O are O highly O similar O ( O Table O 2 O ). O The O CDR B-structure_element H1 B-structure_element backbone O conformations O for O all O variants O for O each O of O the O HCs B-structure_element are O shown O in O Fig O . O 1 O . O Three O of O the O HCs B-structure_element , O H3 B-mutant - I-mutant 23 I-mutant , O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O have O the O same O canonical O structure O , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 1 I-mutant , O and O the O backbone O conformations O are O tightly O clustered O for O each O set O of O Fab B-structure_element structures B-evidence as O reflected O in O the O rmsd B-evidence values I-evidence ( O Fig O . O 1B O - O D O ). O Some O deviation O is O observed O for O H3 B-mutant - I-mutant 53 I-mutant , O mostly O due O to O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O which O exhibits O a O significant O degree O of O disorder O in O CDR B-structure_element H1 B-structure_element . O The O electron B-evidence density I-evidence for O the O backbone O is O weak O and O discontinuous O , O and O completely O missing O for O several O side O chains O . O The O CDR B-structure_element H1 B-structure_element structures B-evidence with O H1 B-mutant - I-mutant 69 I-mutant shown O in O Fig O . O 1A O are O quite O variable O , O both O for O the O structures B-evidence with O different O LCs B-structure_element and O for O the O copies O of O the O same O Fab B-structure_element in O the O asymmetric O unit O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O In O total O , O 6 O independent O Fab B-structure_element structures B-evidence produce O 5 O different O canonical O structures B-evidence , O namely O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 1 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 3 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 4 I-mutant , O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 6 I-mutant and O H1 B-mutant - I-mutant 13 I-mutant - I-mutant 10 I-mutant . O A O major O difference O of O H1 B-mutant - I-mutant 69 I-mutant from O the O other O germlines O in O the O experimental O data O set O is O the O presence O of O Gly B-residue_name instead O of O Phe B-residue_name or O Tyr B-residue_name at O position O 27 B-residue_number ( O residue O 5 O of O 13 O in O CDR B-structure_element H1 B-structure_element ). O Glycine B-residue_name introduces O the O possibility O of O a O higher O degree O of O conformational O flexibility O that O undoubtedly O translates O to O the O differences O observed O , O and O contributes O to O the O elevated O thermal O parameters O for O the O atoms O in O the O amino O acid O residues O in O this O region O . O CDR B-structure_element H2 B-structure_element The O superposition B-experimental_method of O CDR B-structure_element H2 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O heavy B-structure_element chains I-structure_element : O ( O A O ) O H1 B-mutant - I-mutant 69 I-mutant , O ( O B O ) O H3 B-mutant - I-mutant 23 I-mutant , O ( O C O ) O H3 B-mutant - I-mutant 53 I-mutant and O ( O D O ) O H5 B-mutant - I-mutant 51 I-mutant . O The O canonical O structures O of O CDR B-structure_element H2 B-structure_element have O fairly O consistent O conformations O ( O Table O 2 O , O Fig O . O 2 O ). O Each O of O the O 4 O HCs B-structure_element adopts O only O one O canonical O structure O regardless O of O the O pairing O LC B-structure_element . O Germlines O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant have O the O same O canonical O structure O assignment O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 1 I-mutant , O H3 B-mutant - I-mutant 23 I-mutant has O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 2 I-mutant , O and O H3 B-mutant - I-mutant 53 I-mutant has O H2 B-mutant - I-mutant 9 I-mutant - I-mutant 3 I-mutant . O The O conformations O for O all O of O these O CDR B-structure_element H2s B-structure_element are O tightly O clustered O ( O Fig O . O 2 O ). O In O one O case O , O in O the O second O Fab B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O CDR B-structure_element H2 B-structure_element is O partially B-protein_state disordered I-protein_state ( O Δ55 B-mutant - I-mutant 60 I-mutant ). O Although O three O of O the O germlines O have O CDR B-structure_element H2 B-structure_element of O the O same O length O , O 10 B-residue_range residues I-residue_range , O they O adopt O 2 O distinctively O different O conformations O depending O mostly O on O the O residue O at O position O 71 B-residue_number from O the O so O - O called O CDR B-structure_element H4 B-structure_element . O Arg71 B-residue_name_number in O H3 B-mutant - I-mutant 23 I-mutant fills O the O space O between O CDRs B-structure_element H2 B-structure_element and O H4 B-structure_element , O and O defines O the O conformation O of O the O tip O of O CDR B-structure_element H2 B-structure_element so O that O residue O 54 B-residue_number points O away O from O the O antigen B-site binding I-site site I-site . O Germlines O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant are O unique O in O the O human B-species repertoire O in O having O an O Ala B-residue_name at O position O 71 B-residue_number that O leaves O enough O space O for O H B-structure_element - O Pro52a B-residue_name_number to O pack O deeper O against O CDR B-structure_element H4 B-structure_element so O that O the O following O residues O 53 B-residue_number and O 54 B-residue_number point O toward O the O putative O antigen O . O Conformations O of O CDR B-structure_element H2 B-structure_element in O H1 B-mutant - I-mutant 69 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O both O of O which O have O canonical O structure O H2 B-mutant - I-mutant 10 I-mutant - I-mutant 1 I-mutant , O show O little O deviation O within O each O set O of O 4 O structures B-evidence . O However O , O there O is O a O significant O shift O of O the O CDR B-structure_element as O a O rigid O body O when O the O 2 O sets O are O superimposed B-experimental_method . O Most O likely O this O is O the O result O of O interaction O of O CDR B-structure_element H2 B-structure_element with O CDR B-structure_element H1 B-structure_element , O namely O with O the O residue O at O position O 33 B-residue_number ( O residue O 11 O of O 13 O in O CDR B-structure_element H1 B-structure_element ). O Germline O H1 B-mutant - I-mutant 69 I-mutant has O Ala B-residue_name at O position O 33 B-residue_number whereas O in O H5 B-mutant - I-mutant 51 I-mutant position O 33 B-residue_number is O occupied O by O a O bulky O Trp B-residue_name , O which O stacks O against O H B-structure_element - O Tyr52 B-residue_name_number and O drives O CDR B-structure_element H2 B-structure_element away O from O the O center O . O CDR B-structure_element L1 B-structure_element The O superposition B-experimental_method of O CDR B-structure_element L1 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O The O four O LC B-structure_element CDRs B-structure_element L1 B-structure_element feature O 3 O different O lengths O ( O 11 B-residue_range , O 12 B-residue_range and O 17 B-residue_range residues O ) O having O a O total O of O 4 O different O canonical O structure O assignments O . O Of O these O LCs B-structure_element , O L1 B-mutant - I-mutant 39 I-mutant and O L3 B-mutant - I-mutant 11 I-mutant have O the O same O canonical O structure O , O L1 B-mutant - I-mutant 11 I-mutant - I-mutant 1 I-mutant , O and O superimpose B-experimental_method very O well O ( O Fig O . O 3A O , O B O ). O For O the O remaining O 2 O , O L3 B-mutant - I-mutant 20 I-mutant has O 2 O different O assignments O , O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant and O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O while O L4 B-mutant - I-mutant 1 I-mutant has O a O single O assignment O , O L1 B-mutant - I-mutant 17 I-mutant - I-mutant 1 I-mutant . O L4 B-mutant - I-mutant 1 I-mutant has O the O longest O CDR B-structure_element L1 B-structure_element , O composed O of O 17 B-residue_range amino I-residue_range acid I-residue_range residues I-residue_range ( O Fig O . O 3D O ). O Despite O this O , O the O conformations O are O tightly O clustered O ( O rmsd B-evidence is O 0 O . O 20 O Å O ). O The O backbone O conformations O of O the O stem B-structure_element regions I-structure_element superimpose O well O . O Some O changes O in O conformation O occur O between O residues O 30a B-residue_number and O 30f B-residue_number ( O residues O 8 B-residue_number and O 13 B-residue_number of O 17 B-residue_number in O CDR B-structure_element L1 B-structure_element ). O This O is O the O tip O of O the O loop B-structure_element region I-structure_element , O which O appears O to O have O similar O conformations O that O fan O out O the O structures B-evidence because O of O the O slight O differences O in O torsion O angles O in O the O backbone O near O Tyr30a B-residue_name_number and O Lys30f B-residue_name_number . O L3 B-mutant - I-mutant 20 I-mutant is O the O most O variable O in O CDR B-structure_element L1 B-structure_element among O the O 4 O germlines O as O indicated O by O an O rmsd B-evidence of O 0 O . O 54 O Å O ( O Fig O . O 3C O ). O Two O structures B-evidence , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly are O assigned O to O canonical O structure O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant with O virtually O identical O backbone O conformations O . O The O third O structure O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O CDR B-structure_element L1 B-structure_element as O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant , O which O deviates O from O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant at O residues O 29 B-residue_range - I-residue_range 32 I-residue_range , O i O . O e O ., O at O the O site O of O insertion O with O respect O to O the O 11 B-residue_range - I-residue_range residue I-residue_range CDR B-structure_element . O The O fourth O member O of O the O set O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O was O crystallized B-experimental_method with O 2 O Fabs B-structure_element in O the O asymmetric O unit O . O The O conformation O of O CDR B-structure_element L1 B-structure_element in O these O 2 O Fabs B-structure_element is O slightly O different O , O and O both O conformations O fall O somewhere O between O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 1 I-mutant and O L1 B-mutant - I-mutant 12 I-mutant - I-mutant 2 I-mutant . O This O reflects O the O lack O of O accuracy O in O the O structure B-evidence due O to O low O resolution O of O the O X B-evidence - I-evidence ray I-evidence data I-evidence ( O 3 O . O 3 O Å O ). O CDR B-structure_element L2 B-structure_element The O superposition B-experimental_method of O CDR B-structure_element L2 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O All O four O LCs B-structure_element have O CDR B-structure_element L2 B-structure_element of O the O same O length O and O canonical O structure O , O L2 B-mutant - I-mutant 8 I-mutant - I-mutant 1 I-mutant ( O Table O 2 O ). O The O CDR B-structure_element L2 B-structure_element conformations O for O each O of O the O LCs B-structure_element paired O with O the O 4 O HCs B-structure_element are O clustered O more O tightly O than O any O of O the O other O CDRs B-structure_element ( O rmsd B-evidence values O are O in O the O range O 0 O . O 09 O - O 0 O . O 16 O Å O ), O and O all O 4 O sets O have O virtually O the O same O conformation O despite O the O sequence O diversity O of O the O loop B-structure_element . O CDR B-structure_element L3 B-structure_element The O superposition B-experimental_method of O CDR B-structure_element L3 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O As O with O CDR B-structure_element L2 B-structure_element , O all O 4 O LCs B-structure_element have O CDR B-structure_element L3 B-structure_element of O the O same O length O and O canonical O structure B-evidence , O L3 B-mutant - I-mutant 9 I-mutant - I-mutant cis7 I-mutant - I-mutant 1 I-mutant ( O Table O 2 O ). O The O conformations O of O CDR B-structure_element L3 B-structure_element for O L1 B-mutant - I-mutant 39 I-mutant , O L3 B-mutant - I-mutant 11 I-mutant , O and O particularly O for O L320 O , O are O not O as O tightly O clustered O as O those O of O L4 B-mutant - I-mutant 1 I-mutant ( O Fig O . O 5 O ). O The O slight O conformational O variability O occurs O in O the O region O of O amino O acid O residues O 90 B-residue_range - I-residue_range 92 I-residue_range , O which O is O in O contact O with O CDR B-structure_element H3 B-structure_element . O CDR B-structure_element H3 B-structure_element conformational O diversity O As O mentioned O earlier O , O all O 16 O Fabs B-structure_element have O the O same O CDR B-structure_element H3 B-structure_element , O for O which O the O amino O acid O sequence O is O derived O from O the O anti O - O CCL2 O antibody B-protein_type CNTO B-chemical 888 I-chemical . O The O loop B-structure_element and O the O 2 O β B-structure_element - I-structure_element strands I-structure_element of O the O CDR B-structure_element H3 B-structure_element in O this O ‘ O parent O ’ O structure B-evidence are O stabilized O by O H O - O bonds O between O the O carbonyl O oxygen O and O peptide O nitrogen O atoms O in O the O 2 O strands O . O An O interesting O feature O of O these O CDR B-structure_element H3 B-structure_element structures B-evidence is O the O presence O of O a O water B-chemical molecule O that O interacts O with O the O peptide O nitrogens O and O carbonyl O oxygens O near O the O bridging O loop B-structure_element connecting O the O 2 O β B-structure_element - I-structure_element strands I-structure_element . O This O water B-chemical is O present O in O both O the O bound B-protein_state ( O 4DN4 O ) O and O unbound B-protein_state ( O 4DN3 O ) O forms O of O CNTO B-chemical 888 I-chemical . O The O stem B-structure_element region I-structure_element of O CDR B-structure_element H3 B-structure_element in O the O parental O Fab B-structure_element is O in O a O ‘ O kinked B-protein_state ’ O conformation O , O in O which O the O indole O nitrogen O of O Trp103 B-residue_name_number forms O a O hydrogen O bond O with O the O carbonyl O oxygen O of O Leu100b B-residue_name_number . O The O carboxyl O group O of O Asp101 B-residue_name_number forms O a O salt O bridge O with O Arg94 B-residue_name_number . O Ribbon O representations O of O ( O A O ) O the O superposition B-experimental_method of O all O CDR B-structure_element H3s B-structure_element of O the O structures B-evidence with O complete O backbone O traces O . O ( O B O ) O The O CDR B-structure_element H3s B-structure_element rotated O 90 O ° O about O the O y O axis O of O the O page O . O The O structure B-evidence of O each O CDR B-structure_element H3 B-structure_element is O represented O with O a O different O color O . O Despite O having O the O same O amino O acid O sequence O in O all O variants O , O CDR B-structure_element H3 B-structure_element has O the O highest O degree O of O structural O diversity O and O disorder O of O all O of O the O CDRs B-structure_element in O the O experimental O set O . O Three O of O the O 21 O Fab B-structure_element structures B-evidence ( O including O multiple O copies O in O the O asymmetric O unit O ), O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O H551 B-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly ( O one O of O the O 2 O Fabs B-structure_element ), O have O missing B-protein_state ( O disordered B-protein_state ) O residues O at O the O apex O of O the O CDR B-structure_element loop I-structure_element . O Another O four O of O the O Fabs B-structure_element , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly have O missing O side O - O chain O atoms O . O The O variations O in O CDR B-structure_element H3 B-structure_element conformation O are O illustrated O in O Fig O . O 6 O for O the O 18 O Fab B-structure_element structures B-evidence that O have O ordered O backbone O atoms O . O A O comparison O of O representatives O of O the O “ O kinked B-protein_state ” O and O “ O extended B-protein_state ” O structures B-evidence . O ( O A O ) O The O “ O kinked B-protein_state ” O CDR B-structure_element H3 B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly with O purple O carbon O atoms O and O yellow O dashed O lines O connecting O the O H O - O bond O pairs O for O Leu100b B-residue_name_number O O and O Trp103 B-residue_name_number NE1 O , O Arg94 B-residue_name_number NE O and O Asp101 B-residue_name_number OD1 O , O and O Arg94 B-residue_name_number NH2 O and O Asp101 B-residue_name_number OD2 O . O ( O B O ) O The O “ O extended B-protein_state ” O CDR B-structure_element H3 B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly with O green O carbon O atoms O and O yellow O dashed O lines O connecting O the O H O - O bond O pairs O for O Asp101 B-residue_name_number OD1 O and O OD2 O and O Trp103 B-residue_name_number NE1 O . O In O 10 O of O the O 18 O Fab B-structure_element structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly ( O 2 O Fabs B-structure_element ), O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly ( O 2 O Fabs B-structure_element ), O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O the O CDRs B-structure_element have O similar O conformations O to O that O found O in O 4DN3 O . O The O bases O of O these O structures B-evidence have O the O ‘ O kinked B-protein_state ’ O conformation O with O the O H O - O bond O between O Trp103 B-residue_name_number and O Leu100b B-residue_name_number . O A O representative O CDR B-structure_element H3 B-structure_element structure B-evidence for O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly illustrating O this O is O shown O in O Fig O . O 7A O . O The O largest O backbone O conformational O deviation O for O the O set O is O at O Tyr99 B-residue_name_number , O where O the O C O = O O O is O rotated O by O 90 O ° O relative O to O that O observed O in O 4DN3 O . O Also O , O it O is O worth O noting O that O only O one O of O these O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O has O the O conserved B-protein_state water B-chemical molecule O in O CDR B-structure_element H3 B-structure_element observed O in O the O 4DN3 O and O 4DN4 O structures B-evidence . O In O fact O , O it O is O the O only O Fab B-structure_element in O the O set O that O has O a O water B-chemical molecule O present O at O this O site O . O The O CDR B-structure_element H3 B-structure_element for O this O structure B-evidence is O shown O in O Fig O . O S3 O . O The O remaining O 8 O Fabs B-structure_element can O be O grouped O into O 5 O different O conformational O classes O . O Three O of O the O Fabs B-structure_element , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly , O have O distinctive O conformations O . O The O stem B-structure_element regions I-structure_element in O these O 3 O cases O are O in O the O ‘ O kinked B-protein_state ’ O conformation O consistent O with O that O observed O for O 4DN3 O . O The O five O remaining O Fabs B-structure_element , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly ( O 2 O copies O ), O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly ( O 2 O copies O ) O and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O have O 3 O different O CDR B-structure_element H3 B-structure_element conformations O ( O Fig O . O S4 O ). O The O stem B-structure_element regions I-structure_element of O CDR B-structure_element H3 B-structure_element for O the O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly Fabs B-structure_element are O in O the O ‘ O kinked B-protein_state ’ O conformation O while O , O surprisingly O , O those O of O the O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly pair O and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly are O in O the O ‘ O extended B-protein_state ’ O conformation O ( O Fig O . O 7B O ). O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly domain O packing O The O VH B-structure_element and O VL B-structure_element domains O have O a O β B-structure_element - I-structure_element sandwich I-structure_element structure I-structure_element ( O also O often O referred O as O a O Greek B-structure_element key I-structure_element motif I-structure_element ) O and O each O is O composed O of O a O 4 B-structure_element - I-structure_element stranded I-structure_element and I-structure_element a I-structure_element 5 I-structure_element - I-structure_element stranded I-structure_element antiparallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O The O two O domains O pack O together O such O that O the O 5 B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheets I-structure_element , O which O have O hydrophobic O surfaces O , O interact O with O each O other O bringing O the O CDRs B-structure_element from O both O the O VH B-structure_element and O VL B-structure_element domains O into O close O proximity O . O The O domain O packing O of O the O variants O was O assessed O by O computing O the O domain B-site interface I-site interactions O , O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence , O the O buried O surface O area O and O surface O complementarity O . O VH B-site : I-site VL I-site interface I-site amino O acid O residue O interactions O The O conserved B-protein_state VH B-complex_assembly : I-complex_assembly VL I-complex_assembly interactions O as O viewed O along O the O VH B-structure_element / O VL B-structure_element axis O . O The O VH B-structure_element residues O are O in O blue O , O the O VL B-structure_element residues O are O in O orange O . O The O VH B-site : I-site VL I-site interface I-site is O pseudosymmetric B-protein_state , O and O involves O 2 O stretches O of O the O polypeptide O chain O from O each O domain O , O namely O CDR3 B-structure_element and O the O framework B-structure_element region I-structure_element between O CDRs B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element . O These O stretches O form O antiparallel B-structure_element β I-structure_element - I-structure_element hairpins I-structure_element within O the O internal O 5 B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O There O are O a O few O principal O inter O - O domain O interactions O that O are O conserved O not O only O in O the O experimental O set O of O 16 O Fabs B-structure_element , O but O in O all O human B-species antibodies B-protein_type . O They O include O : O 1 O ) O a O bidentate O hydrogen O bond O between O L B-structure_element - O Gln38 B-residue_name_number and O H B-structure_element - O Gln39 B-residue_name_number ; O 2 O ) O H B-structure_element - O Leu45 B-residue_name_number in O a O hydrophobic B-site pocket I-site between O L B-structure_element - O Phe98 B-residue_name_number , O L B-structure_element - O Tyr87 B-residue_name_number and O L B-structure_element - O Pro44 B-residue_name_number ; O 3 O ) O L B-structure_element - O Pro44 B-residue_name_number stacked O against O H B-structure_element - O Trp103 B-residue_name_number ; O and O 4 O ) O L B-structure_element - O Ala43 B-residue_name_number opposite O the O face O of O H B-structure_element - O Tyr91 B-residue_name_number ( O Fig O . O 8 O ). O With O the O exception O of O L B-structure_element - O Ala43 B-residue_name_number , O all O other O residues O are O conserved O in O human B-species germlines O . O Position O 43 B-residue_number may O be O alternatively O occupied O by O Ser B-residue_name , O Val B-residue_name or O Pro B-residue_name ( O as O in O L4 B-mutant - I-mutant 1 I-mutant ), O but O the O hydrophobic O interaction O with O H B-structure_element - O Tyr91 B-residue_name_number is O preserved O . O These O core O interactions O provide O enough O stability O to O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly dimer B-oligomeric_state so O that O additional O VH B-site - I-site VL I-site contacts I-site can O tolerate O amino O acid O sequence O variations O in O CDRs B-structure_element H3 B-structure_element and O L3 B-structure_element that O form O part O of O the O VH B-site : I-site VL I-site interface I-site . O In O total O , O about O 20 B-residue_range residues I-residue_range are O involved O in O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly interactions O on O each O side O ( O Fig O . O S5 O ). O Half O of O them O are O in O the O framework B-structure_element regions I-structure_element and O those O residues O ( O except O residue O 61 B-residue_number in O HC B-structure_element , O which O is O actually O in O CDR2 B-structure_element in O Kabat O ' O s O definition O ) O are O conserved O in O the O set O of O 16 O Fabs B-structure_element . O One O notable O exception O is O H B-structure_element - O Trp47 B-residue_name_number , O which O exhibits O 2 O conformations O of O the O indole O ring O . O In O most O of O the O structures B-evidence , O it O has O the O χ2 B-evidence angle O of O ∼ O 80 O °, O while O the O ring O is O flipped O over O ( O χ2 B-evidence = O − O 100 O °) O in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly : I-complex_assembly 11 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O Interestingly O , O these O are O the O only O 2 O structures B-evidence with O residues O missing B-protein_state in O CDR B-structure_element H3 B-structure_element because O of O disorder O , O although O both O structures B-evidence are O determined O at O high O resolution O and O the O rest O of O the O structure B-evidence is O well O defined O . O Apparently O , O residues O flanking O CDR B-structure_element H3 B-structure_element in O the O 2 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairings O are O inconsistent O with O any O stable B-protein_state conformation O of O CDR B-structure_element H3 B-structure_element , O which O translates O into O a O less O restricted O conformational O space O for O some O of O them O , O including O H B-structure_element - O Trp47 B-residue_name_number . O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence The O relative O orientation O of O VH B-structure_element and O VL B-structure_element has O been O measured O in O a O number O of O different O ways O . O The O first O approach O uses O ABangles B-experimental_method , O the O results O of O which O are O shown O in O Table O S2 O . O The O four O LCs B-structure_element all O are O classified O as O Type O A O because O they O have O a O proline B-residue_name at O position O 44 B-residue_number , O and O the O results O for O each O orientation B-evidence parameter I-evidence are O within O the O range O of O values O of O this O type O reported O by O Dunbar O and O co O - O workers O . O In O fact O , O the O parameter O values O for O the O set O of O 16 O Fabs B-structure_element are O in O the O middle O of O the O distribution O observed O for O 351 O non O - O redundant O antibody B-protein_type structures B-evidence determined O at O 3 O . O 0 O Å O resolution O or O better O . O The O only O exception O is O HC1 B-structure_element , O which O is O shifted O toward O smaller O angles O with O the O mean O value O of O 70 O . O 8 O ° O as O compared O to O the O distribution O centered O at O 72 O ° O for O the O entire O PDB O . O This O probably O reflects O the O invariance O of O CDR B-structure_element H3 B-structure_element in O the O current O set O as O opposed O to O the O CDR B-structure_element H3 B-structure_element diversity O in O the O PDB O . O The O second O approach O used O for O comparing O tilt B-evidence angles I-evidence involved O computing O the O difference B-evidence in O the O tilt B-evidence angles I-evidence between O all O pairs O of O structures B-evidence . O For O structures B-evidence with O 2 O copies O of O the O Fab B-structure_element in O the O asymmetric O unit O , O only O one O structure B-evidence was O used O . O The O differences O between O independent O Fabs B-structure_element in O the O same O structure B-evidence are O 4 O . O 9 O ° O for O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O 1 O . O 6 O ° O for O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O 1 O . O 4 O ° O for O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O 3 O . O 3 O ° O for O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O and O 2 O . O 5 O ° O for O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly . O With O the O exception O of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O the O angles O are O within O the O range O of O 2 O - O 3 O ° O as O are O observed O in O the O identical O structures B-evidence in O the O PDB O . O In O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O one O of O the O Fabs B-structure_element is O substantially O disordered B-protein_state so O that O part O of O CDR B-structure_element H2 B-structure_element ( O the O outer O β B-structure_element - I-structure_element strand I-structure_element , O residues O 55 B-residue_range - I-residue_range 60 I-residue_range ) O is O completely O missing O . O This O kind O of O disorder O may O compromise O the O integrity O of O the O VH B-structure_element domain O and O its O interaction O with O the O VL B-structure_element . O Indeed O , O this O Fab B-structure_element has O the O largest O twist B-evidence angle I-evidence HC2 B-structure_element within O the O experimental O set O that O exceeds O the O mean O value O by O 2 O . O 5 O standard O deviations O ( O Table O S2 O ). O An O illustration O of O the O difference O in O tilt O angle O for O 2 O pairs O of O variants O by O the O superposition B-experimental_method of O the O VH B-structure_element domains O of O ( O A O ) O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly on O that O of O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ( O the O VL B-structure_element domain O is O off O by O a O rigid O - O body O roatation O of O 10 O . O 5 O °) O and O ( O B O ) O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly on O that O of O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly ( O the O VL B-structure_element domain O is O off O by O a O rigid O - O body O roatation O of O 1 O . O 6 O °). O Differences O in O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence . O The O differences B-evidence in O the O tilt B-evidence angle I-evidence are O shown O for O all O pairs O of O V B-structure_element regions I-structure_element in O Table O 3 O . O The O smallest O differences O in O the O tilt B-evidence angle I-evidence are O between O the O Fabs B-structure_element in O isomorphous O crystal B-evidence forms I-evidence . O The O largest O deviations O in O the O tilt B-evidence angle I-evidence , O up O to O 11 O . O 0 O °, O are O found O for O 2 O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O that O stand O out O from O the O other O Fabs B-structure_element . O One O of O the O 2 O structures B-evidence , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O its O CDR B-structure_element H3 B-structure_element in O the O ‘ O extended B-protein_state ’ O conformation O ; O the O other O structure O has O it O in O the O ‘ O kinked B-protein_state ’ O conformation O . O Two O examples O illustrating O large O ( O 10 O . O 5 O °) O and O small O ( O 1 O . O 6 O °) O differences O in O the O tilt B-evidence angles I-evidence are O shown O in O Fig O . O 9 O . O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly buried O surface O area O and O complementarity O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly surface O areas O and O surface O complementarity O . O Some O side O chain O atoms O in O CDR B-structure_element H3 B-structure_element are O missing O . O Residues O in O CDR B-structure_element H3 B-structure_element are O missing O : O YGE B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O GIY B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O The O results O of O the O PISA B-experimental_method contact B-experimental_method surface I-experimental_method calculation I-experimental_method and O surface B-experimental_method complementarity I-experimental_method calculation I-experimental_method are O shown O in O Table O 4 O . O The O interface B-site areas O are O calculated O as O the O average O of O the O VH B-site and I-site VL I-site contact I-site surfaces I-site . O Six O of O the O 16 O structures B-evidence have O CDR B-structure_element H3 B-structure_element side O chains O or O complete O residues O missing B-protein_state , O and O therefore O their O interfaces B-site are O much O smaller O than O in O the O other O 10 O structures B-evidence with O complete B-protein_state CDRs B-structure_element ( O the O results O are O provided O for O all O Fabs B-structure_element for O completeness O ). O Among O the O complete B-protein_state structures B-evidence , O the O interface B-site areas O range O from O 684 O to O 836 O Å2 O . O Interestingly O , O the O 2 O structures B-evidence that O have O the O largest O tilt B-evidence angle I-evidence differences I-evidence with O the O other O variants O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O have O the O smallest O VH B-site : I-site VL I-site interfaces I-site , O 684 O and O 725 O Å2 O , O respectively O . O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly is O also O unique O in O that O it O has O the O lowest O value O ( O 0 O . O 676 O ) O of O surface B-evidence complementarity I-evidence . O Melting B-evidence temperatures I-evidence for O the O 16 O Fabs B-structure_element . O Colors O : O blue O ( O Tm B-evidence < O 70 O ° O C O ), O green O ( O 70 O ° O C O < O Tm B-evidence < O 73 O ° O C O ), O yellow O ( O 73 O ° O C O < O Tm B-evidence < O 78 O ° O C O ), O orange O ( O Tm B-evidence > O 78 O ° O C O ). O Melting B-evidence temperatures I-evidence ( O Tm B-evidence ) O were O measured O for O all O Fabs B-structure_element using O differential B-experimental_method scanning I-experimental_method calorimetry I-experimental_method ( O Table O 5 O ). O It O appears O that O for O each O given O LC B-structure_element , O the O Fabs B-structure_element with O germlines O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 23 I-mutant are O substantially O more O stable B-protein_state than O those O with O germlines O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant . O In O addition O , O L1 B-mutant - I-mutant 39 I-mutant provides O a O much O higher O degree O of O stabilization O than O the O other O 3 O LC B-structure_element germlines O when O combined O with O any O of O the O HCs B-structure_element . O As O a O result O , O the O Tm B-evidence for O pairs O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly is O 12 O - O 13 O ° O higher O than O for O pairs O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly . O These O findings O correlate O well O with O the O degree O of O conformational O disorder O observed O in O the O crystal B-evidence structures I-evidence . O Parts O of O CDR B-structure_element H3 B-structure_element main O chain O are O completely O disordered B-protein_state , O and O were O not O modeled O in O Fabs B-structure_element H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly that O have O the O lowest O Tms B-evidence in O the O set O . O No O electron B-evidence density I-evidence is O observed O for O a O number O of O side O chains O in O CDRs B-structure_element H3 B-structure_element and O L3 B-structure_element in O all O Fabs B-structure_element with O germline O H3 B-mutant - I-mutant 53 I-mutant , O which O indicates O loose O packing O of O the O variable B-structure_element domains I-structure_element . O All O those O molecules O are O relatively O unstable O , O as O is O reflected O in O their O low O Tms B-evidence . O This O is O the O first O report O of O a O systematic B-experimental_method structural I-experimental_method investigation I-experimental_method of O a O phage B-experimental_method germline I-experimental_method library I-experimental_method . O The O 16 O Fab B-structure_element structures B-evidence offer O a O unique O look O at O all O pairings O of O 4 O different O HCs B-structure_element ( O H1 B-mutant - I-mutant 69 I-mutant , O H3 B-mutant - I-mutant 23 I-mutant , O H3 B-mutant - I-mutant 53 I-mutant , O and O H5 B-mutant - I-mutant 51 I-mutant ) O and O 4 O different O LCs B-structure_element ( O L1 B-mutant - I-mutant 39 I-mutant , O L3 B-mutant - I-mutant 11 I-mutant , O L3 B-mutant - I-mutant 20 I-mutant and O L4 B-mutant - I-mutant 1 I-mutant ), O all O with O the O same O CDR B-structure_element H3 B-structure_element . O The O structural B-evidence data I-evidence set O taken O as O a O whole O provides O insight O into O how O the O backbone O conformations O of O the O CDRs B-structure_element of O a O specific O heavy O or O light B-structure_element chain I-structure_element vary O when O it O is O paired O with O 4 O different O light O or O heavy B-structure_element chains I-structure_element , O respectively O . O A O large O variability O in O the O CDR B-structure_element conformations O for O the O sets O of O HCs B-structure_element and O LCs B-structure_element is O observed O . O In O some O cases O the O CDR B-structure_element conformations O for O all O members O of O a O set O are O virtually O identical O , O for O others O subtle O changes O occur O in O a O few O members O of O a O set O , O and O in O some O cases O larger O deviations O are O observed O within O a O set O . O The O five O variants O that O crystallized B-experimental_method with O 2 O copies O of O the O Fab B-structure_element in O the O asymmetric O unit O serve O somewhat O as O controls O for O the O influence O of O crystal O packing O on O the O conformations O of O the O CDRs B-structure_element . O In O four O of O the O 5 O structures B-evidence the O CDR B-structure_element conformations O are O consistent O . O In O only O one O case O , O that O of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly ( O the O lowest O resolution O structure B-evidence ), O do O we O see O differences O in O the O conformations O of O the O 2 O copies O of O CDRs B-structure_element H1 B-structure_element and O L1 B-structure_element . O This O variability O is O likely O a O result O of O 2 O factors O , O crystal O packing O interactions O and O internal O instability O of O the O variable B-structure_element domain I-structure_element . O For O the O CDRs B-structure_element with O canonical O structures O , O the O largest O changes O in O conformation O occur O for O CDR B-structure_element H1 B-structure_element of O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 53 I-mutant . O The O other O 2 O HCs B-structure_element , O H3 B-mutant - I-mutant 23 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant , O have O canonical O structures O that O are O remarkably B-protein_state well I-protein_state conserved I-protein_state ( O Fig O . O 1 O ). O Of O the O 4 O HCs B-structure_element , O H1 B-mutant - I-mutant 69 I-mutant has O the O greatest O number O of O canonical O structure O assignments O ( O Table O 2 O ). O H1 B-mutant - I-mutant 69 I-mutant is O unique O in O having O a O pair O of O glycine B-residue_name residues O at O positions O 26 B-residue_number and O 27 B-residue_number , O which O provide O more O conformational B-protein_state freedom I-protein_state in O CDR B-structure_element H1 B-structure_element . O Besides O IGHV1 B-mutant - I-mutant 69 I-mutant , O only O the O germlines O of O the O VH4 B-structure_element family O possess O double O glycines B-residue_name in O CDR B-structure_element H1 B-structure_element , O and O it O will O be O interesting O to O see O if O they O are O also O conformationally B-protein_state unstable I-protein_state . O Having O all O 16 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairs O with O the O same O CDR B-structure_element H3 B-structure_element provides O some O insights O into O why O molecular O modeling O efforts O of O CDR B-structure_element H3 B-structure_element have O proven O so O difficult O . O As O mentioned O in O the O Results O section O , O this O data O set O is O composed O of O 21 O Fabs B-structure_element , O since O 5 O of O the O 16 O variants O have O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O For O the O 18 O Fabs B-structure_element with O complete O backbone O atoms O for O CDR B-structure_element H3 B-structure_element , O 10 O have O conformations O similar O to O that O of O the O parent O , O while O the O others O have O significantly O different O conformations O ( O Fig O . O 6 O ). O Thus O , O it O is O likely O that O the O CDR B-structure_element H3 B-structure_element conformation O is O dependent O upon O 2 O dominating O factors O : O 1 O ) O amino O acid O sequence O ; O and O 2 O ) O VH B-structure_element and O VL B-structure_element context O . O More O than O half O of O the O variants O retain O the O conformation O of O the O parent O despite O having O differences O in O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairing O . O This O subset O includes O 2 O structures B-evidence with O 2 O copies O of O the O Fab B-structure_element in O the O asymmetric O unit O , O all O of O which O are O nearly O identical O in O conformation O . O The O remaining O 8 O structures B-evidence exhibit O “ O non O - O parental O ” O conformations O , O indicating O that O the O VH B-structure_element and O VL B-structure_element context O can O also O be O a O dominating O factor O influencing O CDR B-structure_element H3 B-structure_element . O This O subset O also O has O 2 O structures B-evidence with O 2 O Fab B-structure_element copies O in O the O asymmetric O unit O . O Interestingly O , O as O described O earlier O , O these O 2 O pairs O differ O in O the O stem B-structure_element regions I-structure_element with O the O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly pair O in O the O ‘ O extended B-protein_state ’ O conformation O and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly pair O in O the O ‘ O kinked B-protein_state ’ O conformation O . O The O CDR B-structure_element H3 B-structure_element conformational B-experimental_method analysis I-experimental_method shows O that O , O for O each O set O of O variants O of O one O HC B-structure_element paired O with O the O 4 O different O LCs B-structure_element , O both O “ O parental O ” O and O “ O non O - O parental O ” O conformations O are O observed O . O The O same O variability O is O observed O for O the O sets O of O variants O composed O of O one O LC B-structure_element paired O with O each O of O the O 4 O HCs B-structure_element . O Thus O , O no O patterns O of O conformational O preference O for O a O particular O HC B-structure_element or O LC B-structure_element emerge O to O shed O any O direct O light O on O what O drives O the O conformational O differences O . O This O finding O supports O the O hypothesis O of O Weitzner O et O al O . O that O the O H3 B-structure_element conformation O is O controlled O both O by O its O sequence O and O its O environment O . O In O looking O at O a O possible O correlation O between O the O tilt B-evidence angle I-evidence and O the O conformation O of O CDR B-structure_element H3 B-structure_element , O no O clear O trends O are O observed O . O Two O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O have O the O largest O differences O in O the O tilt O angles O compared O to O other O variants O as O seen O in O Table O 3 O . O The O absolute O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly orientation B-evidence parameters I-evidence for O the O 2 O Fabs B-structure_element ( O Table O S2 O ) O show O significant O deviation B-evidence in O HL B-structure_element , O LC1 B-structure_element and O HC2 B-structure_element values O ( O 2 O - O 3 O standard O deviations O from O the O mean O ). O One O of O the O variants O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O the O CDR B-structure_element H3 B-structure_element conformation O similar O to O the O parent O , O but O the O other O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O is O different O . O As O noted O in O the O Results O section O , O the O 2 O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O are O outliers O in O terms O of O the O tilt B-evidence angle I-evidence ; O at O the O same O time O , O both O have O the O smallest O VH B-site : I-site VL I-site interface I-site . O These O smaller O interfaces B-site may O perhaps O translate O to O a O significant O deviation O in O how O VH B-structure_element is O oriented O relative O to O VL B-structure_element than O the O other O variants O . O These O deviations O from O the O other O variants O can O also O be O seen O to O some O extent O in O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly orientation O parameters O in O Table O S2 O , O as O well O as O in O the O smaller O number O of O residues O involved O in O the O VH B-site : I-site VL I-site interfaces I-site of O these O 2 O variants O ( O Fig O . O S5 O ). O These O differences O undoubtedly O influence O the O conformation O of O the O CDRs B-structure_element , O in O particular O CDR B-structure_element H1 B-structure_element ( O Fig O . O 1A O ) O and O CDR B-structure_element L1 B-structure_element ( O Fig O . O 3C O ), O especially O with O the O tandem O glycines B-residue_name and O multiple O serines B-residue_name present O , O respectively O . O Pairing O of O different O germlines O yields O antibodies B-protein_type with O various O degrees O of O stability O . O As O indicated O by O the O melting B-evidence temperatures I-evidence , O germlines O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 23 I-mutant for O HC B-structure_element and O germline O L1 B-mutant - I-mutant 39 I-mutant for O LC B-structure_element produce O more O stable B-protein_state Fabs B-structure_element compared O to O the O other O germlines O in O the O experimental O set O . O One O possible O explanation O of O the O clear O preference O of O LC B-structure_element germline O L1 B-mutant - I-mutant 39 I-mutant is O that O CDR B-structure_element L3 B-structure_element has O smaller O residues O at O positions O 91 B-residue_number and O 94 B-residue_number , O allowing O for O more O room O to O accommodate O CDR B-structure_element H3 B-structure_element . O Other O germlines O have O bulky O residues O , O Tyr B-residue_name , O Arg B-residue_name and O Trp B-residue_name , O at O these O positions O , O whereas O L1 B-mutant - I-mutant 39 I-mutant has O Ser B-residue_name and O Thr B-residue_name . O Various O combinations O of O germline O sequences O for O VL B-structure_element and O VH B-structure_element impose O certain O constraints O on O CDR B-structure_element H3 B-structure_element , O which O has O to O adapt O to O the O environment O . O A O more O compact B-protein_state CDR B-structure_element L3 B-structure_element may O be O beneficial O in O this O situation O . O At O the O other O end O of O the O stability O range O is O LC B-structure_element germline O L3 B-mutant - I-mutant 20 I-mutant , O which O yields O antibodies B-protein_type with O the O lowest O Tms B-evidence . O While O pairings O with O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant may O be O safely O called O a O mismatch O , O those O with O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 23 I-mutant have O Tms B-evidence about O 5 O - O 6 O ° O higher O . O Curiously O , O the O 2 O Fabs B-structure_element , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O deviate O markedly O in O their O tilt B-evidence angles I-evidence from O the O rest O of O the O panel O . O It O is O possible O that O by O adopting O extreme O tilt B-evidence angles I-evidence the O structure B-evidence modulates O CDR B-structure_element H3 B-structure_element and O its O environment O , O which O apparently O cannot O be O achieved O solely O by O conformational O rearrangement O of O the O CDR B-structure_element . O Note O that O most O of O the O VH B-site : I-site VL I-site interface I-site residues O are O invariant O ; O therefore O , O significant O change O of O the O tilt O angle O must O come O with O a O penalty O in O free O energy O . O Yet O , O for O the O 2 O antibodies B-protein_type , O the O total O gain O in O stability O merits O the O domain O repacking O . O Overall O , O the O stability O of O the O Fab B-structure_element , O as O measured O by O Tm B-evidence , O is O a O result O of O the O mutual O adjustment O of O the O HC B-structure_element and O LC B-structure_element variable B-structure_element domains I-structure_element and O adjustment O of O CDR B-structure_element H3 B-structure_element to O the O VH B-site : I-site VL I-site cleft I-site . O The O final O conformation O represents O an O energetic O minimum O ; O however O , O in O most O cases O it O is O very O shallow O , O so O that O a O single O mutation O can O cause O a O dramatic O rearrangement O of O the O structure B-evidence . O In O summary O , O the O analysis O of O this O structural B-experimental_method library I-experimental_method of O germline O variants O composed O of O all O pairs O of O 4 O HCs B-structure_element and O 4LCs O , O all O with O the O same O CDR B-structure_element H3 B-structure_element , O offers O some O unique O insights O into O antibody B-protein_type structure B-evidence and O how O pairing O and O sequence O may O influence O , O or O not O , O the O canonical O structures O of O the O L1 B-structure_element , O L2 B-structure_element , O L3 B-structure_element , O H1 B-structure_element and O H2 B-structure_element CDRs B-structure_element . O Comparison O of O the O CDR B-structure_element H3s B-structure_element reveals O a O large O set O of O variants O with O conformations O similar O to O the O parent O , O while O a O second O set O has O significant O conformational O variability O , O indicating O that O both O the O sequence O and O the O structural O context O define O the O CDR B-structure_element H3 B-structure_element conformation O . O Quite O unexpectedly O , O 2 O of O the O variants O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly , O have O the O ‘ O extended B-protein_state ’ O stem B-structure_element region I-structure_element differing O from O the O other O 14 O that O have O a O ‘ O kinked B-protein_state ’ O stem B-structure_element region I-structure_element . O These O data O reveal O the O difficulty O of O modeling O CDR B-structure_element H3 B-structure_element accurately O , O as O shown O again O in O Antibody O Modeling O Assessment O II O . O Furthermore O , O antibody B-protein_type CDRs B-structure_element , O H3 B-structure_element in O particular O , O may O go O through O conformational O changes O upon O binding O their O targets O , O making O structural O prediction O for O docking O purposes O an O even O more O difficult O task O . O Fortunately O , O for O most O applications O of O antibody B-protein_type modeling O , O such O as O engineering O affinity O and O biophysical O properties O , O an O accurate O CDR B-structure_element H3 B-structure_element structure B-evidence is O not O always O necessary O . O For O those O applications O where O accurate O CDR B-structure_element structures B-evidence are O essential O , O such O as O docking O , O the O results O in O this O work O demonstrate O the O importance O of O experimental O structures B-evidence . O With O the O recent O advances O in O expression B-experimental_method and I-experimental_method crystallization I-experimental_method methods I-experimental_method , O Fab B-structure_element structures B-evidence can O be O obtained O rapidly O . O The O set O of O 16 O germline O Fab B-structure_element structures B-evidence offers O a O unique O dataset O to O facilitate O software O development O for O antibody B-protein_type modeling O . O The O results O essentially O support O the O underlying O idea O of O canonical O structures B-evidence , O indicating O that O most O CDRs B-structure_element with O germline O sequences O tend O to O adopt O predefined O conformations O . O From O this O point O of O view O , O a O novel O approach O to O design O combinatorial O antibody B-protein_type libraries O would O be O to O cover O the O range O of O CDR B-structure_element conformations O that O may O not O necessarily O coincide O with O the O germline O usage O in O the O human B-species repertoire O . O This O would O insure O more O structural O diversity O , O leading O to O a O more O diverse O panel O of O antibodies B-protein_type that O would O bind O to O a O broad O spectrum O of O targets O . O An O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element recognizes O the O 3 B-site ′ I-site splice I-site site I-site signal O How O the O essential O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O the O polypyrimidine B-chemical ( O Py B-chemical ) O signals O of O the O major O class O of O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O remains O incompletely O understood O . O We O determined B-experimental_method four I-experimental_method structures I-experimental_method of O an O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical at O resolutions O between O 2 O . O 0 O and O 1 O . O 5 O Å O . O These O structures B-evidence together O with O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method reveal O unforeseen O roles O for O U2AF65 B-protein inter B-site - I-site domain I-site residues I-site in O recognizing O a O contiguous B-structure_element , O nine O - O nucleotide B-chemical Py B-chemical tract I-chemical . O The O U2AF65 B-protein linker B-structure_element residues O between O the O dual O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRMs B-structure_element ) O recognize O the O central O nucleotide B-chemical , O whereas O the O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element recognize O the O 3 B-site ′ I-site terminus I-site and O third B-residue_number nucleotide B-chemical . O Single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method experiments O suggest O that O conformational O selection O and O induced O fit O of O the O U2AF65 B-protein RRMs B-structure_element are O complementary O mechanisms O for O Py B-chemical - I-chemical tract I-chemical association O . O Altogether O , O these O results O advance O the O mechanistic O understanding O of O molecular O recognition O for O a O major O class O of O splice B-site site I-site signals O . O The O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O , O but O the O details O are O not O fully O understood O . O Here O , O the O authors O report O U2AF65 B-protein structures B-evidence and O single B-experimental_method molecule I-experimental_method FRET I-experimental_method that O reveal O mechanistic O insights O into O splice B-site site I-site recognition O . O The O differential O skipping O or O inclusion O of O alternatively O spliced O pre B-structure_element - I-structure_element mRNA I-structure_element regions I-structure_element is O a O major O source O of O diversity O for O nearly O all O human B-species gene O transcripts O . O The O splice B-site sites I-site are O marked O by O relatively O short B-structure_element consensus I-structure_element sequences I-structure_element and O are O regulated O by O additional O pre B-structure_element - I-structure_element mRNA I-structure_element motifs I-structure_element ( O reviewed O in O ref O .). O At O the O 3 B-site ′ I-site splice I-site site I-site of O the O major O intron O class O , O these O include O a O polypyrimidine B-chemical ( I-chemical Py I-chemical ) I-chemical tract I-chemical comprising O primarily O Us B-residue_name or O Cs B-residue_name , O which O is O preceded O by O a O branch B-site point I-site sequence I-site ( O BPS B-site ) O that O ultimately O serves O as O the O nucleophile O in O the O splicing O reaction O and O an O AG B-chemical - I-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site junction O . O Disease O - O causing O mutations O often O compromise O pre B-chemical - I-chemical mRNA I-chemical splicing O ( O reviewed O in O refs O ), O yet O a O priori O predictions O of O splice B-site sites I-site and O the O consequences O of O their O mutations O are O challenged O by O the O brevity O and O degeneracy O of O known O splice B-site site I-site sequences O . O High O - O resolution O structures B-evidence of O intact B-protein_state splicing B-complex_assembly factor I-complex_assembly – I-complex_assembly RNA I-complex_assembly complexes O would O offer O key O insights O regarding O the O juxtaposition O of O the O distinct O splice B-site site I-site consensus O sequences O and O their O relationship O to O disease O - O causing O point O mutations O . O The O early O - O stage O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein is O essential O for O viability O in O vertebrates B-taxonomy_domain and O other O model O organisms O ( O for O example O , O ref O .). O A O tightly O controlled O assembly B-complex_assembly among O U2AF65 B-protein , O the O pre B-chemical - I-chemical mRNA I-chemical , O and O partner O proteins O sequentially O identifies O the O 3 B-site ′ I-site splice I-site site I-site and O promotes O association O of O the O spliceosome B-complex_assembly , O which O ultimately O accomplishes O the O task O of O splicing O . O Initially O U2AF65 B-protein recognizes O the O Py B-chemical - I-chemical tract I-chemical splice B-site site I-site signal O . O In O turn O , O the O ternary B-complex_assembly complex I-complex_assembly of O U2AF65 B-protein with O SF1 B-protein and O U2AF35 B-protein identifies O the O surrounding O BPS B-site and O 3 B-site ′ I-site splice I-site site I-site junctions O . O Subsequently O U2AF65 B-protein recruits O the O U2 B-complex_assembly small I-complex_assembly nuclear I-complex_assembly ribonucleoprotein I-complex_assembly particle I-complex_assembly ( O snRNP B-complex_assembly ) O and O ultimately O dissociates O from O the O active B-protein_state spliceosome B-complex_assembly . O Biochemical B-experimental_method characterizations I-experimental_method of O U2AF65 B-protein demonstrated O that O tandem O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRM1 B-structure_element and O RRM2 B-structure_element ) O recognize O the O Py B-chemical tract I-chemical ( O Fig O . O 1a O ). O Milestone O crystal B-evidence structures I-evidence of O the O core B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O shortened B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O dU2AF651 B-mutant , I-mutant 2 I-mutant ) O detailed O a O subset O of O nucleotide O interactions O with O the O individual O U2AF65 B-protein RRMs B-structure_element . O A O subsequent O NMR B-experimental_method structure B-evidence characterized O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O of O the O minimal B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O linker B-structure_element of O natural B-protein_state length I-protein_state ( O U2AF651 B-mutant , I-mutant 2 I-mutant ), O yet O depended O on O the O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structures I-evidence for O RNA B-chemical interactions O and O an O ab O initio O model O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element conformation O . O As O such O , O the O molecular O mechanisms O for O Py B-chemical - I-chemical tract I-chemical recognition O by O the O intact B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element remained O unknown O . O Here O , O we O use O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O biochemical B-experimental_method studies I-experimental_method to O reveal O new O roles O in O Py B-chemical - I-chemical tract I-chemical recognition O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O key O residues O surrounding O the O core B-protein_state U2AF65 B-protein RRMs B-structure_element . O We O use O single B-experimental_method - I-experimental_method molecule I-experimental_method Förster I-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method ( O smFRET B-experimental_method ) O to O characterize O the O conformational B-evidence dynamics I-evidence of O this O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element during O Py B-chemical - I-chemical tract I-chemical recognition O . O Cognate O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O requires O RRM B-structure_element extensions I-structure_element The O RNA B-evidence affinity I-evidence of O the O minimal B-protein_state U2AF651 B-mutant , I-mutant 2 I-mutant domain O comprising O the O core B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element folds B-structure_element ( O U2AF651 B-mutant , I-mutant 2 I-mutant , O residues O 148 B-residue_range – I-residue_range 336 I-residue_range ) O is O relatively O weak O compared O with O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1a O , O b O ; O Supplementary O Fig O . O 1 O ). O Historically O , O this O difference O was O attributed O to O the O U2AF65 B-protein arginine B-structure_element – I-structure_element serine I-structure_element rich I-structure_element domain I-structure_element , O which O contacts O pre B-complex_assembly - I-complex_assembly mRNA I-complex_assembly – I-complex_assembly U2 I-complex_assembly snRNA I-complex_assembly duplexes I-complex_assembly outside O of O the O Py B-chemical tract I-chemical . O We O noticed O that O the O RNA B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2 I-mutant domain O was O greatly O enhanced O by O the O addition B-experimental_method of I-experimental_method seven I-experimental_method and I-experimental_method six I-experimental_method residues I-experimental_method at O the O respective O N O and O C O termini O of O the O minimal B-protein_state RRM1 B-structure_element and O RRM2 B-structure_element ( O U2AF651 B-mutant , I-mutant 2L I-mutant , O residues O 141 B-residue_range – I-residue_range 342 I-residue_range ; O Fig O . O 1a O ). O In O a O fluorescence B-experimental_method anisotropy I-experimental_method assay I-experimental_method for O binding O a O representative O Py B-chemical tract I-chemical derived O from O the O well O - O characterized O splice B-site site I-site of O the O adenovirus B-gene major I-gene late I-gene promoter I-gene ( O AdML B-gene ), O the O RNA B-evidence affinity I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant increased O by O 100 O - O fold O relative O to O U2AF651 B-mutant , I-mutant 2 I-mutant to O comparable O levels O as O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1b O ; O Supplementary O Fig O . O 1a O – O d O ). O Likewise O , O both O U2AF651 B-mutant , I-mutant 2L I-mutant and O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein showed O similar O sequence B-evidence specificity I-evidence for O U B-structure_element - I-structure_element rich I-structure_element stretches I-structure_element in O the O 5 B-site ′- I-site region I-site of O the O Py B-chemical tract I-chemical and O promiscuity O for O C B-structure_element - I-structure_element rich I-structure_element regions I-structure_element in O the O 3 B-site ′- I-site region I-site ( O Fig O . O 1c O , O Supplementary O Fig O . O 1e O – O h O ). O U2AF65 B-protein_state - I-protein_state bound I-protein_state Py B-chemical tract I-chemical comprises O nine O contiguous B-structure_element nucleotides B-chemical To O investigate O the O structural O basis O for O cognate O U2AF65 B-protein recognition O of O a O contiguous B-structure_element Py B-chemical tract I-chemical , O we O determined B-experimental_method four O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical ( O Fig O . O 2a O ; O Table O 1 O ). O By O sequential B-experimental_method boot I-experimental_method strapping I-experimental_method ( O Methods O ), O we O optimized O the O oligonucleotide B-chemical length O , O the O position O of O a O Br B-chemical - I-chemical dU I-chemical , O and O the O identity O of O the O terminal O nucleotide B-chemical ( O rU B-residue_name , O dU B-residue_name and O rC B-residue_name ) O to O achieve O full O views O of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state contiguous B-structure_element Py B-chemical tracts I-chemical at O up O to O 1 O . O 5 O Å O resolution O . O The O protein O and O oligonucleotide B-chemical conformations O are O nearly O identical O among O the O four O new O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence ( O Supplementary O Fig O . O 2a O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element associate O with O the O Py B-chemical tract I-chemical in O a O parallel B-protein_state , O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O ( O shown O for O representative O structure O iv O in O Fig O . O 2b O , O c O ; O Supplementary O Movie O 1 O ). O An O extended B-protein_state conformation I-protein_state of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element traverses O across O the O α B-structure_element - I-structure_element helical I-structure_element surface I-structure_element of O RRM1 B-structure_element and O the O central O β B-structure_element - I-structure_element strands I-structure_element of O RRM2 B-structure_element and O is O well O defined O in O the O electron B-evidence density I-evidence ( O Fig O . O 2b O ). O The O extensions B-structure_element at O the O N O terminus O of O RRM1 B-structure_element and O C O terminus O of O RRM2 B-structure_element adopt O well O - O ordered O α B-structure_element - I-structure_element helices I-structure_element . O Both O RRM1 B-structure_element / O RRM2 B-structure_element extensions B-structure_element and O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element of O U2AF651 B-mutant , I-mutant 2L I-mutant directly O recognize O the O bound B-protein_state oligonucleotide B-chemical . O We O compare O the O global O conformation O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence with O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structure I-evidence and O U2AF651 B-mutant , I-mutant 2 I-mutant NMR B-experimental_method structure B-evidence in O the O Supplementary O Discussion O and O Supplementary O Fig O . O 2 O . O The O discovery O of O nine O U2AF65 B-site - I-site binding I-site sites I-site for O contiguous B-structure_element Py B-chemical - I-chemical tract I-chemical nucleotides I-chemical was O unexpected O . O Based O on O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence , O we O originally O hypothesized O that O the O U2AF65 B-protein RRMs B-structure_element would O bind O the O minimal B-protein_state seven O nucleotides B-chemical observed O in O these O structures B-evidence . O Surprisingly O , O the O RRM2 B-structure_element extension I-structure_element / O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element contribute O new O central O nucleotide B-site - I-site binding I-site sites I-site near O the O RRM1 B-site / I-site RRM2 I-site junction I-site and O the O RRM1 B-structure_element extension I-structure_element recognizes O the O 3 O ′- O terminal O nucleotide B-chemical ( O Fig O . O 2c O ; O Supplementary O Movie O 1 O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence characterize O ribose B-chemical ( O r B-chemical ) O nucleotides B-chemical at O all O of O the O binding B-site sites I-site except O the O seventh B-residue_number and O eighth B-residue_number deoxy B-chemical -( I-chemical d I-chemical ) I-chemical U I-chemical , O which O are O likely O to O lack O 2 O ′- O hydroxyl O contacts O based O on O the O RNA B-protein_state - I-protein_state bound I-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence . O Qualitatively O , O a O subset O of O the O U2AF651 B-site , I-site 2L I-site - I-site nucleotide I-site - I-site binding I-site sites I-site ( O sites B-site 1 I-site – I-site 3 I-site and O 7 B-site – I-site 9 I-site ) O share O similar O locations O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Figs O 2c O , O d O and O 3 O ). O Yet O , O only O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O at O sites B-site 1 I-site and I-site 7 I-site are O nearly O identical O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Fig O . O 3a O , O f O ). O In O striking O departures O from O prior O partial O views O , O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O three O unanticipated O nucleotide B-site - I-site binding I-site sites I-site at O the O centre O of O the O Py B-chemical tract I-chemical , O as O well O as O numerous O new O interactions O that O underlie O cognate O recognition O of O the O Py B-chemical tract I-chemical ( O Fig O . O 3a O – O h O ). O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element interacts O with O the O Py B-chemical tract I-chemical The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM2 B-structure_element , O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element concomitantly O recognize O the O three O central O nucleotides B-chemical of O the O Py B-chemical tract I-chemical , O which O are O likely O to O coordinate O the O conformational O arrangement O of O these O disparate O portions O of O the O protein O . O Residues O in O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element comprise O a O centrally O located O binding B-site site I-site for O the O fifth B-residue_number nucleotide B-chemical on O the O RRM2 B-site surface I-site and O abutting O the O RRM1 B-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3d O ). O The O backbone O amide O of O the O linker B-structure_element V254 B-residue_name_number and O the O carbonyl O of O T252 B-residue_name_number engage O in O hydrogen O bonds O with O the O rU5 B-residue_name_number - O O4 O and O - O N3H O atoms O . O In O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM1 B-structure_element , O the O side O chains O of O K225 B-residue_name_number and O R227 B-residue_name_number donate O additional O hydrogen O bonds O to O the O rU5 B-residue_name_number - O O2 O lone O pair O electrons O . O The O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element also O participates O in O the O preceding O rU4 B-site - I-site binding I-site site I-site , O where O the O V254 B-residue_name_number backbone O carbonyl O and O D256 B-residue_name_number carboxylate O position O the O K260 B-residue_name_number side O chain O to O hydrogen O bond O with O the O rU4 B-residue_name_number - O O4 O ( O Fig O . O 3c O ). O Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O At O the O opposite O side O of O the O central O fifth B-residue_number nucleotide B-chemical , O the O sixth B-residue_number rU6 B-residue_name_number nucleotide B-chemical is O located O at O the O inter B-site - I-site RRM1 I-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3e O ; O Supplementary O Movie O 1 O ). O This O nucleotide B-chemical twists O to O face O away O from O the O U2AF65 B-protein linker B-structure_element and O instead O inserts O the O rU6 B-residue_name_number - O uracil B-residue_name into O a O sandwich O between O the O β2 B-structure_element / I-structure_element β3 I-structure_element loops I-structure_element of O RRM1 B-structure_element and O RRM2 B-structure_element . O The O rU6 B-residue_name_number base O edge O is O relatively O solvent B-protein_state exposed I-protein_state ; O accordingly O , O the O rU6 B-residue_name_number hydrogen O bonds O with O U2AF65 B-protein are O water B-chemical mediated O apart O from O a O single O direct O interaction O by O the O RRM1 B-structure_element - O N196 B-residue_name_number side O chain O . O We O tested B-experimental_method the I-experimental_method contribution I-experimental_method of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O the O new O central O nucleotide B-chemical to O Py B-evidence - I-evidence tract I-evidence affinity I-evidence ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4a O , O b O ). O Mutagenesis B-experimental_method of O either O V254 B-residue_name_number in O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element to O proline B-residue_name or O RRM1 B-structure_element – O R227 B-residue_name_number to O alanine B-residue_name , O which O remove O the O hydrogen O bond O with O the O fifth B-residue_number uracil B-residue_name - O O4 O or O - O O2 O , O reduced O the O affinities B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant for O the O representative O AdML B-gene Py B-chemical tract I-chemical by O four O - O or O five O - O fold O , O respectively O . O The O energetic O penalties O due O to O these O mutations O ( O ΔΔG B-evidence 0 O . O 8 O – O 0 O . O 9 O kcal O mol O − O 1 O ) O are O consistent O with O the O loss O of O each O hydrogen O bond O with O the O rU5 B-residue_name_number base O and O support O the O relevance O of O the O central O nucleotide O interactions O observed O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence . O U2AF65 B-protein RRM B-structure_element extensions I-structure_element interact O with O the O Py B-chemical tract I-chemical The O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element of O the O U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element directly O contact O the O bound B-protein_state Py B-chemical tract I-chemical . O Rather O than O interacting O with O a O new O 5 O ′- O terminal O nucleotide B-chemical as O we O had O hypothesized O , O the O C O - O terminal O α B-structure_element - I-structure_element helix I-structure_element of O RRM2 B-structure_element instead O folds O across O one O surface O of O rU3 B-residue_name_number in O the O third B-site binding I-site site I-site ( O Fig O . O 3b O ). O There O , O a O salt O bridge O between O the O K340 B-residue_name_number side O chain O and O nucleotide B-chemical phosphate O , O as O well O as O G338 B-residue_name_number - O base O stacking O and O a O hydrogen O bond O between O the O backbone O amide O of O G338 B-residue_name_number and O the O rU3 B-residue_name_number - O O4 O , O secure O the O RRM2 B-structure_element extension I-structure_element . O Indirectly O , O the O additional O contacts O with O the O third B-residue_number nucleotide B-chemical shift O the O rU2 B-residue_name_number nucleotide B-chemical in O the O second B-site binding I-site site I-site closer O to O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM2 B-structure_element . O Consequently O , O the O U2AF651 B-protein_state , I-protein_state 2L I-protein_state - I-protein_state bound I-protein_state rU2 B-residue_name_number - O O4 O and O - O N3H O form O dual O hydrogen O bonds O with O the O K329 B-residue_name_number backbone O atoms O ( O Fig O . O 3a O ), O rather O than O a O single O hydrogen O bond O with O the O K329 B-residue_name_number side O chain O as O in O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence ( O Supplementary O Fig O . O 3b O ). O At O the O N O terminus O , O the O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O U2AF65 B-protein RRM1 B-structure_element positions O the O Q147 B-residue_name_number side O chain O to O bridge O the O eighth B-residue_number and O ninth B-residue_number nucleotides B-chemical at O the O 3 B-site ′ I-site terminus I-site of O the O Py B-chemical tract I-chemical ( O Fig O . O 3f O – O h O ). O The O Q147 B-residue_name_number residue O participates O in O hydrogen O bonds O with O the O - O N3H O of O the O eighth B-residue_number uracil B-residue_name and O - O O2 O of O the O ninth B-residue_number pyrimidine B-chemical . O The O adjacent O R146 B-residue_name_number guanidinium O group O donates O hydrogen O bonds O to O the O 3 O ′- O terminal O ribose B-chemical - O O2 O ′ O and O O3 O ′ O atoms O , O where O it O could O form O a O salt O bridge O with O a O phospho O - O diester O group O in O the O context O of O a O longer O pre B-chemical - I-chemical mRNA I-chemical . O Consistent O with O loss O of O a O hydrogen O bond O with O the O ninth B-residue_number pyrimidine B-chemical - O O2 O ( O ΔΔG B-evidence 1 O . O 0 O kcal O mol O − O 1 O ), O mutation B-experimental_method of O the O Q147 B-residue_name_number to O an O alanine B-residue_name reduced O U2AF651 B-evidence , I-evidence 2L I-evidence affinity I-evidence for O the O AdML B-gene Py B-chemical tract I-chemical by O five O - O fold O ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4c O ). O We O compare B-experimental_method U2AF65 B-protein interactions O with O uracil B-residue_name relative O to O cytosine B-residue_name pyrimidines B-chemical at O the O ninth B-site binding I-site site I-site in O Fig O . O 3g O , O h O and O the O Supplementary O Discussion O . O Versatile O primary O sequence O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O that O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element mediates O an O extensive B-site interface I-site with O the O second O α B-structure_element - I-structure_element helix I-structure_element of O RRM1 B-structure_element , O the O β2 B-structure_element / I-structure_element β3 I-structure_element strands I-structure_element of O RRM2 B-structure_element and O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O RRM1 B-structure_element . O Altogether O , O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element residues O ( O R228 B-residue_range – I-residue_range K260 I-residue_range ) O bury O 2 O , O 800 O Å2 O of O surface O area O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant holo B-protein_state - I-protein_state protein I-protein_state , O suggestive O of O a O cognate B-site interface I-site compared O with O 1 O , O 900 O Å2 O for O a O typical O protein O – O protein O complex O . O The O path O of O the O linker B-structure_element initiates O at O P229 B-residue_name_number following O the O core B-protein_state RRM1 B-structure_element β B-structure_element - I-structure_element strand I-structure_element , O in O a O kink B-structure_element that O is O positioned O by O intra O - O molecular O stacking O among O the O consecutive O R228 B-residue_name_number , O Y232 B-residue_name_number and O P234 B-residue_name_number side O chains O ( O Fig O . O 4a O , O lower O right O ). O A O second B-structure_element kink I-structure_element at O P236 B-residue_name_number , O coupled O with O respective O packing O of O the O L235 B-residue_name_number and O M238 B-residue_name_number side O chains O on O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element RRM1 I-structure_element extension I-structure_element and O the O core B-protein_state RRM1 B-structure_element α2 B-structure_element - I-structure_element helix I-structure_element , O reverses O the O direction O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element towards O the O RRM1 B-site / I-site RRM2 I-site interface I-site and O away O from O the O RNA B-site - I-site binding I-site site I-site . O In O the O neighbouring O apical O region O of O the O linker B-structure_element , O the O V244 B-residue_name_number and O V246 B-residue_name_number side O chains O pack O in O a O hydrophobic B-site pocket I-site between O two O α B-structure_element - I-structure_element helices I-structure_element of O the O core B-protein_state RRM1 B-structure_element . O The O adjacent O V249 B-residue_name_number and O V250 B-residue_name_number are O notable O for O their O respective O interactions O that O connect O RRM1 B-structure_element and O RRM2 B-structure_element at O this O distal O interface B-site from O the O RNA B-site - I-site binding I-site site I-site ( O Fig O . O 4a O , O top O ). O A O third B-structure_element kink I-structure_element stacks O P247 B-residue_name_number and O G248 B-residue_name_number with O Y245 B-residue_name_number and O re O - O orients O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O linker B-structure_element towards O the O RRM2 B-structure_element and O bound B-protein_state RNA B-chemical . O At O the O RNA B-chemical surface O , O the O key O V254 B-residue_name_number that O recognizes O the O fifth B-residue_number uracil B-residue_name is O secured O via O hydrophobic O contacts O between O its O side O chain O and O the O β B-structure_element - I-structure_element sheet I-structure_element surface I-structure_element of O RRM2 B-structure_element , O chiefly O the O consensus O RNP1 B-structure_element - O F304 B-residue_name_number residue O that O stacks O with O the O fourth B-residue_number uracil B-residue_name ( O Fig O . O 4a O , O lower O left O ). O Few O direct O contacts O are O made O between O the O remaining O residues O of O the O linker B-structure_element and O the O U2AF65 B-protein RRM2 B-structure_element ; O instead O , O the O C O - O terminal O conformation O of O the O linker B-structure_element appears O primarily O RNA B-chemical mediated O ( O Fig O . O 3c O , O d O ). O We O investigated O whether O the O observed O contacts O between O the O RRMs B-structure_element and O linker B-structure_element were O critical O for O RNA O binding O by O structure B-experimental_method - I-experimental_method guided I-experimental_method mutagenesis I-experimental_method ( O Fig O . O 4b O ). O We O titrated B-experimental_method these O mutant B-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant proteins O into O fluorescein B-chemical - O labelled O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical and O fit O the O fluorescence B-evidence anisotropy I-evidence changes I-evidence to O obtain O the O apparent O equilibrium B-evidence affinities I-evidence ( O Supplementary O Fig O . O 4d O – O h O ). O We O introduced O glycine B-residue_name substitutions B-experimental_method to O maximally O reduce O the O buried O surface O area O without O directly O interfering O with O its O hydrogen O bonds O between O backbone O atoms O and O the O base O . O First O , O we O replaced B-experimental_method V249 B-residue_name_number and O V250 B-residue_name_number at O the O RRM1 B-site / I-site RRM2 I-site interface I-site and O V254 B-residue_name_number at O the O bound B-protein_state RNA B-chemical site O with O glycine B-residue_name ( O 3Gly B-mutant ). O However O , O the O resulting O decrease O in O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Gly I-mutant mutant B-protein_state relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein was O not O significant O ( O Fig O . O 4b O ). O In O parallel O , O we O replaced B-experimental_method five O linker B-structure_element residues I-structure_element ( O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number and O P255 B-residue_name_number ) O at O the O fifth B-site nucleotide I-site - I-site binding I-site site I-site with O glycines B-residue_name ( O 5Gly B-mutant ) O and O also O found O that O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 5Gly I-mutant mutant B-protein_state likewise O decreased O only O slightly O relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein . O A O more O conservative B-experimental_method substitution I-experimental_method of O these O five O residues O ( O 251 B-residue_range – I-residue_range 255 I-residue_range ) O with O an O unrelated O sequence O capable O of O backbone O - O mediated O hydrogen O bonds O ( O STVVP B-mutant > I-mutant NLALA I-mutant ) O confirmed O the O subtle O impact O of O this O versatile O inter B-structure_element - I-structure_element RRM I-structure_element sequence I-structure_element on O affinity B-evidence for O the O AdML B-gene Py B-chemical tract I-chemical . O Finally O , O to O ensure O that O these O selective O mutations O were O sufficient O to O disrupt O the O linker B-structure_element / O RRM B-structure_element contacts O , O we O substituted B-experimental_method glycine B-residue_name for O the O majority O of O buried O hydrophobic O residues O in O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O including O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number , O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number ; O called O 12Gly B-mutant ). O Despite O 12 B-experimental_method concurrent I-experimental_method mutations I-experimental_method , O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 12Gly I-mutant variant B-protein_state was O reduced O by O only O three O - O fold O relative O to O the O unmodified B-protein_state protein B-protein ( O Fig O . O 4b O ), O which O is O less O than O the O penalty O of O the O V254P B-mutant mutation O that O disrupts O the O rU5 B-residue_name_number hydrogen O bond O ( O Fig O . O 3d O , O i O ). O To O test O the O interplay O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element with O its O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element , O we O constructed B-experimental_method an O internal O linker B-experimental_method deletion I-experimental_method of O 20 B-residue_range - I-residue_range residues I-residue_range within O the O extended B-protein_state RNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O dU2AF651 B-mutant , I-mutant 2L I-mutant ). O We O found O that O the O affinity B-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant for O the O AdML B-gene RNA B-chemical was O significantly O reduced O relative O to O U2AF651 B-mutant , I-mutant 2L I-mutant ( O four O - O fold O , O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4i O ). O Yet O , O it O is O well O known O that O the O linker B-experimental_method deletion I-experimental_method in O the O context O of O the O minimal B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element boundaries O has O no O detectable O effect O on O the O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2 I-mutant ( O refs O ; O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4j O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence suggest O that O an O extended B-protein_state conformation I-protein_state of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element would O suffice O to O connect O the O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element C O terminus O to O the O N O terminus O of O RRM2 B-structure_element ( O 24 O Å O distance O between O U2AF651 B-mutant , I-mutant 2L I-mutant R227 B-residue_name_number - O Cα O – O H259 B-residue_name_number - O Cα O atoms O ), O which O agrees O with O the O greater O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant dual B-protein_state RRMs B-structure_element compared O with O the O individual B-protein_state U2AF65 B-protein RRMs B-structure_element . O However O , O stretching O of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2L I-mutant linker B-structure_element to O connect O the O RRM B-structure_element termini I-structure_element is O expected O to O disrupt O its O nucleotide O interactions O . O Likewise O , O deletion B-experimental_method of O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element in O the O shortened B-protein_state constructs O would O remove O packing O interactions O that O position O the O linker B-structure_element in O a O kinked B-structure_element turn I-structure_element following O P229 B-residue_name_number ( O Fig O . O 4a O ), O consistent O with O the O lower O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant , O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2L I-mutant . O To O further O test O cooperation O among O the O U2AF65 B-protein RRM B-structure_element extensions I-structure_element and O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element for O RNA O recognition O , O we O tested O the O impact O of O a O triple O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method ( O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant ) O for O RNA O binding O ( O Fig O . O 4b O ; O Supplementary O Fig O . O 4d O ). O Notably O , O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method reduced O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant protein O by O 30 O - O fold O more O than O would O be O expected O based O on O simple O addition O of O the O ΔΔG B-evidence ' O s O for O the O single O mutations O . O This O difference O indicates O that O the O linearly B-protein_state distant I-protein_state regions B-structure_element of O the O U2AF65 B-protein primary O sequence O , O including O Q147 B-residue_name_number in O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element and O R227 B-residue_name_number / O V254 B-residue_name_number in O the O N O -/ O C O - O terminal O linker B-structure_element regions I-structure_element at O the O fifth B-site nucleotide I-site site I-site , O cooperatively O recognize O the O Py B-chemical tract I-chemical . O Altogether O , O we O conclude O that O the O conformation O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element is O key O for O recognizing O RNA B-chemical and O is O positioned O by O the O RRM B-structure_element extension I-structure_element but O otherwise O relatively O independent O of O the O side O chain O composition O . O The O non O - O additive O effects O of O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant triple B-experimental_method mutation I-experimental_method , O coupled O with O the O context O - O dependent O penalties O of O an O internal O U2AF65 B-protein linker B-experimental_method deletion I-experimental_method , O highlights O the O importance O of O the O structural O interplay O among O the O U2AF65 B-protein linker B-structure_element and O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element flanking O the O core B-protein_state RRMs B-structure_element . O Importance O of O U2AF65 B-complex_assembly – I-complex_assembly RNA I-complex_assembly contacts O for O pre B-chemical - I-chemical mRNA I-chemical splicing O We O proceeded O to O test O the O importance O of O new O U2AF65 B-complex_assembly – I-complex_assembly Py I-complex_assembly - I-complex_assembly tract I-complex_assembly interactions O for O splicing O of O a O model O pre B-chemical - I-chemical mRNA I-chemical substrate O in O a O human B-species cell O line O ( O Fig O . O 5 O ; O Supplementary O Fig O . O 5 O ). O As O a O representative O splicing O substrate O , O we O utilized O a O well O - O characterized O minigene B-chemical splicing I-chemical reporter I-chemical ( O called O pyPY B-chemical ) O comprising O a O weak O ( O that O is O , O degenerate O , O py B-chemical ) O and O strong O ( O that O is O , O U B-structure_element - I-structure_element rich I-structure_element , O PY B-chemical ) O polypyrimidine B-chemical tracts I-chemical preceding O two O alternative O splice B-site sites I-site ( O Fig O . O 5a O ). O When O transfected B-experimental_method into O HEK293T O cells O containing O only O endogenous B-protein_state U2AF65 B-protein , O the O PY B-site splice I-site site I-site is O used O and O the O remaining O transcript O remains O unspliced O . O When O co B-experimental_method - I-experimental_method transfected I-experimental_method with O an O expression B-experimental_method plasmid I-experimental_method for O wild B-protein_state - I-protein_state type I-protein_state U2AF65 B-protein , O use O of O the O py B-site splice I-site site I-site significantly O increases O ( O by O more O than O five O - O fold O ) O and O as O documented O converts O a O fraction O of O the O unspliced O to O spliced O transcript O . O The O strong O PY B-site splice I-site site I-site is O insensitive O to O added O U2AF65 B-protein , O suggesting O that O endogenous B-protein_state U2AF65 B-protein levels O are O sufficient O to O saturate O this O site O ( O Supplementary O Fig O . O 5b O ). O We O introduced O the O triple B-experimental_method mutation I-experimental_method ( O V254P B-mutant / O R227A B-mutant / O Q147A B-mutant ) O that O significantly O reduced O U2AF651 B-mutant , I-mutant 2L I-mutant association O with O the O Py B-chemical tract I-chemical ( O Fig O . O 4b O ) O in O the O context O of O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O U2AF65 B-mutant - I-mutant 3Mut I-mutant ). O Co B-experimental_method - I-experimental_method transfection I-experimental_method of O the O U2AF65 B-mutant - I-mutant 3Mut I-mutant with O the O pyPY B-chemical splicing O substrate O significantly O reduced O splicing O of O the O weak O ‘ B-site py I-site ' I-site splice I-site site I-site relative O to O wild B-protein_state - I-protein_state type I-protein_state U2AF65 B-protein ( O Fig O . O 5b O , O c O ). O We O conclude O that O the O Py B-chemical - I-chemical tract I-chemical interactions O with O these O residues O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM B-structure_element extensions I-structure_element are O important O for O splicing O as O well O as O for O binding O a O representative O of O the O major B-structure_element U2 I-structure_element - I-structure_element class I-structure_element of I-structure_element splice I-structure_element sites I-structure_element . O Sparse O inter B-structure_element - I-structure_element RRM I-structure_element contacts O underlie O apo B-protein_state - O U2AF65 B-protein dynamics O The O direct O interface B-site between O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element is O minor O , O burying O 265 O Å2 O of O solvent O accessible O surface O area O compared O with O 570 O Å2 O on O average O for O a O crystal O packing O interface O . O A O handful O of O inter B-structure_element - I-structure_element RRM I-structure_element hydrogen O bonds O are O apparent O between O the O side O chains O of O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O K292 B-residue_name_number , O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O D272 B-residue_name_number as O well O as O the O backbone O atoms O of O RRM1 B-structure_element - O G221 B-residue_name_number and O RRM2 B-structure_element - O D273 B-residue_name_number ( O Fig O . O 4c O ). O This O minor O U2AF65 B-protein RRM1 B-site / I-site RRM2 I-site interface I-site , O coupled O with O the O versatile O sequence O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O highlighted O the O potential O role O for O inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O U2AF65 B-protein - O splice O site O recognition O . O Paramagnetic B-experimental_method resonance I-experimental_method enhancement I-experimental_method ( O PRE B-experimental_method ) O measurements O previously O had O suggested O a O predominant O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state , O or O ‘ O closed B-protein_state ' O conformation O of O the O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant RRM1 B-structure_element and O RRM2 B-structure_element in O equilibrium O with O a O minor O ‘ O open B-protein_state ' O conformation O resembling O the O RNA B-protein_state - I-protein_state bound I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element arrangement O . O Yet O , O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O data O indicated O that O both O the O minimal B-protein_state U2AF651 B-mutant , I-mutant 2 I-mutant and O longer O constructs O comprise O a O highly B-protein_state diverse I-protein_state continuum I-protein_state of I-protein_state conformations I-protein_state in O the O absence B-protein_state of I-protein_state RNA B-chemical that O includes O the O ‘ O closed B-protein_state ' O and O ‘ O open B-protein_state ' O conformations O . O To O complement O the O static O portraits O of O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence that O we O had O determined O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O we O used O smFRET B-experimental_method to O characterize O the O probability B-evidence distribution I-evidence functions I-evidence and O time O dependence O of O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O solution O . O The O inter B-structure_element - I-structure_element RRM I-structure_element dynamics O of O U2AF65 B-protein were O followed O using O FRET B-experimental_method between O fluorophores B-chemical attached O to O RRM1 B-structure_element and O RRM2 B-structure_element ( O Fig O . O 6a O , O b O , O Methods O ). O The O positions O of O single O cysteine B-residue_name mutations B-experimental_method for O fluorophore B-chemical attachment O ( O A181C B-mutant in O RRM1 B-structure_element and O Q324C B-mutant in O RRM2 B-structure_element ) O were O chosen O based O on O inspection O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence and O the O ‘ O closed B-protein_state ' O model O of O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant . O Criteria O included O ( O i O ) O residue O locations O that O are O distant O from O and O hence O not O expected O to O interfere O with O the O RRM B-complex_assembly / I-complex_assembly RNA I-complex_assembly or O inter B-site - I-site RRM I-site interfaces I-site , O ( O ii O ) O inter O - O dye O distances O ( O 50 O Å O for O U2AF651 B-complex_assembly , I-complex_assembly 2L I-complex_assembly – I-complex_assembly Py I-complex_assembly tract I-complex_assembly and O 30 O Å O for O the O closed B-protein_state apo B-protein_state - O model O ) O that O are O expected O to O be O near O the O Förster B-experimental_method radius I-experimental_method ( I-experimental_method Ro I-experimental_method ) I-experimental_method for O the O Cy3 B-chemical / O Cy5 B-chemical pair O ( O 56 O Å O ), O where O changes O in O the O efficiency O of O energy O transfer O are O most O sensitive O to O distance O , O and O ( O iii O ) O FRET B-evidence efficiencies I-evidence that O are O calculated O to O be O significantly O greater O for O the O ‘ O closed B-protein_state ' O apo B-protein_state - O model O as O opposed O to O the O ‘ O open B-protein_state ' O RNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence ( O by O ∼ O 30 O %). O The O FRET B-evidence efficiencies I-evidence of O either O of O these O structurally O characterized O conformations O also O are O expected O to O be O significantly O greater O than O elongated B-protein_state U2AF65 B-protein conformations O that O lack B-protein_state inter O - O RRM B-structure_element contacts O . O Double O - O cysteine B-residue_name variant B-protein_state of O U2AF651 B-mutant , I-mutant 2 I-mutant was O modified B-experimental_method with O equimolar O amount O of O Cy3 B-chemical and O Cy5 B-chemical . O Only O traces B-evidence that O showed O single O photobleaching O events O for O both O donor O and O acceptor O dyes O and O anti O - O correlated O changes O in O acceptor O and O donor O fluorescence O were O included O in O smFRET B-experimental_method data O analysis O . O We O first O characterized O the O conformational O dynamics O spectrum O of O U2AF65 B-protein in O the O absence B-protein_state of I-protein_state RNA B-chemical ( O Fig O . O 6c O , O d O ; O Supplementary O Fig O . O 7a O , O b O ). O The O double O - O labelled O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O tethered B-protein_state to O a O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical resin I-chemical . O Virtually O no O fluorescent O molecules O were O detected O in O the O absence B-protein_state of I-protein_state biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical , O which O demonstrates O the O absence B-protein_state of I-protein_state detectable O non O - O specific O binding O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant to O the O slide O . O The O FRET B-evidence distribution I-evidence histogram I-evidence built O from O more O than O a O thousand O traces B-evidence of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state ligand B-chemical showed O an O extremely O broad O distribution O centred O at O a O FRET B-evidence efficiency I-evidence of O ∼ O 0 O . O 4 O ( O Fig O . O 6d O ). O Approximately O 40 O % O of O the O smFRET B-experimental_method traces B-evidence showed O apparent O transitions O between O multiple O FRET B-evidence values I-evidence ( O for O example O , O Fig O . O 6c O ). O Despite O the O large O width O of O the O FRET B-evidence - I-evidence distribution I-evidence histogram I-evidence , O the O majority O ( O 80 O %) O of O traces B-evidence that O showed O fluctuations O sampled O only O two O distinct O FRET B-evidence states I-evidence ( O for O example O , O Supplementary O Fig O . O 7a O ). O Approximately O 70 O % O of O observed O fluctuations O were O interchanges O between O the O ∼ O 0 O . O 65 O and O ∼ O 0 O . O 45 O FRET B-evidence values I-evidence ( O Supplementary O Fig O . O 7b O ). O We O cannot O exclude O a O possibility O that O tethering O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O microscope O slide O introduces O structural O heterogeneity O into O the O protein O and O , O thus O , O contributes O to O the O breadth O of O the O FRET B-evidence distribution I-evidence histogram I-evidence . O However O , O the O presence O of O repetitive O fluctuations O between O particular O FRET B-evidence values I-evidence supports O the O hypothesis O that O RNA B-protein_state - I-protein_state free I-protein_state U2AF65 B-protein samples O several O distinct O conformations O . O This O result O is O consistent O with O the O broad O ensembles O of O extended B-protein_state solution O conformations O that O best O fit O the O SAXS B-experimental_method data O collected O for O U2AF651 B-mutant , I-mutant 2 I-mutant as O well O as O for O a O longer O construct O ( O residues O 136 B-residue_range – I-residue_range 347 I-residue_range ). O We O conclude O that O weak O contacts O between O the O U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element permit O dissociation O of O these O RRMs B-structure_element in O the O absence B-protein_state of I-protein_state RNA B-chemical . O U2AF65 B-protein conformational O selection O and O induced O fit O by O bound B-protein_state RNA B-chemical We O next O used O smFRET B-experimental_method to O probe O the O conformational O selection O of O distinct O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O following O association O of O U2AF65 B-protein with O the O AdML B-gene Py B-chemical - I-chemical tract I-chemical prototype O . O Addition O of O the O AdML B-gene RNA B-chemical to O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O selectively O increases O a O fraction O of O molecules O showing O an O ∼ O 0 O . O 45 O apparent O FRET B-evidence efficiency I-evidence , O suggesting O that O RNA O binding O stabilizes O a O single O conformation O , O which O corresponds O to O the O 0 O . O 45 O FRET B-evidence state I-evidence ( O Fig O . O 6e O , O f O ). O To O assess O the O possible O contributions O of O RNA B-protein_state - I-protein_state free I-protein_state conformations O of O U2AF65 B-protein and O / O or O structural O heterogeneity O introduced O by O tethering B-experimental_method of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O slide O to O the O observed O distribution B-evidence of I-evidence FRET I-evidence values I-evidence , O we O reversed B-experimental_method the I-experimental_method immobilization I-experimental_method scheme I-experimental_method . O We O tethered B-protein_state the O AdML B-gene RNA B-chemical to O the O slide O via O a O biotinylated B-chemical oligonucleotide I-chemical DNA I-chemical handle O and O added B-experimental_method U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state biotin B-chemical - I-chemical NTA I-chemical resin I-chemical ( O Fig O . O 6g O , O h O ; O Supplementary O Fig O . O 7c O – O g O ). O A O 0 O . O 45 O FRET B-evidence value I-evidence was O again O predominant O , O indicating O a O similar O RNA B-protein_state - I-protein_state bound I-protein_state conformation O and O structural O dynamics O for O the O untethered B-protein_state and O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ). O We O examined O the O effect O on O U2AF651 B-mutant , I-mutant 2L I-mutant conformations O of O purine B-experimental_method interruptions I-experimental_method that O often O occur O in O relatively O degenerate O human B-species Py B-chemical tracts I-chemical . O We O introduced B-experimental_method an O rArA B-chemical purine B-chemical dinucleotide I-chemical within O a O variant O of O the O AdML B-gene Py B-chemical tract I-chemical ( O detailed O in O Methods O ). O Insertion B-experimental_method of O adenine B-chemical nucleotides I-chemical decreased O binding B-evidence affinity I-evidence of O U2AF65 B-protein to O RNA B-chemical by O approximately O five O - O fold O . O Nevertheless O , O in O the O presence O of O saturating O concentrations O of O rArA B-chemical - O interrupted O RNA B-chemical slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O showed O a O prevalent O ∼ O 0 O . O 45 O apparent O FRET B-evidence value I-evidence ( O Fig O . O 6i O , O j O ), O which O was O also O predominant O in O the O presence O of O continuous O Py B-chemical tract I-chemical . O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O The O inter B-evidence - I-evidence fluorophore I-evidence distances I-evidence derived O from O the O observed O 0 O . O 45 O FRET B-evidence state I-evidence agree O with O the O distances O between O the O α O - O carbon O atoms O of O the O respective O residues O in O the O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical . O It O should O be O noted O that O inferring O distances O from O FRET B-evidence values I-evidence is O prone O to O significant O error O because O of O uncertainties O in O the O determination O of O fluorophore O orientation O factor O κ2 O and O Förster O radius O R0 O , O the O parameters O used O in O distance O calculations O . O Nevertheless O , O the O predominant O 0 O . O 45 O FRET B-evidence state I-evidence in O the O presence O of O RNA B-chemical agrees O with O the O Py B-protein_state - I-protein_state tract I-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant . O Importantly O , O the O majority O of O traces B-evidence (∼ O 70 O %) O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical lacked O FRET O fluctuations O and O predominately O exhibited O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O for O example O , O Fig O . O 6g O ). O The O remaining O ∼ O 30 O % O of O traces B-evidence for O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical showed O fluctuations O between O distinct O FRET B-evidence values I-evidence . O The O majority O of O traces B-evidence that O show O fluctuations O began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transitioned O to O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O Hidden B-experimental_method Markov I-experimental_method modelling I-experimental_method analysis I-experimental_method of O smFRET B-experimental_method traces B-evidence suggests O that O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant can O sample O at O least O two O other O conformations O corresponding O to O ∼ O 0 O . O 7 O – O 0 O . O 8 O and O ∼ O 0 O . O 3 O FRET B-evidence values I-evidence in O addition O to O the O predominant O conformation O corresponding O to O the O 0 O . O 45 O FRET B-evidence state I-evidence . O Although O a O compact O conformation O ( O or O multiple O conformations O ) O of O U2AF651 B-mutant , I-mutant 2L I-mutant corresponding O to O ∼ O 0 O . O 7 O – O 0 O . O 8 O FRET B-evidence values I-evidence can O bind O RNA B-chemical , O on O RNA B-chemical binding O , O these O compact B-protein_state conformations O of O U2AF651 B-mutant , I-mutant 2L I-mutant transition O into O a O more O stable O structural O state O that O corresponds O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence and O is O likely O similar O to O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element - O arrangement O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Thus O , O the O sequence O of O structural O rearrangements O of O U2AF65 B-protein observed O in O smFRET B-experimental_method traces B-evidence ( O Supplementary O Fig O . O 7c O – O g O ) O suggests O that O a O ‘ O conformational O selection O ' O mechanism O of O Py B-chemical - I-chemical tract I-chemical recognition O ( O that O is O , O RNA O ligand O stabilization O of O a O pre B-protein_state - I-protein_state configured I-protein_state U2AF65 B-protein conformation O ) O is O complemented O by O ‘ O induced O fit O ' O ( O that O is O , O RNA O - O induced O rearrangement O of O the O U2AF65 B-protein RRMs B-structure_element to O achieve O the O final O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O conformation O ), O as O discussed O below O . O The O U2AF65 B-protein structures B-evidence and O analyses B-evidence presented O here O represent O a O successful O step O towards O defining O a O molecular O map O of O the O 3 B-site ′ I-site splice I-site site I-site . O Several O observations O indicate O that O the O numerous O intramolecular O contacts O , O here O revealed O among O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element , O RRM2 B-structure_element , O and O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element , O synergistically O coordinate O U2AF65 B-protein – O Py O - O tract O recognition O . O Truncation B-experimental_method of O U2AF65 B-protein to O the O core B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element reduces O its O RNA B-evidence affinity I-evidence by O 100 O - O fold O . O Likewise O , O deletion B-experimental_method of O 20 B-residue_range inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element residues I-structure_element significantly O reduces O U2AF65 B-protein – O RNA B-chemical binding O only O when O introduced O in O the O context O of O the O longer B-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant construct O comprising O the O RRM B-structure_element extensions I-structure_element , O which O in O turn O position O the O linker B-structure_element for O RNA B-chemical interactions O . O Notably O , O a O triple B-protein_state mutation I-protein_state of O three O residues O ( O V254P B-mutant , O Q147A B-mutant and O R227A B-mutant ) O in O the O respective O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element non O - O additively O reduce O RNA B-evidence binding I-evidence by O 150 O - O fold O . O Altogether O , O these O data O indicate O that O interactions O among O the O U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element , O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element are O mutually O inter O - O dependent O for O cognate O Py B-chemical - I-chemical tract I-chemical recognition O . O The O implications O of O this O finding O for O U2AF65 B-protein conservation O and O Py B-chemical - I-chemical tract I-chemical recognition O are O detailed O in O the O Supplementary O Discussion O . O Recently O , O high B-experimental_method - I-experimental_method throughput I-experimental_method sequencing I-experimental_method studies I-experimental_method have O shown O that O somatic O mutations O in O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factors I-protein_type occur O in O the O majority O of O patients O with O myelodysplastic O syndrome O ( O MDS O ). O MDS O - O relevant O mutations O are O common O in O the O small B-protein_state U2AF B-protein_type subunit I-protein_type ( O U2AF35 B-protein , O or O U2AF1 B-protein ), O yet O such O mutations O are O rare O in O the O large B-protein_state U2AF65 B-protein subunit O ( O also O called O U2AF2 B-protein )— O possibly O due O to O the O selective O versus O nearly O universal O requirements O of O these O factors O for O splicing O . O A O confirmed O somatic O mutation O of O U2AF65 B-protein in O patients O with O MDS O , O L187V B-mutant , O is O located O on O a O solvent B-site - I-site exposed I-site surface I-site of O RRM1 B-structure_element that O is O distinct O from O the O RNA B-site interface I-site ( O Fig O . O 7a O ). O This O L187 B-residue_name_number surface O is O oriented O towards O the O N O terminus O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant construct O , O where O it O is O expected O to O abut O the O U2AF35 B-site - I-site binding I-site site I-site in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state U2AF B-protein heterodimer B-oligomeric_state . O Likewise O , O an O unconfirmed O M144I B-mutant mutation O reported O by O the O same O group O corresponds O to O the O N O - O terminal O residue O of O U2AF651 B-mutant , I-mutant 2L I-mutant , O which O is O separated O by O only O ∼ O 20 O residues O from O the O U2AF35 B-site - I-site binding I-site site I-site . O As O such O , O we O suggest O that O the O MDS O - O relevant O U2AF65 B-protein mutations O contribute O to O MDS O progression O indirectly O , O by O destabilizing O a O relevant O conformation O of O the O conjoined O U2AF35 B-protein subunit O rather O than O affecting O U2AF65 B-protein functions O in O RNA B-chemical binding O or O spliceosome B-complex_assembly recruitment O per O se O . O Our O smFRET B-experimental_method results O agree O with O prior O NMR B-experimental_method / O PRE B-experimental_method evidence O for O multi O - O domain O conformational O selection O as O one O mechanistic O basis O for O U2AF65 B-protein – O RNA B-chemical association O ( O Fig O . O 7b O ). O An O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence is O likely O to O correspond O to O the O U2AF65 B-protein conformation O visualized O in O our O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence , O in O which O the O RRM1 B-structure_element and O RRM2 B-structure_element bind O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state to O the O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical . O The O lesser O 0 O . O 65 O – O 0 O . O 8 O and O 0 O . O 2 O – O 0 O . O 3 O FRET B-evidence values I-evidence in O the O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O experiment O could O correspond O to O respective O variants O of O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state U2AF65 B-protein conformations O characterized O by O NMR B-experimental_method / O PRE B-experimental_method data O , O or O to O extended B-protein_state U2AF65 B-protein conformations O , O in O which O the O intramolecular O RRM1 B-structure_element / O RRM2 B-structure_element interactions O have O dissociated O the O protein B-protein is O bound B-protein_state to I-protein_state RNA B-chemical via O single B-protein_state RRMs B-structure_element . O An O increased O prevalence O of O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence following O U2AF65 B-protein – O RNA B-chemical binding O , O coupled O with O the O apparent O absence B-protein_state of I-protein_state transitions O in O many O ∼ O 0 O . O 45 O - O value O single O molecule O traces B-evidence ( O for O example O , O Fig O . O 6e O ), O suggests O a O population O shift O in O which O RNA B-chemical binds O to O ( O and O draws O the O equilibrium O towards O ) O a O pre B-protein_state - I-protein_state configured I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element proximity O that O most O often O corresponds O to O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O Notably O , O our O smFRET B-experimental_method results O reveal O that O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O can O be O characterized O by O an O ‘ O extended O conformational O selection O ' O model O ( O Fig O . O 7b O ). O Examples O of O ‘ O extended B-protein_state conformational O selection O ' O during O ligand O binding O have O been O characterized O for O a O growing O number O of O macromolecules O ( O for O example O , O adenylate B-protein_type kinase I-protein_type , O LAO B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O poly B-protein_type - I-protein_type ubiquitin I-protein_type , O maltose B-protein_type - I-protein_type binding I-protein_type protein I-protein_type and O the O preQ1 B-protein_type riboswitch I-protein_type , O among O others O ). O Here O , O the O majority O of O changes O in O smFRET B-experimental_method traces B-evidence for O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state slide O - O tethered O RNA B-chemical began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transition O to O the O predominant O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O These O transitions O could O correspond O to O rearrangement O from O the O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O U2AF65 B-protein conformation O in O which O the O RNA B-site - I-site binding I-site surface I-site of O only O a O single B-protein_state RRM B-structure_element is O exposed O and O available O for O RNA O binding O , O to O the O structural O state O seen O in O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence . O As O such O , O the O smFRET B-experimental_method approach O reconciles O prior O inconsistencies O between O two O major O conformations O that O were O detected O by O NMR B-experimental_method / O PRE B-experimental_method experiments O and O a O broad O ensemble O of O diverse O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O that O fit O the O SAXS B-experimental_method data O for O the O apo B-protein_state - O protein B-protein . O Similar O interdisciplinary O structural O approaches O are O likely O to O illuminate O whether O similar O mechanistic O bases O for O RNA O binding O are O widespread O among O other O members O of O the O vast O multi O - O RRM B-structure_element family O . O The O finding O that O U2AF65 B-protein recognizes O a O nine O base O pair O Py B-chemical tract I-chemical contributes O to O an O elusive O ‘ O code O ' O for O predicting O splicing O patterns O from O primary O sequences O in O the O post O - O genomic O era O ( O reviewed O in O ref O .). O Based O on O ( O i O ) O similar O RNA B-evidence affinities I-evidence of O U2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant , O ( O ii O ) O indistinguishable O conformations O among O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence in O two O different O crystal O packing O arrangements O and O ( O iii O ) O penalties B-evidence of O structure B-experimental_method - I-experimental_method guided I-experimental_method mutations I-experimental_method in O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method , O we O suggest O that O the O extended B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element regions I-structure_element of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence underlie O cognate O Py B-chemical - I-chemical tract I-chemical recognition O by O the O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein protein O . O Further O research O will O be O needed O to O understand O the O roles O of O SF1 B-protein and O U2AF35 B-protein subunits O in O the O conformational O equilibria O underlying O U2AF65 B-protein association O with O Py B-chemical tracts I-chemical . O Moreover O , O structural O differences O among O U2AF65 B-protein homologues O and O paralogues O may O regulate O splice B-site site I-site selection O . O Ultimately O , O these O guidelines O will O assist O the O identification O of O 3 B-site ′ I-site splice I-site sites I-site and O the O relationship O of O disease O - O causing O mutations O to O penalties O for O U2AF65 B-protein association O . O The O intact B-protein_state U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element - O containing O domain O and O flanking O residues O are O required O for O binding O contiguous B-structure_element Py B-chemical tracts I-chemical . O ( O a O ) O Domain O organization O of O full B-protein_state - I-protein_state length I-protein_state ( O fl B-protein_state ) O U2AF65 B-protein and O constructs O used O for O RNA B-chemical binding O and O structural O experiments O . O An O internal O deletion O ( O d B-mutant , O Δ B-mutant ) O of O residues O 238 B-residue_range – I-residue_range 257 I-residue_range removes O a O portion O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element from O the O dU2AF651 B-mutant , I-mutant 2 I-mutant and O dU2AF651 B-mutant , I-mutant 2L I-mutant constructs O . O ( O b O ) O Comparison O of O the O apparent O equilibrium B-evidence affinities I-evidence of O various O U2AF65 B-protein constructs O for O binding O the O prototypical O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O flU2AF65 B-protein protein O includes O a O heterodimerization B-structure_element domain I-structure_element of O the O U2AF35 B-protein subunit O to O promote O solubility O and O folding O . O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O for O binding O the O AdML B-gene 13mer O are O as O follows O : O flU2AF65 B-protein , O 30 O ± O 3 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 35 O ± O 6 O nM O ; O U2AF651 B-mutant , I-mutant 2 I-mutant , O 3 O , O 600 O ± O 300 O nM O . O ( O c O ) O Comparison O of O the O RNA B-evidence sequence I-evidence specificities I-evidence of O flU2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant constructs O binding O C B-structure_element - I-structure_element rich I-structure_element Py B-chemical tracts I-chemical with O 4U O ' O s O embedded O in O either O the O 5 O ′- O ( O light O grey O fill O ) O or O 3 O ′- O ( O dark O grey O fill O ) O regions O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCUUUUCCCCCCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 41 O ± O 2 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 31 O ± O 3 O nM O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCCCCCCUUUUCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 414 O ± O 12 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 417 O ± O 10 O nM O . O Bar O graphs O are O hatched O to O match O the O constructs O shown O in O a O . O The O average B-evidence apparent I-evidence equilibrium I-evidence affinity I-evidence ( O KA B-evidence ) O and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O purified O protein O and O average B-evidence fitted I-evidence fluorescence I-evidence anisotropy I-evidence RNA I-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 1 O . O RRM B-structure_element , O RNA B-structure_element recognition I-structure_element motif I-structure_element ; O RS B-structure_element , O arginine B-structure_element - I-structure_element serine I-structure_element rich I-structure_element ; O UHM B-structure_element , O U2AF B-structure_element homology I-structure_element motif I-structure_element ; O ULM B-structure_element , O U2AF B-structure_element ligand I-structure_element motif I-structure_element . O Structures B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant recognizing O a O contiguous B-structure_element Py B-chemical tract I-chemical . O ( O a O ) O Alignment B-experimental_method of O oligonucleotide B-chemical sequences O that O were O co B-experimental_method - I-experimental_method crystallized I-experimental_method in O the O indicated O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence . O The O regions O of O RRM1 B-structure_element , O RRM2 B-structure_element and O linker B-structure_element contacts O are O indicated O above O by O respective O black O and O blue O arrows O from O N O - O to O C O - O terminus O . O For O clarity O , O we O consistently O number O the O U2AF651 B-mutant , I-mutant 2L I-mutant nucleotide B-site - I-site binding I-site sites I-site from O one O to O nine O , O although O in O some O cases O the O co B-experimental_method - I-experimental_method crystallized I-experimental_method oligonucleotide B-chemical comprises O eight O nucleotides B-chemical and O as O such O leaves O the O first B-site binding I-site site I-site empty O . O The O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant nucleotide B-site - I-site binding I-site sites I-site are O given O in O parentheses O ( O site O 4 O ' O interacts O with O dU2AF65 B-mutant RRM1 B-structure_element and O RRM2 B-structure_element by O crystallographic O symmetry O ). O ( O b O ) O Stereo O views O of O a O ‘ O kicked O ' O 2 B-evidence | I-evidence Fo I-evidence |−| I-evidence Fc I-evidence | I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N O - O and O C O - O terminal O residues O ( O blue O ) O or O bound O oligonucleotide B-chemical of O a O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure O ( O structure O iv O , O bound B-protein_state to I-protein_state 5 O ′-( O P O ) O rUrUrUdUrUrU O ( O BrdU O ) O dUrC O ) O ( O magenta O ). O Crystallographic O statistics O are O given O in O Table O 1 O and O the O overall O conformations O of O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant / O U2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence are O compared O in O Supplementary O Fig O . O 2 O . O BrdU B-chemical , O 5 B-chemical - I-chemical bromo I-chemical - I-chemical deoxy I-chemical - I-chemical uridine I-chemical ; O d B-chemical , O deoxy B-chemical - I-chemical ribose I-chemical ; O P B-chemical -, I-chemical 5 B-chemical ′- I-chemical phosphorylation I-chemical ; O r B-chemical , O ribose B-chemical . O Representative O views O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O each O new O nucleotide B-chemical of O the O bound B-protein_state Py B-chemical tract I-chemical . O New O residues O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O coloured O a O darker O shade O of O blue O , O apart O from O residues O that O were O tested O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O which O are O coloured O yellow O . O The O nucleotide B-site - I-site binding I-site sites I-site of O the O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence are O compared O in O Supplementary O Fig O . O 3a O – O h O . O The O first B-site and I-site seventh I-site U2AF651 I-site , I-site 2L I-site - I-site binding I-site sites I-site are O unchanged O from O the O prior O dU2AF651 B-complex_assembly , I-complex_assembly 2 I-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence and O are O portrayed O in O Supplementary O Fig O . O 3a O , O f O . O The O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O similar O with O the O exception O of O pH O - O dependent O variations O at O the O ninth B-site site I-site that O are O detailed O in O Supplementary O Fig O . O 3i O , O j O . O The O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence shown O has O the O highest O resolution O and O / O or O ribose B-chemical nucleotide I-chemical at O the O given O site O : O ( O a O ) O rU2 B-residue_name_number of O structure O iv O ; O ( O b O ) O rU3 B-residue_name_number of O structure O iii O ; O ( O c O ) O rU4 B-residue_name_number of O structure O i O ; O ( O d O ) O rU5 B-residue_name_number of O structure O iii O ; O ( O e O ) O rU6 B-residue_name_number of O structure O ii O ; O ( O f O ) O dU8 B-residue_name_number of O structure O iii O ; O ( O g O ) O dU9 B-residue_name_number of O structure O iii O ; O ( O h O ) O rC9 B-residue_name_number of O structure O iv O . O ( O i O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O of O the O wild B-protein_state type I-protein_state ( O blue O ) O and O the O indicated O mutant B-protein_state ( O yellow O ) O U2AF651 B-mutant , I-mutant 2L I-mutant proteins O binding O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O R227A B-mutant , O 166 O ± O 2 O nM O ; O V254P B-mutant , O 137 O ± O 10 O nM O ; O Q147A B-mutant , O 171 O ± O 21 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O average O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4a O – O c O . O The O U2AF65 B-protein linker B-structure_element / O RRM B-structure_element and O inter O - O RRM B-structure_element interactions O . O ( O a O ) O Contacts O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element with O the O RRMs B-structure_element . O A O semi O - O transparent O space O - O filling O surface O is O shown O for O the O RRM1 B-structure_element ( O green O ) O and O RRM2 B-structure_element ( O light O blue O ). O Residues O V249 B-residue_name_number , O V250 B-residue_name_number , O V254 B-residue_name_number ( O yellow O ) O are O mutated B-experimental_method to O V249G B-mutant / O V250G B-mutant / O V254G B-mutant in O the O 3Gly B-mutant mutant I-mutant ; O residues O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O P255 B-residue_name_number ( O red O ) O along O with O V254 B-residue_name_number are O mutated B-experimental_method to O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 5Gly B-mutant mutant I-mutant or O to O S251N B-mutant / O T252L B-mutant / O V253A B-mutant / O V254L B-mutant / O P255A B-mutant in O the O NLALA B-mutant mutant I-mutant ; O residues O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number ( O orange O ) O along O with O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number are O mutated B-experimental_method to O M144G B-mutant / O L235G B-mutant / O M238G B-mutant / O V244G B-mutant / O V246G B-mutant / O V249G B-mutant / O V250G B-mutant / O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 12Gly B-mutant mutant I-mutant . O Other O linker B-structure_element residues O are O coloured O either O dark O blue O for O new O residues O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structure O or O light O blue O for O the O remaining O inter B-structure_element - I-structure_element RRM I-structure_element residues O . O The O central O panel O shows O an O overall O view O with O stick O diagrams O for O mutated O residues O ; O boxed O regions O are O expanded O to O show O the O C O - O terminal O ( O bottom O left O ) O and O central B-structure_element linker I-structure_element regions I-structure_element ( O top O ) O at O the O inter B-structure_element - I-structure_element RRM I-structure_element interfaces I-structure_element , O and O N O - O terminal O linker O region O contacts O with O RRM1 B-structure_element ( O bottom O right O ). O ( O b O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O for O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical of O the O wild B-protein_state - I-protein_state type I-protein_state ( O blue O ) O U2AF651 B-mutant , I-mutant 2L I-mutant protein O compared O with O mutations O of O the O residues O shown O in O a O : O 3Gly B-mutant ( O yellow O ), O 5Gly B-mutant ( O red O ), O NLALA B-mutant ( O hatched O red O ), O 12Gly B-mutant ( O orange O ) O and O the O linker B-experimental_method deletions I-experimental_method dU2AF651 B-mutant , I-mutant 2 I-mutant in O the O minimal B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element ( O residues O 148 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 336 I-residue_range ) O or O dU2AF651 B-mutant , I-mutant 2L I-mutant ( O residues O 141 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 342 I-residue_range ). O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O 3Gly B-mutant , O 47 O ± O 4 O nM O ; O 5Gly B-mutant , O 61 O ± O 3 O nM O ; O 12Gly B-mutant , O 88 O ± O 21 O nM O ; O NLALA B-mutant , O 45 O ± O 3 O nM O ; O dU2AF651 B-mutant , I-mutant 2L I-mutant , O 123 O ± O 5 O nM O ; O dU2AF651 B-mutant , I-mutant 2 I-mutant , O 5000 O ± O 100 O nM O ; O 3Mut B-mutant , O 5630 O ± O 70 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4d O – O j O . O ( O c O ) O Close O view O of O the O U2AF65 B-protein RRM1 B-site / I-site RRM2 I-site interface I-site following O a O two O - O fold O rotation O about O the O x O - O axis O relative O to O a O . O U2AF65 B-protein inter O - O domain O residues O are O important O for O splicing O a O representative O pre B-chemical - I-chemical mRNA I-chemical substrate O in O human B-species cells O . O ( O a O ) O Schematic O diagram O of O the O pyPY B-chemical reporter O minigene O construct O comprising O two O alternative O splice B-site sites I-site preceded O by O either O the O weak O IgM O Py B-chemical tract I-chemical ( O py B-chemical ) O or O the O strong O AdML B-gene Py B-chemical tract I-chemical ( O PY B-chemical ) O ( O sequences O inset O ). O ( O b O ) O Representative O RT B-experimental_method - I-experimental_method PCR I-experimental_method of O pyPY B-chemical transcripts O from O HEK293T O cells O co B-experimental_method - I-experimental_method transfected I-experimental_method with O constructs O encoding O the O pyPY B-chemical minigene O and O either O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O U2AF65 B-protein or O a O triple O U2AF65 B-protein mutant B-protein_state ( O 3Mut B-mutant ) O of O Q147A B-mutant , O R227A B-mutant and O V254P B-mutant residues O . O ( O c O ) O A O bar O graph O of O the O average O percentage O of O the O py B-chemical - O spliced O mRNA B-chemical relative O to O total O detected O pyPY B-chemical transcripts O ( O spliced O and O unspliced O ) O for O the O corresponding O gel O lanes O ( O black O , O no O U2AF65 B-protein added O ; O white O , O WT B-protein_state U2AF65 B-protein ; O grey O , O 3Mut B-mutant U2AF65 B-protein ). O Protein B-experimental_method overexpression I-experimental_method and O qRT B-experimental_method - I-experimental_method PCR I-experimental_method results O are O shown O in O Supplementary O Fig O . O 5 O . O RNA O binding O stabilizes O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O of O U2AF65 B-protein RRMs B-structure_element . O ( O a O , O b O ) O Views O of O FRET B-experimental_method pairs O chosen O to O follow O the O relative O movement O of O RRM1 B-structure_element and O RRM2 B-structure_element on O the O crystal B-evidence structure I-evidence of O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O U2AF651 B-mutant , I-mutant 2L I-mutant RRMs B-structure_element bound B-protein_state to I-protein_state a O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical ( O a O , O representative O structure O iv O ) O or O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O model O of O U2AF651 B-mutant , I-mutant 2 I-mutant ( O b O , O PDB O ID O 2YH0 O ) O in O identical O orientations O of O RRM2 B-structure_element . O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant proteins O were O doubly O labelled O at O A181C B-mutant / O Q324C B-mutant such O that O a O mixture O of O Cy3 B-chemical / O Cy5 B-chemical fluorophores B-chemical are O expected O to O be O present O at O each O site O . O ( O c O – O f O , O i O , O j O ) O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O immobilized O on O the O microscope O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical ( O orange O line O ) O on O a O neutravidin O ( O black O X O )- O biotin O - O PEG O ( O orange O triangle O )- O treated O surface O and O imaged O either O in O the O absence B-protein_state of I-protein_state ligands B-chemical ( O c O , O d O ), O in O the O presence O of O 5 O μM O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical ( O 5 B-chemical ′- I-chemical CCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O e O , O f O ), O or O in O the O presence O of O 10 O μM O adenosine B-residue_name - O interrupted O variant O RNA B-chemical ( O 5 B-chemical ′- I-chemical CUUUUUAAUUUCCA I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O i O , O j O ). O The O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O ( O 1 O nM O ) O was O added O to O AdML B-gene RNA B-chemical – I-chemical polyethylene I-chemical - I-chemical glycol I-chemical - I-chemical linker I-chemical – I-chemical DNA I-chemical oligonucleotide I-chemical ( O 10 O nM O ), O which O was O immobilized O on O the O microscope O slide O by O annealing O with O a O complementary O biotinyl B-chemical - I-chemical DNA I-chemical oligonucleotide I-chemical ( O black O vertical O line O ). O Typical O single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method traces B-evidence ( O c O , O e O , O g O , O i O ) O show O fluorescence O intensities O from O Cy3 B-chemical ( O green O ) O and O Cy5 B-chemical ( O red O ) O and O the O calculated B-evidence apparent I-evidence FRET I-evidence efficiency I-evidence ( O blue O ). O Additional O traces B-evidence for O untethered B-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O are O shown O in O Supplementary O Fig O . O 7c O , O d O . O Histograms B-evidence ( O d O , O f O , O h O , O j O ) O show O the O distribution B-evidence of I-evidence FRET I-evidence values I-evidence in O RNA B-protein_state - I-protein_state free I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O d O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O f O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O h O ) O and O adenosine O - O interrupted O RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O j O ). O N O is O the O number O of O single O - O molecule O traces B-evidence compiled O for O each O histogram B-evidence . O Schematic O models O of O U2AF65 B-protein recognizing O the O Py B-chemical tract I-chemical . O ( O a O ) O Diagram O of O the O U2AF65 B-protein , O SF1 B-protein and O U2AF35 B-protein splicing O factors O bound B-protein_state to I-protein_state the O consensus O elements O of O the O 3 B-site ′ I-site splice I-site site I-site . O A O surface O representation O of O U2AF651 B-mutant , I-mutant 2L I-mutant is O shown O bound B-protein_state to I-protein_state nine O nucleotides B-chemical ( O nt O ); O the O relative O distances O and O juxtaposition O of O the O branch B-site point I-site sequence I-site ( O BPS B-site ) O and O consensus O AG B-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site are O unknown O . O MDS O - O relevant O mutated O residues O of O U2AF65 B-protein are O shown O as O yellow O spheres O ( O L187 B-residue_name_number and O M144 B-residue_name_number ). O ( O b O ) O Following O binding O to O the O Py B-chemical - I-chemical tract I-chemical RNA I-chemical , O a O conformation O corresponding O to O high B-evidence FRET I-evidence and O consistent O with O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state apo B-protein_state - O U2AF65 B-protein model O resulting O from O PRE B-experimental_method / O NMR B-experimental_method characterization O ( O PDB O ID O 2YH0 O ) O often O transitions O to O a O conformation O corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence , O which O is O consistent O with O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state RRMs B-structure_element such O as O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Alternatively O , O a O conformation O of O U2AF65 B-protein corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence can O directly O bind O to O RNA B-chemical ; O RNA B-chemical binding O stabilizes O the O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O and O thus O shifts O the O U2AF65 B-protein population O towards O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O RRM1 B-structure_element , O green O ; O RRM2 B-structure_element , O pale O blue O ; O RRM B-structure_element extensions I-structure_element / O linker B-structure_element , O blue O . O RNA B-chemical protects O a O nucleoprotein B-complex_assembly complex O against O radiation O damage O Systematic O analysis O of O radiation O damage O within O a O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O over O a O large O dose O range O ( O 1 O . O 3 O – O 25 O MGy O ) O reveals O significant O differential O susceptibility O of O RNA B-chemical and O protein O . O A O new O method O of O difference B-experimental_method electron I-experimental_method - I-experimental_method density I-experimental_method quantification I-experimental_method is O presented O . O Radiation O damage O during O macromolecular B-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method crystallographic I-experimental_method data I-experimental_method collection I-experimental_method is O still O the O main O impediment O for O many O macromolecular B-experimental_method structure I-experimental_method determinations I-experimental_method . O Although O this O has O been O well O characterized O within O protein O crystals B-evidence , O far O less O is O known O about O specific O damage O effects O within O the O larger O class O of O nucleoprotein O complexes O . O Here O , O a O methodology O has O been O developed O whereby O per B-evidence - I-evidence atom I-evidence density I-evidence changes I-evidence could O be O quantified O with O increasing O dose O over O a O wide O ( O 1 O . O 3 O – O 25 O . O 0 O MGy O ) O range O and O at O higher O resolution O ( O 1 O . O 98 O Å O ) O than O the O previous O systematic O specific O damage O study O on O a O protein O – O DNA B-chemical complex O . O Specific O damage O manifestations O were O determined O within O the O large O trp B-protein_type RNA I-protein_type - I-protein_type binding I-protein_type attenuation I-protein_type protein I-protein_type ( O TRAP B-complex_assembly ) O bound B-protein_state to I-protein_state a O single O - O stranded O RNA B-chemical that O forms O a O belt O around O the O protein O . O Over O a O large O dose O range O , O the O RNA B-chemical was O found O to O be O far O less O susceptible O to O radiation O - O induced O chemical O changes O than O the O protein O . O The O availability O of O two O TRAP B-complex_assembly molecules O in O the O asymmetric O unit O , O of O which O only O one O contained O bound B-protein_state RNA B-chemical , O allowed O a O controlled O investigation O into O the O exact O role O of O RNA B-chemical binding O in O protein O specific O damage O susceptibility O . O The O 11 O - O fold O symmetry O within O each O TRAP B-complex_assembly ring B-structure_element permitted O statistically O significant O analysis O of O the O Glu B-residue_name and O Asp B-residue_name damage O patterns O , O with O RNA B-chemical binding O unexpectedly O being O observed O to O protect O these O otherwise O highly O sensitive O residues O within O the O 11 O RNA B-site - I-site binding I-site pockets I-site distributed O around O the O outside O of O the O protein O molecule O . O Additionally O , O the O method O enabled O a O quantification O of O the O reduction O in O radiation O - O induced O Lys B-residue_name and O Phe B-residue_name disordering O upon O RNA B-chemical binding O directly O from O the O electron B-evidence density I-evidence . O With O the O wide O use O of O high O - O flux O third O - O generation O synchrotron O sources O , O radiation O damage O ( O RD O ) O has O once O again O become O a O dominant O reason O for O the O failure O of O structure B-experimental_method determination I-experimental_method using O macromolecular B-experimental_method crystallography I-experimental_method ( O MX B-experimental_method ) O in O experiments O conducted O both O at O room O temperature O and O under O cryocooled O conditions O ( O 100 O K O ). O Significant O progress O has O been O made O in O recent O years O in O understanding O the O inevitable O manifestations O of O X O - O ray O - O induced O RD O within O protein O crystals B-evidence , O and O there O is O now O a O body O of O literature O on O possible O strategies O to O mitigate O the O effects O of O RD O ( O e O . O g O . O Zeldin O , O Brockhauser O et O al O ., O 2013 O ; O Bourenkov O & O Popov O , O 2010 O ). O However O , O there O is O still O no O general O consensus O within O the O field O on O how O to O minimize O RD O during O MX B-experimental_method data O collection O , O and O debates O on O the O dependence O of O RD O progression O on O incident O X O - O ray O energy O ( O Shimizu O et O al O ., O 2007 O ; O Liebschner O et O al O ., O 2015 O ) O and O the O efficacy O of O radical O scavengers O ( O Allan O et O al O ., O 2013 O ) O have O yet O to O be O resolved O . O Global O radiation O damage O is O observed O within O reciprocal O space O as O the O overall O decay O of O the O summed O intensity O of O reflections O detected O within O the O diffraction B-evidence pattern I-evidence as O dose O increases O ( O Garman O , O 2010 O ; O Murray O & O Garman O , O 2002 O ). O Dose O is O defined O as O the O absorbed O energy O per O unit O mass O of O crystal O in O grays O ( O Gy O ; O 1 O Gy O = O 1 O J O kg O − O 1 O ), O and O is O the O metric O against O which O damage O progression O should O be O monitored O during O MX B-experimental_method data O collection O , O as O opposed O to O time O . O At O 100 O K O , O an O experimental O dose O limit O of O 30 O MGy O has O been O recommended O as O an O upper O limit O beyond O which O the O biological O information O derived O from O any O macromolecular O crystal B-evidence may O be O compromised O ( O Owen O et O al O ., O 2006 O ). O Specific B-experimental_method radiation I-experimental_method damage I-experimental_method ( O SRD B-experimental_method ) O is O observed O in O the O real B-evidence - I-evidence space I-evidence electron I-evidence density I-evidence , O and O has O been O detected O at O much O lower O doses O than O any O observable O decay O in O the O intensity O of O reflections O . O Indeed O , O the O C O — O Se B-chemical bond O in O selenomethionine B-chemical , O the O stability O of O which O is O key O for O the O success O of O experimental O phasing O methods O , O can O be O cleaved O at O a O dose O as O low O as O 2 O MGy O for O a O crystal B-evidence maintained O at O 100 O K O ( O Holton O , O 2007 O ). O SRD O has O been O well O characterized O in O a O large O range O of O proteins O , O and O is O seen O to O follow O a O reproducible O order O : O metallo O - O centre O reduction O , O disulfide B-ptm - I-ptm bond I-ptm cleavage O , O acidic O residue O decarboxylation O and O methionine O methylthio O cleavage O ( O Ravelli O & O McSweeney O , O 2000 O ; O Burmeister O , O 2000 O ; O Weik O et O al O ., O 2000 O ; O Yano O et O al O ., O 2005 O ). O There O are O a O number O of O cases O where O SRD O manifestations O have O compromised O the O biological O information O extracted O from O MX B-experimental_method - I-experimental_method determined I-experimental_method structures B-evidence at O much O lower O doses O than O the O recommended O 30 O MGy O limit O , O leading O to O false O structural O interpretations O of O protein O mechanisms O . O Active B-site - I-site site I-site residues I-site appear O to O be O particularly O susceptible O , O particularly O for O photosensitive O proteins O and O in O instances O where O chemical O strain O is O an O intrinsic O feature O of O the O reaction O mechanism O . O For O instance O , O structure B-experimental_method determination I-experimental_method of O the O purple O membrane O protein O bacterio B-protein_type ­ I-protein_type rhodopsin I-protein_type required O careful O corrections O for O radiation O - O induced O structural O changes O before O the O correct O photosensitive O intermediate O states O could O be O isolated O ( O Matsui O et O al O ., O 2002 O ). O The O significant O chemical O strain O required O for O catalysis O within O the O active B-site site I-site of O phosphoserine B-protein_type aminotransferase I-protein_type has O been O observed O to O diminish O during O X O - O ray O exposure O ( O Dubnovitsky O et O al O ., O 2005 O ). O Since O the O majority O of O SRD B-experimental_method studies I-experimental_method to O date O have O focused O on O proteins O , O much O less O is O known O about O the O effects O of O X O - O ray O irradiation O on O the O wider O class O of O crystalline O nucleoprotein B-complex_assembly complexes O or O how O to O correct O for O such O radiation O - O induced O structural O changes O . O Understanding O RD O to O such O complexes O is O crucial O , O since O DNA B-chemical is O rarely O naked O within O a O cell O , O instead O dynamically O interacting O with O proteins O , O facilitating O replication O , O transcription O , O modification O and O DNA B-chemical repair O . O As O of O early O 2016 O , O > O 5400 O nucleoprotein B-complex_assembly complex O structures B-evidence have O been O deposited O within O the O PDB O , O with O 91 O % O solved O by O MX B-experimental_method . O It O is O essential O to O understand O how O these O increasingly O complex O macromolecular O structures B-evidence are O affected O by O the O radiation O used O to O solve O them O . O Nucleoproteins B-complex_assembly also O represent O one O of O the O main O targets O of O radiotherapy O , O and O an O insight O into O the O damage O mechanisms O induced O by O X O - O ray O irradiation O could O inform O innovative O treatments O . O Investigations O on O sub O - O ionization O - O level O LEEs O ( O 0 O – O 15 O eV O ) O interacting O with O both O dried O and O aqueous O oligonucleotides O ( O Alizadeh O & O Sanche O , O 2014 O ; O Simons O , O 2006 O ) O concluded O that O resonant O electron O attachment O to O DNA B-chemical bases O and O the O sugar O - O phosphate O backbone O could O lead O to O the O preferential O cleavage O of O strong O (∼ O 4 O eV O , O 385 O kJ O mol O − O 1 O ) O sugar O - O phosphate O C O — O O O covalent O bonds O within O the O DNA B-chemical backbone O and O then O base O - O sugar O N1 O — O C O bonds O , O eventually O leading O to O single O - O strand O breakages O ( O SSBs O ; O Ptasińska O & O Sanche O , O 2007 O ). O Electrons O have O been O shown O to O be O mobile O at O 77 O K O by O electron B-experimental_method spin I-experimental_method resonance I-experimental_method spectroscopy I-experimental_method studies O ( O Symons O , O 1997 O ; O Jones O et O al O ., O 1987 O ), O with O rapid O electron O quantum O tunnelling O and O positive O hole O migration O along O the O protein O backbone O and O through O stacked O DNA B-chemical bases O indicated O as O a O dominant O mechanism O by O which O oxidative O and O reductive O damage O localizes O at O distances O from O initial O ionization B-site sites I-site at O 100 O K O ( O O O ’ O Neill O et O al O ., O 2002 O ). O The O investigation O of O naturally O forming O nucleoprotein O complexes O circumvents O the O inherent O challenges O in O making O controlled O comparisons O of O damage O mechanisms O between O protein O and O nucleic O acids O crystallized B-experimental_method separately O . O Recently O , O for O a O well O characterized O bacterial B-taxonomy_domain protein O – O DNA B-chemical complex O ( O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly ; O PDB O entry O 3clc O ; O resolution O 2 O . O 8 O Å O ; O McGeehan O et O al O ., O 2008 O ) O it O was O concluded O that O over O a O wide O dose O range O ( O 2 O . O 1 O – O 44 O . O 6 O MGy O ) O the O protein O was O far O more O susceptible O to O SRD O than O the O DNA B-chemical within O the O crystal B-evidence ( O Bury O et O al O ., O 2015 O ). O Only O at O doses O above O 20 O MGy O were O precursors O of O phosphodiester O - O bond O cleavage O observed O within O AT B-structure_element - I-structure_element rich I-structure_element regions I-structure_element of O the O 35 O - O mer O DNA B-chemical . O For O crystalline O complexes O such O as O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly , O whether O the O protein O is O intrinsically O more O susceptible O to O X O - O ray O - O induced O damage O or O whether O the O protein O scavenges O electrons O to O protect O the O DNA B-chemical remains O unclear O in O the O absence O of O a O non O - O nucleic O acid O - O bound O protein O control O obtained O under O exactly O the O same O crystallization O and O data O - O collection O conditions O . O To O monitor O the O effects O of O nucleic O acid O binding O on O protein O damage O susceptibility O , O a O crystal B-evidence containing O two O protein O molecules O per O asymmetric O unit O , O only O one O of O which O was O bound B-protein_state to I-protein_state RNA B-chemical , O is O reported O here O ( O Fig O . O 1 O ▸). O Using O newly O developed O methodology O , O we O present O a O controlled B-experimental_method SRD I-experimental_method investigation O at O 1 O . O 98 O Å O resolution O using O a O large O (∼ O 91 O kDa O ) O crystalline O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O : O trp B-protein_type RNA I-protein_type - I-protein_type binding I-protein_type attenuation I-protein_type protein I-protein_type ( O TRAP B-complex_assembly ) O bound B-protein_state to I-protein_state a O 53 O bp O RNA B-chemical sequence O ( B-chemical GAGUU I-chemical ) I-chemical 10GAG I-chemical ( O PDB O entry O 1gtf O ; O Hopcroft O et O al O ., O 2002 O ). O TRAP B-complex_assembly consists O of O 11 O identical O subunits B-structure_element assembled O into O a O ring B-structure_element with O 11 O - O fold O rotational O symmetry O . O It O binds O with O high O affinity O ( O K B-evidence d I-evidence ≃ O 1 O . O 0 O nM O ) O to O RNA B-chemical segments O containing O 11 O GAG B-structure_element / I-structure_element UAG I-structure_element triplets I-structure_element separated O by O two O or O three O spacer B-structure_element nucleotides I-structure_element ( O Elliott O et O al O ., O 2001 O ) O to O regulate O the O transcription O of O tryptophan B-chemical biosynthetic O genes O in O Bacillus B-species subtilis I-species ( O Antson O et O al O ., O 1999 O ). O In O this O structure B-evidence , O the O bases O of O the O G1 B-chemical - I-chemical A2 I-chemical - I-chemical G3 I-chemical nucleotides O form O direct O hydrogen O bonds O to O the O protein O , O unlike O the O U4 B-chemical - I-chemical U5 I-chemical nucleotides O , O which O appear O to O be O more O flexible O . O Ten O successive O 1 O . O 98 O Å O resolution O MX B-experimental_method data O sets O were O collected O from O the O same O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly crystal B-evidence to O analyse O X O - O ray O - O induced O structural O changes O over O a O large O dose O range O ( O d O 1 O = O 1 O . O 3 O MGy O to O d O 10 O = O 25 O . O 0 O MGy O ). O To O avoid O the O previous O necessity O for O visual O inspection O of O electron B-evidence - I-evidence density I-evidence maps I-evidence to O detect O SRD B-site sites I-site , O a O computational O approach O was O designed O to O quantify O the O electron B-evidence - I-evidence density I-evidence change I-evidence for O each O refined O atom O with O increasing O dose O , O thus O providing O a O rapid O systematic O method O for O SRD O study O on O such O large O multimeric O complexes O . O By O employing O the O high O 11 O - O fold O structural O symmetry O within O each O TRAP B-complex_assembly macromolecule O , O this O approach O permitted O a O thorough O statistical O quantification O of O the O RD O effects O of O RNA B-chemical binding O to O TRAP B-complex_assembly . O Per B-experimental_method - I-experimental_method atom I-experimental_method quantification I-experimental_method of I-experimental_method electron I-experimental_method density I-experimental_method To O quantify O the O exact O effects O of O nucleic O acid O binding O to O a O protein O on O SRD O susceptibility O , O a O high O - O throughput O and O automated O pipeline O was O created O to O systematically O calculate O the O electron B-evidence - I-evidence density I-evidence change I-evidence for O every O refined O atom O within O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence as O a O function O of O dose O . O This O provides O an O atom O - O specific O quantification O of O density B-evidence – I-evidence dose I-evidence dynamics I-evidence , O which O was O previously O lacking O within O the O field O . O Previous O studies O have O characterized O SRD B-site sites I-site by O reporting O magnitudes O of O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence in O terms O of O the O sigma B-evidence ( O σ B-evidence ) O contour O level O ( O the O number O of O standard B-evidence deviations I-evidence from O the O mean B-evidence map I-evidence electron I-evidence - I-evidence density I-evidence value I-evidence ) O at O which O peaks O become O visible O . O However O , O these O σ B-evidence levels O depend O on O the O standard B-evidence deviation I-evidence values O of O the O map B-evidence , O which O can O deviate O between O data O sets O , O and O are O thus O unsuitable O for O quantitative O comparison O of O density B-evidence between O different O dose O data O sets O . O Instead O , O we O use O here O a O maximum B-evidence density I-evidence - I-evidence loss I-evidence metric I-evidence ( O D B-evidence loss I-evidence ), O which O is O the O per O - O atom O equivalent O of O the O magnitude O of O these O negative B-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence in O units O of O e O Å O − O 3 O . O Large O positive O D B-evidence loss I-evidence values O indicate O radiation O - O induced O atomic O disordering O reproducibly O throughout O the O unit O cells O with O respect O to O the O initial O low O - O dose O data O set O . O For O each O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly data O set O , O the O D B-evidence loss I-evidence metric I-evidence successfully O identified O the O recognized O forms O of O protein O SRD B-experimental_method ( O Fig O . O 2 O ▸ O a O ), O with O clear O Glu B-residue_name and O Asp B-residue_name side O - O chain O decarboxylation O even O in O the O first O difference B-evidence map I-evidence calculated O ( O 3 O . O 9 O MGy O ; O Fig O . O 3 O ▸ O a O ). O The O main O sequence O of O TRAP B-complex_assembly does O not O contain O any O Trp B-residue_name and O Cys B-residue_name residues O ( O and O thus O contains O no O disulfide O bonds O ). O The O substrate O Trp B-chemical amino O - O acid O ligands O also O exhibited O disordering O of O the O free O terminal O carboxyl O groups O at O higher O doses O ( O Fig O . O 2 O ▸ O a O ); O however O , O no O clear O Fourier B-evidence difference I-evidence peaks I-evidence could O be O observed O visually O . O Even O for O radiation O - O insensitive O residues O ( O e O . O g O . O Gly B-residue_name ) O the O average O D B-evidence loss I-evidence increases O with O dose O : O this O is O the O effect O of O global O radiation O damage O , O since O as O dose O increases O the O electron B-evidence density I-evidence associated O with O each O refined O atom O becomes O weaker O as O the O atomic O occupancy O decreases O ( O Fig O . O 2 O ▸ O b O ). O Only O Glu B-residue_name and O Asp B-residue_name residues O exhibit O a O rate O of O D B-evidence loss I-evidence increase O that O consistently O exceeds O the O average O decay O ( O Fig O . O 2 O ▸ O b O , O dashed O line O ) O at O each O dose O . O The O rate O of O D B-evidence loss I-evidence ( O attributed O to O side O - O chain O decarboxylation O ) O was O consistently O larger O for O Glu B-residue_name compared O with O Asp B-residue_name residues O over O the O large O dose O range O ( O Fig O . O 2 O ▸ O b O and O Supplementary O Fig O . O S3 O ); O this O observation O is O consistent O with O our O calculations O on O model O systems O ( O see O above O ) O that O suggest O that O , O without O considering O differential O hydrogen O - O bonding O environments O , O CO2 B-chemical loss O is O more O exothermic O by O around O 8 O kJ O mol O − O 1 O from O oxidized B-protein_state Glu B-residue_name residues O than O from O their O Asp B-residue_name counterparts O . O RNA B-chemical is O less O susceptible O to O electron B-evidence - I-evidence density I-evidence loss O than O protein O within O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O Visual B-experimental_method inspection I-experimental_method of I-experimental_method Fourier B-evidence difference I-evidence maps I-evidence illustrated O the O clear O lack O of O RNA B-chemical electron B-evidence - I-evidence density I-evidence degradation I-evidence with O increasing O dose O compared O with O the O obvious O protein O damage O manifestations O ( O Figs O . O 3 O ▸ O b O and O 3 O ▸ O c O ). O Only O at O the O highest O doses O investigated O (> O 20 O MGy O ) O was O density O loss O observed O at O the O RNA B-chemical phosphate O and O C O — O O O bonds O of O the O phosphodiester O backbone O . O However O , O the O median O D B-evidence loss I-evidence was O lower O by O a O factor O of O > O 2 O for O RNA B-chemical P O atoms O than O for O Glu B-residue_name and O Asp B-residue_name side O - O chain O groups O at O 25 O . O 0 O MGy O ( O Supplementary O Fig O . O S4 O ), O and O furthermore O could O not O be O numerically O distinguished O from O Gly B-residue_name Cα O atoms O within O TRAP B-complex_assembly , O which O are O not O radiation O - O sensitive O at O the O doses O tested O here O ( O Supplementary O Fig O . O S3 O ). O RNA B-chemical binding O protects O radiation O - O sensitive O residues O For O the O large O number O of O acidic O residues O per O TRAP B-complex_assembly ring B-structure_element ( O four O Asp B-residue_name and O six O Glu B-residue_name residues O per O protein O monomer B-oligomeric_state ), O a O strong O dependence O of O decarboxylation O susceptibility O on O local O environment O was O observed O ( O Fig O . O 4 O ▸). O For O each O Glu B-residue_name Cδ O or O Asp B-residue_name Cγ O atom O , O D B-evidence loss I-evidence provided O a O direct O measure O of O the O rate O of O side O - O chain O carboxyl O - O group O disordering O and O subsequent O decarboxylation O . O For O acidic O residues O with O no O differing O interactions O between O nonbound B-protein_state and O bound B-protein_state TRAP B-complex_assembly ( O Fig O . O 4 O ▸ O a O ), O similar O damage O was O apparent O between O the O two O rings O within O the O asymmetric O unit O , O as O expected O . O However O , O TRAP B-complex_assembly residues O directly O on O the O RNA B-site - I-site binding I-site interfaces I-site exhibited O greater O damage O accumulation O in O nonbound B-protein_state TRAP B-complex_assembly ( O Fig O . O 4 O ▸ O b O ), O and O for O residues O at O the O ring B-site – I-site ring I-site interfaces I-site ( O where O crystal O contacts O were O detected O ) O bound B-protein_state TRAP B-complex_assembly exhibited O enhanced O SRD O accumulation O ( O Fig O . O 4 O ▸ O c O ). O Three O acidic O residues O ( O Glu36 B-residue_name_number , O Asp39 B-residue_name_number and O Glu42 B-residue_name_number ) O are O involved O in O RNA B-chemical interactions O within O each O of O the O 11 O TRAP B-complex_assembly ring B-structure_element subunits B-structure_element , O and O Fig O . O 5 O ▸ O shows O their O density B-evidence changes I-evidence with O increasing O dose O . O Hotelling B-experimental_method ’ I-experimental_method s I-experimental_method T I-experimental_method - I-experimental_method squared I-experimental_method test I-experimental_method ( O the O multivariate O counterpart O of O Student B-experimental_method ’ I-experimental_method s I-experimental_method t I-experimental_method - I-experimental_method test I-experimental_method ) O was O used O to O reject O the O null O hypothesis O that O the O means O of O the O D B-evidence loss I-evidence metric I-evidence were O equal O for O the O bound B-protein_state and O nonbound B-protein_state groups O in O Fig O . O 5 O ▸. O A O significant O reduction O in O D B-evidence loss I-evidence is O seen O for O Glu36 B-residue_name_number in O RNA B-protein_state - I-protein_state bound I-protein_state compared O with O nonbound B-protein_state TRAP B-complex_assembly , O indicative O of O a O lower O rate O of O side O - O chain O decarboxylation O ( O Fig O . O 5 O ▸ O a O ; O p O = O 6 O . O 06 O × O 10 O − O 5 O ). O For O each O TRAP B-complex_assembly ring B-structure_element subunit B-structure_element , O the O Glu36 B-residue_name_number side O - O chain O carboxyl O group O accepts O a O pair O of O hydrogen O bonds O from O the O two O N O atoms O of O the O G3 B-residue_name_number RNA B-chemical base O . O In O our O analysis O , O Asp39 B-residue_name_number in O the O TRAP B-complex_assembly –( I-complex_assembly GAGUU I-complex_assembly ) I-complex_assembly 10GAG I-complex_assembly structure B-evidence appears O to O exhibit O two O distinct O hydrogen O bonds O to O the O G1 B-residue_name_number base O within O each O of O the O 11 O TRAP B-site – I-site RNA I-site interfaces I-site , O as O does O Glu36 B-residue_name_number to O G3 B-residue_name_number ; O however O , O the O reduction O in O density B-evidence disordering O upon O RNA B-chemical binding O is O far O less O significant O for O Asp39 B-residue_name_number than O for O Glu36 B-residue_name_number ( O Fig O . O 5 O ▸ O b O , O p O = O 0 O . O 0925 O ). O RNA B-chemical binding O reduces O radiation O - O induced O disorder O on O the O atomic O scale O One O oxygen O ( O O O ∊ O 1 O ) O of O Glu42 B-residue_name_number appears O to O form O a O hydrogen O bond O to O a O nearby O water B-chemical within O each O TRAP B-site RNA I-site - I-site binding I-site pocket I-site , O with O the O other O ( O O O ∊ O 2 O ) O being O involved O in O a O salt O - O bridge O interaction O with O Arg58 B-residue_name_number ( O Hopcroft O et O al O ., O 2002 O ; O Antson O et O al O ., O 1999 O ). O Salt O - O bridge O interactions O have O previously O been O suggested O to O reduce O the O glutamate B-residue_name decarboxylation O rate O within O the O large O (∼ O 62 O . O 4 O kDa O ) O myrosinase B-protein_type protein O structure B-evidence ( O Burmeister O , O 2000 O ). O A O significant O difference O was O observed O between O the O D B-evidence loss I-evidence dynamics I-evidence for O the O nonbound B-protein_state / O bound B-protein_state Glu42 B-residue_name_number O O ∊ O 1 O atoms O ( O Fig O . O 5 O ▸ O c O ; O p O = O 0 O . O 007 O ) O but O not O for O the O Glu42 B-residue_name_number O O ∊ O 2 O atoms O ( O Fig O . O 5 O ▸ O d O ; O p O = O 0 O . O 239 O ), O indicating O that O the O stabilizing O strength O of O this O salt O - O bridge O interaction O was O conserved O upon O RNA B-chemical binding O and O that O the O water B-chemical - O mediated O hydrogen O bond O had O a O greater O relative O susceptibility O to O atomic O disordering O in O the O absence B-protein_state of I-protein_state RNA B-chemical . O The O density B-evidence - I-evidence change I-evidence dynamics I-evidence were O statistically O indistinguishable O between O bound B-protein_state and O nonbound B-protein_state TRAP B-complex_assembly for O each O Glu42 B-residue_name_number carboxyl O group O Cδ O atom O ( O p O = O 0 O . O 435 O ), O indicating O that O upon O RNA B-chemical binding O the O conserved O salt O - O bridge O interaction O ultimately O dictated O the O overall O Glu42 B-residue_name_number decarboxylation O rate O . O The O RNA B-chemical - O stabilizing O effect O was O not O restricted O to O radiation O - O sensitive O acidic O residues O . O The O side O chain O of O Phe32 B-residue_name_number stacks O against O the O G3 B-residue_name_number base O within O the O 11 O TRAP B-site RNA I-site - I-site binding I-site interfaces I-site ( O Antson O et O al O ., O 1999 O ). O With O increasing O dose O , O the O D B-evidence loss I-evidence associated O with O the O Phe32 B-residue_name_number side O chain O was O significantly O reduced O upon O RNA B-chemical binding O ( O Fig O . O 5 O ▸ O e O ; O Phe32 B-residue_name_number Cζ O ; O p O = O 0 O . O 0014 O ), O an O indication O that O radiation O - O induced O conformation O disordering O of O Phe32 B-residue_name_number had O been O reduced O . O The O extended O aliphatic O Lys37 B-residue_name_number side O chain O stacks O against O the O nearby O G1 B-residue_name_number base O , O making O a O series O of O nonpolar O contacts O within O each O RNA B-site - I-site binding I-site interface I-site . O The O D B-evidence loss I-evidence for O Lys37 B-residue_name_number side O - O chain O atoms O was O also O reduced O when O stacked O against O the O G1 B-residue_name_number base O ( O Fig O . O 5 O ▸ O f O ; O p O = O 0 O . O 0243 O for O Lys37 B-residue_name_number C O ∊ O atoms O ). O Representative O Phe32 B-residue_name_number and O Lys37 B-residue_name_number atoms O were O selected O to O illustrate O these O trends O . O Here O , O MX B-experimental_method radiation O - O induced O specific O structural O changes O within O the O large O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly assembly O over O a O large O dose O range O ( O 1 O . O 3 O – O 25 O . O 0 O MGy O ) O have O been O analysed O using O a O high O - O throughput O quantitative O approach O , O providing O a O measure O of O the O electron B-evidence - I-evidence density I-evidence distribution I-evidence for O each O refined O atom O with O increasing O dose O , O D B-evidence loss I-evidence . O Compared O with O previous O studies O , O the O results O provide O a O further O step O in O the O detailed O characterization O of O SRD O effects O in O MX B-experimental_method . O Our O method O ­ O ology O , O which O eliminated O tedious O and O error O - O prone O visual O inspection O , O permitted O the O determination O on O a O per O - O atom O basis O of O the O most O damaged O sites O , O as O characterized O by O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence Fourier I-evidence difference I-evidence map I-evidence peaks I-evidence between O successive O data O sets O collected O from O the O same O crystal B-evidence . O Here O , O it O provided O the O precision O required O to O quantify O the O role O of O RNA B-chemical in O the O damage O susceptibilities O of O equivalent O atoms O between O RNA B-protein_state - I-protein_state bound I-protein_state and O nonbound B-protein_state TRAP B-complex_assembly , O but O it O is O applicable O to O any O MX B-experimental_method SRD O study O . O The O RNA B-chemical was O found O to O be O substantially O more O radiation B-protein_state - I-protein_state resistant I-protein_state than O the O protein O , O even O at O the O highest O doses O investigated O (∼ O 25 O . O 0 O MGy O ), O which O is O in O strong O concurrence O with O our O previous O SRD B-experimental_method investigation I-experimental_method of O the O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly protein O – O DNA B-chemical complex O ( O Bury O et O al O ., O 2015 O ). O Consistent O with O that O study O , O at O high O doses O of O above O ∼ O 20 O MGy O , O F B-evidence obs I-evidence ( I-evidence d I-evidence n I-evidence ) I-evidence − I-evidence F I-evidence obs I-evidence ( I-evidence d I-evidence 1 I-evidence ) I-evidence map I-evidence density I-evidence was O detected O around O P O , O O3 O ′ O and O O5 O ′ O atoms O of O the O RNA B-chemical backbone O , O with O no O significant O difference B-evidence density I-evidence localized O to O RNA B-chemical ribose O and O basic O subunits B-structure_element . O RNA B-chemical backbone O disordering O thus O appears O to O be O the O main O radiation O - O induced O effect O in O RNA B-chemical , O with O the O protein O – O base O interactions O maintained O even O at O high O doses O (> O 20 O MGy O ). O The O U4 B-residue_name_number phosphate B-chemical exhibited O marginally O larger O D B-evidence loss I-evidence values O above O 20 O MGy O than O G1 B-residue_name_number , O A2 B-residue_name_number and O G3 B-residue_name_number ( O Supplementary O Fig O . O S4 O ). O Since O U4 B-residue_name_number is O the O only O refined O nucleotide O not O to O exhibit O significant O base O – O protein O interactions O around O TRAP B-complex_assembly ( O with O a O water B-chemical - O mediated O hydrogen O bond O detected O in O only O three O of O the O 11 O subunits B-structure_element and O a O single O Arg58 B-residue_name_number hydrogen O bond O suggested O in O a O further O four O subunits B-structure_element ), O this O increased O U4 B-residue_name_number D B-evidence loss I-evidence can O be O explained O owing O to O its O greater O flexibility O . O At O 25 O . O 0 O MGy O , O the O magnitude O of O the O RNA B-chemical backbone O D B-evidence loss I-evidence was O of O the O same O order O as O for O the O radiation O - O insensitive O Gly B-residue_name Cα O atoms O and O on O average O less O than O half O that O of O the O acidic O residues O of O the O protein O ( O Supplementary O Fig O . O S3 O ). O Consequently O , O no O clear O single O - O strand O breaks O could O be O located O , O and O since O RNA B-chemical - O binding O within O the O current O TRAP B-complex_assembly –( I-complex_assembly GAGUU I-complex_assembly ) I-complex_assembly 10GAG I-complex_assembly complex O is O mediated O predominantly O through O base O – O protein O interactions O , O the O biological O integrity O of O the O RNA B-chemical complex O was O dictated O by O the O rate O at O which O protein O decarboxylation O occurred O . O RNA B-chemical interacting O with O TRAP B-complex_assembly was O shown O to O offer O significant O protection O against O radiation O - O induced O structural O changes O . O Both O Glu36 B-residue_name_number and O Asp39 B-residue_name_number bind O directly O to O RNA B-chemical , O each O through O two O hydrogen O bonds O to O guanine B-chemical bases O ( O G3 B-residue_name_number and O G1 B-residue_name_number , O respectively O ). O However O , O compared O with O Asp39 B-residue_name_number , O Glu36 B-residue_name_number is O strikingly O less O decarboxylated O when O bound B-protein_state to I-protein_state RNA B-chemical ( O Fig O . O 4 O ▸). O This O is O in O good O agreement O with O previous O mutagenesis B-experimental_method and I-experimental_method nucleoside I-experimental_method analogue I-experimental_method studies I-experimental_method ( O Elliott O et O al O ., O 2001 O ), O which O indicated O that O the O G1 B-residue_name_number nucleotide O does O not O bind O to O TRAP B-complex_assembly as O strongly O as O do O A2 B-residue_name_number and O G3 B-residue_name_number , O and O plays O little O role O in O the O high O RNA B-evidence - I-evidence binding I-evidence affinity I-evidence of O TRAP B-complex_assembly ( O K B-evidence d I-evidence ≃ O 1 O . O 1 O ± O 0 O . O 4 O nM O ). O For O Glu36 B-residue_name_number and O Asp39 B-residue_name_number , O no O direct O quantitative O correlation O could O be O established O between O hydrogen O - O bond O length O and O D B-evidence loss I-evidence ( O linear B-evidence R I-evidence 2 I-evidence of O < O 0 O . O 23 O for O all O doses O ; O Supplementary O Fig O . O S5 O ). O Thus O , O another O factor O must O be O responsible O for O this O clear O reduction O in O Glu36 B-residue_name_number CO2 O decarboxyl O ­ O ation O in O RNA B-protein_state - I-protein_state bound I-protein_state TRAP B-complex_assembly . O The O Glu36 B-residue_name_number carboxyl O side O chain O also O potentially O forms O hydrogen O bonds O to O His34 B-residue_name_number and O Lys56 B-residue_name_number , O but O since O these O interactions O are O conserved B-protein_state irrespective O of O G3 B-residue_name_number nucleotide O binding O , O this O cannot O directly O account O for O the O stabilization O effect O on O Glu36 B-residue_name_number in O RNA B-protein_state - I-protein_state bound I-protein_state TRAP B-complex_assembly . O When O bound B-protein_state to I-protein_state RNA B-chemical , O the O average O solvent O - O accessible O area O of O the O Glu36 B-residue_name_number side O - O chain O O O atoms O is O reduced O from O ∼ O 15 O to O 0 O Å2 O . O We O propose O that O with O no O solvent O accessibility O Glu36 B-residue_name_number decarboxylation O is O inhibited O , O since O the O CO2 B-evidence - I-evidence formation I-evidence rate I-evidence K I-evidence 2 I-evidence is O greatly O reduced O , O and O suggest O that O steric O hindrance O prevents O each O radicalized O Glu36 B-residue_name_number CO2 O group O from O achieving O the O planar O conformation O required O for O complete O dissociation O from O TRAP B-complex_assembly . O The O electron B-evidence - I-evidence recombination I-evidence rate I-evidence K I-evidence − I-evidence 1 I-evidence remains O high O , O however O , O owing O to O rapid O electron O migration O through O the O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O to O refill O the O Glu36 B-residue_name_number positive B-site hole I-site ( O the O precursor O for O Glu B-residue_name decarboxylation O ). O Upon O RNA B-chemical binding O , O the O Asp39 B-residue_name_number side O - O chain O carboxyl O group O solvent O - O accessible O area O changes O from O ∼ O 75 O to O 35 O Å2 O , O still O allowing O a O high O CO2 B-chemical - O formation O rate B-evidence K I-evidence 2 I-evidence . O The O prevalence O of O radical O attack O from O solvent O channels O surrounding O the O protein O in O the O crystal B-evidence is O a O questionable O cause O , O considering O previous O observations O indicating O that O the O strongly O oxidizing O hydroxyl O radical O is O immobile O at O 100 O K O ( O Allan O et O al O ., O 2013 O ; O Owen O et O al O ., O 2012 O ). O By O comparing O equivalent O acidic O residues O with B-protein_state and O without B-protein_state RNA B-chemical , O we O have O now O deconvoluted O the O role O of O solvent O accessibility O from O other O local O protein O environment O factors O , O and O thus O propose O a O suitable O mechanism O by O which O exceptionally O low O solvent O accessibility O can O reduce O the O rate O of O decarboxylation O . O Apart O from O these O RNA B-site - I-site binding I-site interfaces I-site , O RNA B-chemical binding O was O seen O to O enhance O decarboxylation O for O residues O Glu50 B-residue_name_number , O Glu71 B-residue_name_number and O Glu73 B-residue_name_number , O all O of O which O are O involved O in O crystal O contacts O between O TRAP B-complex_assembly rings B-structure_element ( O Fig O . O 4 O ▸ O c O ). O However O , O for O each O of O these O residues O the O exact O crystal O contacts O are O not O preserved O between O bound B-protein_state and O nonbound B-protein_state TRAP B-complex_assembly or O even O between O monomers O within O one O TRAP B-complex_assembly ring B-structure_element . O For O example O , O in O bound B-protein_state TRAP B-complex_assembly , O Glu73 B-residue_name_number hydrogen O - O bonds O to O a O nearby O lysine B-residue_name on O each O of O the O 11 O subunits B-structure_element , O whereas O in O nonbound B-protein_state TRAP B-complex_assembly no O such O interaction O exists O and O Glu73 B-residue_name_number interacts O with O a O variable O number O of O refined O waters B-chemical in O each O subunit B-structure_element . O Radiation O - O induced O side O - O chain O conformational O changes O have O been O poorly O characterized O in O previous O SRD B-experimental_method investigations I-experimental_method owing O to O their O strong O dependence O on O packing O density O and O geometric O strain O . O Such O structural O changes O are O known O to O have O significant O roles O within O enzymatic O pathways O , O and O experimenters O must O be O aware O of O these O possible O confounding O factors O when O assigning O true O functional O mechanisms O using O MX B-experimental_method . O Our O results O show O that O RNA B-chemical binding O to O TRAP B-complex_assembly physically O stabilizes O non O - O acidic O residues O within O the O TRAP B-complex_assembly macromolecule O , O most O notably O Lys37 B-residue_name_number and O Phe32 B-residue_name_number , O which O stack O against O the O G1 B-residue_name_number and O G3 B-residue_name_number bases O , O respectively O . O It O has O been O suggested O ( O Burmeister O , O 2000 O ) O that O Tyr B-residue_name residues O can O lose O their O aromatic O – O OH O group O owing O to O radiation O - O induced O effects O ; O however O , O no O energetically O favourable O pathway O for O – O OH O cleavage O exists O and O this O has O not O been O detected O in O aqueous O radiation O - O chemistry O studies O . O In O TRAP B-complex_assembly , O D B-evidence loss I-evidence increased O at O a O similar O rate O for O both O the O Tyr B-residue_name O O atoms O and O aromatic O ring B-structure_element atoms O , O suggesting O that O full O ring B-structure_element conformational O disordering O is O more O likely O . O Indeed O , O no O convincing O reproducible O Fourier B-evidence difference I-evidence peaks I-evidence above O the O background O map B-evidence noise O were O observed O around O any O Tyr B-residue_name terminal O – O OH O groups O . O The O RNA B-chemical - O stabilization O effects O on O protein O are O observed O at O short O ranges O and O are O restricted O to O within O the O RNA B-site - I-site binding I-site interfaces I-site around O the O TRAP B-complex_assembly ring B-structure_element . O For O example O , O Asp17 B-residue_name_number is O located O ∼ O 6 O . O 8 O Å O from O the O G1 B-residue_name_number base O , O outside O the O RNA B-site - I-site binding I-site interfaces I-site , O and O has O indistinguishable O Cγ O atom O D O loss B-evidence dose I-evidence - I-evidence dynamics I-evidence between O RNA B-protein_state - I-protein_state bound I-protein_state and O nonbound B-protein_state TRAP B-complex_assembly ( O p O > O 0 O . O 9 O ). O An O increase O in O the O dose O at O which O functionally O important O residues O remain O intact O has O biological O ramifications O for O understanding O the O mechanisms O at O which O ionizing O radiation O damage O is O mitigated O within O naturally O forming O DNA B-complex_assembly – I-complex_assembly protein I-complex_assembly and O RNA B-complex_assembly – I-complex_assembly protein I-complex_assembly complexes O . O Observations O of O lower O protein O radiation O - O sensitivity O in O DNA B-protein_state - I-protein_state bound I-protein_state forms O have O been O recorded O in O solution O at O RT O at O much O lower O doses O (∼ O 1 O kGy O ) O than O those O used O for O typical O MX B-experimental_method experiments O [ O e O . O g O . O an O oestrogen O response O element O – O receptor O complex O ( O Stísová O et O al O ., O 2006 O ) O and O a O DNA B-protein_type glycosylase I-protein_type and O its O abasic B-site DNA I-site target I-site site I-site ( O Gillard O et O al O ., O 2004 O )]. O In O these O studies O , O the O main O damaging O species O is O predicted O to O be O the O oxidizing O hydroxyl O radical O produced O through O solvent O irradiation O , O which O is O known O to O add O to O double O covalent O bonds O within O both O DNA B-chemical and O RNA B-chemical bases O to O induce O strand O breaks O and O base O modification O ( O Spotheim O - O Maurizot O & O Davídková O , O 2011 O ; O Chance O et O al O ., O 1997 O ). O It O was O suggested O that O physical O screening O of O DNA B-chemical by O protein O shielded O the O DNA B-site – I-site protein I-site interaction I-site sites I-site from O radical O damage O , O yielding O an O extended O life O - O dose O for O the O nucleoprotein O complex O compared O with O separate O protein O and O DNA B-chemical constituents O at O RT O . O However O , O in O the O current O MX B-experimental_method study O at O 100 O K O , O the O main O damaging O species O are O believed O to O be O migrating O LEEs O and O holes O produced O directly O within O the O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly components O or O in O closely O associated O solvent O . O The O results O presented O here O suggest O that O biologically O relevant O nucleoprotein B-complex_assembly complexes O also O exhibit O prolonged O life O - O doses O under O the O effect O of O LEE O - O induced O structural O changes O , O involving O direct O physical O protection O of O key O RNA B-site - I-site binding I-site residues I-site . O Such O reduced O radiation O - O sensitivity O in O this O case O ensures O that O the O interacting O protein O remains O bound B-protein_state long O enough O to O the O RNA B-chemical to O complete O its O function O , O even O whilst O exposed O to O ionizing O radiation O . O Within O the O nonbound B-protein_state TRAP B-complex_assembly macromolecule O , O the O acidic O residues O within O the O unoccupied O RNA B-site - I-site binding I-site interfaces I-site ( O Asp39 B-residue_name_number , O Glu36 B-residue_name_number , O Glu42 B-residue_name_number ) O are O notably O amongst O the O most O susceptible O residues O within O the O asymmetric O unit O ( O Fig O . O 4 O ▸). O When O exposed O to O X O - O rays O , O these O residues O will O be O preferentially O damaged O by O X O - O rays O and O subsequently O reduce O the O affinity O with O which O TRAP B-complex_assembly binds O to O RNA B-chemical . O Within O the O cellular O environment O , O this O mechanism O could O reduce O the O risk O that O radiation O - O damaged O proteins O might O bind O to O RNA B-chemical , O thus O avoiding O the O detrimental O introduction O of O incorrect O DNA B-chemical - O repair O , O transcriptional O and O base O - O modification O pathways O . O The O TRAP B-complex_assembly –( I-complex_assembly GAGUU I-complex_assembly ) I-complex_assembly 10GAG I-complex_assembly complex O asymmetric O unit O ( O PDB O entry O 1gtf O ; O Hopcroft O et O al O ., O 2002 O ). O Bound B-protein_state tryptophan B-chemical ligands O are O represented O as O coloured O spheres O . O RNA B-chemical is O shown O is O yellow O . O ( O a O ) O Electron O - O density O loss O sites O as O indicated O by O D O loss O in O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O crystal B-evidence by O residue O / O nucleotide O type O for O five O doses O [ O sites O determined O above O the O 4 O × O average O D O loss O threshold O , O calculated O over O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence for O the O first O difference B-evidence map I-evidence : O F O obs O ( O d O 2 O ) O − O F O obs O ( O d O 1 O )]. O ( O b O ) O Average O D O loss O for O each O residue O / O nucleotide O type O with O respect O to O the O DWD B-evidence ( O diffraction B-evidence - I-evidence weighted I-evidence dose I-evidence ; O Zeldin O , O Brock O ­ O hauser O et O al O ., O 2013 O ). O Only O a O subset O of O key O TRAP B-complex_assembly residue O types O are O included O . O The O average O D O loss O ( O calculated O over O the O whole O TRAP B-complex_assembly asymmetric O unit O ) O is O shown O at O each O dose O ( O dashed O line O ). O In O ( O a O ) O clear O difference B-evidence density I-evidence is O observed O around O the O Glu42 B-residue_name_number carboxyl O side O chain O in O chain O H O , O within O the O lowest B-evidence dose I-evidence difference I-evidence map I-evidence at O d O 2 O = O 3 O . O 9 O MGy O . O Radiation O - O induced O protein O disordering O is O evident O across O the O large O dose O range O ( O b O , O c O ); O in O comparison O , O no O clear O deterioration O of O the O RNA B-chemical density B-evidence was O observed O . O D O loss O calculated O for O all O side O - O chain O carboxyl O group O Glu B-residue_name Cδ O and O Asp B-residue_name Cγ O atoms O within O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O for O a O dose O of O 19 O . O 3 O MGy O ( O d O 8 O ). O Residues O have O been O grouped O by O amino O - O acid O number O , O and O split O into O bound B-protein_state and O nonbound B-protein_state groupings O , O with O each O bar O representing O the O mean O calculated O over O 11 O equivalent O atoms O around O a O TRAP B-complex_assembly ring B-structure_element . O D O loss O against O dose O for O ( O a O ) O Glu36 B-residue_name_number Cδ O , O ( O b O ) O Asp39 B-residue_name_number Cγ O , O ( O c O ) O Glu42 B-residue_name_number O O ∊ O 1 O , O ( O d O ) O Glu42 B-residue_name_number O O ∊ O 2 O , O ( O e O ) O Phe32 B-residue_name_number Cζ O and O ( O f O ) O Lys37 B-residue_name_number C O ∊ O atoms O . O 95 O % O CI O are O included O for O each O set O of O 11 O equivalent O atoms O grouped O as O bound B-protein_state / O nonbound B-protein_state . O RNA B-site - I-site binding I-site interface I-site interactions O are O shown O for O TRAP B-complex_assembly chain O N O , O with O the O F O obs O ( O d O 7 O ) O − O F O obs O ( O d O 1 O ) O Fourier O difference O map O ( O dose O 16 O . O 7 O MGy O ) O overlaid O and O contoured O at O a O ± O 4σ O level O . O Mechanistic O insight O into O a O peptide B-protein_type hormone I-protein_type signaling O complex O mediating O floral O organ O abscission O Plants B-taxonomy_domain constantly O renew O during O their O life O cycle O and O thus O require O to O shed O senescent O and O damaged O organs O . O Floral O abscission O is O controlled O by O the O leucine B-protein_type - I-protein_type rich I-protein_type repeat I-protein_type receptor I-protein_type kinase I-protein_type ( O LRR B-protein_type - I-protein_type RK I-protein_type ) O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O It O is O unknown O how O expression O of O IDA B-protein in O the O abscission O zone O leads O to O HAESA B-protein activation O . O Here O we O show O that O IDA B-protein is O sensed O directly O by O the O HAESA B-protein ectodomain B-structure_element . O Crystal B-evidence structures I-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state IDA B-protein reveal O a O hormone B-site binding I-site pocket I-site that O accommodates O an O active B-protein_state dodecamer B-structure_element peptide B-chemical . O A O central O hydroxyproline B-residue_name residue O anchors O IDA B-protein to O the O receptor O . O The O HAESA B-protein co B-protein_type - I-protein_type receptor I-protein_type SERK1 B-protein , O a O positive O regulator O of O the O floral O abscission O pathway O , O allows O for O high O - O affinity O sensing O of O the O peptide B-protein_type hormone I-protein_type by O binding O to O an O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O This O sequence O pattern O is O conserved B-protein_state among O diverse O plant B-taxonomy_domain peptides B-chemical , O suggesting O that O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type receptors I-protein_type may O share O a O common O ligand O binding O mode O and O activation O mechanism O . O Plants B-taxonomy_domain can O shed O their O leaves O , O flowers O or O other O organs O when O they O no O longer O need O them O . O But O how O does O a O leaf O or O a O flower O know O when O to O let O go O ? O A O receptor B-protein_type protein I-protein_type called O HAESA B-protein is O found O on O the O surface O of O the O cells O that O surround O a O future O break O point O on O the O plant O . O When O its O time O to O shed O an O organ O , O a O hormone B-chemical called O IDA B-protein instructs O HAESA B-protein to O trigger O the O shedding O process O . O However O , O the O molecular O details O of O how O IDA B-protein triggers O organ O shedding O are O not O clear O . O The O shedding O of O floral O organs O ( O or O leaves O ) O can O be O easily O studied O in O a O model O plant B-taxonomy_domain called O Arabidopsis B-taxonomy_domain . O Santiago O et O al O . O used O protein B-experimental_method biochemistry I-experimental_method , O structural B-experimental_method biology I-experimental_method and O genetics B-experimental_method to O uncover O how O the O IDA B-protein hormone B-chemical activates O HAESA B-protein . O The O experiments O show O that O IDA B-protein binds B-protein_state directly I-protein_state to I-protein_state a O canyon B-protein_state shaped I-protein_state pocket B-site in O HAESA B-protein that O extends O out O from O the O surface O of O the O cell O . O IDA B-protein binding O to O HAESA B-protein allows O another O receptor B-protein_type protein I-protein_type called O SERK1 B-protein to B-protein_state bind I-protein_state to I-protein_state HAESA B-protein , O which O results O in O the O release O of O signals O inside O the O cell O that O trigger O the O shedding O of O organs O . O The O next O step O following O on O from O this O work O is O to O understand O what O signals O are O produced O when O IDA B-protein activates O HAESA B-protein . O Another O challenge O will O be O to O find O out O where O IDA B-protein is O produced O in O the O plant B-taxonomy_domain and O what O causes O it O to O accumulate O in O specific O places O in O preparation O for O organ O shedding O . O The O HAESA B-protein ectodomain B-structure_element folds O into O a O superhelical B-structure_element assembly I-structure_element of O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element . O ( O A O ) O SDS B-experimental_method PAGE I-experimental_method analysis O of O the O purified O Arabidopsis B-species thaliana I-species HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O obtained O by O secreted B-experimental_method expression I-experimental_method in I-experimental_method insect I-experimental_method cells I-experimental_method . O The O calculated O molecular O mass O is O 65 O . O 7 O kDa O , O the O actual O molecular O mass O obtained O by O mass B-experimental_method spectrometry I-experimental_method is O 74 O , O 896 O Da O , O accounting O for O the O N B-chemical - I-chemical glycans I-chemical . O ( O B O ) O Ribbon O diagrams O showing O front O ( O left O panel O ) O and O side O views O ( O right O panel O ) O of O the O isolated O HAESA B-protein LRR B-structure_element domain I-structure_element . O The O N O - O ( O residues O 20 B-residue_range – I-residue_range 88 I-residue_range ) O and O C O - O terminal O ( O residues O 593 B-residue_range – I-residue_range 615 I-residue_range ) O capping B-structure_element domains I-structure_element are O shown O in O yellow O , O the O central O 21 O LRR B-structure_element motifs I-structure_element are O in O blue O and O disulphide B-ptm bonds I-ptm are O highlighted O in O green O ( O in O bonds O representation O ). O ( O C O ) O Structure B-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element in O HAESA B-protein with O the O plant B-taxonomy_domain LRR B-structure_element consensus O sequence O shown O for O comparison O . O Conserved B-protein_state hydrophobic B-protein_state residues B-structure_element are O shaded O in O gray O , O N B-site - I-site glycosylation I-site sites I-site visible O in O our O structures B-evidence are O highlighted O in O blue O , O cysteine B-residue_name residues O involved O in O disulphide B-ptm bridge I-ptm formation O in O green O . O ( O D O ) O Asn B-ptm - I-ptm linked I-ptm glycans I-ptm mask O the O N O - O terminal O portion O of O the O HAESA B-protein ectodomain B-structure_element . O Oligomannose B-chemical core O structures O ( O containing O two O N B-chemical - I-chemical actylglucosamines I-chemical and O three O terminal O mannose B-chemical units O ) O as O found O in O Trichoplusia B-species ni I-species cells O and O in O plants B-taxonomy_domain were O modeled O onto O the O seven O glycosylation B-site sites I-site observed O in O our O HAESA B-protein structures B-evidence , O to O visualize O the O surface O areas O potentially O not O masked O by O carbohydrate B-chemical . O The O HAESA B-protein ectodomain B-structure_element is O shown O in O blue O ( O in O surface O representation O ), O the O glycan B-chemical structures O are O shown O in O yellow O . O Hydrophobic O contacts O and O a O hydrogen B-site - I-site bond I-site network I-site mediate O the O interaction O between O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O ( O A O ) O Details O of O the O IDA B-site binding I-site pocket I-site . O HAESA B-protein is O shown O in O blue O ( O ribbon O diagram O ), O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element ( O left O panel O ), O the O central O Hyp B-structure_element anchor I-structure_element ( O center O ) O and O the O N O - O terminal O Pro B-structure_element - I-structure_element rich I-structure_element motif I-structure_element in O IDA B-protein ( O right O panel O ) O are O shown O in O yellow O ( O in O bonds O representation O ). O HAESA B-site interface I-site residues I-site are O shown O as O sticks O , O selected O hydrogen O bond O interactions O are O denoted O as O dotted O lines O ( O in O magenta O ). O ( O B O ) O View O of O the O complete O IDA B-protein ( O in O bonds O representation O , O in O yellow O ) O binding B-site pocket I-site in O HAESA B-protein ( O surface O view O , O in O blue O ). O Orientation O as O in O ( O A O ). O ( O C O ) O Structure B-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element in O HAESA B-protein with O the O plant B-taxonomy_domain LRR B-structure_element consensus B-evidence sequence I-evidence shown O for O comparison O . O Residues O mediating O hydrophobic O interactions O with O the O IDA B-chemical peptide I-chemical are O highlighted O in O blue O , O residues O contributing O to O hydrogen O bond O interactions O and O / O or O salt O bridges O are O shown O in O red O . O The O IDA B-site binding I-site pocket I-site covers O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element and O all O residues O originate O from O the O inner O surface O of O the O HAESA B-protein superhelix B-structure_element . O The O IDA B-complex_assembly - I-complex_assembly HAESA I-complex_assembly and O SERK1 B-complex_assembly - I-complex_assembly HAESA I-complex_assembly complex O interfaces B-site are O conserved B-protein_state among O HAESA B-protein and O HAESA B-protein_type - I-protein_type like I-protein_type proteins I-protein_type from O different O plant B-taxonomy_domain species O . O Structure B-experimental_method - I-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O HAESA B-protein_type family I-protein_type members I-protein_type : O Arabidopsis B-species thaliana I-species HAESA B-protein ( O Uniprot O ( O http O :// O www O . O uniprot O . O org O ) O ID O P47735 O ), O Arabidopsis B-species thaliana I-species HSL2 B-protein ( O Uniprot O ID O C0LGX3 O ), O Capsella B-species rubella I-species HAESA B-protein ( O Uniprot O ID O R0F2U6 O ), O Citrus B-species clementina I-species HSL2 B-protein ( O Uniprot O ID O V4U227 O ), O Vitis B-species vinifera I-species HAESA B-protein ( O Uniprot O ID O F6HM39 O ). O The O alignment O includes O a O secondary O structure O assignment O calculated O with O the O program O DSSP O and O colored O according O to O Figure O 1 O , O with O the O N O - O and O C O - O terminal O caps B-structure_element and O the O 21 O LRR B-structure_element motifs I-structure_element indicated O in O orange O and O blue O , O respectively O . O Cysteine B-residue_name residues O engaged O in O disulphide B-ptm bonds I-ptm are O depicted O in O green O . O HAESA B-protein residues O interacting O with O the O IDA B-chemical peptide I-chemical and O / O or O the O SERK1 B-protein co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type ectodomain B-structure_element are O highlighted O in O blue O and O orange O , O respectively O . O The O peptide B-protein_type hormone I-protein_type IDA B-protein binds O to O the O HAESA B-protein LRR B-structure_element ectodomain I-structure_element . O ( O A O ) O Multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O selected O IDA B-protein_type family I-protein_type members I-protein_type . O The O conserved B-protein_state PIP B-structure_element motif I-structure_element is O highlighted O in O yellow O , O the O central O Hyp B-residue_name in O blue O . O The O PKGV B-structure_element motif I-structure_element present O in O our O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-chemical peptide I-chemical is O highlighted O in O red O . O ( O B O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O the O HAESA B-protein ectodomain B-structure_element vs O . O IDA B-protein and O including O the O synthetic B-protein_state peptide B-chemical sequence O . O ( O C O ) O Structure O of O the O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly complex O with O HAESA B-protein shown O in O blue O ( O ribbon O diagram O ). O IDA B-protein ( O in O bonds O representation O , O surface O view O included O ) O is O depicted O in O yellow O . O The O peptide B-site binding I-site pocket I-site covers O HAESA B-protein LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element . O ( O D O ) O Close O - O up O view O of O the O entire O IDA B-protein ( O in O yellow O ) O peptide B-site binding I-site site I-site in O HAESA B-protein ( O in O blue O ). O Details O of O the O interactions O between O the O central O Hyp B-structure_element anchor I-structure_element in O IDA B-protein and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element with O HAESA B-protein are O highlighted O in O ( O E O ) O and O ( O F O ), O respectively O . O Hydrogren O bonds O are O depicted O as O dotted O lines O ( O in O magenta O ), O a O water B-chemical molecule O is O shown O as O a O red O sphere O . O During O their O growth O , O development O and O reproduction O plants B-taxonomy_domain use O cell O separation O processes O to O detach O no O - O longer O required O , O damaged O or O senescent O organs O . O Abscission O of O floral O organs O in O Arabidopsis B-taxonomy_domain is O a O model O system O to O study O these O cell O separation O processes O in O molecular O detail O . O The O LRR B-structure_element - I-structure_element RKs I-structure_element HAESA B-protein ( O greek O : O to O adhere O to O ) O and O HAESA B-protein - I-protein LIKE I-protein 2 I-protein ( O HSL2 B-protein ) O redundantly O control O floral O abscission O . O Loss O - O of O - O function O of O the O secreted O small O protein O INFLORESCENCE B-protein DEFICIENT I-protein IN I-protein ABSCISSION I-protein ( O IDA B-protein ) O causes O floral O organs O to O remain O attached O while O its O over O - O expression O leads O to O premature O shedding O . O Full B-protein_state - I-protein_state length I-protein_state IDA B-protein is O proteolytically B-ptm processed I-ptm and O a O conserved B-protein_state stretch B-residue_range of I-residue_range 20 I-residue_range amino I-residue_range - I-residue_range acids I-residue_range ( O termed O EPIP B-structure_element ) O can O rescue O the O IDA B-protein loss O - O of O - O function O phenotype O ( O Figure O 1A O ). O It O has O been O demonstrated O that O a O dodecamer B-structure_element peptide B-chemical within O EPIP B-structure_element is O able O to O activate O HAESA B-protein and O HSL2 B-protein in O transient B-experimental_method assays I-experimental_method in O tobacco B-taxonomy_domain cells O . O This B-structure_element sequence I-structure_element motif I-structure_element is O highly B-protein_state conserved I-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type ( O IDA B-protein_type - I-protein_type LIKE I-protein_type PROTEINS I-protein_type , O IDLs B-protein_type ) O and O contains O a O central O Pro B-residue_name residue O , O presumed O to O be O post B-protein_state - I-protein_state translationally I-protein_state modified I-protein_state to O hydroxyproline B-residue_name ( O Hyp B-residue_name ; O Figure O 1A O ). O The O available O genetic O and O biochemical O evidence O suggests O that O IDA B-protein and O HAESA B-protein together O control O floral O abscission O , O but O it O is O poorly O understood O if O IDA B-protein is O directly O sensed O by O the O receptor B-protein_type kinase I-protein_type HAESA B-protein and O how O IDA B-protein binding O at O the O cell O surface O would O activate O the O receptor O . O IDA B-protein directly O binds O to O the O LRR B-structure_element domain I-structure_element of O HAESA B-protein Active B-protein_state IDA B-protein_type - I-protein_type family I-protein_type peptide I-protein_type hormones I-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O Close O - O up O views O of O ( O A O ) O IDA B-protein , O ( O B O ) O the O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state PKGV B-mutant - I-mutant IDA I-mutant and O ( O C O ) O IDL1 B-protein bound B-protein_state to I-protein_state the O HAESA B-protein hormone B-site binding I-site pocket I-site ( O in O bonds O representation O , O in O yellow O ) O and O including O simulated B-experimental_method annealing I-experimental_method 2Fo B-evidence – I-evidence Fc I-evidence omit I-evidence electron I-evidence density I-evidence maps I-evidence contoured O at O 1 O . O 0 O σ O . O Note O that O Pro58IDA B-residue_name_number and O Leu67IDA B-residue_name_number are O the O first O residues O defined O by O electron B-evidence density I-evidence when O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O ( O D O ) O Table O summaries O for O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O Kd B-evidence ), O binding B-evidence enthalpies I-evidence ( O ΔH B-evidence ), O binding B-evidence entropies I-evidence ( O ΔS B-evidence ) O and O stoichoimetries O ( O N O ) O for O different O IDA B-chemical peptides I-chemical binding O to O the O HAESA B-protein ectodomain B-structure_element ( O ± O fitting O errors O ; O n O . O d O . O no O detectable O binding O ). O ( O E O ) O Structural B-experimental_method superposition I-experimental_method of O the O active B-protein_state IDA B-protein ( O in O bonds O representation O , O in O gray O ) O and O IDL1 B-chemical peptide I-chemical ( O in O yellow O ) O hormones O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O Root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence .) I-evidence is O 1 O . O 0 O Å O comparing O 100 O corresponding O atoms O . O The O receptor B-protein_type kinase I-protein_type SERK1 B-protein acts O as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type and O promotes O high O - O affinity O IDA B-protein sensing O . O ( O A O ) O Petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assays I-experimental_method measure O the O force O ( O expressed O in O gram O equivalents O ) O required O to O remove O the O petals O from O the O flower O of O serk B-gene mutant B-protein_state plants B-taxonomy_domain compared O to O haesa B-gene / O hsl2 B-gene mutant B-protein_state and O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state flowers O . O Petal O break O - O strength O was O found O significantly O increased O in O almost O all O positions O ( O indicated O with O a O *) O for O haesa B-gene / O hsl2 B-gene and O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain with O respect O to O the O Col O - O 0 O control O . O ( O B O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O The O HAESA B-protein LRR B-structure_element domain I-structure_element elutes O as O a O monomer B-oligomeric_state ( O black O dotted O line O ), O as O does O the O isolated O SERK1 B-protein ectodomain B-structure_element ( O blue O dotted O line O ). O A O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O elutes O as O an O apparent O heterodimer B-oligomeric_state ( O red O line O ), O while O a O mixture O of O HAESA B-protein and O SERK1 B-protein yields O two O isolated O peaks O that O correspond O to O monomeric B-oligomeric_state HAESA B-protein and O SERK1 B-protein , O respectively O ( O black O line O ). O Void O ( O V0 O ) O volume O and O total O volume O ( O Vt O ) O are O shown O , O together O with O elution O volumes O for O molecular O mass O standards O ( O A O , O Thyroglobulin B-protein , O 669 O , O 000 O Da O ; O B O , O Ferritin B-protein , O 440 O , O 00 O Da O , O C O , O Aldolase B-protein , O 158 O , O 000 O Da O ; O D O , O Conalbumin B-protein , O 75 O , O 000 O Da O ; O E O , O Ovalbumin B-protein , O 44 O , O 000 O Da O ; O F O , O Carbonic B-protein anhydrase I-protein , O 29 O , O 000 O Da O ). O A O SDS B-experimental_method PAGE I-experimental_method of O the O peak O fractions O is O shown O alongside O . O Purified O HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O ( O C O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state and O Hyp64 B-mutant → I-mutant Pro I-mutant IDA I-mutant versus O the O HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element . O The O titration B-experimental_method of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state versus O the O isolated O HAESA B-protein ectodomain B-structure_element from O Figure O 1B O is O shown O for O comparison O ( O red O line O ; O n O . O d O . O no O detectable O binding O ) O ( O D O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method in O the O presence B-protein_state of I-protein_state the O IDA B-mutant Hyp64 I-mutant → I-mutant Pro I-mutant mutant B-protein_state peptide B-chemical reveals O no O complex O formation O between O HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element . O ( O E O ) O In B-experimental_method vitro I-experimental_method kinase I-experimental_method assays I-experimental_method of O the O HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element . O Wild B-protein_state - I-protein_state type I-protein_state HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element ( O KDs B-structure_element ) O exhibit O auto O - O phosphorylation O activities O ( O lanes O 1 O + O 3 O ). O Mutant B-protein_state ( O m O ) O versions O , O which O carry O point B-experimental_method mutations I-experimental_method in O their O active B-site sites I-site ( O Asp837HAESA B-mutant → I-mutant Asn I-mutant , O Asp447SERK1 B-mutant → I-mutant Asn I-mutant ) O possess O no O autophosphorylation O activity O ( O lanes O 2 O + O 4 O ). O Transphosphorylation O activity O from O the O active B-protein_state kinase O to O the O mutated B-protein_state form O can O be O observed O in O both O directions O ( O lanes O 5 O + O 6 O ). O We O purified B-experimental_method the O HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O from O baculovirus B-experimental_method - I-experimental_method infected I-experimental_method insect I-experimental_method cells I-experimental_method ( O Figure O 1 O — O figure O supplement O 1A O , O see O Materials O and O methods O ) O and O quantified O the O interaction O of O the O ~ O 75 O kDa O glycoprotein B-protein_type with O synthetic B-protein_state IDA B-chemical peptides I-chemical using O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O A O Hyp B-protein_state - I-protein_state modified I-protein_state dodecamer B-structure_element comprising O the O highly B-protein_state conserved I-protein_state PIP B-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 1A O ) O interacts O with O HAESA B-protein with O 1 O : O 1 O stoichiometry O ( O N O ) O and O with O a O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O of O ~ O 20 O μM O ( O Figure O 1B O ). O We O next O determined O crystal B-evidence structures I-evidence of O the O apo B-protein_state HAESA B-protein ectodomain B-structure_element and O of O a O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O , O at O 1 O . O 74 O and O 1 O . O 86 O Å O resolution O , O respectively O ( O Figure O 1C O ; O Figure O 1 O — O figure O supplement O 1B O – O D O ; O Tables O 1 O , O 2 O ). O IDA B-protein binds O in O a O completely B-protein_state extended I-protein_state conformation I-protein_state along O the O inner O surface O of O the O HAESA B-protein ectodomain B-structure_element , O covering O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ( O Figure O 1C O , O D O , O Figure O 1 O — O figure O supplement O 2 O ). O The O central O Hyp64IDA B-residue_name_number is O buried O in O a O specific O pocket B-site formed O by O HAESA B-protein LRRs B-structure_element 8 I-structure_element – I-structure_element 10 I-structure_element , O with O its O hydroxyl O group O establishing O hydrogen O bonds O with O the O strictly B-protein_state conserved I-protein_state Glu266HAESA B-residue_name_number and O with O a O water B-chemical molecule O , O which O in O turn O is O coordinated O by O the O main O chain O oxygens O of O Phe289HAESA B-residue_name_number and O Ser311HAESA B-residue_name_number ( O Figure O 1E O ; O Figure O 1 O — O figure O supplement O 3 O ). O The O restricted O size O of O the O Hyp B-site pocket I-site suggests O that O IDA B-protein does O not O require O arabinosylation B-ptm of O Hyp64IDA B-residue_name_number for O activity O in O vivo O , O a O modification O that O has O been O reported O for O Hyp B-residue_name residues O in O plant B-taxonomy_domain CLE B-protein_type peptide I-protein_type hormones I-protein_type . O The O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein maps O to O a O cavity B-site formed O by O HAESA B-protein LRRs B-structure_element 11 I-structure_element – I-structure_element 14 I-structure_element ( O Figure O 1D O , O F O ). O The O COO O - O group O of O Asn69IDA B-residue_name_number is O in O direct O contact O with O Arg407HAESA B-residue_name_number and O Arg409HAESA B-residue_name_number and O HAESA B-protein cannot O bind O a O C B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-mutant - I-mutant SFVN I-mutant peptide O ( O Figures O 1D O , O F O , O 2D O ). O This O suggests O that O the O conserved B-protein_state Asn69IDA B-residue_name_number may O constitute O the O very O C O - O terminus O of O the O mature B-protein_state IDA B-chemical peptide I-chemical in O planta B-taxonomy_domain and O that O active B-protein_state IDA B-protein is O generated O by O proteolytic O processing O from O a O longer O pre O - O protein O . O Mutation B-experimental_method of O Arg417HSL2 B-residue_name_number ( O which O corresponds O to O Arg409HAESA B-residue_name_number ) O causes O a O loss O - O of O - O function O phenotype O in O HSL2 B-protein , O which O indicates O that O the O peptide B-site binding I-site pockets I-site in O different O HAESA B-protein_type receptors I-protein_type have O common O structural O and O sequence O features O . O Indeed O , O we O find O many O of O the O residues O contributing O to O the O formation O of O the O IDA B-site binding I-site surface I-site in O HAESA B-protein to O be O conserved B-protein_state in O HSL2 B-protein and O in O other O HAESA B-protein_type - I-protein_type type I-protein_type receptors I-protein_type in O different O plant B-taxonomy_domain species O ( O Figure O 1 O — O figure O supplement O 3 O ). O A O N O - O terminal O Pro B-structure_element - I-structure_element rich I-structure_element motif I-structure_element in O IDA B-protein makes O contacts O with O LRRs B-structure_element 2 I-structure_element – I-structure_element 6 I-structure_element of O the O receptor O ( O Figure O 1D O , O Figure O 1 O — O figure O supplement O 2A O – O C O ). O Other O hydrophobic O and O polar O interactions O are O mediated O by O Ser62IDA B-residue_name_number , O Ser65IDA B-residue_name_number and O by O backbone O atoms O along O the O IDA B-chemical peptide I-chemical ( O Figure O 1D O , O Figure O 1 O — O figure O supplement O 2A O – O C O ). O HAESA B-protein specifically O senses O IDA B-protein_type - I-protein_type family I-protein_type dodecamer B-structure_element peptides B-chemical We O next O investigated O whether O HAESA B-protein binds O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state versions O of O IDA B-protein . O We O obtained O a O structure B-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state a O PKGV B-mutant - I-mutant IDA I-mutant peptide B-chemical at O 1 O . O 94 O Å O resolution O ( O Table O 2 O ). O In O this O structure B-evidence , O no O additional O electron B-evidence density I-evidence accounts O for O the O PKGV B-structure_element motif I-structure_element at O the O IDA B-protein N O - O terminus O ( O Figure O 2A O , O B O ). O Consistently O , O PKGV B-mutant - I-mutant IDA I-mutant and O IDA B-protein have O similar O binding B-evidence affinities I-evidence in O our O ITC B-experimental_method assays I-experimental_method , O further O indicating O that O HAESA B-protein senses O a O dodecamer B-structure_element peptide B-chemical comprising O residues O 58 B-residue_range - I-residue_range 69IDA I-residue_range ( O Figure O 2D O ). O We O next O tested O if O HAESA B-protein binds O other O IDA B-chemical peptide I-chemical family I-chemical members I-chemical . O IDL1 B-protein , O which O can O rescue O IDA B-protein loss O - O of O - O function O mutants O when O introduced O in O abscission O zone O cells O , O can O also O be O sensed O by O HAESA B-protein , O albeit O with O lower O affinity B-evidence ( O Figure O 2D O ). O A O 2 O . O 56 O Å O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O IDL1 B-protein reveals O that O different O IDA B-protein_type family I-protein_type members I-protein_type use O a O common O binding O mode O to O interact O with O HAESA B-protein_type - I-protein_type type I-protein_type receptors I-protein_type ( O Figure O 2A O – O C O , O E O , O Table O 2 O ). O We O do O not O detect O interaction O between O HAESA B-protein and O a O synthetic B-protein_state peptide B-chemical missing B-protein_state the I-protein_state C I-protein_state - I-protein_state terminal I-protein_state Asn69IDA B-residue_name_number ( O ΔN69 B-mutant ), O highlighting O the O importance O of O the O polar O interactions O between O the O IDA B-protein carboxy O - O terminus O and O Arg407HAESA B-residue_name_number / O Arg409HAESA B-residue_name_number ( O Figures O 1F O , O 2D O ). O Replacing B-experimental_method Hyp64IDA B-residue_name_number , O which O is O common O to O all O IDLs B-protein_type , O with O proline B-residue_name impairs O the O interaction O with O the O receptor O , O as O does O the O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state discussed O below O ( O Figure O 1A O , O 2D O ). O Notably O , O HAESA B-protein can O discriminate O between O IDLs B-protein_type and O functionally B-protein_state unrelated I-protein_state dodecamer B-structure_element peptides B-chemical with O Hyp B-ptm modifications I-ptm , O such O as O CLV3 B-protein ( O Figures O 2D O , O 7 O ). O The O co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type SERK1 B-protein allows O for O high O - O affinity O IDA O sensing O Our O binding B-experimental_method assays I-experimental_method reveal O that O IDA B-chemical family I-chemical peptides I-chemical are O sensed O by O the O isolated B-protein_state HAESA B-protein ectodomain B-structure_element with O relatively O weak O binding B-evidence affinities I-evidence ( O Figures O 1B O , O 2A O – O D O ). O It O has O been O recently O reported O that O SOMATIC B-protein_type EMBRYOGENESIS I-protein_type RECEPTOR I-protein_type KINASES I-protein_type ( O SERKs B-protein_type ) O are O positive O regulators O of O floral O abscission O and O can O interact O with O HAESA B-protein and O HSL2 B-protein in O an O IDA O - O dependent O manner O . O As O all O five O SERK B-protein_type family I-protein_type members I-protein_type appear O to O be O expressed O in O the O Arabidopsis B-taxonomy_domain abscission O zone O , O we O quantified O their O relative O contribution O to O floral O abscission O in O Arabidopsis B-taxonomy_domain using O a O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method . O Our O experiments O suggest O that O among O the O SERK B-protein_type family I-protein_type members I-protein_type , O SERK1 B-protein is O a O positive O regulator O of O floral O abscission O . O We O found O that O the O force O required O to O remove O the O petals O of O serk1 B-gene - I-gene 1 I-gene mutants B-protein_state is O significantly O higher O than O that O needed O for O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain , O as O previously O observed O for O haesa B-gene / O hsl2 B-gene mutants B-protein_state , O and O that O floral O abscission O is O delayed O in O serk1 B-gene - I-gene 1 I-gene ( O Figure O 3A O ). O The O serk2 B-gene - I-gene 2 I-gene , O serk3 B-gene - I-gene 1 I-gene , O serk4 B-gene - I-gene 1 I-gene and O serk5 B-gene - I-gene 1 I-gene mutant B-protein_state lines O showed O a O petal O break O - O strength O profile O not O significantly O different O from O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain . O Possibly O because O SERKs B-protein_type have O additional O roles O in O plant O development O such O as O in O pollen O formation O and O brassinosteroid O signaling O , O we O found O that O higher O - O order O SERK O mutants O exhibit O pleiotropic O phenotypes O in O the O flower O , O rendering O their O analysis O and O comparison O by O quantitative B-experimental_method petal I-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assays I-experimental_method difficult O . O We O thus O focused O on O analyzing O the O contribution O of O SERK1 B-protein to O HAESA B-protein ligand O sensing O and O receptor O activation O . O In O vitro O , O the O LRR B-structure_element ectodomain I-structure_element of O SERK1 B-protein ( O residues O 24 B-residue_range – I-residue_range 213 I-residue_range ) O forms O stable B-protein_state , O IDA B-protein_state - I-protein_state dependent I-protein_state heterodimeric B-oligomeric_state complexes B-protein_state with I-protein_state HAESA B-protein in O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O ( O Figure O 3B O ). O We O next O quantified O the O contribution O of O SERK1 B-protein to O IDA B-protein recognition O by O HAESA B-protein . O We O found O that O HAESA B-protein senses O IDA B-protein with O a O ~ O 60 O fold O higher O binding B-evidence affinity I-evidence in O the O presence B-protein_state of I-protein_state SERK1 B-protein , O suggesting O that O SERK1 B-protein is O involved O in O the O specific O recognition O of O the O peptide B-protein_type hormone I-protein_type ( O Figure O 3C O ). O We O next O titrated B-experimental_method SERK1 B-protein into O a O solution O containing O only O the O HAESA B-protein ectodomain B-structure_element . O In O this O case O , O there O was O no O detectable O interaction O between O receptor O and O co O - O receptor O , O while O in O the O presence B-protein_state of I-protein_state IDA B-protein , O SERK1 B-protein strongly O binds O HAESA B-protein with O a O dissociation B-evidence constant I-evidence in O the O mid O - O nanomolar O range O ( O Figure O 3C O ). O This O suggests O that O IDA B-protein itself O promotes O receptor O – O co O - O receptor O association O , O as O previously O described O for O the O steroid B-chemical hormone I-chemical brassinolide B-chemical and O for O other O LRR B-complex_assembly - I-complex_assembly RK I-complex_assembly complexes O . O Importantly O , O hydroxyprolination B-ptm of O IDA B-protein is O critical O for O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O ( O Figure O 3C O , O D O ). O Our O calorimetry B-experimental_method experiments O now O reveal O that O SERKs B-protein_type may O render O HAESA B-protein , O and O potentially O other O receptor B-protein_type kinases I-protein_type , O competent O for O high O - O affinity O sensing O of O their O cognate O ligands O . O Upon O IDA B-protein binding O at O the O cell O surface O , O the O kinase B-structure_element domains I-structure_element of O HAESA B-protein and O SERK1 B-protein , O which O have O been O shown O to O be O active B-protein_state protein B-protein_type kinases I-protein_type , O may O interact O in O the O cytoplasm O to O activate O each O other O . O Consistently O , O the O HAESA B-protein kinase B-structure_element domain I-structure_element can O transphosphorylate O SERK1 B-protein and O vice O versa O in O in O vitro O transphosphorylation B-experimental_method assays I-experimental_method ( O Figure O 3E O ). O Together O , O our O genetic B-experimental_method and I-experimental_method biochemical I-experimental_method experiments I-experimental_method implicate O SERK1 B-protein as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type in O the O Arabidopsis B-taxonomy_domain abscission O zone O . O SERK1 B-protein senses O a O conserved B-protein_state motif B-structure_element in O IDA B-chemical family I-chemical peptides I-chemical Crystal B-evidence structure I-evidence of O a O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly signaling O complex O . O ( O A O ) O Overview O of O the O ternary O complex O with O HAESA B-protein in O blue O ( O surface O representation O ), O IDA B-protein in O yellow O ( O bonds O representation O ) O and O SERK1 B-protein in O orange O ( O surface O view O ). O ( O B O ) O The O HAESA B-protein ectodomain B-structure_element undergoes O a O conformational O change O upon O SERK1 B-protein co O - O receptor O binding O . O Shown O are O Cα O traces O of O a O structural B-experimental_method superposition I-experimental_method of O the O unbound B-protein_state ( O yellow O ) O and O SERK1 B-protein_state - I-protein_state bound I-protein_state ( O blue O ) O HAESA B-protein ectodomains B-structure_element ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence is O 1 O . O 5 O Å O between O 572 O corresponding O Cα O atoms O ). O SERK1 B-protein ( O in O orange O ) O and O IDA B-protein ( O in O red O ) O are O shown O alongside O . O The O conformational O change O in O the O C O - O terminal O LRRs B-structure_element and O capping B-structure_element domain I-structure_element is O indicated O by O an O arrow O . O ( O C O ) O SERK1 B-protein forms O an O integral O part O of O the O receptor O ' O s O peptide B-site binding I-site pocket I-site . O The O N O - O terminal O capping B-structure_element domain I-structure_element of O SERK1 B-protein ( O in O orange O ) O directly O contacts O the O C O - O terminal O part O of O IDA B-protein ( O in O yellow O , O in O bonds O representation O ) O and O the O receptor B-protein_type HAESA B-protein ( O in O blue O ). O Polar O contacts O of O SERK1 B-protein with O IDA B-protein are O shown O in O magenta O , O with O the O HAESA B-protein LRR B-structure_element domain I-structure_element in O gray O . O ( O D O ) O Details O of O the O zipper B-structure_element - I-structure_element like I-structure_element SERK1 B-site - I-site HAESA I-site interface I-site . O Ribbon O diagrams O of O HAESA B-protein ( O in O blue O ) O and O SERK1 B-protein ( O in O orange O ) O are O shown O with O selected O interface B-site residues I-site ( O in O bonds O representation O ). O To O understand O in O molecular O terms O how O SERK1 B-protein contributes O to O high O - O affinity O IDA B-protein recognition O , O we O solved O a O 2 O . O 43 O Å O crystal B-evidence structure I-evidence of O the O ternary O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O ( O Figure O 4A O , O Table O 2 O ). O HAESA B-protein LRRs B-structure_element 16 I-structure_element – I-structure_element 21 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element undergo O a O conformational O change O upon O SERK1 B-protein binding O ( O Figure O 4B O ). O The O SERK1 B-protein ectodomain B-structure_element interacts O with O the O IDA B-site peptide I-site binding I-site site I-site using O a O loop B-structure_element region I-structure_element ( O residues O 51 B-residue_range - I-residue_range 59SERK1 I-residue_range ) O from O its O N O - O terminal O cap B-structure_element ( O Figure O 4A O , O C O ). O SERK1 B-protein loop B-structure_element residues O establish O multiple O hydrophobic O and O polar O contacts O with O Lys66IDA B-residue_name_number and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 4C O ). O SERK1 B-protein LRRs B-structure_element 1 I-structure_element – I-structure_element 5 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element form O an O additional O zipper B-structure_element - I-structure_element like I-structure_element interface B-site with O residues O originating O from O HAESA B-protein LRRs B-structure_element 15 I-structure_element – I-structure_element 21 I-structure_element and O from O the O HAESA B-protein C O - O terminal O cap B-structure_element ( O Figure O 4D O ). O SERK1 B-protein binds O HAESA B-protein using O these O two O distinct O interaction B-site surfaces I-site ( O Figure O 1 O — O figure O supplement O 3 O ), O with O the O N B-structure_element - I-structure_element cap I-structure_element of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element partially O covering O the O IDA B-site peptide I-site binding I-site cleft I-site . O The O IDA B-protein C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element is O required O for O HAESA B-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O and O for O IDA O bioactivity O . O ( O A O ) O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O similar O to O Figure O 3B O , O D O reveal O that O IDA B-protein mutant B-protein_state peptides B-chemical targeting O the O C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element do O not O form O biochemically B-protein_state stable I-protein_state HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complexes O . O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O Purified B-experimental_method HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O Left O panel O : O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant ; O center O : O IDA B-mutant ΔN69 I-mutant , O right O panel O : O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method of O peak O fractions O . O Note O that O the O HAESA B-protein and O SERK1 B-protein input O lanes O have O already O been O shown O in O Figure O 3D O . O ( O B O ) O Isothermal B-evidence titration I-evidence thermographs I-evidence of O wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state IDA B-chemical peptides I-chemical titrated B-experimental_method into O a O HAESA B-protein - O SERK1 B-protein mixture O in O the O cell O . O Table O summaries O for O calorimetric B-evidence binding I-evidence constants I-evidence and O stoichoimetries O for O different O IDA B-chemical peptides I-chemical binding O to O the O HAESA B-protein – O SERK1 B-protein ectodomain B-structure_element mixture O ( O ± O fitting O errors O ; O n O . O d O . O ( O C O ) O Quantitative O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method for O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state flowers O and O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state flowers O . O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain showed O significantly O increased O abscission O compared O to O Col O - O 0 O controls O in O inflorescence O positions O 2 O and O 3 O ( O a O ). O Up O to O inflorescence O position O 4 O , O petal O break O in O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state plants B-taxonomy_domain was O significantly O increased O compared O to O both O Col O - O 0 O control O plants B-taxonomy_domain ( O b O ) O and O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain ( O c O ) O ( O D O ) O Normalized O expression O levels O ( O relative O expression O ± O standard O error O ; O ida O : O - O 0 O . O 02 O ± O 0 O . O 001 O ; O Col O - O 0 O : O 1 O ± O 0 O . O 11 O ; O 35S B-gene :: O IDA B-protein 124 O ± O 0 O . O 75 O ; O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant : O 159 O ± O 0 O . O 58 O ) O of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state transcripts O in O the O 35S B-experimental_method promoter I-experimental_method over I-experimental_method - I-experimental_method expression I-experimental_method lines I-experimental_method analyzed O in O ( O C O ). O ( O E O ) O Magnified O view O of O representative O abscission O zones O from O 35S B-gene :: O IDA B-protein , O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state T3 B-experimental_method transgenic I-experimental_method lines I-experimental_method . O 15 O out O of O 15 O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain , O 0 O out O of O 15 O Col O - O 0 O plants B-taxonomy_domain and O 0 O out O of O 15 O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state plants B-taxonomy_domain , O showed O an O enlarged O abscission O zone O , O respectively O ( O 3 O independent O lines O were O analyzed O ). O The O four O C O - O terminal O residues O in O IDA B-protein ( O Lys66IDA B-residue_range - I-residue_range Asn69IDA I-residue_range ) O are O conserved B-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type and O are O in O direct O contact O with O SERK1 B-protein ( O Figures O 1A O , O 4C O ). O We O thus O assessed O their O contribution O to O HAESA B-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O formation O . O Deletion B-experimental_method of O the O buried O Asn69IDA B-residue_name_number completely B-protein_state inhibits I-protein_state receptor O – O co O - O receptor O complex O formation O and O HSL2 O activation O ( O Figure O 5A O , O B O ). O A O synthetic B-protein_state Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant mutant B-protein_state peptide B-chemical ( O IDA B-mutant K66A I-mutant / I-mutant R66A I-mutant ) O showed O a O 10 O fold O reduced O binding B-evidence affinity I-evidence when O titrated B-experimental_method in O a O HAESA B-protein / O SERK1 B-protein protein O solution O ( O Figures O 5A O , O B O , O 2D O ). O We O over B-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state wild B-protein_state - I-protein_state type I-protein_state IDA B-protein or O this O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state to O similar O levels O in O Col O - O 0 O Arabidopsis B-taxonomy_domain plants B-taxonomy_domain ( O Figure O 5D O ). O We O found O that O over B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state IDA B-protein leads O to O early O floral O abscission O and O an O enlargement O of O the O abscission O zone O ( O Figure O 5C O – O E O ). O In O contrast O , O over B-experimental_method - I-experimental_method expression I-experimental_method of O the O IDA B-mutant Lys66IDA I-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state mutant I-protein_state significantly O delays O floral O abscission O when O compared O to O wild B-protein_state - I-protein_state type I-protein_state control O plants B-taxonomy_domain , O suggesting O that O the O mutant B-protein_state IDA B-chemical peptide I-chemical has O reduced O activity O in O planta B-taxonomy_domain ( O Figure O 5C O – O E O ). O Comparison O of O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state plants B-taxonomy_domain further O indicates O that O mutation B-experimental_method of O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant may O cause O a O weak O dominant O negative O effect O ( O Figure O 5C O – O E O ). O In O agreement O with O our O structures B-evidence and O biochemical B-experimental_method assays I-experimental_method , O this O experiment O suggests O a O role O of O the O conserved B-protein_state IDA B-protein C O - O terminus O in O the O control O of O floral O abscission O . O In O contrast O to O animal B-taxonomy_domain LRR B-protein_type receptors I-protein_type , O plant B-taxonomy_domain LRR B-structure_element - I-structure_element RKs I-structure_element harbor O spiral B-protein_state - I-protein_state shaped I-protein_state ectodomains B-structure_element and O thus O they O require O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptor I-protein_type proteins I-protein_type for O receptor O activation O . O For O a O rapidly O growing O number O of O plant B-taxonomy_domain signaling O pathways O , O SERK B-protein_type proteins I-protein_type act O as O these O essential O co B-protein_type - I-protein_type receptors I-protein_type (; O ). O SERK1 O has O been O previously O reported O as O a O positive O regulator O in O plant B-taxonomy_domain embryogenesis O , O male O sporogenesis O , O brassinosteroid O signaling O and O in O phytosulfokine O perception O . O Recent O findings O by O and O our O mechanistic O studies O now O also O support O a O positive O role O for O SERK1 B-protein in O floral O abscission O . O As O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain show O intermediate O abscission O phenotypes O when O compared O to O haesa B-gene / O hsl2 O mutants B-protein_state , O SERK1 B-protein likely O acts O redundantly O with O other O SERKs B-protein_type in O the O abscission O zone O ( O Figure O 3A O ). O It O has O been O previously O suggested O that O SERK1 B-protein can O inhibit O cell O separation O . O However O our O results O show O that O SERK1 B-protein also O can O activate O this O process O upon O IDA B-protein sensing O , O indicating O that O SERKs B-protein_type may O fulfill O several O different O functions O in O the O course O of O the O abscission O process O . O While O the O sequence O of O the O mature B-protein_state IDA B-chemical peptide I-chemical has O not O been O experimentally O determined O in O planta B-taxonomy_domain , O our O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O structures B-evidence and O calorimetry B-evidence assays I-evidence suggest O that O active B-protein_state IDLs B-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O It O will O be O thus O interesting O to O see O if O proteolytic O processing O of O full B-protein_state - I-protein_state length I-protein_state IDA B-protein in O vivo O is O regulated O in O a O cell O - O type O or O tissue O - O specific O manner O . O The O central O Hyp B-residue_name residue O in O IDA B-protein is O found O buried O in O the O HAESA B-protein peptide B-site binding I-site surface I-site and O thus O this O post O - O translational O modification O may O regulate O IDA B-protein bioactivity O . O Our O comparative B-experimental_method structural I-experimental_method and I-experimental_method biochemical I-experimental_method analysis I-experimental_method further O suggests O that O IDLs B-protein_type share O a O common O receptor O binding O mode O , O but O may O preferably O bind O to O HAESA B-protein , O HSL1 B-protein or O HSL2 B-protein in O different O plant B-taxonomy_domain tissues O and O organs O . O In O our O quantitative B-experimental_method biochemical I-experimental_method assays I-experimental_method , O the O presence B-protein_state of I-protein_state SERK1 B-protein dramatically O increases O the O HAESA B-protein binding O specificity O and O affinity O for O IDA B-protein . O This O observation O is O consistent O with O our O complex O structure B-evidence in O which O receptor O and O co O - O receptor O together O form O the O IDA B-site binding I-site pocket I-site . O The O fact O that O SERK1 B-protein specifically O interacts O with O the O very O C O - O terminus O of O IDLs B-protein_type may O allow O for O the O rational O design O of O peptide B-chemical hormone I-chemical antagonists I-chemical , O as O previously O demonstrated O for O the O brassinosteroid O pathway O . O Importantly O , O our O calorimetry B-experimental_method assays I-experimental_method reveal O that O the O SERK1 B-protein ectodomain B-structure_element binds B-protein_state HAESA B-protein with O nanomolar O affinity O , O but O only O in O the O presence B-protein_state of I-protein_state IDA B-protein ( O Figure O 3C O ). O This O ligand O - O induced O formation O of O a O receptor O – O co O - O receptor O complex O may O allow O the O HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element to O efficiently O trans O - O phosphorylate O and O activate O each O other O in O the O cytoplasm O . O It O is O of O note O that O our O reported O binding B-evidence affinities I-evidence for O IDA B-protein and O SERK1 B-protein have O been O measured O using O synthetic B-protein_state peptides B-chemical and O the O isolated B-experimental_method HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element , O and O thus O might O differ O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state , O membrane B-protein_state - I-protein_state embedded I-protein_state signaling O complex O . O SERK1 B-protein uses O partially O overlapping O surface O areas O to O activate O different O plant B-taxonomy_domain signaling B-protein_type receptors I-protein_type . O ( O A O ) O Structural B-experimental_method comparison I-experimental_method of O plant B-taxonomy_domain steroid B-chemical and O peptide B-protein_type hormone I-protein_type membrane B-protein_type signaling I-protein_type complexes I-protein_type . O Left O panel O : O Ribbon O diagram O of O HAESA B-protein ( O in O blue O ), O SERK1 B-protein ( O in O orange O ) O and O IDA B-protein ( O in O bonds O and O surface O represention O ). O Right O panel O : O Ribbon O diagram O of O the O plant B-taxonomy_domain steroid B-protein_type receptor I-protein_type BRI1 B-protein ( O in O blue O ) O bound B-protein_state to I-protein_state brassinolide B-chemical ( O in O gray O , O in O bonds O representation O ) O and O to O SERK1 B-protein , O shown O in O the O same O orientation O ( O PDB O - O ID O . O 4lsx O ). O ( O B O ) O View O of O the O inner O surface O of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element ( O PDB O - O ID O 4lsc O , O surface O representation O , O in O gray O ). O A O ribbon O diagram O of O SERK1 B-protein in O the O same O orientation O is O shown O alongside O . O Residues O interacting O with O the O HAESA B-protein or O BRI1 B-protein LRR B-structure_element domains I-structure_element are O shown O in O orange O or O magenta O , O respectively O . O Comparison B-experimental_method of O our O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly structure B-evidence with O the O brassinosteroid O receptor O signaling O complex O , O where O SERK1 B-protein also O acts O as O co B-protein_type - I-protein_type receptor I-protein_type , O reveals O an O overall O conserved B-protein_state mode O of O SERK1 B-protein binding O , O while O the O ligand B-site binding I-site pockets I-site map O to O very O different O areas O in O the O corresponding O receptors O ( O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ; O HAESA B-protein ; O LRRs B-structure_element 21 I-structure_element – I-structure_element 25 I-structure_element , O BRI1 B-protein ) O and O may O involve O an O island O domain O ( O BRI1 B-protein ) O or O not O ( O HAESA B-protein ) O ( O Figure O 6A O ). O Several O residues O in O the O SERK1 B-protein N O - O terminal O capping B-structure_element domain I-structure_element ( O Thr59SERK1 B-residue_name_number , O Phe61SERK1 B-residue_name_number ) O and O the O LRR B-site inner I-site surface I-site ( O Asp75SERK1 B-residue_name_number , O Tyr101SERK1 B-residue_name_number , O SER121SERK1 B-residue_name_number , O Phe145SERK1 B-residue_name_number ) O contribute O to O the O formation O of O both O complexes O ( O Figures O 4C O , O D O , O 6B O ). O In O addition O , O residues O 53 B-residue_range - I-residue_range 55SERK1 I-residue_range from O the O SERK1 B-protein N O - O terminal O cap B-structure_element mediate O specific O interactions O with O the O IDA B-chemical peptide I-chemical ( O Figures O 4C O , O 6B O ). O These O residues O are O not O involved O in O the O sensing O of O the O steroid B-chemical hormone I-chemical brassinolide B-chemical . O In O both O cases O however O , O the O co O - O receptor O completes O the O hormone B-site binding I-site pocket I-site . O This O fact O together O with O the O largely O overlapping O SERK1 B-site binding I-site surfaces I-site in O HAESA B-protein and O BRI1 B-protein allows O us O to O speculate O that O SERK1 B-protein may O promote O high O - O affinity O peptide B-protein_type hormone I-protein_type and O brassinosteroid O sensing O by O simply O slowing O down O dissociation O of O the O ligand O from O its O cognate O receptor O . O Different O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type contain O a O C O - O terminal O ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element , O which O in O IDA B-protein represents O the O co B-site - I-site receptor I-site recognition I-site site I-site . O Structure B-experimental_method - I-experimental_method guided I-experimental_method multiple I-experimental_method sequence I-experimental_method alignment I-experimental_method of O IDA B-protein and O IDA B-chemical - I-chemical like I-chemical peptides I-chemical with O other O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type , O including O CLAVATA3 B-protein_type – I-protein_type EMBRYO I-protein_type SURROUNDING I-protein_type REGION I-protein_type - I-protein_type RELATED I-protein_type ( O CLV3 B-protein_type / I-protein_type CLE I-protein_type ), O ROOT B-protein_type GROWTH I-protein_type FACTOR I-protein_type – I-protein_type GOLVEN I-protein_type ( O RGF B-protein_type / I-protein_type GLV I-protein_type ), O PRECURSOR B-protein_type GENE I-protein_type PROPEP1 I-protein_type ( O PEP1 B-protein_type ) O from O Arabidopsis B-species thaliana I-species . O The O conserved B-protein_state ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element is O highlighted O in O red O , O the O central O Hyp B-residue_name residue O in O IDLs B-protein_type and O CLEs B-protein_type is O marked O in O blue O . O Our O experiments O reveal O that O SERK1 B-protein recognizes O a O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O Importantly O , O this B-structure_element motif I-structure_element can O also O be O found O in O other O peptide B-protein_type hormone I-protein_type families I-protein_type ( O Figure O 7 O ). O Among O these O are O the O CLE B-chemical peptides I-chemical regulating O stem O cell O maintenance O in O the O shoot O and O the O root O . O It O is O interesting O to O note O , O that O CLEs B-protein_type in O their O mature B-protein_state form I-protein_state are O also O hydroxyprolinated B-protein_state dodecamers B-structure_element , O which O bind O to O a O surface B-site area I-site in O the O BARELY B-protein_type ANY I-protein_type MERISTEM I-protein_type 1 I-protein_type receptor I-protein_type that O would O correspond O to O part O of O the O IDA B-site binding I-site cleft I-site in O HAESA B-protein . O Diverse O plant B-taxonomy_domain peptide B-protein_type hormones I-protein_type may O thus O also O bind O their O LRR B-protein_type - I-protein_type RK I-protein_type receptors I-protein_type in O an O extended B-protein_state conformation I-protein_state along O the O inner O surface O of O the O LRR B-structure_element domain I-structure_element and O may O also O use O small B-protein_state , O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptors I-protein_type for O high O - O affinity O ligand O binding O and O receptor O activation O . O The O Taf14 B-protein YEATS B-structure_element domain I-structure_element is O a O reader O of O histone B-protein_type crotonylation B-ptm The O discovery O of O new O histone B-protein_type modifications O is O unfolding O at O startling O rates O , O however O , O the O identification O of O effectors O capable O of O interpreting O these O modifications O has O lagged O behind O . O Here O we O report O the O YEATS B-structure_element domain I-structure_element as O an O effective O reader O of O histone B-protein_type lysine B-residue_name crotonylation B-ptm – O an O epigenetic O signature O associated O with O active O transcription O . O We O show O that O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element engages O crotonyllysine B-residue_name via O a O unique O π O - O π O - O π O - O stacking O mechanism O and O that O other O YEATS B-structure_element domains I-structure_element have O crotonyllysine B-residue_name binding O activity O . O Crotonylation B-ptm of O lysine B-residue_name residues O ( O crotonyllysine B-residue_name , O Kcr B-residue_name ) O has O emerged O as O one O of O the O fundamental O histone B-protein_type post O - O translational O modifications O ( O PTMs O ) O found O in O mammalian B-taxonomy_domain chromatin O . O The O crotonyllysine B-residue_name mark O on O histone B-protein_type H3K18 B-protein_type is O produced O by O p300 B-protein , O a O histone B-protein_type acetyltransferase I-protein_type also O responsible O for O acetylation B-ptm of O histones O . O Owing O to O some O differences O in O their O genomic O distribution O , O the O crotonyllysine B-residue_name and O acetyllysine B-residue_name ( O Kac B-residue_name ) O modifications O have O been O linked O to O distinct O functional O outcomes O . O p300 B-protein - O catalyzed O histone B-protein_type crotonylation B-ptm , O which O is O likely O metabolically O regulated O , O stimulates O transcription O to O a O greater O degree O than O p300 B-protein - O catalyzed O acetylation B-ptm . O The O discovery O of O individual O biological O roles O for O the O crotonyllysine B-residue_name and O acetyllysine B-residue_name marks O suggests O that O these O PTMs O can O be O read O by O distinct O readers O . O While O a O number O of O acetyllysine B-residue_name readers O have O been O identified O and O characterized O , O a O specific O reader O of O the O crotonyllysine B-residue_name mark O remains O unknown O ( O reviewed O in O ). O A O recent O survey O of O bromodomains B-structure_element ( O BDs B-structure_element ) O demonstrates O that O only O one O BD B-structure_element associates O very O weakly O with O a O crotonylated B-protein_state peptide O , O however O it O binds O more O tightly O to O acetylated B-protein_state peptides O , O inferring O that O bromodomains B-structure_element do O not O possess O physiologically O relevant O crotonyllysine B-residue_name binding O activity O . O The O family O of O acetyllysine B-residue_name readers O has O been O expanded O with O the O discovery O that O the O YEATS B-structure_element ( O Yaf9 B-protein , O ENL B-protein , O AF9 B-protein , O Taf14 B-protein , O Sas5 B-protein ) O domains O of O human B-species AF9 B-protein and O yeast B-taxonomy_domain Taf14 B-protein are O capable O of O recognizing O the O histone B-protein_type mark O H3K9ac B-protein_type . O The O acetyllysine B-residue_name binding O function O of O the O AF9 B-protein YEATS B-structure_element domain I-structure_element is O essential O for O the O recruitment O of O the O histone B-protein_type methyltransferase I-protein_type DOT1L B-protein to O H3K9ac B-protein_type - O containing O chromatin O and O for O DOT1L B-protein - O mediated O H3K79 B-protein_type methylation B-ptm and O transcription O . O Similarly O , O activation O of O a O subset O of O genes O and O DNA O damage O repair O in O yeast B-taxonomy_domain require O the O acetyllysine B-residue_name binding O activity O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element . O Consistent O with O its O role O in O gene O regulation O , O Taf14 B-protein was O identified O as O a O core O component O of O the O transcription O factor O complexes O TFIID B-complex_assembly and O TFIIF B-complex_assembly . O However O , O Taf14 B-protein is O also O found O in O a O number O of O chromatin O - O remodeling O complexes O ( O i O . O e O ., O INO80 B-complex_assembly , O SWI B-complex_assembly / I-complex_assembly SNF I-complex_assembly and O RSC B-complex_assembly ) O and O the O histone B-protein_type acetyltransferase I-protein_type complex O NuA3 B-complex_assembly , O indicating O a O multifaceted O role O of O Taf14 B-protein in O transcriptional O regulation O and O chromatin O biology O . O In O this O study O , O we O identified O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element as O a O reader O of O crotonyllysine B-residue_name that O binds O to O histone B-protein_type H3 B-protein_type crotonylated B-protein_state at O lysine B-residue_name_number 9 I-residue_name_number ( O H3K9cr B-protein_type ) O via O a O distinctive O binding O mechanism O . O We O found O that O H3K9cr B-protein_type is O present O in O yeast B-taxonomy_domain and O is O dynamically O regulated O . O To O elucidate O the O molecular O basis O for O recognition O of O the O H3K9cr B-protein_type mark O , O we O obtained O a O crystal B-evidence structure I-evidence of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element in B-protein_state complex I-protein_state with I-protein_state H3K9cr5 B-chemical - I-chemical 13 I-chemical ( O residues O 5 B-residue_range – I-residue_range 13 I-residue_range of O H3 B-protein_type ) O peptide O ( O Fig O . O 1 O , O Supplementary O Results O , O Supplementary O Fig O . O 1 O and O Supplementary O Table O 1 O ). O The O Taf14 B-protein YEATS B-structure_element domain I-structure_element adopts O an O immunoglobin B-structure_element - I-structure_element like I-structure_element β I-structure_element sandwich I-structure_element fold I-structure_element containing O eight O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element strands I-structure_element linked O by O short O loops B-structure_element that O form O a O binding B-site site I-site for O H3K9cr B-protein_type ( O Fig O . O 1b O ). O The O H3K9cr B-protein_type peptide O lays O in O an O extended B-protein_state conformation I-protein_state in O an O orientation O orthogonal O to O the O β B-structure_element strands I-structure_element and O is O stabilized O through O an O extensive O network O of O direct O and O water O - O mediated O hydrogen O bonds O and O a O salt O bridge O ( O Fig O . O 1c O ). O The O most O striking O feature O of O the O crotonyllysine B-residue_name recognition O mechanism O is O the O unique O coordination O of O crotonylated B-protein_state lysine B-residue_name residue O . O The O fully O extended O side O chain O of O K9cr B-residue_name_number transverses O the O narrow O tunnel O , O crossing O the O β B-structure_element sandwich I-structure_element at O right O angle O in O a O corkscrew O - O like O manner O ( O Fig O . O 1b O and O Supplementary O Figure O 1b O ). O The O planar O crotonyl O group O is O inserted O between O Trp81 B-residue_name_number and O Phe62 B-residue_name_number of O the O protein O , O the O aromatic O rings O of O which O are O positioned O strictly O parallel O to O each O other O and O at O equal O distance O from O the O crotonyl O group O , O yielding O a O novel O aromatic O - O amide O / O aliphatic O - O aromatic O π O - O π O - O π O - O stacking O system O that O , O to O our O knowledge O , O has O not O been O reported O previously O for O any O protein O - O protein O interaction O ( O Fig O . O 1d O and O Supplementary O Fig O . O 1c O ). O The O side O chain O of O Trp81 B-residue_name_number appears O to O adopt O two O conformations O , O one O of O which O provides O maximum O π O - O stacking O with O the O alkene O functional O group O while O the O other O rotamer O affords O maximum O π O - O stacking O with O the O amide O π O electrons O ( O Supplementary O Fig O . O 1c O ). O The O dual O conformation O of O Trp81 B-residue_name_number is O likely O due O to O the O conjugated O nature O of O the O C O = O C O and O C O = O O O π O - O orbitals O within O the O crotonyl O functional O group O . O This O provides O the O capability O for O the O alkene O moiety O to O form O electrostatic O contacts O , O as O Cα O and O Cβ O lay O within O electrostatic O interaction O distances O of O the O carbonyl O oxygen O of O Gln79 B-residue_name_number and O of O the O hydroxyl O group O of O Thr61 B-residue_name_number , O respectively O . O The O hydroxyl O group O of O Thr61 B-residue_name_number also O participates O in O a O hydrogen O bond O with O the O amide O nitrogen O of O the O K9cr B-residue_name_number side O chain O ( O Fig O . O 1d O ). O The O fixed O position O of O the O Thr61 B-residue_name_number hydroxyl O group O , O which O facilitates O interactions O with O both O the O amide O and O Cα O of O K9cr B-residue_name_number , O is O achieved O through O a O hydrogen O bond O with O imidazole O ring O of O His59 B-residue_name_number . O Extra O stabilization O of O K9cr B-residue_name_number is O attained O by O a O hydrogen O bond O formed O between O its O carbonyl O oxygen O and O the O backbone O nitrogen O of O Trp81 B-residue_name_number , O as O well O as O a O water B-chemical - O mediated O hydrogen O bond O with O the O backbone O carbonyl O group O of O Gly82 B-residue_name_number ( O Fig O 1d O ). O This O distinctive O mechanism O was O corroborated O through O mapping O the O Taf14 B-protein YEATS B-site - I-site H3K9cr I-site binding I-site interface I-site in O solution O using O NMR B-experimental_method chemical I-experimental_method shift I-experimental_method perturbation I-experimental_method analysis I-experimental_method ( O Supplementary O Fig O . O 2a O , O b O ). O Binding O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element to O H3K9cr B-protein_type is O robust O . O The O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O for O the O Taf14 B-complex_assembly YEATS I-complex_assembly - I-complex_assembly H3K9cr5 I-complex_assembly - I-complex_assembly 13 I-complex_assembly complex O was O found O to O be O 9 O . O 5 O μM O , O as O measured O by O fluorescence B-experimental_method spectroscopy I-experimental_method ( O Supplementary O Fig O . O 2c O ). O This O value O is O in O the O range O of O binding B-evidence affinities I-evidence exhibited O by O the O majority O of O histone O readers O , O thus O attesting O to O the O physiological O relevance O of O the O H3K9cr B-protein_type recognition O by O Taf14 B-protein . O To O determine O whether O H3K9cr B-protein_type is O present O in O yeast B-taxonomy_domain , O we O generated O whole B-experimental_method cell I-experimental_method extracts I-experimental_method from O logarithmically O growing O yeast B-taxonomy_domain cells O and O subjected O them O to O Western B-experimental_method blot I-experimental_method analysis I-experimental_method using O antibodies O directed O towards O H3K9cr B-protein_type , O H3K9ac B-protein_type and O H3 B-protein_type ( O Fig O . O 2a O , O b O , O Supplementary O Fig O . O 3 O and O Supplementary O Table O 2 O ). O Both O H3K9cr B-protein_type and O H3K9ac B-protein_type were O detected O in O yeast B-taxonomy_domain histones B-protein_type ; O to O our O knowledge O , O this O is O the O first O report O of O H3K9cr B-protein_type occurring O in O yeast B-taxonomy_domain . O We O next O asked O if O H3K9cr B-protein_type is O regulated O by O the O actions O of O histone B-protein_type acetyltransferases I-protein_type ( O HATs B-protein_type ) O and O histone B-protein_type deacetylases I-protein_type ( O HDACs B-protein_type ). O Towards O this O end O , O we O probed O extracts O derived O from O yeast B-taxonomy_domain cells O in O which O major O yeast B-taxonomy_domain HATs B-protein_type ( O HAT1 B-protein , O Gcn5 B-protein , O and O Rtt109 B-protein ) O or O HDACs B-protein_type ( O Rpd3 B-protein , O Hos1 B-protein , O and O Hos2 B-protein ) O were O deleted B-experimental_method . O As O shown O in O Figure O 2a O , O b O and O Supplementary O Fig O . O 3e O , O H3K9cr B-protein_type levels O were O abolished O or O reduced O considerably O in O the O HAT B-protein_type deletion B-experimental_method strains O , O whereas O they O were O dramatically O increased O in O the O HDAC B-protein_type deletion B-experimental_method strains O . O Furthermore O , O fluctuations O in O the O H3K9cr B-protein_type levels O were O more O substantial O than O fluctuations O in O the O corresponding O H3K9ac B-protein_type levels O . O Together O , O these O results O reveal O that O H3K9cr B-protein_type is O a O dynamic O mark O of O chromatin O in O yeast B-taxonomy_domain and O suggest O an O important O role O for O this O modification O in O transcription O as O it O is O regulated O by O HATs B-protein_type and O HDACs B-protein_type . O We O have O previously O shown O that O among O acetylated B-protein_state histone B-protein_type marks O , O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element prefers O acetylated B-protein_state H3K9 B-protein_type ( O also O see O Supplementary O Fig O . O 3b O ), O however O it O binds O to O H3K9cr B-protein_type tighter O . O The O selectivity O of O Taf14 B-protein towards O crotonyllysine B-residue_name was O substantiated O by O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method experiments O , O in O which O either O H3K9cr5 B-chemical - I-chemical 13 I-chemical or O H3K9ac5 B-chemical - I-chemical 13 I-chemical peptide O was O titrated B-experimental_method into O the O 15N B-protein_state - I-protein_state labeled I-protein_state Taf14 B-protein YEATS B-structure_element domain I-structure_element ( O Fig O . O 2c O and O Supplementary O Fig O . O 4a O , O b O ). O Binding O of O H3K9cr B-protein_type induced O resonance B-evidence changes I-evidence in O slow O exchange O regime O on O the O NMR B-experimental_method time O scale O , O indicative O of O strong O interaction O . O In O contrast O , O binding O of O H3K9ac B-protein_type resulted O in O an O intermediate O exchange O , O which O is O characteristic O of O a O weaker O association O . O Furthermore O , O crosspeaks B-evidence of O Gly80 B-residue_name_number and O Trp81 B-residue_name_number of O the O YEATS B-structure_element domain I-structure_element were O uniquely O perturbed O by O H3K9cr B-protein_type and O H3K9ac B-protein_type , O indicating O a O different O chemical O environment O in O the O respective O crotonyllysine B-site and I-site acetyllysine I-site binding I-site pockets I-site ( O Supplementary O Fig O . O 4a O ). O These O differences O support O our O model O that O Trp81 B-residue_name_number adopts O two O conformations O upon O complex O formation O with O the O H3K9cr B-protein_type mark O as O compared O to O H3K9ac B-protein_type ( O Supplementary O Figs O . O 1c O , O d O and O 4c O ). O One O of O the O conformations O , O characterized O by O the O π O stacking O involving O two O aromatic O residues O and O the O alkene O group O , O is O observed O only O in O the O YEATS B-complex_assembly - I-complex_assembly H3K9cr I-complex_assembly complex O . O To O establish O whether O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element is O able O to O recognize O other O recently O identified O acyllysine B-residue_name marks O , O we O performed O solution B-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method using O H3 B-protein_type peptides O acetylated B-protein_state , O propionylated B-protein_state , O butyrylated B-protein_state , O and O crotonylated B-protein_state at O lysine B-residue_name_number 9 I-residue_name_number ( O residues O 1 B-residue_range – I-residue_range 20 I-residue_range of O H3 B-protein_type ). O As O shown O in O Figure O 2d O and O Supplementary O Fig O . O 5a O , O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element binds O more O strongly O to O H3K9cr1 B-chemical - I-chemical 20 I-chemical , O as O compared O to O other O acylated B-protein_state histone O peptides O . O The O preference O for O H3K9cr B-protein_type over O H3K9ac B-protein_type , O H3K9pr B-protein_type and O H3K9bu B-protein_type was O supported O by O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method titration I-experimental_method experiments I-experimental_method . O Addition O of O H3K9ac1 B-chemical - I-chemical 20 I-chemical , O H3K9pr1 B-chemical - I-chemical 20 I-chemical , O and O H3K9bu1 B-chemical - I-chemical 20 I-chemical peptides O caused O chemical B-evidence shift I-evidence perturbations I-evidence in O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element in O intermediate O exchange O regime O , O implying O that O these O interactions O are O weaker O compared O to O the O interaction O with O the O H3K9cr1 B-chemical - I-chemical 20 I-chemical peptide O ( O Supplementary O Fig O . O 5b O ). O We O concluded O that O H3K9cr B-protein_type is O the O preferred O target O of O this O domain O . O From O comparative B-experimental_method structural I-experimental_method analysis I-experimental_method of O the O YEATS O complexes O , O Gly80 B-residue_name_number emerged O as O candidate O residue O potentially O responsible O for O the O preference O for O crotonyllysine B-residue_name . O In O attempt O to O generate O a O mutant O capable O of O accommodating O a O short O acetyl O moiety O but O discriminating O against O a O longer O , O planar O crotonyl O moiety O , O we O mutated B-protein_state Gly80 B-residue_name_number to O more O bulky O residues O , O however O all O mutants B-protein_state of I-protein_state Gly80 B-residue_name_number lost O their O binding O activities O towards O either O acylated B-protein_state peptide O , O suggesting O that O Gly80 B-residue_name_number is O absolutely O required O for O the O interaction O . O In O contrast O , O mutation B-experimental_method of O Val24 B-residue_name_number , O a O residue O located O on O another O side O of O Trp81 B-residue_name_number , O had O no O effect O on O binding O ( O Fig O . O 2d O and O Supplementary O Fig O . O 5a O , O c O ). O To O determine O if O the O binding O to O crotonyllysine B-residue_name is O conserved B-protein_state , O we O tested O human B-species YEATS B-structure_element domains I-structure_element by O pull B-experimental_method - I-experimental_method down I-experimental_method experiments I-experimental_method using O singly O and O multiply O acetylated B-protein_state , O propionylated B-protein_state , O butyrylated B-protein_state , O and O crotonylated B-protein_state histone B-protein_type peptides O ( O Supplementary O Fig O . O 6 O ). O We O found O that O all O YEATS B-structure_element domains I-structure_element tested O are O capable O of O binding O to O crotonyllysine B-residue_name peptides O , O though O they O display O variable O preferences O for O the O acyl O moieties O . O While O YEATS2 B-protein and O ENL B-protein showed O selectivity O for O the O crotonylated B-protein_state peptides O , O GAS41 B-protein and O AF9 B-protein bound O acylated B-protein_state peptides O almost O equally O well O . O Unlike O the O YEATS B-structure_element domain I-structure_element , O a O known O acetyllysine B-protein_type reader I-protein_type , O bromodomain B-structure_element , O does O not O recognize O crotonyllysine B-residue_name . O We O assayed O a O large O set O of O BDs B-structure_element in O pull B-experimental_method - I-experimental_method down I-experimental_method experiments I-experimental_method and O found O that O this O module O is O highly O specific O for O acetyllysine B-residue_name and O propionyllysine B-residue_name containing O peptides O ( O Supplementary O Fig O . O 7 O ). O However O , O bromodomains B-structure_element did O not O interact O ( O or O associated O very O weakly O ) O with O longer O acyl O modifications O , O including O crotonyllysine B-residue_name , O as O in O the O case O of O BDs B-structure_element of O TAF1 B-protein and O BRD2 B-protein , O supporting O recent O reports O . O These O results O demonstrate O that O the O YEATS B-structure_element domain I-structure_element is O currently O the O sole O reader O of O crotonyllysine B-residue_name . O In O conclusion O , O we O have O identified O the O YEATS B-structure_element domain I-structure_element of O Taf14 B-protein as O the O first O reader O of O histone B-protein_type crotonylation B-ptm . O We O further O demonstrate O that O H3K9cr B-protein_type exists O in O yeast B-taxonomy_domain and O is O dynamically O regulated O by O HATs B-protein_type and O HDACs B-protein_type . O As O we O previously O showed O the O importance O of O acyllysine B-residue_name binding O by O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element for O the O DNA O damage O response O and O gene O transcription O , O it O will O be O essential O in O the O future O to O define O the O physiological O role O of O crotonyllysine B-residue_name recognition O and O to O differentiate O the O activities O of O Taf14 B-protein that O are O due O to O binding O to O crotonyllysine B-residue_name and O acetyllysine B-residue_name modifications O . O Furthermore O , O the O functional O significance O of O crotonyllysine B-residue_name recognition O by O other O YEATS B-protein_type proteins O will O be O of O great O importance O to O elucidate O and O compare O . O The O structural O mechanism O for O the O recognition O of O H3K9cr B-protein_type ( O a O ) O Chemical O structure O of O crotonyllysine B-residue_name . O ( O b O ) O The O crystal B-evidence structure I-evidence of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element ( O wheat O ) O in B-protein_state complex I-protein_state with I-protein_state the O H3K9cr5 B-chemical - I-chemical 13 I-chemical peptide O ( O green O ). O ( O c O ) O H3K9cr B-protein_type is O stabilized O via O an O extensive O network O of O intermolecular O electrostatic O and O polar O interactions O with O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element . O ( O d O ) O The O π O - O π O - O π O stacking O mechanism O involving O the O alkene O moiety O of O crotonyllysine B-residue_name . O H3K9cr B-protein_type is O a O selective O target O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element ( O a O , O b O ) O Western B-experimental_method blot I-experimental_method analysis O comparing O the O levels O of O H3K9cr B-protein_type and O H3K9ac B-protein_type in O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O HAT O deletion O , O or O HDAC B-protein_type deletion B-experimental_method yeast B-taxonomy_domain strains O . O Total O H3 B-protein_type was O used O as O a O loading O control O . O ( O c O ) O Superimposed O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method spectra B-evidence of O Taf14 B-protein YEATS B-structure_element recorded O as O H3K9cr5 B-chemical - I-chemical 13 I-chemical and O H3K9ac5 B-chemical - I-chemical 13 I-chemical peptides O were O titrated B-experimental_method in O . O Spectra B-evidence are O color O coded O according O to O the O protein O : O peptide O molar O ratio O . O ( O d O ) O Western B-experimental_method blot I-experimental_method analyses O of O peptide B-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method using O wild B-protein_state - I-protein_state type I-protein_state and O mutated B-protein_state Taf14 B-protein YEATS B-structure_element domains I-structure_element and O indicated O peptides O . O A O unified O mechanism O for O proteolysis O and O autocatalytic B-ptm activation I-ptm in O the O 20S B-complex_assembly proteasome I-complex_assembly Biogenesis O of O the O 20S B-complex_assembly proteasome I-complex_assembly is O tightly O regulated O . O The O N O - O terminal O propeptides B-structure_element protecting O the O active B-site - I-site site I-site threonines B-residue_name are O autocatalytically B-ptm released O only O on O completion O of O assembly O . O However O , O the O trigger O for O the O self O - O activation O and O the O reason O for O the O strict B-protein_state conservation I-protein_state of O threonine B-residue_name as O the O active O site O nucleophile O remain O enigmatic O . O Here O we O use O mutagenesis B-experimental_method , O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O biochemical B-experimental_method assays I-experimental_method to O suggest O that O Lys33 B-residue_name_number initiates O nucleophilic O attack O of O the O propeptide B-structure_element by O deprotonating O the O Thr1 B-residue_name_number hydroxyl O group O and O that O both O residues O together O with O Asp17 B-residue_name_number are O part O of O a O catalytic B-site triad I-site . O Substitution B-experimental_method of O Thr1 B-residue_name_number by O Cys B-residue_name disrupts O the O interaction O with O Lys33 B-residue_name_number and O inactivates B-protein_state the O proteasome B-complex_assembly . O Although O a O Thr1Ser B-mutant mutant B-protein_state is O active B-protein_state , O it O is O less O efficient O compared O with O wild B-protein_state type I-protein_state because O of O the O unfavourable O orientation O of O Ser1 B-residue_name_number towards O incoming O substrates O . O This O work O provides O insights O into O the O basic O mechanism O of O proteolysis O and O propeptide B-ptm autolysis I-ptm , O as O well O as O the O evolutionary O pressures O that O drove O the O proteasome B-complex_assembly to O become O a O threonine B-protein_type protease I-protein_type . O The O proteasome B-complex_assembly , O an O essential O molecular O machine O , O is O a O threonine B-protein_type protease I-protein_type , O but O the O evolution O and O the O components O of O its O proteolytic O centre O are O unclear O . O Here O , O the O authors O use O structural O biology O and O biochemistry O to O investigate O the O role O of O proteasome B-complex_assembly active B-site site I-site residues O on O maturation O and O activity O . O The O 20S B-complex_assembly proteasome I-complex_assembly core I-complex_assembly particle I-complex_assembly ( O CP B-complex_assembly ) O is O the O key O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type of O eukaryotic B-taxonomy_domain cells O . O Its O seven O different O α B-protein and O seven O different O β B-protein subunits I-protein assemble O into O four O heptameric B-oligomeric_state rings B-structure_element that O are O stacked O on O each O other O to O form O a O hollow B-structure_element cylinder I-structure_element . O While O the O inactive B-protein_state α B-protein subunits I-protein build O the O two O outer O rings B-structure_element , O the O β B-protein subunits I-protein form O the O inner O rings B-structure_element . O Only O three O out O of O the O seven O different O β B-protein subunits I-protein , O namely O β1 B-protein , O β2 B-protein and O β5 B-protein , O bear O N O - O terminal O proteolytic B-site active I-site centres I-site , O and O before O CP B-complex_assembly maturation O these O are O protected O by O propeptides B-structure_element . O In O the O last O stage O of O CP B-complex_assembly biogenesis O , O the O prosegments B-structure_element are O autocatalytically B-ptm removed I-ptm through O nucleophilic O attack O by O the O active B-site site I-site residue I-site Thr1 B-residue_name_number on O the O preceding O peptide O bond O involving O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Release O of O the O propeptides B-structure_element creates O a O functionally O active B-protein_state CP B-complex_assembly that O cleaves O proteins O into O short O peptides O . O Although O the O chemical O nature O of O the O substrate B-site - I-site binding I-site channel I-site and O hence O substrate O preferences O are O unique O to O each O of O the O distinct O active B-protein_state β B-protein subunits I-protein , O all O active B-site sites I-site employ O an O identical O reaction O mechanism O to O hydrolyse O peptide O bonds O . O Nucleophilic O attack O of O Thr1Oγ B-residue_name_number on O the O carbonyl O carbon O atom O of O the O scissile O peptide O bond O creates O a O first O cleavage O product O and O a O covalent O acyl O - O enzyme O intermediate O . O Hydrolysis O of O this O complex B-complex_assembly by O the O addition O of O a O nucleophilic O water B-chemical molecule O regenerates O the O enzyme B-complex_assembly and O releases O the O second O peptide B-chemical fragment O . O The O proteasome B-complex_assembly belongs O to O the O family O of O N B-protein_type - I-protein_type terminal I-protein_type nucleophilic I-protein_type ( I-protein_type Ntn I-protein_type ) I-protein_type hydrolases I-protein_type , O and O the O free B-protein_state N O - O terminal O amine O group O of O Thr1 B-residue_name_number was O proposed O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O group O to O generate O a O nucleophilic O Thr1Oγ B-residue_name_number for O peptide O - O bond O cleavage O . O This O mechanism O , O however O , O cannot O explain O autocatalytic B-ptm precursor I-ptm processing I-ptm because O in O the O immature B-protein_state active B-site sites I-site , O Thr1N B-residue_name_number is O part O of O the O peptide O bond O with O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number the O bond O that O needs O to O be O hydrolysed O . O An O alternative O candidate O for O deprotonating O the O Thr1 B-residue_name_number hydroxyl O group O is O the O side O chain O of O Lys33 B-residue_name_number as O it O is O within O hydrogen O - O bonding O distance O to O Thr1OH B-residue_name_number ( O 2 O . O 7 O Å O ). O In O principle O it O could O function O as O the O general O base O during O both O autocatalytic B-ptm removal I-ptm of O the O propeptide B-structure_element and O protein O substrate O cleavage O . O Here O we O provide O experimental O evidences O for O this O distinct O view O of O the O proteasome B-complex_assembly active B-site - I-site site I-site mechanism O . O Data O from O biochemical B-experimental_method and I-experimental_method structural I-experimental_method analyses I-experimental_method of O proteasome O variants O with O mutations O in O the O β5 B-protein propeptide B-structure_element and O the O active B-site site I-site strongly O support O the O model O and O deliver O novel O insights O into O the O structural O constraints O required O for O the O autocatalytic B-ptm activation I-ptm of O the O proteasome B-complex_assembly . O Furthermore O , O we O determine O the O advantages O of O Thr B-residue_name over O Cys B-residue_name or O Ser B-residue_name as O the O active O - O site O nucleophile O using O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method together O with O activity B-experimental_method and I-experimental_method inhibition I-experimental_method assays I-experimental_method . O Inactivation O of O proteasome B-complex_assembly subunits B-protein by O T1A B-mutant mutations B-experimental_method Proteasome B-complex_assembly - O mediated O degradation O of O cell O - O cycle O regulators O and O potentially O toxic O misfolded O proteins O is O required O for O the O viability O of O eukaryotic B-taxonomy_domain cells O . O Inactivation O of O the O active B-site site I-site Thr1 B-residue_name_number by O mutation B-experimental_method to I-experimental_method Ala B-residue_name has O been O used O to O study O substrate O specificity O and O the O hierarchy O of O the O proteasome B-complex_assembly active B-site sites I-site . O Yeast B-taxonomy_domain strains O carrying O the O single O mutations O β1 B-mutant - I-mutant T1A I-mutant or O β2 B-mutant - I-mutant T1A I-mutant , O or O both O , O are O viable O , O even O though O one O or O two O of O the O three O distinct O catalytic B-protein_state β B-protein subunits I-protein are O disabled B-protein_state and O carry B-protein_state remnants I-protein_state of I-protein_state their O N O - O terminal O propeptides B-structure_element ( O Table O 1 O ). O These O results O indicate O that O the O β1 B-protein and O β2 B-protein proteolytic O activities O are O not O essential O for O cell O survival O . O By O contrast O , O the O T1A B-mutant mutation O in O subunit O β5 B-protein has O been O reported O to O be O lethal O or O nearly O so O . O Viability O is O restored O if O the O β5 B-mutant - I-mutant T1A I-mutant subunit O has O its O propeptide B-structure_element ( O pp B-chemical ) O deleted B-experimental_method but I-experimental_method expressed I-experimental_method separately I-experimental_method in O trans B-protein_state ( O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state ), O although O substantial O phenotypic O impairment O remains O ( O Table O 1 O ). O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O The O extremely O weak O growth O of O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state described O by O Chen O and O Hochstrasser O compared O with O the O inviability O reported O by O Heinemeyer O et O al O . O prompted O us O to O analyse O this O discrepancy O . O Sequencing B-experimental_method of I-experimental_method the I-experimental_method plasmids I-experimental_method , O testing O them O in O both O published O yeast B-taxonomy_domain strain O backgrounds O and O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method revealed O that O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state is O viable O , O but O suffers O from O a O marked O growth O defect O that O requires O extended O incubation O of O 4 O – O 5 O days O for O initial O colony O formation O ( O Table O 1 O and O Supplementary O Methods O ). O We O also O identified O an O additional O point O mutation O K81R B-mutant in O subunit O β5 B-protein that O was O present O in O the O allele O used O in O ref O .. O This B-experimental_method single I-experimental_method amino I-experimental_method - I-experimental_method acid I-experimental_method exchange I-experimental_method is O located O at O the O interface B-site of O the O subunits O α4 B-protein , O β4 B-protein and O β5 B-protein ( O Supplementary O Fig O . O 1b O ) O and O might O weakly O promote O CP B-complex_assembly assembly O by O enhancing O inter O - O subunit O contacts O . O The O slightly O better O growth O of O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state allowed O us O to O solve O the O crystal B-evidence structure I-evidence of O a O yeast B-taxonomy_domain proteasome B-complex_assembly ( O yCP B-complex_assembly ) O with O the O β5 B-mutant - I-mutant T1A I-mutant mutation O , O which O is O discussed O in O the O following O section O ( O for O details O see O Supplementary O Note O 1 O ). O Propeptide B-structure_element conformation O and O triggering O of O autolysis B-ptm In O the O final O steps O of O proteasome B-complex_assembly biogenesis O , O the O propeptides B-structure_element are O autocatalytically B-ptm cleaved I-ptm from O the O mature B-protein_state β B-protein - I-protein subunit I-protein domains I-protein . O For O subunit O β1 B-protein , O this O process O was O previously O inferred O to O require O that O the O propeptide B-structure_element residue O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O subunit O precursor O occupies O the O S1 B-site specificity I-site pocket I-site of O the O substrate B-site - I-site binding I-site channel I-site formed O by O amino O acid O 45 B-residue_number ( O for O details O see O Supplementary O Note O 2 O ). O Furthermore O , O it O was O observed O that O the O prosegment B-structure_element forms O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element in O the O active B-site site I-site , O and O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number adopts O a O γ B-structure_element - I-structure_element turn I-structure_element conformation I-structure_element , O which O by O definition O is O characterized O by O a O hydrogen O bond O between O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number O O and O Thr1NH B-residue_name_number ( O ref O .). O Here O we O again O analysed O the O β1 B-mutant - I-mutant T1A I-mutant mutant B-protein_state crystallographically B-experimental_method but O in O addition O determined O the O structures B-evidence of O the O β2 B-mutant - I-mutant T1A I-mutant single O and O β1 B-mutant - I-mutant T1A I-mutant - I-mutant β2 I-mutant - I-mutant T1A I-mutant double O mutants O ( O Protein O Data O Bank O ( O PDB O ) O entry O codes O are O provided O in O Supplementary O Table O 1 O ). O In O subunit O β1 B-protein , O we O found O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number indeed O forms O a O sharp B-structure_element turn I-structure_element , O which O relaxes O on O prosegment B-ptm cleavage I-ptm ( O Fig O . O 1a O and O Supplementary O Fig O . O 2a O ). O However O , O the O γ B-structure_element - I-structure_element turn I-structure_element conformation I-structure_element and O the O associated O hydrogen O bond O initially O proposed O is O for O geometric O and O chemical O reasons O inappropriate O and O would O not O perfectly O position O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number for O nucleophilic O attack O by O Thr1 B-residue_name_number . O Regarding O the O β2 B-protein propeptide B-structure_element , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S1 B-site pocket I-site but O is O less O deeply O anchored O compared O with O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β1 B-protein , O which O might O be O due O to O the O rather O large O β2 B-protein - O S1 B-site pocket I-site created O by O Gly45 B-residue_name_number . O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number positions O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O via O hydrogen O bonding O (∼ O 2 O . O 8 O Å O ) O in O a O perfect O trajectory O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1b O and O Supplementary O Fig O . O 2b O ). O Next O , O we O examined O the O position O of O the O β5 B-protein propeptide B-structure_element in O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O Surprisingly O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O completely O extended O and O forces O the O histidine B-residue_name side O chain O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number to O occupy O the O S2 B-site instead O of O the O S1 B-site pocket I-site , O thereby O disrupting O the O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O Nonetheless O , O the O carbonyl O carbon O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number would O be O ideally O placed O for O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1c O and O Supplementary O Fig O . O 2c O , O d O ). O As O the O K81R B-mutant mutation O is O located O far O from O the O active B-site site I-site ( O Thr1Cα B-residue_name_number – O Arg81Cα B-residue_name_number : O 24 O Å O ), O any O influence O on O propeptide B-structure_element conformation O can O be O excluded O . O Instead O , O the O plasticity O of O the O β5 B-protein S1 B-site pocket I-site caused O by O the O rotational O flexibility O of O Met45 B-residue_name_number might O prevent O stable O accommodation O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O the O S1 B-site site I-site and O thus O also O promote O its O immediate O release O after O autolysis B-ptm . O Processing O of O β O - O subunit O precursors O requires O deprotonation O of O Thr1OH B-residue_name_number ; O however O , O the O general O base O initiating O autolysis B-ptm is O unknown O . O Remarkably O , O eukaryotic B-taxonomy_domain proteasomal O β5 B-protein subunits O bear O a O His B-residue_name residue O in O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O propeptide B-structure_element ( O Supplementary O Fig O . O 3a O ). O As O histidine B-residue_name commonly O functions O as O a O proton O shuttle O in O the O catalytic B-site triads I-site of O serine B-protein_type proteases I-protein_type , O we O investigated O the O role O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O processing O of O the O β5 B-protein propeptide B-structure_element by O exchanging B-experimental_method it I-experimental_method for I-experimental_method Asn B-residue_name , O Lys B-residue_name , O Phe B-residue_name and O Ala B-residue_name . O All O yeast B-taxonomy_domain mutants O were O viable O at O 30 O ° O C O , O but O suffered O from O growth O defects O at O 37 O ° O C O with O the O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutants O being O most O affected O ( O Supplementary O Fig O . O 3b O and O Table O 1 O ). O In O agreement O , O the O chymotrypsin O - O like O ( O ChT O - O L O ) O activity O of O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutant B-protein_state yCPs B-complex_assembly was O impaired O in O situ O and O in O vitro O ( O Supplementary O Fig O . O 3c O ). O Structural B-experimental_method analyses I-experimental_method revealed O that O the O propeptides B-structure_element of O all O mutant B-protein_state yCPs B-complex_assembly shared O residual O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence densities I-evidence . O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Phe B-residue_name / O Lys B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O visualized O at O low O occupancy O , O while O Ala B-residue_name / O Asn B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number could O not O be O assigned O . O This O observation O indicates O a O mixture O of O processed B-protein_state and O unprocessed B-protein_state β5 B-protein subunits O and O partially O impaired O autolysis B-ptm , O thereby O excluding O any O essential O role O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number as O the O general O base O . O Next O , O we O examined O the O effect O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number on O the O orientation O of O the O propeptide B-structure_element by O creating B-experimental_method mutants I-experimental_method that I-experimental_method combine I-experimental_method the O T1A B-mutant ( O K81R B-mutant ) O mutation B-experimental_method ( I-experimental_method s I-experimental_method ) I-experimental_method with O H B-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant , O H B-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant or O H B-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant substitutions B-experimental_method . O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O encoded O in O the O yeast B-taxonomy_domain β1 B-protein subunit O precursor O ( O Supplementary O Fig O . O 3a O ); O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O generally O part O of O β2 B-protein - O propeptides B-structure_element ( O Supplementary O Fig O . O 3a O ); O and O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number was O expected O to O fit O the O β5 B-protein - O S1 B-site pocket I-site without O inducing O conformational O changes O of O Met45 B-residue_name_number , O allowing O it O to O accommodate O ‘ O β1 O - O like O ' O propeptide O positioning O . O As O expected O from O β5 B-mutant - I-mutant T1A I-mutant mutants O , O the O yeasts B-taxonomy_domain show O severe O growth O phenotypes O , O with O minor O variations O ( O Supplementary O Fig O . O 4a O and O Table O 1 O ). O We O determined O crystal B-evidence structures I-evidence of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutants O ( O Supplementary O Table O 1 O ). O For O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant variant O , O only O the O residues O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number could O be O visualized O , O indicating O that O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number leads O to O insufficient O stabilization O of O the O propeptide B-structure_element in O the O substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 4d O ). O By O contrast O , O the O prosegments B-structure_element of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutants O were O significantly O better O resolved O in O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence yet O not O at O full O occupancy O ( O Supplementary O Fig O . O 4b O , O c O and O Supplementary O Table O 1 O ), O suggesting O that O the O natural O propeptide B-structure_element bearing O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O most O favourable O . O Nevertheless O , O both O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number and O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O found O to O occupy O the O S1 B-site specificity I-site pocket I-site formed O by O Met45 B-residue_name_number ( O Fig O . O 2a O , O b O and O Supplementary O Fig O . O 4f O – O h O ). O This O result O proves O that O the O naturally O occurring O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element does O not O stably O fit O into O the O S1 B-site site I-site . O Since O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number adopts O the O same O position O in O both O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O and O mutant B-protein_state β5 B-protein propeptides B-structure_element , O and O since O in O all O cases O its O carbonyl O carbon O is O perfectly O placed O for O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 2b O ), O we O propose O that O neither O binding O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number to O the O S1 B-site pocket I-site nor O formation O of O the O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element is O essential O for O autolysis B-ptm of O the O propeptide B-structure_element . O Next O , O we O determined O the O crystal B-evidence structure I-evidence of O a O chimeric B-protein_state yCP B-complex_assembly having O the O yeast B-taxonomy_domain β1 B-protein - O propeptide B-structure_element replaced B-experimental_method by I-experimental_method its O β5 B-protein counterpart B-structure_element . O Although O we O observed O fragments O of O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence density I-evidence in O the O β1 B-protein active B-site site I-site , O the O data O were O not O interpretable O . O Bearing O in O mind O that O in O contrast O to O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β2 B-protein , O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O subunit O β1 B-protein is O not B-protein_state conserved I-protein_state among O species O ( O Supplementary O Fig O . O 3a O ), O we O created B-experimental_method a O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant proteasome B-complex_assembly mutant B-protein_state . O As O proven O by O the O β2 B-mutant - I-mutant T1A I-mutant crystal B-evidence structures I-evidence , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number hydrogen O bonds O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O . O Although O this O interaction O was O not O observed O for O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutant B-protein_state ( O Fig O . O 2c O and O Supplementary O Fig O . O 4c O , O i O ), O exchange B-experimental_method of O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number by O Val B-residue_name in O β2 B-protein , O a O conservative O mutation O regarding O size O but O drastic O with O respect O to O polarity O , O was O found O to O inhibit O maturation O of O this O subunit O ( O Fig O . O 2d O and O Supplementary O Fig O . O 4e O , O j O ). O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence displays O a O different O orientation O for O the O β2 B-protein propeptide B-structure_element than O has O been O observed O for O the O β2 B-mutant - I-mutant T1A I-mutant proteasome B-complex_assembly . O In O particular O , O Val B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O displaced O from O the O S1 B-site site I-site and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O severely O shifted O ( O movement O of O the O carbonyl O oxygen O atom O of O 3 O . O 8 O Å O ), O thereby O preventing O nucleophilic O attack O of O Thr1 B-residue_name_number ( O Fig O . O 2d O and O Supplementary O Fig O . O 4j O , O k O ). O These O results O further O confirm O that O correct O positioning O of O the O active B-site - I-site site I-site residues I-site and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O decisive O for O the O maturation O of O the O proteasome B-complex_assembly . O The O active B-site site I-site of O the O proteasome B-complex_assembly Proton O shuttling O from O the O proteasomal O active B-site site I-site Thr1OH B-residue_name_number to O Thr1NH2 B-residue_name_number via O a O nucleophilic O water B-chemical molecule O was O suggested O to O initiate O peptide O - O bond O hydrolysis O . O However O , O in O the O immature B-protein_state particle B-complex_assembly Thr1NH2 B-residue_name_number is O blocked O by O the O propeptide B-structure_element and O cannot O activate O Thr1Oγ B-residue_name_number . O Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen O - O bonding O distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O A O proposed O catalytic B-site tetrad I-site model O involving O Thr1OH B-residue_name_number , O Thr1NH2 B-residue_name_number , O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number , O as O well O as O a O nucleophilic O water B-chemical molecule O as O the O proton O shuttle O appeared O to O accommodate O all O possible O views O of O the O proteasomal O active B-site site I-site . O Twenty O years O later O , O with O a O plethora O of O yCP B-complex_assembly X B-evidence - I-evidence ray I-evidence structures I-evidence in O hand O , O we O decided O to O re O - O analyse O the O active B-site site I-site of O the O proteasome B-complex_assembly and O to O resolve O the O uncertainty O regarding O the O nature O of O the O general O base O . O Mutation B-experimental_method of O β5 B-protein - O Lys33 B-residue_name_number to O Ala B-residue_name causes O a O strongly O deleterious O phenotype O , O and O previous O structural B-experimental_method and I-experimental_method biochemical I-experimental_method analyses I-experimental_method confirmed O that O this O is O caused O by O failure O of O propeptide B-ptm cleavage I-ptm , O and O consequently O , O lack O of O ChT O - O L O activity O ( O Fig O . O 4a O , O Supplementary O Fig O . O 3b O and O Table O 1 O ; O for O details O see O Supplementary O Note O 1 O ). O The O phenotype O of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state was O however O less O pronounced O than O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant yeast B-taxonomy_domain ( O Fig O . O 4a O ). O This O discrepancy O in O growth O was O traced O to O an O additional O point O mutation O L B-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant in O the O β5 B-protein - O propeptide B-structure_element of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state ( O see O also O Supplementary O Note O 1 O ). O Structural B-experimental_method comparison I-experimental_method of O the O β5 B-mutant - I-mutant L I-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant - I-mutant K33A I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant active B-site sites I-site revealed O that O mutation B-experimental_method of O Lys33 B-residue_name_number to O Ala B-residue_name creates O a O cavity O that O is O filled O with O Thr1 B-residue_name_number and O the O remnant O propeptide B-structure_element . O This O structural O alteration O destroys O active B-site - I-site site I-site integrity O and O abolishes O catalytic O activity O of O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 5a O ). O Additional O proof O for O the O key O function O of O Lys33 B-residue_name_number was O obtained O from O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state , O with O the O propeptide B-structure_element expressed B-experimental_method separately I-experimental_method from O the O main O subunit O ( O pp B-chemical trans B-protein_state ). O The O Thr1 B-residue_name_number N O terminus O of O this O mutant B-protein_state is O not O blocked O by O the O propeptide B-structure_element , O yet O its O catalytic O activity O is O reduced O by O ∼ O 83 O % O ( O Supplementary O Fig O . O 6b O ). O Consistent O with O this O , O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical only O showed O partial O occupancy O of O the O ligand O at O the O β5 B-protein active B-site sites I-site ( O Supplementary O Fig O . O 5b O and O Supplementary O Table O 1 O ). O Since O no O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O was O observed O for O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state apo B-protein_state crystal B-evidence structure I-evidence , O the O reduced O reactivity O towards O substrates O and O inhibitors O indicates O that O Lys33NH2 B-residue_name_number , O rather O than O Thr1NH2 B-residue_name_number , O deprotonates O and O activates O Thr1OH B-residue_name_number . O Furthermore O , O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state without B-protein_state inhibitor I-protein_state revealed O that O Thr1Oγ B-residue_name_number strongly O coordinates O a O well O - O defined O water B-chemical molecule O (∼ O 2 O Å O ; O Fig O . O 3c O and O Supplementary O Fig O . O 5c O , O d O ). O This O water B-chemical hydrogen O bonds O also O to O Arg19O B-residue_name_number (∼ O 3 O . O 0 O Å O ) O and O Asp17Oδ B-residue_name_number (∼ O 3 O . O 0 O Å O ), O and O thereby O presumably O enables O residual O activity O of O the O mutant B-protein_state . O Remarkably O , O the O solvent O molecule O occupies O the O position O normally O taken O by O Lys33NH2 B-residue_name_number in O the O WT B-protein_state proteasome B-complex_assembly structure B-evidence ( O Fig O . O 3c O ), O further O corroborating O the O essential O role O of O Lys33 B-residue_name_number as O the O general O base O for O autolysis B-ptm and O proteolysis O . O Conservative B-experimental_method substitution I-experimental_method of O Lys33 B-residue_name_number by O Arg B-residue_name delays O autolysis B-ptm of O the O β5 B-protein precursor O and O impairs O yeast B-taxonomy_domain growth O ( O for O details O see O Supplementary O Note O 1 O ). O While O Thr1 B-residue_name_number occupies O the O same O position O as O in O WT B-protein_state yCPs B-complex_assembly , O Arg33 B-residue_name_number is O unable O to O hydrogen O bond O to O Asp17 B-residue_name_number , O thereby O inactivating O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 5e O ). O The O conservative B-experimental_method mutation I-experimental_method of O Asp17 B-residue_name_number to O Asn B-residue_name in O subunit O β5 B-protein of O the O yCP B-complex_assembly also O provokes O a O severe O growth O defect O ( O Supplementary O Note O 1 O , O Supplementary O Fig O . O 6a O and O Table O 1 O ). O Notably O , O only O with O the O additional O point O mutation O L B-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant present O in O the O β5 B-protein propeptide B-structure_element could O we O purify O a O small O amount O of O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state yCP B-complex_assembly . O As O determined O by O crystallographic B-experimental_method analysis I-experimental_method , O this O mutant B-protein_state β5 B-protein subunit O was O partially B-protein_state processed I-protein_state ( O Table O 1 O ) O but O displayed O impaired O reactivity O towards O the O proteasome B-complex_assembly inhibitor O carfilzomib B-chemical compared O with O the O subunits O β1 B-protein and O β2 B-protein , O and O with O WT B-protein_state β5 B-protein ( O Supplementary O Fig O . O 7a O ). O In O contrast O to O the O cis B-protein_state - O construct O , O expression B-experimental_method of O the O β5 B-protein propeptide B-structure_element in O trans B-protein_state allowed O straightforward O isolation B-experimental_method and O crystallization B-experimental_method of O the O D17N B-mutant mutant B-protein_state proteasome B-complex_assembly . O The O ChT O - O L O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical in O trans B-protein_state CP B-complex_assembly towards O the O canonical O β5 B-protein model O substrates O N B-chemical - I-chemical succinyl I-chemical - I-chemical Leu I-chemical - I-chemical Leu I-chemical - I-chemical Val I-chemical - I-chemical Tyr I-chemical - I-chemical 7 I-chemical - I-chemical amino I-chemical - I-chemical 4 I-chemical - I-chemical methylcoumarin I-chemical ( O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical ) O and O carboxybenzyl B-chemical - I-chemical Gly I-chemical - I-chemical Gly I-chemical - I-chemical Leu I-chemical - I-chemical para I-chemical - I-chemical nitroanilide I-chemical ( O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical ) O was O severely O reduced O ( O Supplementary O Fig O . O 6b O ), O confirming O that O Asp17 B-residue_name_number is O of O fundamental O importance O for O the O catalytic O activity O of O the O mature B-protein_state proteasome B-complex_assembly . O Even O though O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical trans B-protein_state yCP B-complex_assembly crystal B-evidence structure I-evidence appeared O identical O to O the O WT B-protein_state yCP B-complex_assembly ( O Supplementary O Fig O . O 7b O ), O the O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O the O α B-chemical ′, I-chemical β I-chemical ′ I-chemical epoxyketone I-chemical inhibitor O carfilzomib B-chemical visualized O only O partial O occupancy O of O the O ligand O in O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 7a O ). O This O observation O is O consistent O with O a O strongly O reduced O reactivity O of O β5 B-protein - O Thr1 B-residue_name_number and O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical cis B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical . O Autolysis B-ptm and O residual O catalytic O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant mutants O may O originate O from O the O carbonyl O group O of O Asn17 B-residue_name_number , O which O albeit O to O a O lower O degree O still O can O polarize O Lys33 B-residue_name_number for O the O activation O of O Thr1 B-residue_name_number . O In O agreement O , O an O E17A B-mutant mutant B-protein_state in O the O proteasomal O β B-protein - I-protein subunit I-protein of O the O archaeon B-taxonomy_domain Thermoplasma B-species acidophilum I-species prevents O autolysis B-ptm and O catalysis O . O Strikingly O , O although O the O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state with O the O propeptide B-structure_element expressed B-experimental_method in O cis B-protein_state and O in O trans B-protein_state looked O similar O , O there O was O a O pronounced O difference O in O their O growth O phenotypes O observed O ( O Supplementary O Fig O . O 6a O and O Supplementary O Fig O . O 7b O ). O On O the O basis O of O these O results O , O we O propose O that O CPs B-complex_assembly from O all O domains O of O life O use O a O catalytic B-site triad I-site consisting O of O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number for O both O autocatalytic B-ptm precursor I-ptm processing I-ptm and O proteolysis O ( O Fig O . O 3d O ). O This O model O is O also O consistent O with O the O fact O that O no O defined O water B-chemical molecule O is O observed O in O the O mature B-protein_state WT B-protein_state proteasomal O active B-site site I-site that O could O shuttle O the O proton O from O Thr1Oγ B-residue_name_number to O Thr1NH2 B-residue_name_number . O To O explore O this O active B-site - I-site site I-site model O further O , O we O exchanged B-experimental_method the I-experimental_method conserved I-experimental_method Asp166 B-residue_name_number residue O for O Asn B-residue_name in O the O yeast B-taxonomy_domain β5 B-protein subunit O . O Asp166Oδ B-residue_name_number is O hydrogen O - O bonded O to O Thr1NH2 B-residue_name_number via O Ser129OH B-residue_name_number and O Ser169OH B-residue_name_number , O and O therefore O was O proposed O to O be O involved O in O catalysis O . O The O β5 B-mutant - I-mutant D166N I-mutant pp B-chemical cis B-protein_state yeast B-taxonomy_domain mutant B-protein_state is O significantly O impaired O in O growth O and O its O ChT O - O L O activity O is O drastically O reduced O ( O Supplementary O Fig O . O 6a O , O b O and O Table O 1 O ). O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state indicate O that O the O β5 B-protein propeptide B-structure_element is O hydrolysed O , O but O due O to O reorientation O of O Ser129OH B-residue_name_number , O the O interaction O with O Asn166Oδ B-residue_name_number is O disrupted O ( O Supplementary O Fig O . O 8a O ). O Instead O , O a O water B-chemical molecule O is O bound B-protein_state to I-protein_state Ser129OH B-residue_name_number and O Thr1NH2 B-residue_name_number ( O Supplementary O Fig O . O 8b O ), O which O may O enable O precursor B-ptm processing I-ptm . O The O hydrogen O bonds O involving O Ser169OH B-residue_name_number are O intact O and O may O account O for O residual O substrate O turnover O . O Soaking B-experimental_method the O β5 B-mutant - I-mutant D166N I-mutant crystals B-experimental_method with O carfilzomib B-chemical and O MG132 B-chemical resulted O in O covalent O modification O of O Thr1 B-residue_name_number at O high O occupancy O ( O Supplementary O Fig O . O 8c O ). O In O the O carfilzomib B-complex_assembly complex I-complex_assembly structure B-evidence , O Thr1Oγ B-residue_name_number and O Thr1N B-residue_name_number incorporate O into O a O morpholine O ring O structure O and O Ser129 B-residue_name_number adopts O its O WT B-protein_state - O like O orientation O . O In O the O MG132 B-protein_state - I-protein_state bound I-protein_state state I-protein_state , O Thr1N B-residue_name_number is O unmodified B-protein_state , O and O we O again O observe O that O Ser129 B-residue_name_number is O hydrogen O - O bonded O to O a O water B-chemical molecule O instead O of O Asn166 B-residue_name_number . O Whereas O Asn B-residue_name can O to O some O degree O replace O Asp166 B-residue_name_number due O to O its O carbonyl O group O in O the O side O chain O , O Ala B-residue_name at O this O position O was O found O to O prevent O both O autolysis B-ptm and O catalysis O . O These O results O suggest O that O Asp166 B-residue_name_number and O Ser129 B-residue_name_number function O as O a O proton O shuttle O and O affect O the O protonation O state O of O Thr1N B-residue_name_number during O autolysis B-ptm and O catalysis O . O Substitution B-experimental_method of O the O active B-site - I-site site I-site Thr1 B-residue_name_number by O Cys B-residue_name Mutation B-experimental_method of O Thr1 B-residue_name_number to O Cys B-residue_name inactivates O the O 20S B-complex_assembly proteasome I-complex_assembly from O the O archaeon B-taxonomy_domain T B-species . I-species acidophilum I-species . O In O yeast B-taxonomy_domain , O this O mutation B-experimental_method causes O a O strong O growth O defect O ( O Fig O . O 4a O and O Table O 1 O ), O although O the O propeptide B-structure_element is O hydrolysed O , O as O shown O here O by O its O X B-evidence - I-evidence ray I-evidence structure I-evidence . O In O one O of O the O two O β5 B-protein subunits O , O however O , O we O found O the O cleaved B-protein_state propeptide B-structure_element still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4c O ). O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S2 B-site pocket I-site like O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state , O but O in O contrast O to O the O latter O , O the O propeptide B-structure_element in O the O T1C B-mutant mutant B-protein_state adopts O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element conformation O as O known O from O inhibitors O like O MG132 B-chemical ( O Fig O . O 4c O – O e O and O Supplementary O Fig O . O 9b O ). O On O the O basis O of O the O phenotype O of O the O T1C B-mutant mutant B-protein_state and O the O propeptide B-structure_element remnant O identified O in O its O active B-site site I-site , O we O suppose O that O autolysis B-ptm is O retarded O and O may O not O have O been O completed O before O crystallization B-experimental_method . O Owing O to O the O unequal O positions O of O the O two O β5 B-protein subunits O within O the O CP B-complex_assembly in O the O crystal O lattice O , O maturation O and O propeptide B-structure_element displacement O may O occur O at O different O timescales O in O the O two O subunits O . O Despite O propeptide B-ptm hydrolysis I-ptm , O the O β5 B-mutant - I-mutant T1C I-mutant active B-site site I-site is O catalytically B-protein_state inactive I-protein_state ( O Fig O . O 4b O and O Supplementary O Fig O . O 9a O ). O In O agreement O , O soaking B-experimental_method crystals I-experimental_method with O the O CP B-complex_assembly inhibitors O bortezomib B-chemical or O carfilzomib B-chemical modifies O only O the O β1 B-protein and O β2 B-protein active B-site sites I-site , O while O leaving O the O β5 B-mutant - I-mutant T1C I-mutant proteolytic B-site centres I-site unmodified B-protein_state even O though O they O are O only O partially O occupied O by O the O cleaved B-protein_state propeptide B-structure_element remnant O . O Moreover O , O the O structural B-evidence data I-evidence reveal O that O the O thiol O group O of O Cys1 B-residue_name_number is O rotated O by O 74 O ° O with O respect O to O the O hydroxyl O side O chain O of O Thr1 B-residue_name_number ( O Fig O . O 4f O and O Supplementary O Fig O . O 9b O ). O Consequently O , O the O hydrogen O bond O bridging O the O active O - O site O nucleophile O and O Lys33 B-residue_name_number in O WT B-protein_state CPs B-complex_assembly is O broken O with O Cys1 B-residue_name_number . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence of O the O T1C B-mutant mutant B-protein_state also O indicates O that O Lys33NH2 B-residue_name_number is O disordered B-protein_state . O Together O , O these O observations O suggest O that O efficient O peptide O - O bond O hydrolysis O requires O that O Lys33NH2 B-residue_name_number hydrogen O bonds O to O the O active O site O nucleophile O . O The O benefit O of O Thr B-residue_name over O Ser B-residue_name as O the O active O - O site O nucleophile O All O proteasomes B-complex_assembly strictly B-protein_state employ I-protein_state threonine B-residue_name as O the O active B-site - I-site site I-site residue I-site instead O of O serine B-residue_name . O To O investigate O the O reason O for O this O singularity O , O we O analysed O a O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state , O which O is O viable O but O suffers O from O growth O defects O ( O Fig O . O 4a O and O Table O 1 O ). O Activity B-experimental_method assays I-experimental_method with O the O β5 B-protein - O specific O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical demonstrated O that O the O ChT O - O L O activity O of O the O T1S B-mutant mutant B-protein_state is O reduced O by O 40 O – O 45 O % O compared O with O WT B-protein_state proteasomes B-complex_assembly depending O on O the O incubation O temperature O ( O Fig O . O 4b O and O Supplementary O Fig O . O 9c O ). O By O contrast O , O turnover O of O the O substrate O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical , O used O to O monitor O ChT O - O L O activity O in O situ O but O in O a O less O quantitative O fashion O , O is O not O detectably O impaired O ( O Supplementary O Fig O . O 9a O ). O Crystal B-evidence structure I-evidence analysis O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state confirmed O precursor B-ptm processing I-ptm ( O Fig O . O 4g O ), O and O ligand B-complex_assembly - I-complex_assembly complex I-complex_assembly structures B-evidence with O bortezomib B-chemical and O carfilzomib B-chemical unambiguously O corroborated O the O reactivity O of O Ser1 B-residue_name_number ( O Fig O . O 5 O ). O However O , O the O apo B-protein_state crystal B-evidence structure I-evidence revealed O that O Ser1Oγ B-residue_name_number is O turned O away O from O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4g O ). O Compared O with O Thr1Oγ B-residue_name_number in O WT B-protein_state CP B-complex_assembly structures B-evidence , O Ser1Oγ B-residue_name_number is O rotated O by O 60 O °. O Because O both O conformations O of O Ser1Oγ B-residue_name_number are O hydrogen O - O bonded O to O Lys33NH2 B-residue_name_number ( O Fig O . O 4h O ), O the O relay O system O is O capable O of O hydrolysing O peptide O substrates O , O albeit O at O lower O rates O compared O with O Thr1 B-residue_name_number . O The O active B-site - I-site site I-site residue I-site Thr1 B-residue_name_number is O fixed O in O its O position O , O as O its O methyl O group O is O engaged O in O hydrophobic O interactions O with O Thr3 B-residue_name_number and O Ala46 B-residue_name_number ( O Fig O . O 4h O ). O Consequently O , O the O hydroxyl O group O of O Thr1 B-residue_name_number requires O no O reorientation O before O substrate O cleavage O and O is O thus O more O catalytically O efficient O than O Ser1 B-residue_name_number . O In O agreement O , O at O an O elevated O growing O temperature O of O 37 O ° O C O the O T1S B-mutant mutant B-protein_state is O unable O to O grow O ( O Fig O . O 4a O ). O In O vitro O , O the O mutant B-protein_state proteasome B-complex_assembly is O less O susceptible O to O proteasome B-complex_assembly inhibition O by O bortezomib B-chemical ( O 3 O . O 7 O - O fold O ) O and O carfilzomib B-chemical ( O 1 O . O 8 O - O fold O ; O Fig O . O 5 O ). O Nevertheless O , O inhibitor B-complex_assembly complex I-complex_assembly structures B-evidence indicate O identical O binding O modes O compared O with O the O WT B-protein_state yCP B-complex_assembly structures B-evidence , O with B-protein_state the I-protein_state same I-protein_state inhibitors I-protein_state . O Notably O , O the O affinity B-evidence of O the O tetrapeptide O carfilzomib B-chemical is O less O impaired O , O as O it O is O better O stabilized O in O the O substrate B-site - I-site binding I-site channel I-site than O the O dipeptide O bortezomib B-chemical , O which O lacks O a O defined O P3 O site O and O has O only O a O few O interactions O with O the O surrounding O protein O . O Hence O , O the O mean B-evidence residence I-evidence time I-evidence of O carfilzomib B-chemical at O the O active B-site site I-site is O prolonged O and O the O probability O to O covalently O react O with O Ser1 B-residue_name_number is O increased O . O Considered O together O , O these O results O provide O a O plausible O explanation O for O the O invariance O of O threonine B-residue_name as O the O active O - O site O nucleophile O in O proteasomes B-complex_assembly in O all O three O domains O of O life O , O as O well O as O in O proteasome B-protein_type - I-protein_type like I-protein_type proteases I-protein_type such O as O HslV B-protein ( O ref O .). O The O 20S B-complex_assembly proteasome I-complex_assembly CP B-complex_assembly is O the O major O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type in O eukaryotic B-taxonomy_domain cells O , O and O its O assembly O is O highly O organized O . O The O β B-protein - I-protein subunit I-protein propeptides B-structure_element , O particularly O that O of O β5 B-protein , O are O key O factors O that O help O drive O proper O assembly O of O the O CP B-complex_assembly complex O . O In O addition O , O they O prevent O irreversible O inactivation O of O the O Thr1 B-residue_name_number N O terminus O by O N B-ptm - I-ptm acetylation I-ptm . O By O contrast O , O the O prosegments B-structure_element of O β B-protein subunits I-protein are O dispensable O for O archaeal B-taxonomy_domain proteasome B-complex_assembly assembly O , O at O least O when O heterologously B-experimental_method expressed I-experimental_method in O Escherichia B-species coli I-species . O In O eukaryotes B-taxonomy_domain , O deletion O of O or O failure O to O cleave O the O β1 B-protein and O β2 B-protein propeptides B-structure_element is O well O tolerated O . O However O , O removal B-experimental_method of I-experimental_method the O β5 B-protein prosegment B-structure_element or O any O interference O with O its O cleavage O causes O severe O phenotypic O defects O . O These O observations O highlight O the O unique O function O and O importance O of O the O β5 B-protein propeptide B-structure_element as O well O as O the O β5 B-protein active B-site site I-site for O maturation O and O function O of O the O eukaryotic B-taxonomy_domain CP B-complex_assembly . O Here O we O have O described O the O atomic B-evidence structures I-evidence of O various O β5 B-mutant - I-mutant T1A I-mutant mutants O , O which O allowed O for O the O first O time O visualization O of O the O residual O β5 B-protein propeptide B-structure_element . O Depending O on O the O (- B-residue_number 2 I-residue_number ) I-residue_number residue O we O observed O various O propeptide B-structure_element conformations O , O but O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O in O all O structures B-evidence perfectly O located O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number , O although O it O does O not O adopt O the O tight B-structure_element turn I-structure_element observed O for O the O prosegment B-structure_element of O subunit O β1 B-protein . O From O these O data O we O conclude O that O only O the O positioning O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Thr1 B-residue_name_number as O well O as O the O integrity O of O the O proteasomal O active B-site site I-site are O required O for O autolysis B-ptm . O In O this O regard O , O inappropriate O N B-ptm - I-ptm acetylation I-ptm of O the O Thr1 B-residue_name_number N O terminus O cannot O be O removed O by O Thr1Oγ B-residue_name_number due O to O the O rotational O freedom O and O flexibility O of O the O acetyl O group O . O The O propeptide B-structure_element needs O some O anchoring O in O the O substrate B-site - I-site binding I-site channel I-site to O properly O position O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number but O this O seems O to O be O independent O of O the O orientation O of O residue O (- B-residue_number 2 I-residue_number ). I-residue_number Autolytic O activation O of O the O CP B-complex_assembly constitutes O one O of O the O final O steps O of O proteasome O biogenesis O , O but O the O trigger O for O propeptide B-ptm cleavage I-ptm had O remained O enigmatic O . O On O the O basis O of O the O numerous O CP B-complex_assembly : I-complex_assembly ligand I-complex_assembly complexes O solved O during O the O past O 18 O years O and O in O the O current O study O , O we O provide O a O revised O interpretation O of O proteasome B-complex_assembly active B-site - I-site site I-site architecture I-site . O We O propose O a O catalytic B-site triad I-site for O the O active B-site site I-site of O the O CP B-complex_assembly consisting O of O residues O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number , O which O are O conserved O among O all O proteolytically O active O eukaryotic B-taxonomy_domain , O bacterial B-taxonomy_domain and O archaeal B-taxonomy_domain proteasome B-complex_assembly subunits O . O Lys33NH2 B-residue_name_number is O expected O to O act O as O the O proton O acceptor O during O autocatalytic B-ptm removal I-ptm of O the O propeptides B-structure_element , O as O well O as O during O substrate O proteolysis O , O while O Asp17Oδ B-residue_name_number orients O Lys33NH2 B-residue_name_number and O makes O it O more O prone O to O protonation O by O raising O its O pKa O ( O hydrogen O bond O distance O : O Lys33NH3 B-residue_name_number +– O Asp17Oδ B-residue_name_number : O 2 O . O 9 O Å O ). O Analogously O to O the O proteasome B-complex_assembly , O a O Thr B-site – I-site Lys I-site – I-site Asp I-site triad I-site is O also O found O in O L B-protein_type - I-protein_type asparaginase I-protein_type . O Thus O , O specific O protein O surroundings O can O significantly O alter O the O chemical O properties O of O amino O acids O such O as O Lys B-residue_name to O function O as O an O acid O – O base O catalyst O . O In O this O new O view O of O the O proteasomal O active B-site site I-site , O the O positively O charged O Thr1NH3 B-residue_name_number +- O terminus O hydrogen O bonds O to O the O amide O nitrogen O of O incoming O peptide O substrates O and O stabilizes O as O well O as O activates O them O for O the O endoproteolytic B-ptm cleavage I-ptm by O Thr1Oγ B-residue_name_number ( O Fig O . O 3d O ). O Consistent O with O this O model O , O the O positively O charged O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen O bonds O with O inhibitory O compounds O like O fellutamide B-chemical B I-chemical ( O ref O .), O α B-chemical - I-chemical ketoamides I-chemical , O homobelactosin B-chemical C I-chemical ( O ref O .) O and O salinosporamide B-chemical A I-chemical ( O ref O .). O Furthermore O , O opening O of O the O β O - O lactone O compound O omuralide B-chemical by O Thr1 B-residue_name_number creates O a O C3 O - O hydroxyl O group O , O whose O proton O originates O from O Thr1NH3 B-residue_name_number +. O The O resulting O uncharged O Thr1NH2 B-residue_name_number is O hydrogen O - O bridged O to O the O C3 O - O OH O group O . O In O agreement O , O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O irreversibly O blocks O hydrolytic O activity O , O and O binding O of O substrates O is O prevented O for O steric O reasons O . O By O acting O as O a O proton O donor O during O catalysis O , O the O Thr1 B-residue_name_number N O terminus O may O also O favour O cleavage O of O substrate O peptide O bonds O ( O Fig O . O 3d O ). O Cleavage O of O the O scissile O peptide O bond O requires O protonation O of O the O emerging O free O amine O , O and O in O the O proteasome B-complex_assembly , O the O Thr1 B-residue_name_number amine O group O is O likely O to O assume O this O function O . O Analogously O , O Thr1NH3 B-residue_name_number + O might O promote O the O bivalent O reaction O mode O of O epoxyketone O inhibitors O by O protonating O the O epoxide O moiety O to O create O a O positively O charged O trivalent O oxygen O atom O that O is O subsequently O nucleophilically O attacked O by O Thr1NH2 B-residue_name_number . O During O autolysis B-ptm the O Thr1 B-residue_name_number N O terminus O is O engaged O in O a O hydroxyoxazolidine O ring O intermediate O ( O Fig O . O 3d O ), O which O is O unstable O and O short O - O lived O . O Breakdown O of O this O tetrahedral O transition O state O releases O the O Thr1 B-residue_name_number N O terminus O that O is O protonated O by O aspartic B-residue_name_number acid I-residue_name_number 166 I-residue_name_number via O Ser129OH B-residue_name_number to O yield O Thr1NH3 B-residue_name_number +. O The O residues O Ser129 B-residue_name_number and O Asp166 B-residue_name_number are O expected O to O increase O the O pKa O value O of O Thr1N B-residue_name_number , O thereby O favouring O its O charged O state O . O Consistent O with O playing O an O essential O role O in O proton O shuttling O , O the O mutation B-experimental_method D166A B-mutant prevents O autolysis B-ptm of O the O archaeal B-taxonomy_domain CP B-complex_assembly and O the O exchange B-experimental_method D166N B-mutant impairs O catalytic O activity O of O the O yeast B-taxonomy_domain CP B-complex_assembly about O 60 O %. O The O mutation B-experimental_method D166N B-mutant lowers O the O pKa O of O Thr1N B-residue_name_number , O which O is O thus O more O likely O to O exist O in O the O uncharged O deprotonated O state O ( O Thr1NH2 B-residue_name_number ). O This O interpretation O agrees O with O the O strongly O reduced O catalytic O activity O of O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state on O the O one O hand O , O and O the O ability O to O react O readily O with O carfilzomib B-chemical on O the O other O . O Hence O , O the O proteasome B-complex_assembly can O be O viewed O as O having O a O second B-site triad I-site that O is O essential O for O efficient O proteolysis O . O While O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number are O required O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O side O chain O , O Ser129OH B-residue_name_number and O Asp166OH B-residue_name_number serve O to O protonate O the O N O - O terminal O amine O group O of O Thr1 B-residue_name_number . O In O accord O with O the O proposed O Thr1 B-residue_name_number – O Lys33 B-residue_name_number – O Asp17 B-residue_name_number catalytic B-site triad I-site , O crystallographic B-evidence data I-evidence on O the O proteolytically B-protein_state inactive I-protein_state β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state demonstrate O that O the O interaction O of O Lys33NH2 B-residue_name_number and O Cys1 B-residue_name_number is O broken O . O However O , O owing O to O Cys B-residue_name being O a O strong O nucleophile O , O the O propeptide B-structure_element can O still O be O cleaved B-protein_state off O over O time O . O While O only O one O single O turnover O is O necessary O for O autolysis B-ptm , O continuous O enzymatic O activity O is O required O for O significant O and O detectable O substrate O hydrolysis O . O Notably O , O in O the O Ntn B-protein_type hydrolase I-protein_type penicillin B-protein_type acylase I-protein_type , O substitution B-experimental_method of O the O catalytic B-protein_state N O - O terminal O Ser B-residue_name residue O by O Cys B-residue_name also O inactivates B-protein_state the O enzyme B-protein_type but O still O enables O precursor B-ptm processing I-ptm . O To O investigate O why O the O CP B-complex_assembly specifically O employs O threonine B-residue_name as O its O active B-site - I-site site I-site residue I-site , O we O used O a O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state of O the O yCP B-complex_assembly and O characterized O it O biochemically B-experimental_method and I-experimental_method structurally I-experimental_method . O Activity B-experimental_method assays I-experimental_method with O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state revealed O reduced O turnover O of O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O We O also O observed O slightly O lower O affinity O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state yCP B-complex_assembly for O the O Food O and O Drug O Administration O - O approved O proteasome B-complex_assembly inhibitors O bortezomib B-chemical and O carfilzomib B-chemical . O Structural B-evidence analyses I-evidence support O these O findings O with O the O T1S B-mutant mutant B-protein_state and O provide O an O explanation O for O the O strict B-protein_state use I-protein_state of I-protein_state Thr B-residue_name residues O in O proteasomes B-complex_assembly . O Thr1 B-residue_name_number is O well O anchored O in O the O active B-site site I-site by O hydrophobic O interactions O of O its O Cγ O methyl O group O with O Ala46 B-residue_name_number ( O Cβ O ), O Lys33 B-residue_name_number ( O carbon O side O chain O ) O and O Thr3 B-residue_name_number ( O Cγ O ). O Notably O , O proteolytically B-protein_state active I-protein_state proteasome B-complex_assembly subunits O from O archaea B-taxonomy_domain , O yeast B-taxonomy_domain and O mammals B-taxonomy_domain , O including O constitutive O , O immuno O - O and O thymoproteasome O subunits O , O either O encode O Thr B-residue_name or O Ile B-residue_name at O position O 3 B-residue_number , O indicating O the O importance O of O the O Cγ O for O fixing O the O position O of O the O nucleophilic O Thr1 B-residue_name_number . O In O contrast O to O Thr1 B-residue_name_number , O the O hydroxyl O group O of O Ser1 B-residue_name_number occupies O the O position O of O the O Thr1 B-residue_name_number methyl O side O chain O in O the O WT B-protein_state enzyme B-complex_assembly , O which O requires O its O reorientation O relative O to O the O substrate O to O allow O cleavage O ( O Fig O . O 4g O , O h O ). O Notably O , O in O the O threonine B-protein_type aspartase I-protein_type Taspase1 B-protein , O mutation B-experimental_method of O the O active B-site - I-site site I-site Thr234 B-residue_name_number to O Ser B-residue_name also O places O the O side O chain O in O the O position O of O the O methyl O group O of O Thr234 B-residue_name_number in O the O WT B-protein_state , O thereby O reducing O catalytic O activity O . O Similarly O , O although O the O serine B-residue_name mutant B-protein_state is O active B-protein_state , O threonine B-residue_name is O more O efficient O in O the O context O of O the O proteasome B-complex_assembly active B-site site I-site . O The O greater O suitability O of O threonine B-residue_name for O the O proteasome B-complex_assembly active B-site site I-site , O which O has O been O noted O in O biochemical O as O well O as O in O kinetic O studies O , O constitutes O a O likely O reason O for O the O conservation B-protein_state of O the O Thr1 B-residue_name_number residue O in O all O proteasomes B-complex_assembly from O bacteria B-taxonomy_domain to O eukaryotes B-taxonomy_domain . O Conformation O of O proteasomal O propeptides B-structure_element . O ( O a O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O matured B-protein_state WT B-protein_state β1 B-protein active B-site - I-site site I-site Thr1 B-residue_name_number . O Only O the O residues O (- B-residue_range 5 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 1 I-residue_range ) I-residue_range of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element are O displayed O . O The O major O determinant O of O the O S1 B-site specificity I-site pocket I-site , O residue O 45 B-residue_number , O is O depicted O . O Note O the O tight O conformation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number before O propeptide B-structure_element removal O ( O G B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number turn O ; O cyan O double O arrow O ) O compared O with O the O relaxed O , O processed B-protein_state WT B-protein_state active B-site - I-site site I-site Thr1 B-residue_name_number ( O red O double O arrow O ). O The O black O arrow O indicates O the O attack O of O Thr1Oγ B-residue_name_number onto O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element highlights O subtle O differences O in O their O conformations O , O but O illustrates O that O Ala1 B-residue_name_number and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number match O well O . O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O is O hydrogen O - O bonded O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O (∼ O 2 O . O 8 O Å O ; O black O dashed O line O ). O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant , O the O β2 B-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant propeptide B-structure_element remnants O depict O their O differences O in O conformation O . O While O residue O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O β1 B-protein and O β2 B-protein prosegments B-structure_element fit O the O S1 B-site pocket I-site , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element occupies O the O S2 B-site pocket I-site . O Nonetheless O , O in O all O mutants O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O ideally O placed O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number . O The O hydrogen O bond O between O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O (∼ O 2 O . O 8 O Å O ) O is O indicated O by O a O black O dashed O line O . O Mutations B-experimental_method of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number and O their O influence O on O propeptide B-structure_element conformation O and O autolysis B-ptm . O ( O a O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant mutant B-protein_state propeptide B-structure_element . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site . O ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-protein propeptides B-structure_element in O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant , O β5 B-mutant -( I-mutant H I-mutant - I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state proteasomes B-complex_assembly . O While O the O residues O (- B-residue_range 2 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 4 I-residue_range ) I-residue_range vary O in O their O conformation O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number are O located O in O all O structures B-evidence at O the O same O positions O . O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutant B-protein_state propeptide B-structure_element . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site , O but O only O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O of O β2 B-protein forms O a O hydrogen O bridge O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O ( O black O dashed O line O ). O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O matured B-protein_state β2 B-protein active B-site site I-site , O the O WT B-protein_state β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant mutant B-protein_state propeptide B-structure_element . O Notably O , O Val B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O latter O does O not O occupy O the O S1 B-site pocket I-site , O thereby O changing O the O orientation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O preventing O nucleophilic O attack O of O Thr1Oγ B-residue_name_number on O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Architecture O and O proposed O reaction O mechanism O of O the O proteasomal O active B-site site I-site . O ( O a O ) O Hydrogen B-site - I-site bonding I-site network I-site at O the O mature B-protein_state WT B-protein_state β5 B-protein proteasomal O active B-site site I-site ( O dotted O lines O ). O Thr1OH B-residue_name_number is O hydrogen O - O bonded O to O Lys33NH2 B-residue_name_number ( O 2 O . O 7 O Å O ), O which O in O turn O interacts O with O Asp17Oδ B-residue_name_number . O The O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen O bonds O with O Ser129Oγ B-residue_name_number , O the O carbonyl O oxygen O of O residue O 168 B-residue_number , O Ser169Oγ B-residue_name_number and O Asp166Oδ B-residue_name_number . O ( O b O ) O The O orientations O of O the O active B-site - I-site site I-site residues I-site involved O in O hydrogen O bonding O are O strictly B-protein_state conserved I-protein_state in O each O proteolytic B-site centre I-site , O as O shown O by O superposition B-experimental_method of O the O β B-protein subunits I-protein . O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state active B-site site I-site . O In O the O latter O , O a O water B-chemical molecule O ( O red O sphere O ) O is O found O at O the O position O where O in O the O WT B-protein_state structure O the O side O chain O amine O group O of O Lys33 B-residue_name_number is O located O . O Similarly O to O Lys33 B-residue_name_number , O the O water B-chemical molecule O hydrogen O bonds O to O Arg19O B-residue_name_number , O Asp17Oδ B-residue_name_number and O Thr1OH B-residue_name_number . O Note O , O the O strong O interaction O with O the O water B-chemical molecule O causes O a O minor O shift O of O Thr1 B-residue_name_number , O while O all O other O active B-site - I-site site I-site residues I-site remain O in O place O . O ( O d O ) O Proposed O chemical O reaction O mechanism O for O autocatalytic B-ptm precursor I-ptm processing I-ptm and O proteolysis O in O the O proteasome B-complex_assembly . O The O active B-site - I-site site I-site Thr1 B-residue_name_number is O depicted O in O blue O , O the O propeptide B-structure_element segment O and O the O peptide O substrate O are O coloured O in O green O , O whereas O the O scissile O peptide O bond O is O highlighted O in O red O . O Autolysis B-ptm ( O left O set O of O structures O ) O is O initiated O by O deprotonation O of O Thr1OH B-residue_name_number via O Lys33NH2 B-residue_name_number and O the O formation O of O a O tetrahedral O transition O state O . O The O strictly B-protein_state conserved I-protein_state oxyanion O hole O Gly47NH B-residue_name_number stabilizing O the O negatively O charged O intermediate O is O illustrated O as O a O semicircle O . O Collapse O of O the O transition O state O frees O the O Thr1 B-residue_name_number N O terminus O ( O by O completing O an O N O - O to O - O O O acyl O shift O of O the O propeptide B-structure_element ), O which O is O subsequently O protonated O by O Asp166OH B-residue_name_number via O Ser129OH B-residue_name_number . O Next O , O Thr1NH2 B-residue_name_number polarizes O a O water B-chemical molecule O for O the O nucleophilic O attack O of O the O acyl O - O enzyme O intermediate O . O On O hydrolysis O of O the O latter O , O the O active B-site - I-site site I-site Thr1 B-residue_name_number is O ready O for O catalysis O ( O right O set O of O structures O ). O The O charged O Thr1 B-residue_name_number N O terminus O may O engage O in O the O orientation O of O the O amide O moiety O and O donate O a O proton O to O the O emerging O N O terminus O of O the O C O - O terminal O cleavage O product O . O The O resulting O deprotonated O Thr1NH2 B-residue_name_number finally O activates O a O water B-chemical molecule O for O hydrolysis O of O the O acyl O - O enzyme O . O The O proteasome B-complex_assembly favours O threonine B-residue_name as O the O active O - O site O nucleophile O . O ( O a O ) O Growth B-experimental_method tests I-experimental_method by I-experimental_method serial I-experimental_method dilution I-experimental_method of O WT B-protein_state and O pre2 O ( O β5 B-protein ) O mutant B-protein_state yeast B-taxonomy_domain cultures O reveal O growth O defects O of O the O active B-site - I-site site I-site mutants B-experimental_method under O the O indicated O conditions O after O 2 O days O ( O 2 O d O ) O of O incubation O . O ( O b O ) O Purified O WT B-protein_state and O mutant B-protein_state proteasomes B-complex_assembly were O tested O for O their O chymotrypsin O - O like O activity O ( O β5 B-protein ) O using O the O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O ( O c O ) O Illustration O of O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence ( O blue O mesh O contoured O at O 1σ O ) O for O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element fragment O . O The O prosegment B-structure_element is O cleaved B-protein_state but O still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site . O Notably O , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number does O not O occupy O the O S1 B-site pocket I-site formed O by O Met45 B-residue_name_number , O similar O to O what O was O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O the O β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state subunits O onto O the O WT B-protein_state β5 B-protein subunit O . O ( O e O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element onto O the O β1 B-mutant - I-mutant T1A I-mutant active B-site site I-site ( O blue O ) O and O the O WT B-protein_state β5 B-protein active B-site site I-site in B-protein_state complex I-protein_state with I-protein_state the O proteasome B-complex_assembly inhibitor O MG132 B-chemical ( O ref O .). O The O inhibitor B-chemical as O well O as O the O propeptides B-structure_element adopt O similar O conformations O in O the O substrate B-site - I-site binding I-site channel I-site . O ( O f O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state active B-site sites I-site illustrates O the O different O orientations O of O the O hydroxyl O group O of O Thr1 B-residue_name_number and O the O thiol O side O chain O of O Cys1 B-residue_name_number . O ( O g O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state active B-site sites I-site reveals O different O orientations O of O the O hydroxyl O groups O of O Thr1 B-residue_name_number and O Ser1 B-residue_name_number , O respectively O . O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence for O Ser1 B-residue_name_number ( O blue O mesh O contoured O at O 1σ O ) O is O illustrated O . O ( O h O ) O The O methyl O group O of O Thr1 B-residue_name_number is O anchored O by O hydrophobic O interactions O with O Ala46Cβ B-residue_name_number and O Thr3Cγ B-residue_name_number . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O Inhibition O of O WT B-protein_state and O mutant B-protein_state β5 B-mutant - I-mutant T1S I-mutant proteasomes B-complex_assembly by O bortezomib B-chemical and O carfilzomib B-chemical . O Inhibition B-experimental_method assays I-experimental_method ( O left O panel O ). O Purified O yeast B-taxonomy_domain proteasomes B-complex_assembly were O tested O for O the O susceptibility O of O their O ChT O - O L O ( O β5 B-protein ) O activity O to O inhibition O by O bortezomib B-chemical and O carfilzomib B-chemical using O the O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O IC50 B-evidence values I-evidence were O determined O in O triplicate O ; O s O . O d O .' O s O are O indicated O by O error O bars O . O Note O that O IC50 B-evidence values I-evidence depend O on O time O and O enzyme O concentration O . O Proteasomes B-complex_assembly ( O final O concentration O : O 66 O nM O ) O were O incubated O with O inhibitor O for O 45 O min O before O substrate O addition O ( O final O concentration O : O 200 O μM O ). O Structures B-evidence of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state in O complex B-complex_assembly with I-complex_assembly both I-complex_assembly ligands I-complex_assembly ( O green O ) O prove O the O reactivity O of O Ser1 B-residue_name_number ( O right O panel O ). O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence ( O blue O mesh O ) O for O Ser1 B-residue_name_number ( O brown O ) O and O the O covalently O bound O ligands O ( O green O ; O only O the O P1 B-site site I-site ( O Leu1 B-residue_name_number ) O is O shown O ) O are O contoured O at O 1σ O . O The O WT B-protein_state proteasome B-complex_assembly : I-complex_assembly inhibitor I-complex_assembly complex I-complex_assembly structures B-evidence ( O inhibitor O in O grey O ; O Thr1 B-residue_name_number in O black O ) O are O superimposed B-experimental_method and O demonstrate O that O mutation B-experimental_method of O Thr1 B-residue_name_number to O Ser B-residue_name does O not O affect O the O binding O mode O of O bortezomib B-chemical or O carfilzomib B-chemical . O