In O particular O , O the O molecular O basis O of O complex B-chemical polysaccharide I-chemical recognition O , O an O essential O prerequisite O to O hydrolysis O by O cell O surface O glycosidases B-protein_type and O subsequent O metabolism O , O is O generally O poorly O understood O . O The O unique O , O tetra B-structure_element - I-structure_element modular I-structure_element structure B-evidence of O SGBP B-protein - I-protein B I-protein is O comprised O of O tandem B-structure_element Ig I-structure_element - I-structure_element like I-structure_element folds I-structure_element , O with O XyG B-chemical binding O mediated O at O the O distal O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O A O remarkable O feature O of O the O Bacteroidetes B-taxonomy_domain is O the O packaging O of O genes O for O carbohydrate O catabolism O into O discrete O polysaccharide B-gene utilization I-gene loci I-gene ( O PUL B-gene ), O which O are O transcriptionally O regulated O by O specific O substrate O signatures O . O The O importance O of O PUL B-gene as O a O successful O evolutionary O strategy O is O underscored O by O the O observation O that O Bacteroidetes B-taxonomy_domain such O as O B B-species . I-species thetaiotaomicron I-species and O Bacteroides B-species ovatus I-species devote O ~ O 18 O % O of O their O genomes O to O these O systems O . O Xyloglucan B-chemical and O the O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ). O ( O A O ) O Representative O structures B-evidence of O common O xyloglucans B-chemical using O the O Consortium O for O Functional O Glycomics O Symbol O Nomenclature O ( O http O :// O www O . O functionalglycomics O . O org O / O static O / O consortium O / O Nomenclature O . O shtml O ). O We O describe O here O the O detailed O functional B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O the O noncatalytic B-protein_state SGBPs B-protein_type encoded O by O Bacova_02651 B-gene and O Bacova_02650 B-gene of O the O XyGUL B-gene , O here O referred O to O as O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O to O elucidate O their O molecular O roles O in O carbohydrate O acquisition O in O vivo O . O Here O , O the O SGBPs B-protein_type very O likely O work O in O concert O with O the O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type endo I-protein_type - I-protein_type xyloglucanase I-protein_type B B-species . I-species ovatus I-species GH5 B-protein ( O BoGH5 B-protein ) O to O recruit O and O cleave O XyG B-chemical for O subsequent O periplasmic O import O via O the O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type of O the O XyGUL B-gene ( O Fig O . O 1B O and O C O ). O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein visualized O by O immunofluorescence B-experimental_method . O ( O D O ) O FITC B-evidence images I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O All O samples O were O loaded O on O the O same O gel O next O to O the O BSA B-protein controls O ; O thin O black O lines O indicate O where O intervening O lanes O were O removed O from O the O final O image O for O both O space O and O clarity O . O ITC B-experimental_method demonstrates O that O SGBP B-protein - I-protein A I-protein binds O to O XyG B-chemical polysaccharide B-chemical and O XyGO2 B-chemical ( O based O on O a O Glc8 B-structure_element backbone I-structure_element ) O with O essentially O equal O affinities B-evidence , O while O no O binding O of O XyGO1 B-chemical ( O Glc4 B-structure_element backbone I-structure_element ) O was O detectable O ( O Table O 1 O ; O see O Fig O . O S2 O and O S3 O in O the O supplemental O material O ). O Together O , O these O data O clearly O suggest O that O polysaccharide B-chemical binding O of O both O SGBPs B-protein_type is O fulfilled O by O a O dimer B-oligomeric_state of O the O minimal B-structure_element repeat I-structure_element , O corresponding O to O XyGO2 B-chemical ( O cf O . O Summary O of O thermodynamic O parameters O for O wild B-protein_state - I-protein_state type I-protein_state SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein obtained O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method at O 25 O ° O Ca O Specifically O , O SGBP B-protein - I-protein A I-protein overlays B-experimental_method B B-species . I-species thetaiotaomicron I-species SusD B-protein ( O BtSusD B-protein ) O with O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O value O of O 2 O . O 2 O Å O for O 363 O Cα O pairs O , O which O is O notable O given O the O 26 O % O amino O acid O identity O ( O 40 O % O similarity O ) O between O these O homologs O ( O Fig O . O 4C O ). O The O apo B-protein_state structure B-evidence is O color O ramped O from O blue O to O red O . O Binding O thermodynamics O are O based O on O the O concentration O of O the O binding O unit O , O XyGO2 B-chemical . O The O structure B-experimental_method - I-experimental_method based I-experimental_method alignment I-experimental_method of O these O proteins O reveals O 17 O % O sequence O identity O , O with O a O core O RMSD B-evidence of O 3 O . O 6 O Å O for O 253 O aligned O residues O . O While O there O is O no O substrate O - O complexed O structure O of O Bacova_04391 B-protein available O , O the O binding B-site site I-site is O predicted O to O include O W241 B-residue_name_number and O Y404 B-residue_name_number , O which O are O proximal O to O the O XyGO B-site binding I-site site I-site in O SGBP B-protein - I-protein B I-protein . O However O , O the O opposing B-protein_state , I-protein_state clamp I-protein_state - I-protein_state like I-protein_state arrangement I-protein_state of O these B-structure_element residues I-structure_element in O Bacova_04391 B-protein is O clearly O distinct O from O the O planar B-site surface I-site arrangement I-site of O the O residues B-structure_element that O interact O with O XyG B-chemical in O SGBP B-protein - I-protein B I-protein ( O described O below O ). O Inspection O of O the O tertiary O structure B-evidence indicates O that O domains O C B-structure_element and O D B-structure_element are O effectively O inseparable O , O with O a O contact O interface O of O 396 O Å2 O . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O The O aromatic B-site platform I-site created O by O W330 B-residue_name_number , O W364 B-residue_name_number , O and O Y363 B-residue_name_number spans O four O glucosyl B-chemical residues O , O compared O to O the O longer B-protein_state platform B-site of O SGBP B-protein - I-protein A I-protein , O which O supports O six O glucosyl B-chemical residues O ( O Fig O . O 5E O ). O Additional O residues B-structure_element surrounding O the O binding B-site site I-site , O including O Y369 B-residue_name_number and O E412 B-residue_name_number , O may O contribute O to O the O recognition O of O more O highly O decorated O XyG B-chemical , O but O precisely O how O this O is O mediated O is O presently O unclear O . O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein have O distinct O , O coordinated O functions O in O vivo O . O To O disentangle O the O functions O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein in O XyG B-chemical recognition O and O uptake O , O we O created O individual O in B-experimental_method - I-experimental_method frame I-experimental_method deletion I-experimental_method and I-experimental_method complementation I-experimental_method mutant I-experimental_method strains O of O B B-species . I-species ovatus I-species . O A O strain O in O which O the O entire O XyGUL B-gene is O deleted B-experimental_method displays O a O lag B-evidence of O 24 O . O 5 O h O during O growth O on O glucose B-chemical compared O to O the O isogenic O parental O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Δtdk B-mutant strain O , O for O which O exponential O growth O lags B-evidence for O 19 O . O 8 O h O ( O see O Fig O . O S8D O ). O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O This O result O mirrors O our O previous O data O for O the O canonical O Sus B-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O which O revealed O that O a O homologous O ΔsusD B-mutant mutant B-protein_state is O unable O to O grow O on O starch B-chemical or O malto B-chemical - I-chemical oligosaccharides I-chemical , O despite O normal O cell O surface O expression O of O all O other O PUL B-gene - O encoded O proteins O . O More O recently O , O we O demonstrated O that O this O phenotype O is O due O to O the O loss O of O the O physical O presence O of O SusD B-protein ; O complementation B-experimental_method of O ΔsusD B-mutant with O SusD B-mutant *, I-mutant a O triple B-protein_state site I-protein_state - I-protein_state directed I-protein_state mutant I-protein_state ( O W96A B-mutant W320A B-mutant Y296A B-mutant ) O that O ablates B-protein_state glycan I-protein_state binding I-protein_state , O restores O B B-species . I-species thetaiotaomicron I-species growth O on O malto B-chemical - I-chemical oligosaccharides I-chemical and O starch B-chemical when O sus B-gene transcription O is O induced O by O maltose B-chemical addition O . O The O specific O glycan B-chemical signal O that O upregulates O BoXyGUL B-gene is O currently O unknown O . O The O precise O reason O for O this O lag B-evidence is O unclear O , O but O recapitulating O our O findings O on O the O role O of O SusD B-protein in O malto B-chemical - I-chemical oligosaccharide I-chemical sensing O in O B B-species . I-species thetaiotaomicron I-species , O this O extended O lag B-evidence may O be O due O to O inefficient O import O and O thus O sensing O of O xyloglucan B-chemical in O the O environment O in O the O absence O of O glycan B-chemical binding O by O essential O SGBPs B-protein_type . O Our O previous O work O demonstrates O that O B B-species . I-species ovatus I-species cells O grown O in O minimal O medium O plus O glucose B-chemical express O low O levels O of O the O XyGUL B-gene transcript O . O Thus O , O in O our O experiments O , O we O presume O that O each O strain O , O initially O grown O in O glucose B-chemical , O expresses O low O levels O of O the O XyGUL B-gene transcript O and O thus O low O levels O of O the O XyGUL B-gene - O encoded O surface O proteins O , O including O the O vanguard O GH5 B-protein . O Presumably O without O glycan B-chemical binding O by O the O SGBPs B-protein_type , O the O GH5 B-protein protein O cannot O efficiently O process O xyloglucan B-chemical , O and O / O or O the O lack O of O SGBP B-protein_type function O prevents O efficient O capture O and O import O of O the O processed O oligosaccharides B-chemical . O Likewise O , O such O cognate O interactions O between O homologous O protein O pairs O such O as O SGBP B-protein - I-protein A I-protein and O its O TBDT B-protein_type may O underlie O our O observation O that O a O ΔSGBP B-mutant - I-mutant A I-mutant mutant B-protein_state cannot O grow O on O xyloglucan B-chemical . O The O ability O of O gut O - O adapted O microorganisms B-taxonomy_domain to O thrive O in O the O gastrointestinal O tract O is O critically O dependent O upon O their O ability O to O efficiently O recognize O , O cleave O , O and O import O glycans B-chemical . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O On O the O other O hand O , O there O is O clear O evidence O for O independent O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain that O do O not O require O SGBP B-protein_type association O for O activity O . O Furthermore O , O considering O the O broader O distribution O of O TBDTs B-protein_type in O PUL B-gene lacking O SGBPs B-protein_type ( O sometimes O known O as O carbohydrate B-gene utilization I-gene containing I-gene TBDT I-gene [ I-gene CUT I-gene ] I-gene loci I-gene ; O see O reference O and O reviewed O in O reference O ) O across O bacterial B-taxonomy_domain phyla O , O it O appears O that O the O intimate O biophysical O association O of O these O substrate O - O transport O and O - O binding O proteins O is O the O result O of O specific O evolution O within O the O Bacteroidetes B-taxonomy_domain . O Such O is O the O case O for O XyGUL B-gene from O related O Bacteroides B-taxonomy_domain species O , O which O may O encode O either O one O or O two O of O these O predicted O SGBPs B-protein_type , O and O these O proteins O vary O considerably O in O length O . O Mucosal O glycan B-chemical foraging O enhances O fitness O and O transmission O of O a O saccharolytic O human O gut O bacterial O symbiont O The O PduL B-protein_type fold B-structure_element is O unrelated O to O that B-structure_element of O Pta B-protein_type ; O it O contains O a O dimetal B-site active I-site site I-site involved O in O a O catalytic O mechanism O distinct O from O that O of O the O housekeeping B-protein_state PTAC B-protein_type . O Substrates O and O cofactors O involving O the O PTAC B-protein_type reaction O are O shown O in O red O ; O other O substrates O and O enzymes O are O shown O in O black O , O and O other O cofactors O are O shown O in O gray O . O Both O enzymes O are O , O however O , O not O restricted O to O fermentative B-taxonomy_domain organisms I-taxonomy_domain . O Remarkably O , O after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 27 B-residue_range amino I-residue_range acids I-residue_range ), O most O of O the O sPduLΔEP B-mutant protein O was O in O the O soluble O fraction O upon O cell O lysis O . O Similar O differences O in O solubility O were O observed O for O pPduL B-protein and O rPduL B-protein when O comparing O EP B-protein_state - I-protein_state truncated I-protein_state forms O to O the O full B-protein_state - I-protein_state length I-protein_state protein O , O but O none O were O quite O as O dramatic O as O for O sPduL B-protein . O We O confirmed O that O all O homologs O were O active B-protein_state ( O S1a O and O S1b O Fig O ). O Structural O overview O of O R B-species . I-species palustris I-species PduL B-protein_type from O the O grm3 B-gene locus I-gene . O Metal B-site coordination I-site residues I-site are O highlighted O in O light O blue O and O CoA B-site contacting I-site residues I-site in O magenta O , O residues O contacting O the O CoA B-chemical of O the O other O chain O are O also O outlined O . O ( O b O ) O Cartoon O representation O of O the O structure B-evidence colored O by O domains O and O including O secondary O structure B-evidence numbering O . O Residues O 100 O % O conserved O across O all O PduL B-protein_type homologs O in O our O dataset O are O noted O with O an O asterisk O , O and O residues O conserved O in O over O 90 O % O of O sequences O are O noted O with O a O colon O . O The O sequences O aligning O to O the O PF06130 B-structure_element domain O ( O determined O by O BLAST O ) O are O highlighted O in O red O and O blue O . O Distances O between O atom O centers O are O indicated O in O Å O . O ( O a O ) O Coenzyme B-chemical A I-chemical containing O , O ( O b O ) O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence . O The O asterisk O and O double O arrow O marks O the O location O of O the O π O – O π O interaction O between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O The O first O zinc B-chemical ion O ( O Zn1 B-chemical ) O is O in O a O tetrahedral O coordination O state O with O His48 B-residue_name_number , O His50 B-residue_name_number , O Glu109 B-residue_name_number , O and O the O CoA B-chemical sulfur B-chemical ( O Fig O 4a O ). O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence aligns B-experimental_method well O with O the O CoA B-protein_state - I-protein_state bound I-protein_state structure B-evidence ( O 0 O . O 43 O Å O rmsd B-evidence over O 2 O , O 361 O atoms O for O the O monomer B-oligomeric_state , O 0 O . O 83 O Å O over O 5 O , O 259 O aligned O atoms O for O the O dimer B-oligomeric_state ). O Upon O deletion B-experimental_method of O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 47 I-residue_range for O rPduL B-protein , O and O 1 B-residue_range – I-residue_range 20 I-residue_range for O pPduL B-protein ), O there O was O a O distinct O change O in O the O elution O profiles O ( O Fig O 5b O and O 5c O respectively O , O blue O curves O ). O In O contrast O , O rPduLΔEP B-mutant eluted O as O one O smaller O oligomer O , O possibly O a O dimer B-oligomeric_state . O Curiously O , O while O the O housekeeping B-protein_state Pta B-protein_type could O provide O this O function O , O and O indeed O does O so O in O the O case O of O one O type O of O ethanolamine B-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly EUT I-complex_assembly ) I-complex_assembly BMC I-complex_assembly , O the O evolutionarily O unrelated O PduL B-protein_type fulfills O this O function O for O the O majority O of O metabolosomes B-complex_assembly using O a O novel O structure B-evidence and O active B-site site I-site for O convergent O evolution O of O function O . O Refined O domain O assignment O based O on O our O structure B-evidence should O be O able O to O predict O domains O of O PF06130 B-structure_element homologs O much O more O accurately O . O For O BMC B-complex_assembly - O encapsulated O proteins O to O properly O function O together O , O they O must O be O targeted O to O the O lumen O and O assemble O into O an O organization O that O facilitates O substrate O / O product O channeling O among O the O different O catalytic B-site sites I-site of O the O signature O and O core O enzymes O . O All O of O the O metal B-site - I-site coordinating I-site residues I-site ( O Fig O 2a O ) O are O absolutely B-protein_state conserved I-protein_state , O implicating O them O in O catalysis O or O the O correct O spatial O orientation O of O the O substrates O . O However O , O for O the O clostripain B-protein_type family I-protein_type ( O denoted O C11 B-protein_type ), O little O is O currently O known O . O The O structure B-experimental_method was I-experimental_method analyzed I-experimental_method , O and O the O enzyme O was O biochemically B-experimental_method characterized I-experimental_method to O provide O the O first O structure O / O function O correlation O for O a O C11 B-protein_type peptidase I-protein_type . O A O single B-ptm cleavage I-ptm was O observed O in O the O polypeptide O chain O at O Lys147 B-residue_name_number ( O Fig O . O 1 O , O A O and O B O ), O where O both O ends O of O the O cleavage B-site site I-site are O fully O visible O and O well O ordered O in O the O electron B-evidence density I-evidence . O The O secondary O structure O of O PmC11 B-protein from O the O crystal B-evidence structure I-evidence is O mapped O onto O its O sequence O with O the O position O of O the O PmC11 B-protein catalytic B-site dyad I-site , O autocatalytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number ), O and O S1 B-site binding I-site pocket I-site Asp B-residue_name ( O Asp177 B-residue_name_number ) O highlighted O by O a O red O star O , O a O red O downturned O triangle O , O and O a O red O upturned O triangle O , O respectively O . O Sequences O around O the O catalytic B-site site I-site of O clostripain B-protein and O PmC11 B-protein align O well O . O The O CTD B-structure_element of O PmC11 B-protein is O composed O of O a O tight B-structure_element helical I-structure_element bundle I-structure_element formed O from O helices B-structure_element α8 B-structure_element – I-structure_element α14 I-structure_element and O includes O strands B-structure_element βC B-structure_element and O βF B-structure_element , O and O β B-structure_element - I-structure_element hairpin I-structure_element βD B-structure_element – I-structure_element βE I-structure_element . O The O CTD B-structure_element sits O entirely O on O one O side O of O the O enzyme O interacting O only O with O α3 B-structure_element , O α5 B-structure_element , O β9 B-structure_element , O and O the O loops B-structure_element surrounding O β8 B-structure_element . O Biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O PmC11 B-protein . O A O , O ribbon O representation O of O the O overall O structure O of O PmC11 B-protein illustrating O the O catalytic B-site site I-site , O cleavage O site O displacement O , O and O potential O S1 B-site binding I-site site I-site . O Km O and O Vmax B-evidence of O PmC11 B-protein and O K147A B-mutant mutant O were O determined O by O monitoring O change O in O the O fluorescence O corresponding O to O AMC O release O from O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical . O Five O of O the O α B-structure_element - I-structure_element helices I-structure_element surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element of O PmC11 B-protein ( O α1 B-structure_element , O α2 B-structure_element , O α4 B-structure_element , O α6 B-structure_element , O and O α7 B-structure_element ) O are O found O in O similar O positions O to O the O five O structurally B-protein_state conserved I-protein_state helices B-structure_element in O caspases B-protein_type and O other O members O of O clan B-protein_type CD I-protein_type , O apart O from O family O C80 B-protein_type . O Autoprocessing B-ptm of O PmC11 B-protein Substrate O Specificity O of O PmC11 B-protein The O autocatalytic B-ptm cleavage I-ptm of O PmC11 B-protein at O Lys147 B-residue_name_number ( O sequence O KLK O ∧ O A O ) O demonstrates O that O the O enzyme O accepts O substrates O with O Lys B-residue_name in O the O P1 B-residue_number position O . O This O pocket B-site is O lined O with O the O potential O functional O side O chains O of O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Thr204 B-residue_name_number with O Gly134 B-residue_name_number , O Asp207 B-residue_name_number , O and O Met205 B-residue_name_number also O contributing O to O the O pocket B-site ( O Fig O . O 2A O ). O Thus O , O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number are O most O likely O responsible O for O the O substrate O specificity O of O PmC11 B-protein . O Cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O a O fluorometric B-experimental_method activity I-experimental_method assay I-experimental_method with O (+, O purple O ) O and O without O (−, O red O ) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O A O three B-experimental_method - I-experimental_method dimensional I-experimental_method structural I-experimental_method overlay I-experimental_method of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical from O the O MALT1 B-protein - I-protein P I-protein complex O onto O PmC11 B-protein . O Comparison O with O Clostripain B-protein In O support O of O these O findings O , O EGTA B-chemical did O not O inhibit O PmC11 B-protein suggesting O that O , O unlike O clostripain B-protein , O PmC11 B-protein does O not O require O Ca2 B-chemical + I-chemical or O other O divalent O cations O , O for O activity O . O Several O other O members O of O clan B-protein_type CD I-protein_type require O processing B-ptm for O full B-protein_state activation I-protein_state including O legumain B-protein , O gingipain B-protein - I-protein R I-protein , O MARTX B-protein - I-protein CPD I-protein , O and O the O effector B-protein_type caspases I-protein_type , O e O . O g O . O caspase B-protein - I-protein 7 I-protein . O Structural O insights O into O the O regulatory O mechanism O of O the O Pseudomonas B-species aeruginosa I-species YfiBNR B-complex_assembly system O In O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O can O sequester O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O provoking O the O diguanylate O cyclase O activity O of O YfiN B-protein to O induce O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O . O Biofilm O formation O protects O pathogenic O bacteria B-taxonomy_domain from O antibiotic O treatment O , O and O c O - O di O - O GMP O - O regulated O biofilm O formation O has O been O extensively O studied O in O P B-species . I-species aeruginosa I-species ( O Evans O ,; O Kirisits O et O al O .,; O Malone O ,; O Reinhardt O et O al O .,). O Recently O , O Malone O and O coworkers O identified O the O tripartite B-protein_state c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O module O system O YfiBNR B-complex_assembly ( O also O known O as O AwsXRO B-complex_assembly ( O Beaumont O et O al O .,; O Giddens O et O al O .,) O or O Tbp B-complex_assembly ( O Ueda O and O Wood O ,)) O by O genetic B-experimental_method screening I-experimental_method for O mutants O that O displayed O SCV O phenotypes O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,; O Malone O et O al O .,). O More O recently O , O this O system O was O also O reported O in O other O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain , O such O as O Escherichia B-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O Klebsiella B-species pneumonia I-species ( O Huertas O et O al O .,) O and O Yersinia B-species pestis I-species ( O Ren O et O al O .,). O After O the O sequestration O of O YfiR B-protein by O YfiB B-protein , O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical produced O by O activated B-protein_state YfiN B-protein increases O the O biosynthesis O of O the O Pel B-chemical and O Psl B-chemical EPSs B-chemical , O resulting O in O the O appearance O of O the O SCV O phenotype O , O which O indicates O enhanced O biofilm O formation O ( O Malone O et O al O .,). O Recently O , O we O solved O the O crystal B-evidence structure I-evidence of O YfiR B-protein in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O , O revealing O breakage O / O formation O of O one O disulfide B-ptm bond I-ptm ( O Cys71 B-residue_name_number - O Cys110 B-residue_name_number ) O and O local O conformational O change O around O the O other O one O ( O Cys145 B-residue_name_number - O Cys152 B-residue_name_number ), O indicating O that O Cys145 B-residue_name_number - O Cys152 B-residue_name_number plays O an O important O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O We O obtained O two O crystal B-evidence forms I-evidence of O YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element from O residues O 1 B-residue_range – I-residue_range 26 I-residue_range and O periplasmic O residues O 27 B-residue_range – I-residue_range 33 I-residue_range ), O crystal O forms O I O and O II O , O belonging O to O space O groups O P21 O and O P41 O , O respectively O . O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state presents O a O Y B-protein_state shape I-protein_state . O Therefore O , O we O constructed B-experimental_method two I-experimental_method such I-experimental_method single I-experimental_method mutants I-experimental_method of O YfiB B-protein ( O YfiBL43P B-mutant and O YfiBF48S B-mutant ). O The O N O - O terminal O structural O conformation O of O YfiBL43P B-mutant , O from O the O foremost O N O - O terminus O to O residue O D70 B-residue_name_number , O is O significantly O altered O compared O with O that O of O the O apo B-protein_state YfiB B-protein . O The O majority O of O the O α1 B-structure_element helix I-structure_element ( O residues O 34 B-residue_range – I-residue_range 43 I-residue_range ) O is O invisible O on O the O electron B-evidence density I-evidence map I-evidence , O and O the O α2 B-structure_element helix I-structure_element and O β1 B-structure_element and O β2 B-structure_element strands I-structure_element are O rearranged O to O form O a O long O loop B-structure_element containing O two O short O α B-structure_element - I-structure_element helix I-structure_element turns I-structure_element ( O Fig O . O 3B O and O 3C O ), O thus O embracing O the O YfiR B-protein dimer B-oligomeric_state . O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O ; O the O sulfate B-chemical ion O , O in O green O ; O and O the O water B-chemical molecule O , O in O yellow O . O ( O D O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O key O residues O are O shown O in O stick O . O Similarly O , O in O the O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant structure B-evidence , O the O sulfate B-chemical ion O interacts O with O the O side O - O chain O atoms O of O D102 B-residue_name_number ( O corresponding O to O D71 B-residue_name_number in O Pal B-protein_type ) O and O R117 B-residue_name_number ( O corresponding O to O R86 B-residue_name_number in O Pal B-protein_type ) O and O the O main O - O chain O amide O of O N68 B-residue_name_number ( O corresponding O to O D37 B-residue_name_number in O Pal B-protein_type ). O Therefore O , O we O proposed O that O the O PG B-chemical - O binding O ability O of O inactive B-protein_state YfiB B-protein might O be O weaker O than O that O of O active B-protein_state YfiB B-protein . O To O validate O this O , O we O performed O a O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ) O assay O to O measure O the O binding B-evidence affinities I-evidence of O PG B-chemical to O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant , O respectively O . O As O the O experiment O is O performed O in B-protein_state the I-protein_state absence I-protein_state of I-protein_state YfiR B-protein , O it O suggests O that O an O increase O in O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiB B-protein is O not O a O result O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O and O is O highly O coupled O to O the O activation O of O YfiB B-protein characterized O by O a O stretched B-protein_state N I-protein_state - I-protein_state terminal I-protein_state conformation I-protein_state . O Malone O JG O et O al O . O have O reported O that O F151 B-residue_name_number , O E163 B-residue_name_number , O I169 B-residue_name_number and O Q187 B-residue_name_number , O located O near O the O C O - O terminus O of O YfiR B-protein , O comprise O a O putative O YfiN B-site binding I-site site I-site ( O Malone O et O al O .,). O Interestingly O , O these O residues O are O part O of O the O conserved B-site surface I-site of O YfiR B-protein ( O Fig O . O 3G O ). O F151 B-residue_name_number , O E163 B-residue_name_number and O I169 B-residue_name_number form O a O hydrophobic B-site core I-site while O , O Q187 B-residue_name_number is O located O at O the O end O of O the O α6 B-structure_element helix I-structure_element . O E163 B-residue_name_number and O I169 B-residue_name_number are O YfiB B-site - I-site interacting I-site residues I-site of O YfiR B-protein , O in O which O E163 B-residue_name_number forms O a O hydrogen O bond O with O R96 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O II O ) O and O I169 B-residue_name_number is O involved O in O forming O the O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number hydrophobic B-site core I-site for O anchoring O F57 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O ( O C O and O D O ) O BIAcore B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O C O ) O VB6 B-chemical and O ( O D O ) O L B-chemical - I-chemical Trp I-chemical with O YfiR B-protein . O ( O E O – O G O ) O ITC B-experimental_method data O and O analysis O for O titration B-experimental_method of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state , O ( O F O ) O YfiBL43P O , O and O ( O G O ) O YfiBL43P B-mutant / O F57A B-mutant into O YfiR B-protein Structural B-experimental_method analyses I-experimental_method revealed O that O the O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical molecules O are O bound B-protein_state at I-protein_state the O periphery O of O the O YfiR B-protein dimer B-oligomeric_state , O but O not O at O the O dimer B-site interface I-site . O To O evaluate O the O importance O of O F57 B-residue_name_number in O YfiBL43P B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O binding B-evidence affinities I-evidence of O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant for O YfiR B-protein were O measured O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O Provided O that O the O diameter O of O the O widest O part O of O the O YfiB B-protein dimer B-oligomeric_state is O approximately O 64 O Å O , O which O is O slightly O smaller O than O the O smallest O diameter O of O the O PG O pore O ( O 70 O Å O ) O ( O Meroueh O et O al O .,), O the O YfiB B-protein dimer B-oligomeric_state should O be O able O to O penetrate O the O PG O layer O . O A O direct O link O between O ACC B-protein_type and O cancer O is O provided O by O cancer O - O associated O mutations B-mutant in O the O breast B-protein cancer I-protein susceptibility I-protein gene I-protein 1 I-protein ( O BRCA1 B-protein ), O which O relieve O inhibitory O interactions O of O BRCA1 B-protein with O ACC B-protein_type . O Structural B-experimental_method studies I-experimental_method on O the O functional O architecture O of O intact B-protein_state ACCs B-protein_type have O been O hindered O by O their O huge O size O and O pronounced O dynamics O , O as O well O as O the O transient B-protein_state assembly O mode O of O bacterial B-taxonomy_domain ACCs B-protein_type . O Phosphorylated B-protein_state Ser80 B-residue_name_number , O which O is O highly B-protein_state conserved I-protein_state only O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O presumably O binds O into O the O Soraphen B-site A I-site - I-site binding I-site pocket I-site . O The O regulatory O Ser1201 B-residue_name_number shows O only O moderate B-protein_state conservation I-protein_state across O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O while O the O phosphorylated B-protein_state Ser1216 B-residue_name_number is O highly B-protein_state conserved I-protein_state across O all O eukaryotes B-taxonomy_domain . O In O yeast B-taxonomy_domain ACC B-protein_type , O phosphorylation B-site sites I-site have O been O identified O at O Ser2 B-residue_name_number , O Ser735 B-residue_name_number , O Ser1148 B-residue_name_number , O Ser1157 B-residue_name_number and O Ser1162 B-residue_name_number ( O ref O .). O CDL B-structure_element is O composed O of O a O small B-structure_element , I-structure_element irregular I-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Lα1 B-structure_element – I-structure_element 4 I-structure_element ) O and O tightly O interacts O with O the O open O face O of O CDC1 B-structure_element via O an O interface B-site of O 1 O , O 300 O Å2 O involving O helices B-structure_element Lα3 B-structure_element and O Lα4 B-structure_element . O To O define O the O functional O state O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method ACC B-protein_type variants O , O we O employed O mass B-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O for O phosphorylation B-experimental_method site I-experimental_method detection I-experimental_method . O The O N O - O terminal O region O of O the O regulatory B-structure_element loop I-structure_element also O directly O contacts O the O C O - O terminal O region O of O CDC2 B-structure_element leading O into O CT B-structure_element . O Phosphoserine B-residue_name_number 1157 I-residue_name_number is O tightly O bound O by O two O highly B-protein_state conserved I-protein_state arginines B-residue_name ( O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number ) O of O CDC1 B-structure_element ( O Fig O . O 1d O ). O The O values O obtained O for O dephosphorylated B-protein_state SceACC B-protein are O comparable O to O earlier O measurements O of O non B-protein_state - I-protein_state phosphorylated I-protein_state yeast B-taxonomy_domain ACC B-protein_type expressed B-experimental_method in I-experimental_method E B-species . I-species coli I-species . O To O compare O the O organization O of O fungal B-taxonomy_domain and O human B-species ACC B-protein_type CD B-structure_element , O we O determined B-experimental_method the I-experimental_method structure I-experimental_method of O a O human B-species ACC1 B-mutant fragment I-mutant that O comprises O the O BT B-structure_element and O CD B-structure_element domains O ( O HsaBT B-mutant - I-mutant CD I-mutant ), O but O lacks B-protein_state the O mobile O BCCP B-structure_element in O between O ( O Fig O . O 1a O ). O An O experimentally B-evidence phased I-evidence map I-evidence was O obtained O at O 3 O . O 7 O Å O resolution O for O a O cadmium B-chemical - O derivatized O crystal O and O was O interpreted O by O a O poly O - O alanine O model O ( O Fig O . O 1e O and O Table O 1 O ). O Each O of O the O four O CD B-structure_element domains O in O HsaBT B-mutant - I-mutant CD I-mutant individually O resembles O the O corresponding O SceCD B-species domain O ; O however O , O human B-species and O yeast B-taxonomy_domain CDs B-structure_element exhibit O distinct O overall O structures B-evidence . O The O BT B-structure_element domain O of O HsaBT B-mutant - I-mutant CD I-mutant consists O of O a O helix B-structure_element that O is O surrounded O at O its O N O terminus O by O an O antiparallel B-structure_element eight I-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element barrel I-structure_element . O It O resembles O the O BT B-structure_element of O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type ; O only O the O four O C O - O terminal O strands B-structure_element of I-structure_element the I-structure_element β I-structure_element - I-structure_element barrel I-structure_element are O slightly O tilted O . O On O the O basis O of O MS B-experimental_method analysis O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method human B-species full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O Ser80 B-residue_name_number shows O the O highest O degree O of O phosphorylation B-ptm ( O 90 O %). O However O , O residual O phosphorylation B-ptm levels O were O detected O for O Ser1204 B-residue_name_number ( O 7 O %) O and O Ser1218 B-residue_name_number ( O 7 O %) O in O the O same B-structure_element loop I-structure_element . O Besides O the O regulatory B-structure_element loop I-structure_element , O also O the O phosphopeptide B-site target I-site region I-site for O BRCA1 B-protein interaction O is O not O resolved O presumably O because O of O pronounced O flexibility O . O To O improve B-experimental_method crystallizability I-experimental_method , O we O generated B-experimental_method ΔBCCP B-mutant variants I-mutant of O full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O which O , O based O on O SAXS B-experimental_method analysis I-experimental_method , O preserve O properties O of O intact B-protein_state ACC B-protein_type ( O Supplementary O Table O 1 O and O Supplementary O Fig O . O 2a O – O c O ). O For O CthΔBCCP B-mutant , O crystals B-evidence diffracting O to O 8 O . O 4 O Å O resolution O were O obtained O . O On O the O basis O of O the O occurrence O of O related O conformational O changes O between O fungal B-taxonomy_domain and O human B-species ACC B-mutant fragments I-mutant , O the O observed O set O of O conformations O may O well O represent O general O states O present O in O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O To O obtain O a O comprehensive O view O of O fungal B-taxonomy_domain ACC B-protein_type dynamics O in B-protein_state solution I-protein_state , O we O employed O SAXS B-experimental_method and O EM B-experimental_method . O They O identify O the O connections O between O CDN B-structure_element / O CDL B-structure_element and O between O CDC2 B-structure_element / O CT B-structure_element as O major O contributors O to O conformational O heterogeneity O ( O Supplementary O Fig O . O 4a O , O b O ). O Furthermore O , O based O on O an O average O length O of O the O BCCP B-structure_element – I-structure_element CD I-structure_element linker I-structure_element in O fungal B-taxonomy_domain ACC B-protein_type of O 26 B-residue_range amino I-residue_range acids I-residue_range , O mobility O of O the O BCCP B-structure_element alone O would O not O be O sufficient O to O bridge O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O The O CD B-structure_element consists O of O four O distinct O subdomains B-structure_element and O acts O as O a O tether O from O the O CT B-structure_element to O the O mobile B-protein_state BCCP B-structure_element and O an O oriented B-protein_state BC B-structure_element domain O . O In O fungal B-taxonomy_domain ACC B-protein_type , O however O , O Ser1157 B-residue_name_number in O the O regulatory B-structure_element loop I-structure_element of O the O CD B-structure_element is O the O only O phosphorylation B-site site I-site that O has O been O demonstrated O to O be O both O phosphorylated B-protein_state in O vivo O and O involved O in O the O regulation O of O ACC B-protein_type activity O . O A O comparison O between O fungal B-taxonomy_domain and O human B-species ACC B-protein_type will O help O to O further O discriminate O mechanistic O differences O that O contribute O to O the O extended O control O and O polymerization O of O human B-species ACC B-protein_type . O In O their O study O , O mutational B-experimental_method data I-experimental_method indicate O a O requirement O for O BC O dimerization O for O catalytic O activity O . O In O flACC B-mutant , O CDC2 B-structure_element rotates O ∼ O 120 O ° O with O respect O to O the O CT B-structure_element domain O . O A O second B-structure_element hinge I-structure_element can O be O identified O between O CDC1 B-structure_element / O CDC2 B-structure_element . O In O those O instances O the O Ser1157 B-residue_name_number residue O is O located O at O a O distance O of O 14 O – O 20 O Å O away O from O the O location O of O the O phosphorylated B-protein_state serine B-residue_name observed O here O , O based O on O superposition B-experimental_method of O either O CDC1 B-structure_element or O CDC2 B-structure_element . O The O phosphorylated B-protein_state central B-structure_element domain I-structure_element of O yeast B-taxonomy_domain ACC B-protein_type . O Architecture O of O the O CD B-structure_element – O CT B-structure_element core O of O fungal B-taxonomy_domain ACC B-protein_type . O Flexibility O of O the O CDC2 B-structure_element / O CT B-structure_element and O CDN B-structure_element / O CDL B-structure_element hinges B-structure_element is O illustrated O by O arrows O . O The O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein is O an O important O enterobacterial B-taxonomy_domain acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type whereas O LdcC B-protein is O its O close O paralogue O thought O to O play O mainly O a O metabolic O role O . O In O addition O , O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylase I-protein_type LdcC B-protein , O long O thought O to O be O constitutively O expressed O in O low O amounts O , O was O demonstrated O to O be O strongly O upregulated O by O fluoroquinolones B-chemical via O their O induction O of O RpoS B-protein . O A O direct O correlation O between O the O level O of O cadaverine B-chemical and O the O resistance O of O E B-species . I-species coli I-species to O these O antibiotics O commonly O used O as O a O first O - O line O treatment O of O UTI O could O be O established O . O Furthermore O , O we O recently O solved B-experimental_method the I-experimental_method structure I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O by O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method ( O cryoEM B-experimental_method ) O and O combined O it O with O the O crystal B-evidence structures I-evidence of O the O individual O proteins O . O CryoEM B-experimental_method 3D B-evidence reconstructions I-evidence of O LdcC B-protein , O LdcIa B-protein and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly In O the O frame O of O this O work O , O we O produced O two O novel O subnanometer O resolution O cryoEM B-experimental_method reconstructions B-evidence of O the O E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O – O a O 5 O . O 5 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O pH B-protein_state 7 I-protein_state . I-protein_state 5 I-protein_state ) O for O which O no O 3D O structural O information O has O been O previously O available O ( O Figs O 1A O , O B O and O S1 O ), O and O a O 6 O . O 1 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcIa B-protein , O ( O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ) O ( O Figs O 1C O , O D O and O S2 O ). O Zooming O in O the O variations O in O the O PLP B-structure_element - I-structure_element SD I-structure_element shows O that O most O of O the O structural O changes O concern O displacements O in O the O active B-site site I-site ( O Fig O . O 3C O – O F O ). O An O inhibitor O of O the O LdcI B-protein and O LdcC B-protein activity O , O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical , O is O known O to O bind O at O the O interface B-site between O neighboring O monomers B-oligomeric_state within O each O ring B-structure_element ( O Fig O . O S4 O ). O Thus O , O to O advance O beyond O our O experimental O confirmation O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element as O a O major O determinant O of O the O capacity O of O a O particular O lysine B-protein_type decarboxylase I-protein_type to O form O a O cage O with O RavA B-protein , O we O set O out O to O investigate O whether O certain B-structure_element residues I-structure_element in O this O β B-structure_element - I-structure_element sheet I-structure_element are O conserved B-protein_state in O lysine B-protein_type decarboxylases I-protein_type of O different O enterobacteria B-taxonomy_domain that O have O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O The O third O and O most O remarkable O finding O was O that O exactly O the O same O separation O into O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type ”- I-protein_type like I-protein_type groups O can O be O obtained O based O on O a O comparison O of O the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element only O , O without O taking O the O rest O of O the O primary O sequence O into O account O . O Together O with O the O apo B-protein_state - O LdcI B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly crystal B-evidence structures I-evidence , O our O cryoEM B-experimental_method reconstructions B-evidence provide O a O structural O framework O for O future O studies O of O structure O - O function O relationships O of O lysine B-protein_type decarboxylases I-protein_type from O other O enterobacteria B-taxonomy_domain and O even O of O their O homologues O outside O Enterobacteriaceae B-taxonomy_domain . O For O example O , O the O lysine B-protein_type decarboxylase I-protein_type of O Eikenella B-species corrodens I-species is O thought O to O play O a O major O role O in O the O periodontal O disease O and O its O inhibitors O were O shown O to O retard O gingivitis O development O . O The O dashed O circle O indicates O the O central O region B-structure_element that O remains O virtually O unchanged O between O all O the O structures B-evidence , O while O the O periphery O undergoes O visible O movements O . O ( O A O ) O LdcIi B-protein crystal B-evidence structure I-evidence , O with O one O ring B-structure_element represented O as O a O grey O surface O and O the O second O as O a O cartoon O . O Analysis O of O the O LdcIC B-mutant and O LdcCI B-mutant chimeras B-mutant . O With O the O exception O of O the O human B-species RhCG B-protein structure B-evidence , O no O structural O information O is O available O for O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O Ammonium B-chemical transport O is O tightly O regulated O . O By O binding O tightly O to O Amt B-protein_type proteins I-protein_type without O inducing O a O conformational O change O in O the O transporter B-protein_type , O GlnK B-protein_type sterically O blocks O ammonium B-chemical conductance O when O nitrogen O levels O are O sufficient O . O Under O conditions O of O nitrogen B-chemical limitation O , O GlnK B-protein_type becomes O uridylated B-protein_state , O blocking O its O ability O to O bind O and O inhibit O Amt B-protein_type proteins I-protein_type . O General O architecture O of O Mep2 B-protein_type ammonium B-protein_type transceptors I-protein_type The O Mep2 B-protein protein O of O S B-species . I-species cerevisiae I-species ( O ScMep2 B-protein ) O was O overexpressed B-experimental_method in O S B-species . I-species cerevisiae I-species in O high O yields O , O enabling O structure B-experimental_method determination I-experimental_method by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method using O data O to O 3 O . O 2 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O with O the O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein structure B-evidence ( O see O Methods O section O ). O Unless O specifically O stated O , O the O drawn O conclusions O also O apply O to O ScMep2 B-protein . O In O addition O to O changing O the O RxK B-structure_element motif I-structure_element , O the O movement O of O ICL1 B-structure_element has O another O , O crucial O functional O consequence O . O Finally O , O the O important O ICL3 B-structure_element linking O the O pseudo B-structure_element - I-structure_element symmetrical I-structure_element halves I-structure_element ( O TM1 B-structure_element - I-structure_element 5 I-structure_element and O TM6 B-structure_element - I-structure_element 10 I-structure_element ) O of O the O transporter B-protein_type is O also O shifted O up O to O ∼ O 10 O Å O and O forms O an O additional O barrier O that O closes O the O channel B-site on O the O cytoplasmic O side O ( O Fig O . O 5 O ). O In O Amt B-protein - I-protein 1 I-protein and O other O bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O these O CTR B-structure_element residues O interact O with O residues O within O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein O . O For O ScMep2 B-protein , O Ser457 B-residue_name_number is O the O most O C O - O terminal O residue O for O which O electron B-evidence density I-evidence is O visible O , O indicating O that O the O region O beyond O Ser457 B-residue_name_number is O disordered B-protein_state . O In O CaMep2 B-protein , O the O visible O part O of O the O sequence O extends O for O two O residues O beyond O Ser453 B-residue_name_number ( O Fig O . O 6 O ). O Density B-evidence for O ICL3 B-structure_element and O the O CTR B-structure_element beyond O residue O Arg415 B-residue_name_number is O missing O in O the O 442Δ B-mutant mutant B-protein_state , O and O the O density B-evidence for O the O other O ICLs B-structure_element including O ICL1 B-structure_element is O generally O poor O with O visible O parts O of O the O structure B-evidence having O high O B O - O factors O ( O Fig O . O 7 O ). O We O therefore O predict O that O phosphorylation B-ptm of O Ser453 B-residue_name_number will O result O in O steric O clashes O as O well O as O electrostatic O repulsion O , O which O in O turn O might O cause O substantial O conformational O changes O within O the O CTR B-structure_element . O To O supplement O the O crystal B-evidence structures I-evidence , O we O also O performed O modelling B-experimental_method and O MD B-experimental_method studies O of O WT B-protein_state CaMep2 B-protein , O the O DD B-mutant mutant I-mutant and O phosphorylated B-protein_state protein O ( O S453J B-mutant ). O The O protein O is O structurally B-protein_state stable I-protein_state throughout O the O simulation B-experimental_method with O little O deviation O in O the O other O parts O of O the O protein O . O Finally O , O the O S453J B-mutant mutant B-protein_state is O also O stable B-protein_state throughout O the O 200 O - O ns O simulation B-experimental_method and O has O an O average O backbone O deviation O of O ∼ O 3 O . O 8 O Å O , O which O is O similar O to O the O DD B-mutant mutant I-mutant . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O In O Arabidopsis B-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein , O phosphorylation B-ptm of O the O CTR B-structure_element residue O T460 B-residue_name_number under O conditions O of O high O ammonium B-chemical inhibits O transport O activity O , O that O is O , O the O default O ( O non B-protein_state - I-protein_state phosphorylated I-protein_state ) O state O of O the O plant B-taxonomy_domain transporter B-protein_type is O open B-protein_state . O In O addition O , O ICL1 B-structure_element has O shifted O inwards O to O contribute O to O the O channel B-site closure O by O engaging O His2 B-residue_name_number from O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element via O hydrogen O bonding O with O a O highly B-protein_state conserved I-protein_state tyrosine B-residue_name hydroxyl O group O . O However O , O even O the O otherwise O highly O similar O Mep2 B-protein_type proteins I-protein_type of O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species have O different O structures B-evidence for O their O CTRs B-structure_element ( O Fig O . O 1 O and O Supplementary O Fig O . O 6 O ). O With O regards O to O plant B-taxonomy_domain AMTs B-protein_type , O it O has O been O proposed O that O phosphorylation B-ptm at O T460 B-residue_name_number generates O conformational O changes O that O would O close O the O neighbouring O pore B-site via O the O C B-structure_element terminus I-structure_element . O This O assumption O was O based O partly O on O a O homology B-experimental_method model I-experimental_method for O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein based O on O the O ( O open B-protein_state ) O archaebacterial B-taxonomy_domain AfAmt B-protein - I-protein 1 I-protein structure B-evidence , O which O suggested O that O the O C B-structure_element terminus I-structure_element of O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein would O extend O further O to O the O neighbouring O monomer B-oligomeric_state . O In O addition O , O the O considerable O differences O between O structurally O resolved O CTR B-structure_element domains O means O that O the O exact O environment O of O T460 B-residue_name_number in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O also O not O known O ( O Supplementary O Fig O . O 6 O ). O We O propose O that O intra B-site - I-site monomeric I-site CTR I-site - I-site ICL1 I-site / I-site ICL3 I-site interactions I-site lie O at O the O basis O of O regulation O of O both O fungal B-taxonomy_domain and O plant B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ; O close O interactions O generate O open B-protein_state channels B-site , O whereas O the O lack B-protein_state of I-protein_state ‘ O intra O -' O interactions O leads O to O inactive B-protein_state states O . O The O need O to O regulate O in O opposite O ways O may O be O the O reason O why O the O phosphorylation B-site sites I-site are O in O different O parts O of O the O CTR B-structure_element , O that O is O , O centrally O located O close O to O the O ExxGxD B-structure_element motif I-structure_element in O AMTs B-protein_type and O peripherally O in O Mep2 B-protein . O With O respect O to O ammonium B-chemical transport O , O phosphorylation B-ptm has O thus O far O only O been O shown O for O A B-species . I-species thaliana I-species AMTs B-protein_type and O for O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O refs O ). O The O region O showing O ICL1 B-structure_element ( O blue O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O is O boxed O for O comparison O . O The O grey O sequences O at O the O C O termini O of O CaMep2 B-protein and O ScMep2 B-protein are O not O visible O in O the O structures B-evidence and O are O likely B-protein_state disordered I-protein_state . O ( O a O ) O ICL1 B-structure_element in O AfAmt B-protein - I-protein 1 I-protein ( O light O blue O ) O and O CaMep2 B-protein ( O dark O blue O ), O showing O unwinding O and O inward O movement O in O the O fungal B-taxonomy_domain protein O . O ( O b O ) O Stereo O diagram O viewed O from O the O cytosol O of O ICL1 B-structure_element , O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O in O AfAmt B-protein - I-protein 1 I-protein ( O light O colours O ) O and O CaMep2 B-protein ( O dark O colours O ). O Views O from O the O cytosol O for O CaMep2 B-protein ( O left O ) O and O AfAmt B-protein - I-protein 1 I-protein , O highlighting O the O large O differences O in O conformation O of O the O conserved B-protein_state residues O in O ICL1 B-structure_element ( O RxK O motif O ; O blue O ), O ICL2 B-structure_element ( O ER B-structure_element motif I-structure_element ; O cyan O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ). O The O labelled O residues O are O analogous O within O both O structures B-evidence . O The O Npr1 B-protein kinase B-protein_type target O Ser453 B-residue_name_number is O dephosphorylated B-protein_state and O located O in O an O electronegative B-site pocket I-site . O Missing O regions O are O labelled O . O ( O b O ) O Stereo O superpositions B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O truncation B-protein_state mutant I-protein_state . O ( O a O ) O Cytoplasmic O view O of O the O DD B-mutant mutant I-mutant trimer B-oligomeric_state , O with O WT B-protein_state CaMep2 B-protein superposed B-experimental_method in O grey O for O one O of O the O monomers B-oligomeric_state . O The O arrow O indicates O the O phosphorylation B-site site I-site . O ( O b O ) O Monomer B-oligomeric_state side O - O view O superposition B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O DD B-mutant mutant I-mutant , O showing O the O conformational O change O and O disorder O around O the O ExxGxD B-structure_element motif I-structure_element . O Schematic O model O for O phosphorylation O - O based O regulation O of O Mep2 B-protein ammonium O transporters O . O Upon O phosphorylation B-ptm and O mimicked B-protein_state by O the O CaMep2 B-protein S453D B-mutant and O DD B-mutant mutants I-mutant ( O ii O ), O the O region O around O the O ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O results O in O the O CTR B-structure_element interacting O with O the O inward O - O moving O ICL3 B-structure_element , O opening O the O channel B-site ( O full O circle O ) O ( O iii O ). O The O open B-protein_state - O channel B-site Mep2 B-protein structure B-evidence is O represented O by O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein and O shown O in O lighter O colours O consistent O with O Fig O . O 4 O . O An O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element recognizes O the O 3 B-site ′ I-site splice I-site site I-site signal O The O U2AF65 B-protein linker B-structure_element residues O between O the O dual O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRMs B-structure_element ) O recognize O the O central O nucleotide B-chemical , O whereas O the O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element recognize O the O 3 B-site ′ I-site terminus I-site and O third B-residue_number nucleotide B-chemical . O The O differential O skipping O or O inclusion O of O alternatively O spliced O pre B-structure_element - I-structure_element mRNA I-structure_element regions I-structure_element is O a O major O source O of O diversity O for O nearly O all O human B-species gene O transcripts O . O High O - O resolution O structures B-evidence of O intact B-protein_state splicing B-complex_assembly factor I-complex_assembly – I-complex_assembly RNA I-complex_assembly complexes O would O offer O key O insights O regarding O the O juxtaposition O of O the O distinct O splice B-site site I-site consensus O sequences O and O their O relationship O to O disease O - O causing O point O mutations O . O Likewise O , O both O U2AF651 B-mutant , I-mutant 2L I-mutant and O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein showed O similar O sequence B-evidence specificity I-evidence for O U B-structure_element - I-structure_element rich I-structure_element stretches I-structure_element in O the O 5 B-site ′- I-site region I-site of O the O Py B-chemical tract I-chemical and O promiscuity O for O C B-structure_element - I-structure_element rich I-structure_element regions I-structure_element in O the O 3 B-site ′- I-site region I-site ( O Fig O . O 1c O , O Supplementary O Fig O . O 1e O – O h O ). O U2AF65 B-protein_state - I-protein_state bound I-protein_state Py B-chemical tract I-chemical comprises O nine O contiguous B-structure_element nucleotides B-chemical An O extended B-protein_state conformation I-protein_state of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element traverses O across O the O α B-structure_element - I-structure_element helical I-structure_element surface I-structure_element of O RRM1 B-structure_element and O the O central O β B-structure_element - I-structure_element strands I-structure_element of O RRM2 B-structure_element and O is O well O defined O in O the O electron B-evidence density I-evidence ( O Fig O . O 2b O ). O We O compare O the O global O conformation O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence with O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structure I-evidence and O U2AF651 B-mutant , I-mutant 2 I-mutant NMR B-experimental_method structure B-evidence in O the O Supplementary O Discussion O and O Supplementary O Fig O . O 2 O . O The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM2 B-structure_element , O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element concomitantly O recognize O the O three O central O nucleotides B-chemical of O the O Py B-chemical tract I-chemical , O which O are O likely O to O coordinate O the O conformational O arrangement O of O these O disparate O portions O of O the O protein O . O Residues O in O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element comprise O a O centrally O located O binding B-site site I-site for O the O fifth B-residue_number nucleotide B-chemical on O the O RRM2 B-site surface I-site and O abutting O the O RRM1 B-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3d O ). O Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O This O nucleotide B-chemical twists O to O face O away O from O the O U2AF65 B-protein linker B-structure_element and O instead O inserts O the O rU6 B-residue_name_number - O uracil B-residue_name into O a O sandwich O between O the O β2 B-structure_element / I-structure_element β3 I-structure_element loops I-structure_element of O RRM1 B-structure_element and O RRM2 B-structure_element . O The O Q147 B-residue_name_number residue O participates O in O hydrogen O bonds O with O the O - O N3H O of O the O eighth B-residue_number uracil B-residue_name and O - O O2 O of O the O ninth B-residue_number pyrimidine B-chemical . O Consistent O with O loss O of O a O hydrogen O bond O with O the O ninth B-residue_number pyrimidine B-chemical - O O2 O ( O ΔΔG B-evidence 1 O . O 0 O kcal O mol O − O 1 O ), O mutation B-experimental_method of O the O Q147 B-residue_name_number to O an O alanine B-residue_name reduced O U2AF651 B-evidence , I-evidence 2L I-evidence affinity I-evidence for O the O AdML B-gene Py B-chemical tract I-chemical by O five O - O fold O ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4c O ). O We O compare B-experimental_method U2AF65 B-protein interactions O with O uracil B-residue_name relative O to O cytosine B-residue_name pyrimidines B-chemical at O the O ninth B-site binding I-site site I-site in O Fig O . O 3g O , O h O and O the O Supplementary O Discussion O . O Versatile O primary O sequence O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O that O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element mediates O an O extensive B-site interface I-site with O the O second O α B-structure_element - I-structure_element helix I-structure_element of O RRM1 B-structure_element , O the O β2 B-structure_element / I-structure_element β3 I-structure_element strands I-structure_element of O RRM2 B-structure_element and O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O RRM1 B-structure_element . O The O adjacent O V249 B-residue_name_number and O V250 B-residue_name_number are O notable O for O their O respective O interactions O that O connect O RRM1 B-structure_element and O RRM2 B-structure_element at O this O distal O interface B-site from O the O RNA B-site - I-site binding I-site site I-site ( O Fig O . O 4a O , O top O ). O Few O direct O contacts O are O made O between O the O remaining O residues O of O the O linker B-structure_element and O the O U2AF65 B-protein RRM2 B-structure_element ; O instead O , O the O C O - O terminal O conformation O of O the O linker B-structure_element appears O primarily O RNA B-chemical mediated O ( O Fig O . O 3c O , O d O ). O We O introduced O glycine B-residue_name substitutions B-experimental_method to O maximally O reduce O the O buried O surface O area O without O directly O interfering O with O its O hydrogen O bonds O between O backbone O atoms O and O the O base O . O However O , O the O resulting O decrease O in O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Gly I-mutant mutant B-protein_state relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein was O not O significant O ( O Fig O . O 4b O ). O We O found O that O the O affinity B-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant for O the O AdML B-gene RNA B-chemical was O significantly O reduced O relative O to O U2AF651 B-mutant , I-mutant 2L I-mutant ( O four O - O fold O , O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4i O ). O Paramagnetic B-experimental_method resonance I-experimental_method enhancement I-experimental_method ( O PRE B-experimental_method ) O measurements O previously O had O suggested O a O predominant O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state , O or O ‘ O closed B-protein_state ' O conformation O of O the O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant RRM1 B-structure_element and O RRM2 B-structure_element in O equilibrium O with O a O minor O ‘ O open B-protein_state ' O conformation O resembling O the O RNA B-protein_state - I-protein_state bound I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element arrangement O . O Addition O of O the O AdML B-gene RNA B-chemical to O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O selectively O increases O a O fraction O of O molecules O showing O an O ∼ O 0 O . O 45 O apparent O FRET B-evidence efficiency I-evidence , O suggesting O that O RNA O binding O stabilizes O a O single O conformation O , O which O corresponds O to O the O 0 O . O 45 O FRET B-evidence state I-evidence ( O Fig O . O 6e O , O f O ). O To O assess O the O possible O contributions O of O RNA B-protein_state - I-protein_state free I-protein_state conformations O of O U2AF65 B-protein and O / O or O structural O heterogeneity O introduced O by O tethering B-experimental_method of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O slide O to O the O observed O distribution B-evidence of I-evidence FRET I-evidence values I-evidence , O we O reversed B-experimental_method the I-experimental_method immobilization I-experimental_method scheme I-experimental_method . O We O tethered B-protein_state the O AdML B-gene RNA B-chemical to O the O slide O via O a O biotinylated B-chemical oligonucleotide I-chemical DNA I-chemical handle O and O added B-experimental_method U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state biotin B-chemical - I-chemical NTA I-chemical resin I-chemical ( O Fig O . O 6g O , O h O ; O Supplementary O Fig O . O 7c O – O g O ). O Nevertheless O , O in O the O presence O of O saturating O concentrations O of O rArA B-chemical - O interrupted O RNA B-chemical slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O showed O a O prevalent O ∼ O 0 O . O 45 O apparent O FRET B-evidence value I-evidence ( O Fig O . O 6i O , O j O ), O which O was O also O predominant O in O the O presence O of O continuous O Py B-chemical tract I-chemical . O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O The O majority O of O traces B-evidence that O show O fluctuations O began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transitioned O to O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O Thus O , O the O sequence O of O structural O rearrangements O of O U2AF65 B-protein observed O in O smFRET B-experimental_method traces B-evidence ( O Supplementary O Fig O . O 7c O – O g O ) O suggests O that O a O ‘ O conformational O selection O ' O mechanism O of O Py B-chemical - I-chemical tract I-chemical recognition O ( O that O is O , O RNA O ligand O stabilization O of O a O pre B-protein_state - I-protein_state configured I-protein_state U2AF65 B-protein conformation O ) O is O complemented O by O ‘ O induced O fit O ' O ( O that O is O , O RNA O - O induced O rearrangement O of O the O U2AF65 B-protein RRMs B-structure_element to O achieve O the O final O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O conformation O ), O as O discussed O below O . O Likewise O , O deletion B-experimental_method of O 20 B-residue_range inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element residues I-structure_element significantly O reduces O U2AF65 B-protein – O RNA B-chemical binding O only O when O introduced O in O the O context O of O the O longer B-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant construct O comprising O the O RRM B-structure_element extensions I-structure_element , O which O in O turn O position O the O linker B-structure_element for O RNA B-chemical interactions O . O The O lesser O 0 O . O 65 O – O 0 O . O 8 O and O 0 O . O 2 O – O 0 O . O 3 O FRET B-evidence values I-evidence in O the O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O experiment O could O correspond O to O respective O variants O of O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state U2AF65 B-protein conformations O characterized O by O NMR B-experimental_method / O PRE B-experimental_method data O , O or O to O extended B-protein_state U2AF65 B-protein conformations O , O in O which O the O intramolecular O RRM1 B-structure_element / O RRM2 B-structure_element interactions O have O dissociated O the O protein B-protein is O bound B-protein_state to I-protein_state RNA B-chemical via O single B-protein_state RRMs B-structure_element . O Examples O of O ‘ O extended B-protein_state conformational O selection O ' O during O ligand O binding O have O been O characterized O for O a O growing O number O of O macromolecules O ( O for O example O , O adenylate B-protein_type kinase I-protein_type , O LAO B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O poly B-protein_type - I-protein_type ubiquitin I-protein_type , O maltose B-protein_type - I-protein_type binding I-protein_type protein I-protein_type and O the O preQ1 B-protein_type riboswitch I-protein_type , O among O others O ). O Similar O interdisciplinary O structural O approaches O are O likely O to O illuminate O whether O similar O mechanistic O bases O for O RNA O binding O are O widespread O among O other O members O of O the O vast O multi O - O RRM B-structure_element family O . O Further O research O will O be O needed O to O understand O the O roles O of O SF1 B-protein and O U2AF35 B-protein subunits O in O the O conformational O equilibria O underlying O U2AF65 B-protein association O with O Py B-chemical tracts I-chemical . O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O for O binding O the O AdML B-gene 13mer O are O as O follows O : O flU2AF65 B-protein , O 30 O ± O 3 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 35 O ± O 6 O nM O ; O U2AF651 B-mutant , I-mutant 2 I-mutant , O 3 O , O 600 O ± O 300 O nM O . O ( O c O ) O Comparison O of O the O RNA B-evidence sequence I-evidence specificities I-evidence of O flU2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant constructs O binding O C B-structure_element - I-structure_element rich I-structure_element Py B-chemical tracts I-chemical with O 4U O ' O s O embedded O in O either O the O 5 O ′- O ( O light O grey O fill O ) O or O 3 O ′- O ( O dark O grey O fill O ) O regions O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCUUUUCCCCCCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 41 O ± O 2 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 31 O ± O 3 O nM O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCCCCCCUUUUCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 414 O ± O 12 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 417 O ± O 10 O nM O . O Bar O graphs O are O hatched O to O match O the O constructs O shown O in O a O . O The O average B-evidence apparent I-evidence equilibrium I-evidence affinity I-evidence ( O KA B-evidence ) O and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O Representative O views O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O each O new O nucleotide B-chemical of O the O bound B-protein_state Py B-chemical tract I-chemical . O The O average O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4a O – O c O . O RNA O binding O stabilizes O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O of O U2AF65 B-protein RRMs B-structure_element . O A O surface O representation O of O U2AF651 B-mutant , I-mutant 2L I-mutant is O shown O bound B-protein_state to I-protein_state nine O nucleotides B-chemical ( O nt O ); O the O relative O distances O and O juxtaposition O of O the O branch B-site point I-site sequence I-site ( O BPS B-site ) O and O consensus O AG B-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site are O unknown O . O This O sequence O pattern O is O conserved B-protein_state among O diverse O plant B-taxonomy_domain peptides B-chemical , O suggesting O that O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type receptors I-protein_type may O share O a O common O ligand O binding O mode O and O activation O mechanism O . O Plants B-taxonomy_domain can O shed O their O leaves O , O flowers O or O other O organs O when O they O no O longer O need O them O . O But O how O does O a O leaf O or O a O flower O know O when O to O let O go O ? O A O receptor B-protein_type protein I-protein_type called O HAESA B-protein is O found O on O the O surface O of O the O cells O that O surround O a O future O break O point O on O the O plant O . O When O its O time O to O shed O an O organ O , O a O hormone B-chemical called O IDA B-protein instructs O HAESA B-protein to O trigger O the O shedding O process O . O The O experiments O show O that O IDA B-protein binds B-protein_state directly I-protein_state to I-protein_state a O canyon B-protein_state shaped I-protein_state pocket B-site in O HAESA B-protein that O extends O out O from O the O surface O of O the O cell O . O Hydrophobic O contacts O and O a O hydrogen B-site - I-site bond I-site network I-site mediate O the O interaction O between O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O HAESA B-site interface I-site residues I-site are O shown O as O sticks O , O selected O hydrogen O bond O interactions O are O denoted O as O dotted O lines O ( O in O magenta O ). O ( O B O ) O View O of O the O complete O IDA B-protein ( O in O bonds O representation O , O in O yellow O ) O binding B-site pocket I-site in O HAESA B-protein ( O surface O view O , O in O blue O ). O The O IDA B-complex_assembly - I-complex_assembly HAESA I-complex_assembly and O SERK1 B-complex_assembly - I-complex_assembly HAESA I-complex_assembly complex O interfaces B-site are O conserved B-protein_state among O HAESA B-protein and O HAESA B-protein_type - I-protein_type like I-protein_type proteins I-protein_type from O different O plant B-taxonomy_domain species O . O Details O of O the O interactions O between O the O central O Hyp B-structure_element anchor I-structure_element in O IDA B-protein and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element with O HAESA B-protein are O highlighted O in O ( O E O ) O and O ( O F O ), O respectively O . O Close O - O up O views O of O ( O A O ) O IDA B-protein , O ( O B O ) O the O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state PKGV B-mutant - I-mutant IDA I-mutant and O ( O C O ) O IDL1 B-protein bound B-protein_state to I-protein_state the O HAESA B-protein hormone B-site binding I-site pocket I-site ( O in O bonds O representation O , O in O yellow O ) O and O including O simulated B-experimental_method annealing I-experimental_method 2Fo B-evidence – I-evidence Fc I-evidence omit I-evidence electron I-evidence density I-evidence maps I-evidence contoured O at O 1 O . O 0 O σ O . O Petal O break O - O strength O was O found O significantly O increased O in O almost O all O positions O ( O indicated O with O a O *) O for O haesa B-gene / O hsl2 B-gene and O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain with O respect O to O the O Col O - O 0 O control O . O A O SDS B-experimental_method PAGE I-experimental_method of O the O peak O fractions O is O shown O alongside O . O Transphosphorylation O activity O from O the O active B-protein_state kinase O to O the O mutated B-protein_state form O can O be O observed O in O both O directions O ( O lanes O 5 O + O 6 O ). O A O Hyp B-protein_state - I-protein_state modified I-protein_state dodecamer B-structure_element comprising O the O highly B-protein_state conserved I-protein_state PIP B-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 1A O ) O interacts O with O HAESA B-protein with O 1 O : O 1 O stoichiometry O ( O N O ) O and O with O a O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O of O ~ O 20 O μM O ( O Figure O 1B O ). O Consistently O , O PKGV B-mutant - I-mutant IDA I-mutant and O IDA B-protein have O similar O binding B-evidence affinities I-evidence in O our O ITC B-experimental_method assays I-experimental_method , O further O indicating O that O HAESA B-protein senses O a O dodecamer B-structure_element peptide B-chemical comprising O residues O 58 B-residue_range - I-residue_range 69IDA I-residue_range ( O Figure O 2D O ). O IDL1 B-protein , O which O can O rescue O IDA B-protein loss O - O of O - O function O mutants O when O introduced O in O abscission O zone O cells O , O can O also O be O sensed O by O HAESA B-protein , O albeit O with O lower O affinity B-evidence ( O Figure O 2D O ). O The O co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type SERK1 B-protein allows O for O high O - O affinity O IDA O sensing O As O all O five O SERK B-protein_type family I-protein_type members I-protein_type appear O to O be O expressed O in O the O Arabidopsis B-taxonomy_domain abscission O zone O , O we O quantified O their O relative O contribution O to O floral O abscission O in O Arabidopsis B-taxonomy_domain using O a O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method . O Importantly O , O hydroxyprolination B-ptm of O IDA B-protein is O critical O for O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O ( O Figure O 3C O , O D O ). O Our O calorimetry B-experimental_method experiments O now O reveal O that O SERKs B-protein_type may O render O HAESA B-protein , O and O potentially O other O receptor B-protein_type kinases I-protein_type , O competent O for O high O - O affinity O sensing O of O their O cognate O ligands O . O ( O A O ) O Overview O of O the O ternary O complex O with O HAESA B-protein in O blue O ( O surface O representation O ), O IDA B-protein in O yellow O ( O bonds O representation O ) O and O SERK1 B-protein in O orange O ( O surface O view O ). O ( O B O ) O The O HAESA B-protein ectodomain B-structure_element undergoes O a O conformational O change O upon O SERK1 B-protein co O - O receptor O binding O . O SERK1 B-protein loop B-structure_element residues O establish O multiple O hydrophobic O and O polar O contacts O with O Lys66IDA B-residue_name_number and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 4C O ). O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O ( O C O ) O Quantitative O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method for O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state flowers O and O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state flowers O . O We O thus O assessed O their O contribution O to O HAESA B-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O formation O . O In O contrast O , O over B-experimental_method - I-experimental_method expression I-experimental_method of O the O IDA B-mutant Lys66IDA I-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state mutant I-protein_state significantly O delays O floral O abscission O when O compared O to O wild B-protein_state - I-protein_state type I-protein_state control O plants B-taxonomy_domain , O suggesting O that O the O mutant B-protein_state IDA B-chemical peptide I-chemical has O reduced O activity O in O planta B-taxonomy_domain ( O Figure O 5C O – O E O ). O Comparison O of O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state plants B-taxonomy_domain further O indicates O that O mutation B-experimental_method of O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant may O cause O a O weak O dominant O negative O effect O ( O Figure O 5C O – O E O ). O This O observation O is O consistent O with O our O complex O structure B-evidence in O which O receptor O and O co O - O receptor O together O form O the O IDA B-site binding I-site pocket I-site . O In O both O cases O however O , O the O co O - O receptor O completes O the O hormone B-site binding I-site pocket I-site . O Diverse O plant B-taxonomy_domain peptide B-protein_type hormones I-protein_type may O thus O also O bind O their O LRR B-protein_type - I-protein_type RK I-protein_type receptors I-protein_type in O an O extended B-protein_state conformation I-protein_state along O the O inner O surface O of O the O LRR B-structure_element domain I-structure_element and O may O also O use O small B-protein_state , O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptors I-protein_type for O high O - O affinity O ligand O binding O and O receptor O activation O . O Biogenesis O of O the O 20S B-complex_assembly proteasome I-complex_assembly is O tightly O regulated O . O Substitution B-experimental_method of O Thr1 B-residue_name_number by O Cys B-residue_name disrupts O the O interaction O with O Lys33 B-residue_name_number and O inactivates B-protein_state the O proteasome B-complex_assembly . O Although O a O Thr1Ser B-mutant mutant B-protein_state is O active B-protein_state , O it O is O less O efficient O compared O with O wild B-protein_state type I-protein_state because O of O the O unfavourable O orientation O of O Ser1 B-residue_name_number towards O incoming O substrates O . O This O work O provides O insights O into O the O basic O mechanism O of O proteolysis O and O propeptide B-ptm autolysis I-ptm , O as O well O as O the O evolutionary O pressures O that O drove O the O proteasome B-complex_assembly to O become O a O threonine B-protein_type protease I-protein_type . O While O the O inactive B-protein_state α B-protein subunits I-protein build O the O two O outer O rings B-structure_element , O the O β B-protein subunits I-protein form O the O inner O rings B-structure_element . O Data O from O biochemical B-experimental_method and I-experimental_method structural I-experimental_method analyses I-experimental_method of O proteasome O variants O with O mutations O in O the O β5 B-protein propeptide B-structure_element and O the O active B-site site I-site strongly O support O the O model O and O deliver O novel O insights O into O the O structural O constraints O required O for O the O autocatalytic B-ptm activation I-ptm of O the O proteasome B-complex_assembly . O By O contrast O , O the O T1A B-mutant mutation O in O subunit O β5 B-protein has O been O reported O to O be O lethal O or O nearly O so O . O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number positions O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O via O hydrogen O bonding O (∼ O 2 O . O 8 O Å O ) O in O a O perfect O trajectory O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1b O and O Supplementary O Fig O . O 2b O ). O Surprisingly O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O completely O extended O and O forces O the O histidine B-residue_name side O chain O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number to O occupy O the O S2 B-site instead O of O the O S1 B-site pocket I-site , O thereby O disrupting O the O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O Remarkably O , O eukaryotic B-taxonomy_domain proteasomal O β5 B-protein subunits O bear O a O His B-residue_name residue O in O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O propeptide B-structure_element ( O Supplementary O Fig O . O 3a O ). O As O proven O by O the O β2 B-mutant - I-mutant T1A I-mutant crystal B-evidence structures I-evidence , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number hydrogen O bonds O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O . O Although O this O interaction O was O not O observed O for O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutant B-protein_state ( O Fig O . O 2c O and O Supplementary O Fig O . O 4c O , O i O ), O exchange B-experimental_method of O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number by O Val B-residue_name in O β2 B-protein , O a O conservative O mutation O regarding O size O but O drastic O with O respect O to O polarity O , O was O found O to O inhibit O maturation O of O this O subunit O ( O Fig O . O 2d O and O Supplementary O Fig O . O 4e O , O j O ). O Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen O - O bonding O distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O A O proposed O catalytic B-site tetrad I-site model O involving O Thr1OH B-residue_name_number , O Thr1NH2 B-residue_name_number , O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number , O as O well O as O a O nucleophilic O water B-chemical molecule O as O the O proton O shuttle O appeared O to O accommodate O all O possible O views O of O the O proteasomal O active B-site site I-site . O The O phenotype O of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state was O however O less O pronounced O than O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant yeast B-taxonomy_domain ( O Fig O . O 4a O ). O Since O no O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O was O observed O for O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state apo B-protein_state crystal B-evidence structure I-evidence , O the O reduced O reactivity O towards O substrates O and O inhibitors O indicates O that O Lys33NH2 B-residue_name_number , O rather O than O Thr1NH2 B-residue_name_number , O deprotonates O and O activates O Thr1OH B-residue_name_number . O Autolysis B-ptm and O residual O catalytic O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant mutants O may O originate O from O the O carbonyl O group O of O Asn17 B-residue_name_number , O which O albeit O to O a O lower O degree O still O can O polarize O Lys33 B-residue_name_number for O the O activation O of O Thr1 B-residue_name_number . O Together O , O these O observations O suggest O that O efficient O peptide O - O bond O hydrolysis O requires O that O Lys33NH2 B-residue_name_number hydrogen O bonds O to O the O active O site O nucleophile O . O Crystal B-evidence structure I-evidence analysis O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state confirmed O precursor B-ptm processing I-ptm ( O Fig O . O 4g O ), O and O ligand B-complex_assembly - I-complex_assembly complex I-complex_assembly structures B-evidence with O bortezomib B-chemical and O carfilzomib B-chemical unambiguously O corroborated O the O reactivity O of O Ser1 B-residue_name_number ( O Fig O . O 5 O ). O In O vitro O , O the O mutant B-protein_state proteasome B-complex_assembly is O less O susceptible O to O proteasome B-complex_assembly inhibition O by O bortezomib B-chemical ( O 3 O . O 7 O - O fold O ) O and O carfilzomib B-chemical ( O 1 O . O 8 O - O fold O ; O Fig O . O 5 O ). O Hence O , O the O mean B-evidence residence I-evidence time I-evidence of O carfilzomib B-chemical at O the O active B-site site I-site is O prolonged O and O the O probability O to O covalently O react O with O Ser1 B-residue_name_number is O increased O . O In O eukaryotes B-taxonomy_domain , O deletion O of O or O failure O to O cleave O the O β1 B-protein and O β2 B-protein propeptides B-structure_element is O well O tolerated O . O From O these O data O we O conclude O that O only O the O positioning O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Thr1 B-residue_name_number as O well O as O the O integrity O of O the O proteasomal O active B-site site I-site are O required O for O autolysis B-ptm . O We O propose O a O catalytic B-site triad I-site for O the O active B-site site I-site of O the O CP B-complex_assembly consisting O of O residues O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number , O which O are O conserved O among O all O proteolytically O active O eukaryotic B-taxonomy_domain , O bacterial B-taxonomy_domain and O archaeal B-taxonomy_domain proteasome B-complex_assembly subunits O . O Analogously O , O Thr1NH3 B-residue_name_number + O might O promote O the O bivalent O reaction O mode O of O epoxyketone O inhibitors O by O protonating O the O epoxide O moiety O to O create O a O positively O charged O trivalent O oxygen O atom O that O is O subsequently O nucleophilically O attacked O by O Thr1NH2 B-residue_name_number . O The O residues O Ser129 B-residue_name_number and O Asp166 B-residue_name_number are O expected O to O increase O the O pKa O value O of O Thr1N B-residue_name_number , O thereby O favouring O its O charged O state O . O In O accord O with O the O proposed O Thr1 B-residue_name_number – O Lys33 B-residue_name_number – O Asp17 B-residue_name_number catalytic B-site triad I-site , O crystallographic B-evidence data I-evidence on O the O proteolytically B-protein_state inactive I-protein_state β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state demonstrate O that O the O interaction O of O Lys33NH2 B-residue_name_number and O Cys1 B-residue_name_number is O broken O . O Notably O , O in O the O Ntn B-protein_type hydrolase I-protein_type penicillin B-protein_type acylase I-protein_type , O substitution B-experimental_method of O the O catalytic B-protein_state N O - O terminal O Ser B-residue_name residue O by O Cys B-residue_name also O inactivates B-protein_state the O enzyme B-protein_type but O still O enables O precursor B-ptm processing I-ptm . O Notably O , O proteolytically B-protein_state active I-protein_state proteasome B-complex_assembly subunits O from O archaea B-taxonomy_domain , O yeast B-taxonomy_domain and O mammals B-taxonomy_domain , O including O constitutive O , O immuno O - O and O thymoproteasome O subunits O , O either O encode O Thr B-residue_name or O Ile B-residue_name at O position O 3 B-residue_number , O indicating O the O importance O of O the O Cγ O for O fixing O the O position O of O the O nucleophilic O Thr1 B-residue_name_number . O In O contrast O to O Thr1 B-residue_name_number , O the O hydroxyl O group O of O Ser1 B-residue_name_number occupies O the O position O of O the O Thr1 B-residue_name_number methyl O side O chain O in O the O WT B-protein_state enzyme B-complex_assembly , O which O requires O its O reorientation O relative O to O the O substrate O to O allow O cleavage O ( O Fig O . O 4g O , O h O ). O The O resulting O deprotonated O Thr1NH2 B-residue_name_number finally O activates O a O water B-chemical molecule O for O hydrolysis O of O the O acyl O - O enzyme O . O The O prosegment B-structure_element is O cleaved B-protein_state but O still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site . O ( O h O ) O The O methyl O group O of O Thr1 B-residue_name_number is O anchored O by O hydrophobic O interactions O with O Ala46Cβ B-residue_name_number and O Thr3Cγ B-residue_name_number . O Note O that O IC50 B-evidence values I-evidence depend O on O time O and O enzyme O concentration O . O The O WT B-protein_state proteasome B-complex_assembly : I-complex_assembly inhibitor I-complex_assembly complex I-complex_assembly structures B-evidence ( O inhibitor O in O grey O ; O Thr1 B-residue_name_number in O black O ) O are O superimposed B-experimental_method and O demonstrate O that O mutation B-experimental_method of O Thr1 B-residue_name_number to O Ser B-residue_name does O not O affect O the O binding O mode O of O bortezomib B-chemical or O carfilzomib B-chemical . O