Biochemical B-experimental_method analysis I-experimental_method reveals O that O these O outer B-protein_type membrane I-protein_type - I-protein_type anchored I-protein_type proteins I-protein_type are O in O fact O exquisitely O specific O for O the O highly O branched O xyloglucan B-chemical ( O XyG B-chemical ) O polysaccharide B-chemical . O However O , O there O is O a O paucity O of O data O regarding O how O the O vast O array O of O complex B-chemical carbohydrate I-chemical structures O are O selectively O recognized O and O imported O by O members O of O the O microbiota B-taxonomy_domain , O a O critical O process O that O enables O these O organisms O to O thrive O in O the O competitive O gut O environment O . O The O location O of O SGBP B-protein - I-protein A I-protein / O B B-protein is O presented O in O this O work O ; O the O location O of O GH5 B-protein has O been O empirically O determined O , O and O the O enzymes O have O been O placed O based O upon O their O predicted O cellular O location O . O These O data O extend O our O current O understanding O of O the O Sus O - O like O glycan B-chemical uptake O paradigm O within O the O Bacteroidetes B-taxonomy_domain and O reveals O how O the O complex O dietary O polysaccharide B-chemical xyloglucan B-chemical is O recognized O at O the O cell O surface O . O In O contrast O , O SGBP B-protein - I-protein B I-protein , O encoded O by O locus O tag O Bacova_02650 B-gene , O displays O little O sequence O similarity O to O the O products O of O similarly O positioned O genes O in O syntenic O XyGUL B-gene nor O to O any O other O gene O product O among O the O diversity O of O Bacteroidetes B-taxonomy_domain PUL B-gene . O Formalin O - O fixed O , O nonpermeabilized O B B-species . I-species ovatus I-species cells O were O grown O in O minimal O medium O plus O XyG B-chemical , O probed O with O custom O rabbit O antibodies O to O SGBP B-protein - I-protein A I-protein or O SGBP B-protein - I-protein B I-protein , O and O then O stained O with O Alexa O Fluor O 488 O goat O anti O - O rabbit O IgG O . O ( O A O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O A O . O ( O B O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O B O . O ( O C O ) O Bright B-evidence - I-evidence field I-evidence image I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O The O vanguard O endo B-protein_type - I-protein_type xyloglucanase I-protein_type of O the O XyGUL B-gene , O BoGH5 B-protein , O preferentially O cleaves O the O polysaccharide B-chemical at O unbranched O glucosyl B-chemical residues O to O generate O xylogluco B-chemical - I-chemical oligosaccharides I-chemical ( O XyGOs B-chemical ) O comprising O a O Glc4 B-structure_element backbone I-structure_element with O variable B-structure_element side I-structure_element - I-structure_element chain I-structure_element galactosylation I-structure_element ( O XyGO1 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 1 O ) O as O the O limit O of O digestion O products O in O vitro O ; O controlled B-experimental_method digestion I-experimental_method and I-experimental_method fractionation I-experimental_method by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method allow O the O production O of O higher O - O order O oligosaccharides B-chemical ( O e O . O g O ., O XyGO2 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 2 O ). O The O approximate O length O of O each O glycan B-site - I-site binding I-site site I-site is O displayed O , O colored O to O match O the O protein B-evidence structures I-evidence . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein A I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O Most O surprising O in O light O of O the O saccharide B-evidence - I-evidence binding I-evidence data I-evidence , O however O , O was O a O lack O of O extensive O recognition O of O the O XyG B-chemical side O chains O ; O only O Y84 B-residue_name_number appeared O to O provide O a O hydrophobic B-site interface I-site for O a O xylosyl B-chemical residue O ( O Xyl1 B-residue_name_number ). O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element display O similar O β B-structure_element - I-structure_element sandwich I-structure_element folds I-structure_element ; O domains O B B-structure_element ( O residues O 134 B-residue_range to I-residue_range 230 I-residue_range ) O and O C B-structure_element ( O residues O 231 B-residue_range to I-residue_range 313 I-residue_range ) O can O be O superimposed B-experimental_method onto O domain O A B-structure_element ( O residues O 34 B-residue_range to I-residue_range 133 I-residue_range ) O with O RMSDs B-evidence of O 1 O . O 1 O and O 1 O . O 2 O Å O , O respectively O , O for O 47 O atom O pairs O ( O 23 O % O and O 16 O % O sequence O identity O , O respectively O ). O While O neither O the O full B-protein_state - I-protein_state length I-protein_state protein O nor O domain O D B-structure_element displays O structural O homology O to O known O XyG B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type , O the O topology O of O SGBP B-protein - I-protein B I-protein resembles O the O xylan B-protein_type - I-protein_type binding I-protein_type protein I-protein_type Bacova_04391 B-protein ( O PDB O 3ORJ O ) O encoded O within O a O xylan B-chemical - O targeting O PUL B-gene of O B B-species . I-species ovatus I-species ( O Fig O . O 5C O ). O Six O glucosyl B-chemical residues O , O comprising O the O main O chain O , O and O three O branching O xylosyl B-chemical residues O of O XyGO2 B-chemical can O be O modeled O in O the O density B-evidence ( O Fig O . O 5D O ; O cf O . O Complementation B-experimental_method of O ΔSGBP B-mutant - I-mutant A I-mutant with O the O SGBP B-mutant - I-mutant A I-mutant * I-mutant ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O variant O , O which O does O not B-protein_state bind I-protein_state XyG B-chemical , O supports O growth O on O XyG B-chemical and O XyGOs B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant *), I-mutant with O growth O rates O that O are O ~ O 70 O % O that O of O the O WT B-protein_state . O However O , O combined B-experimental_method deletion I-experimental_method of I-experimental_method the I-experimental_method genes I-experimental_method encoding I-experimental_method GH9 B-protein ( O encoded O by O Bacova_02649 B-gene ) O and O SGBP B-protein - I-protein B I-protein does O not O exacerbate O the O growth O defect O on O XyGO1 B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant B I-mutant / O ΔGH9 B-mutant ). O However O , O unlike O the O Sus B-complex_assembly , O in O which O elimination B-experimental_method of I-experimental_method SusE B-protein and O SusF B-protein does O not O affect O growth O on O starch B-chemical , O SGBP B-protein - I-protein B I-protein appears O to O have O a O dedicated O role O in O growth O on O small O xylogluco B-chemical - I-chemical oligosaccharides I-chemical . O Our O observation O here O that O the O physical O presence O of O the O SusD B-protein homolog O SGBP B-protein - I-protein A I-protein , O independent O of O XyG B-chemical - O binding O ability O , O is O both O necessary O and O sufficient O for O XyG B-chemical utilization O further O supports O a O model O of O glycan B-chemical import O whereby O the O SusC B-protein_type - I-protein_type like I-protein_type TBDTs I-protein_type and O the O SusD B-protein_type - I-protein_type like I-protein_type SGBPs I-protein_type must O be O intimately O associated O to O support O glycan B-chemical uptake O ( O Fig O . O 1C O ). O Because O the O intestinal O ecosystem O is O a O dense O consortium O of O bacteria B-taxonomy_domain that O must O compete O for O their O nutrients O , O these O multimodular O SGBPs B-protein_type may O reflect O ongoing O evolutionary O experiments O to O enhance O glycan B-chemical uptake O efficiency O . O In O conclusion O , O the O present O study O further O illuminates O the O essential O role O that O surface B-protein_type - I-protein_type glycan I-protein_type binding I-protein_type proteins I-protein_type play O in O facilitating O the O catabolism O of O complex O dietary O carbohydrates B-chemical by O Bacteroidetes B-taxonomy_domain . O The O PTAC B-protein_type predominantly O associated O with O metabolosomes B-complex_assembly ( O PduL B-protein_type ) O has O no O sequence O homology O to O the O PTAC B-protein_type ubiquitous O among O fermentative B-taxonomy_domain bacteria I-taxonomy_domain ( O Pta B-protein_type ). O Here O , O we O report O two O high O - O resolution O PduL B-protein_type crystal B-evidence structures I-evidence with B-protein_state bound I-protein_state substrates I-protein_state . O Recently O , O a O new O type O of O phosphotransacylase B-protein_type was O described O that O shares O no O evolutionary O relation O to O Pta B-protein_type . O Not O only O does O PduL B-protein_type facilitate O substrate O level O phosphorylation O , O but O it O also O is O critical O for O cofactor O recycling O within O , O and O product O efflux O from O , O the O organelle O . O The O reactions O carried O out O in O the O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O also O known O as O metabolosomes B-complex_assembly ) O fit O a O generalized O biochemical O paradigm O for O the O oxidation O of O aldehydes B-chemical ( O Fig O 1 O ). O Reaction O 1 O : O acetyl B-chemical - I-chemical S I-chemical - I-chemical CoA I-chemical + O Pi B-chemical ←→ O acetyl B-chemical phosphate I-chemical + O CoA B-chemical - I-chemical SH I-chemical ( O PTAC B-protein_type ) O The O canonical O PTAC B-protein_type , O Pta B-protein_type , O is O an O ancient O enzyme O found O in O some O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain , O and O widespread O among O the O bacteria B-taxonomy_domain ; O 90 O % O of O the O bacterial B-taxonomy_domain genomes O in O the O Integrated O Microbial O Genomes O database O contain O a O gene O encoding O the O PTA_PTB B-protein_type phosphotransacylase I-protein_type ( O Pfam O domain O PF01515 B-structure_element ). O This O protein O , O PduL B-protein_type ( O Pfam O domain O PF06130 B-structure_element ), O was O shown O to O catalyze O the O conversion O of O propionyl B-chemical - I-chemical CoA I-chemical to O propionyl B-chemical - I-chemical phosphate I-chemical and O is O associated O with O a O BMC B-complex_assembly involved O in O propanediol O utilization O , O the O PDU B-complex_assembly BMC I-complex_assembly . O In O contrast O , O the O structure B-evidence of O PduL B-protein_type , O the O PTAC B-protein_type found O in O the O vast O majority O of O catabolic B-protein_state BMCs B-complex_assembly , O has O not O been O determined O . O Here O we O report O high O - O resolution O crystal B-evidence structures I-evidence of O a O PduL B-protein_type - I-protein_type type I-protein_type PTAC I-protein_type in O both O CoA B-protein_state - I-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state forms O , O completing O our O understanding O of O the O structural O basis O of O catalysis O by O the O metabolosome B-complex_assembly common O core O enzymes O . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type ( O a O ) O Primary O and O secondary O structure O of O rPduL B-protein ( O tubes O represent O α B-structure_element - I-structure_element helices I-structure_element , O arrows O β B-structure_element - I-structure_element sheets I-structure_element and O dashed O line O residues O disordered O in O the O structure B-evidence . O Coenzyme B-chemical A I-chemical is O shown O in O magenta O sticks O and O Zinc B-chemical ( O grey O ) O as O spheres O . O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O of O the O P212121 O unit O cell O . O Structurally O , O PduL B-protein_type consists O of O two O domains B-structure_element ( O Fig O 2 O , O blue O / O red O ), O each O a O beta B-structure_element - I-structure_element barrel I-structure_element that O is O capped O on O both O ends O by O short O α B-structure_element - I-structure_element helices I-structure_element . O Residues O in O this O region O ( O Gln42 B-residue_name_number , O Pro43 B-residue_name_number , O Gly44 B-residue_name_number ), O covering O the O active B-site site I-site , O are O strongly B-protein_state conserved I-protein_state ( O Fig O 3 O ). O The O position O numbers O shown O correspond O to O the O residue O numbering O of O rPduL B-protein ; O note O that O some O positions O in O the O logo O represent O gaps O in O the O rPduL B-protein sequence O . O The O folds O of O the O two O chains O in O the O asymmetric O unit O are O very O similar O , O superimposing B-experimental_method with O a O rmsd B-evidence of O 0 O . O 16 O Å O over O 2 O , O 306 O aligned O atom O pairs O . O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O The O large O differences O between O the O anomalous O signals O confirm O the O presence O of O zinc B-chemical at O both O metal O sites O ( O S3 O Fig O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element It O has O been O proposed O that O the O catabolic B-protein_state BMCs B-complex_assembly may O assemble O in O a O core O - O first O manner O , O with O the O luminal O enzymes O ( O signature O enzyme O , O aldehyde B-protein_type , I-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type and O the O BMC B-complex_assembly PTAC B-protein_type ) O forming O an O initial O bolus O , O or O prometabolosome O , O around O which O a O shell B-structure_element assembles O . O However O , O when O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 27 I-residue_range ) O was O removed B-experimental_method ( O sPduL B-mutant ΔEP I-mutant ), O the O truncated B-protein_state protein O was O stable O and O eluted O as O a O single O peak O ( O Fig O 5a O ) O consistent O with O the O size O of O a O monomer B-oligomeric_state ( O Fig O 5d O , O blue O curve O ). O rPduL B-protein full B-protein_state length I-protein_state runs O as O Mw B-evidence = O 140 O . O 3 O kDa O +/− O 1 O . O 2 O % O and O Mn B-evidence = O 140 O . O 5 O kDa O +/− O 1 O . O 2 O %. O Our O structure B-evidence reveals O that O the O two O assigned O PF06130 B-structure_element domains O ( O Fig O 3 O ) O do O not O form O structurally O discrete O units O ; O this O reduces O the O apparent O sequence O conservation O at O the O level O of O primary O structure O . O The O closest O structural O homolog O of O the O PduL B-protein_type barrel B-structure_element domain I-structure_element is O a O subdomain O of O a O multienzyme O complex O , O the O alpha B-structure_element subunit I-structure_element of O ethylbenzene B-protein_type dehydrogenase I-protein_type ( O S5b O Fig O , O rmsd B-evidence of O 2 O . O 26 O Å O over O 226 O aligned O atoms O consisting O of O one O beta B-structure_element barrel I-structure_element and O one O capping B-structure_element helix I-structure_element ). O The O PduL B-protein_type signature O primary O structure O , O two O PF06130 B-structure_element domains O , O occurs O in O some O multidomain O proteins O , O most O of O them O annotated O as O Acks B-protein_type , O suggesting O that O PduL B-protein_type may O also O replace O Pta B-protein_type in O variants O of O the O phosphotransacetylase B-protein_type - O Ack B-protein_type pathway O . O These O PduL B-protein_type homologs O lack B-protein_state EPs B-structure_element , O and O their B-protein_type fusion O to O Ack B-protein_type may O have O evolved O as O a O way O to O facilitate O substrate O channeling O between O the O two O enzymes O . O sPduL B-protein has O also O previously O been O reported O to O localize O to O inclusion O bodies O when O overexpressed B-experimental_method ; O we O show O here O that O this O is O dependent O on O the O presence O of O the O EP B-structure_element . O Structured O aggregation O of O the O core O enzymes O has O been O proposed O to O be O the O initial O step O in O metabolosome B-complex_assembly assembly O and O is O known O to O be O the O first O step O of O β O - O carboxysome O biogenesis O , O where O the O core O enzyme O Ribulose B-protein_type Bisphosphate I-protein_type Carboxylase I-protein_type / I-protein_type Oxygenase I-protein_type ( O RuBisCO B-protein_type ) O is O aggregated O by O the O CcmM B-protein_type protein O . O As O expected O , O the O amino O acid O sequence O conservation O is O highest O in O the O region O around O the O proposed O active B-site site I-site ( O Fig O 4d O ); O highly B-protein_state conserved I-protein_state residues O are O also O involved O in O CoA B-chemical binding O ( O Figs O 2a O and O 3 O , O residues O Ser45 B-residue_name_number , O Lys70 B-residue_name_number , O Arg97 B-residue_name_number , O Leu99 B-residue_name_number , O His204 B-residue_name_number , O Asn211 B-residue_name_number ). O In O contrast O , O in O the O rPduL B-protein structure B-evidence , O there O are O no O conserved O aspartate B-residue_name residues O in O or O around O the O active B-site site I-site , O and O the O only O well B-protein_state - I-protein_state conserved I-protein_state glutamate B-residue_name residue O in O the O active B-site site I-site is O involved O in O coordinating O one O of O the O metal O ions O . O These O observations O strongly O suggest O that O an O acidic B-protein_state residue B-structure_element is O not O directly O involved O in O catalysis O by O PduL B-protein_type . O Instead O , O the O dimetal B-site active I-site site I-site of O PduL B-protein_type may O create O a O nucleophile O from O one O of O the O hydroxyl O groups O on O free O phosphate B-chemical to O attack O the O carbonyl O carbon O of O the O thioester O bond O of O an O acyl B-chemical - I-chemical CoA I-chemical . O In O the O reverse O direction O , O the O metal O ion O ( O s O ) O could O stabilize O the O thiolate O anion O that O would O attack O the O carbonyl O carbon O of O an O acyl B-chemical - I-chemical phosphate I-chemical ; O a O similar O mechanism O has O been O described O for O phosphatases B-protein_type where O hydroxyl O groups O or O hydroxide O ions O can O act O as O a O base O when O coordinated O by O a O dimetal B-site active I-site site I-site . O Our O structures B-evidence provide O the O foundation O for O studies O to O elucidate O the O details O of O the O catalytic O mechanism O of O PduL B-protein_type . O Conserved B-protein_state residues O in O the O active B-site site I-site that O may O contribute O to O substrate O binding O and O / O or O transition O state O stabilization O include O Ser127 B-residue_name_number , O Arg103 B-residue_name_number , O Arg194 B-residue_name_number , O Gln107 B-residue_name_number , O Gln74 B-residue_name_number , O and O Gln B-residue_name_number / O Glu77 B-residue_name_number . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O PduL B-protein_type and O Pta B-protein_type are O mechanistically O and O structurally O distinct O enzymes O that O catalyze O the O same O reaction O , O a O prime O example O of O evolutionary O convergence O upon O a O function O . O However O , O apparently O less O frequent O is O functional O convergence O that O is O supported O by O distinctly O different O active B-site sites I-site and O accordingly O catalytic O mechanism O , O as O revealed O by O comparison O of O the O structures O of O Pta B-protein_type and O PduL B-protein_type . O One O well O - O studied O example O of O this O is O the O β B-protein_type - I-protein_type lactamase I-protein_type family O of O enzymes O , O in O which O the O active B-site site I-site of O Class O A O and O Class O C O enzymes O involve O serine O - O based O catalysis O , O but O Class O B O enzymes O are O metalloproteins B-protein_type . O This O is O not O surprising O , O as O β B-protein_type - I-protein_type lactamases I-protein_type are O not O so O widespread O among O bacteria B-taxonomy_domain and O therefore O would O be O expected O to O have O evolved O independently O several O times O as O a O defense O mechanism O against O β O - O lactam O antibiotics O . O Cysteine B-protein_type peptidases I-protein_type play O crucial O roles O in O the O virulence O of O bacterial B-taxonomy_domain and O other O eukaryotic B-taxonomy_domain pathogens O . O Clostripain B-protein has O been O described O as O an O arginine B-protein_type - I-protein_type specific I-protein_type peptidase I-protein_type with O a O requirement O for O Ca2 B-chemical + I-chemical and O loss O of O an O internal B-structure_element nonapeptide I-structure_element for O full B-protein_state activation I-protein_state ; O lack O of O structural O information O on O the O family O appears O to O have O prohibited O further O investigation O . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O Six O of O the O central O β B-structure_element - I-structure_element strands I-structure_element in O PmC11 B-protein ( O β1 B-structure_element – I-structure_element β2 I-structure_element and O β5 B-structure_element – I-structure_element β8 I-structure_element ) O share O the O same O topology O as O the O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element found O in O caspases B-protein_type , O with O strands B-structure_element β3 B-structure_element , O β4 B-structure_element , O and O β9 B-structure_element located O on O the O outside O of O this O core B-structure_element structure I-structure_element ( O Fig O . O 1B O , O box O ). O Summary O of O PDBeFOLD B-experimental_method superposition I-experimental_method of O structures O found O to O be O most O similar O to O PmC11 B-protein in O the O PBD O based O on O DaliLite B-experimental_method B O , O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PmC11 B-protein . O PmC11C179A O ( O 20 O μg O ) O was O incubated O overnight O at O 37 O ° O C O with O increasing O amounts O of O processed O PmC11 B-protein and O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O Inactive O PmC11C179A B-mutant was O not O processed O to O a O major O extent O by O active B-protein_state PmC11 B-protein until O around O a O ratio O of O 1 O : O 4 O ( O 5 O μg O of O active B-protein_state PmC11 B-protein ). O Incubation B-experimental_method of O PmC11 B-protein at O 37 O ° O C O for O 16 O h O , O resulted O in O a O fully B-protein_state processed I-protein_state enzyme O that O remained O as O an O intact B-protein_state monomer B-oligomeric_state when O applied O to O a O size O - O exclusion O column O ( O Fig O . O 2B O ). O The O single O cleavage B-site site I-site of O PmC11 B-protein at O Lys147 B-residue_name_number is O found O immediately O after O α3 B-structure_element , O in O loop B-structure_element L5 B-structure_element within O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O The O two O ends O of O the O cleavage B-site site I-site are O remarkably O well O ordered O in O the O crystal B-evidence structure I-evidence and O displaced O from O one O another O by O 19 O . O 5 O Å O ( O Fig O . O 2A O ). O Initial O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O Western B-experimental_method blot I-experimental_method analysis O of O both O mutants O revealed O no O discernible O processing O occurred O as O compared O with O active B-protein_state PmC11 B-protein ( O Fig O . O 2C O ). O C O , O divalent O cations O do O not O increase O the O activity O of O PmC11 B-protein . O Furthermore O , O Cu2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical appear O to O inhibit B-protein_state PmC11 B-protein . O In O addition O , O the O predicted O primary O S1 B-site - I-site binding I-site residue I-site in O PmC11 B-protein Asp177 B-residue_name_number also O overlays B-experimental_method with O the O residue O predicted O to O be O the O P1 B-site specificity I-site determining I-site residue I-site in O clostripain B-protein ( O Asp229 B-residue_name_number , O Fig O . O 1A O ). O Surprisingly O , O Ca2 B-chemical + I-chemical did O not O enhance O PmC11 B-protein activity O and O , O furthermore O , O other O divalent O cations O , O Mg2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical and O Cu2 B-chemical +, I-chemical were O not O necessary O for O PmC11 B-protein activity O ( O Fig O . O 3D O ). O In O addition O , O the O structure B-evidence suggested O a O mechanism O of O self O - O inhibition O in O both O PmC11 B-protein and O clostripain B-protein and O an O activation O mechanism O that O requires O autoprocessing B-ptm . O All O other O clan B-protein_type CD I-protein_type members I-protein_type requiring O cleavage B-ptm for O full B-protein_state activation I-protein_state do O so O at O sites B-site external O to O their O central O sheets B-structure_element . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O of O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant complexed B-protein_state with I-protein_state YfiR B-protein with O 2 O : O 2 O stoichiometry O . O Bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O is O a O ubiquitous O second O messenger O that O bacteria B-taxonomy_domain use O to O facilitate O behavioral O adaptations O to O their O ever O - O changing O environment O . O The O YfiBNR B-complex_assembly system O contains O three O protein O members O and O modulates O intracellular O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical levels O in O response O to O signals O received O in O the O periplasm O ( O Malone O et O al O .,). O It O has O been O reported O that O the O activation O of O YfiN B-protein may O be O induced O by O redox O - O driven O misfolding O of O YfiR B-protein ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O It O is O also O proposed O that O the O sequestration O of O YfiR B-protein by O YfiB B-protein can O be O induced O by O certain O YfiB B-protein - O mediated O cell O wall O stress O , O and O mutagenesis B-experimental_method studies I-experimental_method revealed O a O number O of O activation B-structure_element residues I-structure_element of O YfiB B-protein that O were O located O in O close O proximity O to O the O predicted B-protein_state first B-structure_element helix I-structure_element of O the O periplasmic B-structure_element domain I-structure_element ( O Malone O et O al O .,). O In O the O present O study O , O we O solved O the O crystal B-evidence structures I-evidence of O an O N O - O terminal O truncated B-protein_state form O of O YfiB B-protein ( O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant . O Compared O with O the O reported O complex O structure O , O YfiBL43P B-mutant in O our O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O structure B-evidence has O additional O visible O N O - O terminal O residues O 44 B-residue_range – I-residue_range 58 I-residue_range that O are O shown O to O play O essential O roles O in O YfiB B-protein activation O and O biofilm O formation O . O In O addition O , O we O found O that O the O YfiBL43P B-mutant shows O a O much O higher O PG B-evidence - I-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O most O likely O due O to O its O more O compact O PG B-site - I-site binding I-site pocket I-site . O Overall O structure B-evidence of O YfiB B-protein The O residues O proposed O to O contribute O to O YfiB B-protein activation O are O illustrated O in O sticks O . O As O expected O , O both O mutants O form O a O stable B-protein_state complex B-protein_state with I-protein_state YfiR B-protein . O Finally O , O we O crystalized B-experimental_method YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state the O YfiBL43P B-mutant mutant B-protein_state and O solved O the O structure B-evidence at O 1 O . O 78 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method using O YfiR B-protein and O YfiB B-protein as O models O . O The O YfiB B-site - I-site YfiR I-site interface I-site can O be O divided O into O two O regions O ( O Fig O . O 3A O and O 3D O ). O ( O C O ) O Close O - O up O view O showing O the O key O residues O of O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant interacting O with O a O sulfate B-chemical ion O . O Apo B-protein_state YfiB B-protein is O shown O in O yellow O and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant in O cyan O . O ( O E O and O F O ) O MST B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state and O ( O F O ) O YfiBL43P B-mutant with O PG B-chemical . O ( O G O ) O The O sequence B-experimental_method alignment I-experimental_method of O P B-species . I-species aeruginosa I-species and O E B-species . I-species coli I-species sources O of O YfiB B-protein , O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type In O parallel O , O to O better O understand O the O putative O functional O role O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O yfiB B-gene was O deleted B-experimental_method in O a O PAO1 B-species wild B-protein_state - I-protein_state type I-protein_state strain O , O and O a O construct B-experimental_method expressing I-experimental_method the O YfiBL43P B-mutant mutant B-protein_state was O transformed B-experimental_method into I-experimental_method the O PAO1 B-species ΔyfiB B-mutant strain O to O trigger O YfiBL43P B-mutant - O induced O biofilm O formation O . O To O answer O the O question O whether O competition O of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical for O the O YfiB B-protein F57 B-site - I-site binding I-site pocket I-site of O YfiR B-protein plays O an O essential O role O in O inhibiting O biofilm O formation O , O we O measured O the O binding B-evidence affinities I-evidence of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical for O YfiR B-protein via O BIAcore B-experimental_method experiments O . O In O addition O to O the O preceding B-residue_range 8 I-residue_range aa I-residue_range loop B-structure_element ( O from O the O lipid O acceptor O Cys26 B-residue_range to I-residue_range Gly34 I-residue_range ), O the O full B-protein_state length I-protein_state of O the O periplasmic O portion O of O apo B-protein_state YfiB B-protein can O reach O approximately O 60 O Å O . O It O was O reported O that O the O distance O between O the O outer O membrane O and O the O cell O wall O is O approximately O 50 O Å O and O that O the O thickness O of O the O PG O layer O is O approximately O 70 O Å O ( O Matias O et O al O .,). O By O contrast O , O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant ( O residues O 44 B-residue_range – I-residue_range 168 I-residue_range ) O has O a O stretched B-protein_state conformation I-protein_state of O approximately O 55 O Å O in O length O . O Regulatory O model O of O the O YfiBNR B-complex_assembly tripartite B-protein_state system O . O The O lipid O acceptor O Cys26 B-residue_name_number is O indicated O as O blue O ball O . O The O loop B-structure_element connecting O Cys26 B-residue_name_number and O Gly34 B-residue_name_number of O YfiB B-protein is O modeled O . O Once O activated B-protein_state by O certain O cell O stress O , O the O dimeric B-oligomeric_state YfiB B-protein transforms O from O a O compact B-protein_state conformation I-protein_state to O a O stretched B-protein_state conformation I-protein_state , O allowing O the O periplasmic B-structure_element domain I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state , O thus O relieving O the O repression O of O YfiN B-protein These O results O , O together O with O our O observation O that O activated B-protein_state YfiB B-protein has O a O much O higher O cell B-evidence wall I-evidence binding I-evidence affinity I-evidence , O and O previous O mutagenesis O data O showing O that O ( O 1 O ) O both O PG B-chemical binding O and O membrane O anchoring O are O required O for O YfiB B-protein activity O and O ( O 2 O ) O activating O mutations O possessing O an O altered O N O - O terminal O loop B-structure_element length O are O dominant O over O the O loss O of O PG B-chemical binding O ( O Malone O et O al O .,), O suggest O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O ( O Fig O . O 7 O ). O In O this O model O , O in O response O to O a O particular O cell O stress O that O is O yet O to O be O identified O , O the O dimeric B-oligomeric_state YfiB B-protein is O activated B-protein_state from O a O compact B-protein_state , O inactive B-protein_state conformation B-protein_state to O a O stretched B-protein_state conformation I-protein_state , O which O possesses O increased O PG B-chemical binding O affinity O . O A O regulatory B-structure_element loop I-structure_element , O which O is O phosphorylated B-protein_state at O the O key O functional O phosphorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type , O wedges O into O a O crevice O between O two O domains O of O CD B-structure_element . O In O contrast O to O related O carboxylases B-protein_type , O large O - O scale O conformational O changes O are O required O for O substrate O turnover O , O and O are O mediated O by O the O CD B-structure_element under O phosphorylation B-ptm control O . O By O catalysing O this O rate O - O limiting O step O in O fatty O - O acid O biosynthesis O , O ACC B-protein_type plays O a O key O role O in O anabolic O metabolism O . O The O principal O functional O protein O components O of O ACCs B-protein_type have O been O described O already O in O the O late O 1960s O for O Escherichia B-species coli I-species ( O E B-species . I-species coli I-species ) O ACC B-protein_type : O Biotin B-protein_type carboxylase I-protein_type ( O BC B-protein_type ) O catalyses O the O ATP B-chemical - O dependent O carboxylation O of O a O biotin B-chemical moiety O , O which O is O covalently O linked O to O the O biotin B-protein_type carboxyl I-protein_type carrier I-protein_type protein I-protein_type ( O BCCP B-protein_type ). O Human B-species ACC B-protein_type occurs O in O two O closely O related O isoforms B-protein_state , O ACC1 B-protein and O 2 B-protein , O located O in O the O cytosol O and O at O the O outer O mitochondrial O membrane O , O respectively O . O However O , O crystal B-evidence structures I-evidence of O individual O components O or O domains O from O prokaryotic B-taxonomy_domain and O eukaryotic B-taxonomy_domain ACCs B-protein_type , O respectively O , O have O been O solved O . O AMPK B-protein phosphorylates O ACC1 B-protein in O vitro O at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1216 B-residue_name_number and O PKA B-protein at O Ser78 B-residue_name_number and O Ser1201 B-residue_name_number . O Despite O the O outstanding O relevance O of O ACC B-protein_type in O primary O metabolism O and O disease O , O the O dynamic O organization O and O regulation O of O the O giant O eukaryotic B-taxonomy_domain , O and O in O particular O fungal B-taxonomy_domain ACC B-protein_type , O remain O poorly O characterized O . O First O , O we O focused O on O structure B-experimental_method determination I-experimental_method of O the O 82 O - O kDa O CD B-structure_element . O The O overall O extent O of O the O SceCD B-species is O 70 O by O 75 O Å O ( O Fig O . O 1b O and O Supplementary O Fig O . O 1a O , O b O ), O and O the O attachment O points O of O the O N O - O terminal O 26 B-structure_element - I-structure_element residue I-structure_element linker I-structure_element to O the O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O separated O by O 46 O Å O ( O the O N O - O and O C O termini O are O indicated O with O spheres O in O Fig O . O 1b O ). O On O the O basis O of O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence of O main O chain O atom O positions O of O 2 O . O 2 O Å O , O CDC1 B-structure_element / O CDC2 B-structure_element are O structurally O more O closely O related O to O each O other O than O to O any O other O protein O ( O Fig O . O 1c O ); O they O may O thus O have O evolved O by O duplication O . O Additional O phosphorylation B-ptm was O detected O for O Ser2101 B-residue_name_number and O Tyr2179 B-residue_name_number ; O however O , O these O sites O are O neither B-protein_state conserved I-protein_state across O fungal B-taxonomy_domain ACC B-protein_type nor B-protein_state natively I-protein_state phosphorylated I-protein_state in O yeast B-taxonomy_domain . O MS B-experimental_method analysis O of O dissolved B-experimental_method crystals I-experimental_method confirmed O the O phosphorylated B-protein_state state O of O Ser1157 B-residue_name_number also O in O SceCD B-species crystals B-evidence . O Owing O to O the O limited O resolution O the O discussion O of O structures B-evidence of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant is O restricted O to O the O analysis O of O domain O localization O . O In O all O these O crystal B-evidence structures I-evidence , O the O CT B-structure_element domains O build O a O canonical O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state , O with O active B-site sites I-site formed O by O contributions O from O both O protomers B-oligomeric_state ( O Fig O . O 2 O and O Supplementary O Fig O . O 3a O ). O The O connecting B-structure_element region I-structure_element is O remarkably O similar O in O isolated B-protein_state CD B-structure_element and O CthCD B-mutant - I-mutant CTCter I-mutant structures B-evidence , O indicating O inherent O conformational O stability O . O The O CDN B-structure_element domain O positioning O relative O to O CDL B-structure_element / O CDC1 B-structure_element is O highly O variable O with O three O main O orientations O observed O in O the O structures B-evidence of O SceCD B-species and O the O larger B-mutant CthACC I-mutant fragments I-mutant : O CDN B-structure_element tilts O , O resulting O in O a O displacement O of O its O N O terminus O by O 23 O Å O ( O Fig O . O 4a O , O observed O in O both O protomers B-oligomeric_state of O CthCD B-mutant - I-mutant CT I-mutant and O one O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthCD B-mutant - I-mutant CT1 I-mutant / I-mutant 2 I-mutant and O CthΔBCCP1 B-mutant , O respectively O ). O Most O recently O , O a O crystal B-evidence structure I-evidence of O near B-protein_state full I-protein_state - I-protein_state length I-protein_state non B-protein_state - I-protein_state phosphorylated I-protein_state ACC B-protein_type from O S B-species . I-species cerevisae I-species ( O lacking B-protein_state only I-protein_state 21 B-residue_range N O - O terminal O amino O acids O , O here O denoted O as O flACC B-mutant ) O was O published O by O Wei O and O Tong O . O In O flACC B-mutant , O the O ACC B-protein_type dimer B-oligomeric_state obeys O twofold O symmetry O and O assembles O in O a O triangular B-protein_state architecture I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O ( O Supplementary O Fig O . O 5a O ). O Comparison B-experimental_method of O flACC B-mutant with O our O CthΔBCCP B-mutant structure B-evidence reveals O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element as O a O major O contributor O to O conformational O flexibility O ( O Supplementary O Fig O . O 5b O , O c O ). O In O flACC B-mutant , O the O regulatory B-structure_element loop I-structure_element is O mostly B-protein_state disordered I-protein_state , O illustrating O the O increased O flexibility O due O to O the O absence O of O the O phosphoryl B-chemical group O . O Applying B-experimental_method the O conformation O of O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element observed O in O SceCD B-species on O flACC B-mutant leads O to O CDN B-structure_element sterically O clashing O with O CDC2 B-structure_element and O BT B-structure_element / O CDN B-structure_element clashing O with O CT B-structure_element ( O Supplementary O Fig O . O 6a O , O b O ). O In O addition O , O EM B-experimental_method micrographs B-evidence of O phosphorylated B-protein_state and O dephosphorylated B-protein_state SceACC B-protein display O for O both O samples O mainly O elongated B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state and O reveal O no O apparent O differences O in O particle B-evidence shape I-evidence distributions I-evidence ( O Supplementary O Fig O . O 7 O ). O It O disfavours O the O adoption O of O a O rare B-protein_state , I-protein_state compact I-protein_state conformation I-protein_state , O in O which O intramolecular O dimerization O of O the O BC B-structure_element domains O results O in O catalytic O turnover O . O Cartoon O representation O of O crystal B-evidence structures I-evidence of O multidomain B-mutant constructs I-mutant of O CthACC B-protein . O ( O a O ) O Hinge B-structure_element properties O of O the O CDC2 B-structure_element – I-structure_element CT I-structure_element connection I-structure_element analysed O by O a O CT B-experimental_method - I-experimental_method based I-experimental_method superposition I-experimental_method of O eight O instances O of O the O CDC2 B-mutant - I-mutant CT I-mutant segment I-mutant . O The O range O of O hinge O bending O is O indicated O and O the O connection O points O between O CDC2 B-structure_element and O CT B-structure_element ( O blue O ) O as O well O as O between O CDC1 B-structure_element and O CDC2 B-structure_element ( O green O and O grey O ) O are O marked O as O spheres O . O The O conformational O dynamics O of O fungal B-taxonomy_domain ACC B-protein_type . O Comparison B-experimental_method with O each O other O and O with O available O structures B-evidence uncovers O differences O between O LdcI B-protein and O LdcC B-protein explaining O why O only O the O acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type is O capable O of O binding O RavA B-protein . O We O identify O interdomain O movements O associated O with O the O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O with O the O RavA B-protein binding O . O Enterobacterial B-taxonomy_domain inducible B-protein_state decarboxylases B-protein_type of O basic B-protein_state amino B-chemical acids I-chemical lysine B-residue_name , O arginine B-residue_name and O ornithine B-residue_name have O a O common O evolutionary O origin O and O belong O to O the O α B-protein_type - I-protein_type family I-protein_type of O pyridoxal B-chemical - I-chemical 5 I-chemical ′- I-chemical phosphate I-chemical ( O PLP B-chemical )- O dependent O enzymes O . O Each O decarboxylase B-protein_type is O induced O by O an O excess O of O the O target O amino B-chemical acid I-chemical and O a O specific O range O of O extracellular O pH O , O and O works O in O conjunction O with O a O cognate O inner B-protein_type membrane I-protein_type antiporter I-protein_type . O In O particular O , O the O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein ( O or O CadA B-protein ) O attracts O attention O due O to O its O broad B-protein_state pH I-protein_state range I-protein_state of O activity O and O its O capacity O to O promote O survival O and O growth O of O pathogenic O enterobacteria B-taxonomy_domain such O as O Salmonella B-species enterica I-species serovar I-species Typhimurium I-species , O Vibrio B-species cholerae I-species and O Vibrio B-species vulnificus I-species under O acidic O conditions O . O This O effect O is O attributed O to O cadaverine B-chemical , O the O diamine O produced O by O decarboxylation O of O lysine B-residue_name by O LdcI B-protein and O LdcC B-protein , O that O was O shown O to O enhance O UPEC B-species colonisation O of O the O bladder O . O The O crystal B-evidence structure I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein as O well O as O its O low O resolution O characterisation O by O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O showed O that O it O is O a O decamer B-oligomeric_state made O of O two O pentameric B-oligomeric_state rings B-structure_element . O Each O monomer B-oligomeric_state is O composed O of O three O domains O – O an O N O - O terminal O wing B-structure_element domain I-structure_element ( O residues O 1 B-residue_range – I-residue_range 129 I-residue_range ), O a O PLP B-structure_element - I-structure_element binding I-structure_element core I-structure_element domain I-structure_element ( O residues O 130 B-residue_range – I-residue_range 563 I-residue_range ), O and O a O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element , O residues O 564 B-residue_range – I-residue_range 715 I-residue_range ). O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O Based O on O these O reconstructions B-evidence , O reliable O pseudoatomic B-evidence models I-evidence of O the O three O assemblies O were O obtained O by O flexible B-experimental_method fitting I-experimental_method of I-experimental_method either O the O crystal B-evidence structure I-evidence of O LdcIi B-protein or O a O derived O structural B-experimental_method homology I-experimental_method model I-experimental_method of O LdcC B-protein ( O Table O S1 O ). O As O a O first O step O of O a O comparative O analysis O , O we O superimposed B-experimental_method the O three O cryoEM B-experimental_method reconstructions B-evidence ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O and O the O crystal B-evidence structure I-evidence of O the O LdcIi B-protein decamer B-oligomeric_state ( O Fig O . O 2 O and O Movie O S1 O ). O This O superposition B-experimental_method reveals O that O the O densities B-evidence lining O the O central B-structure_element hole I-structure_element of O the O toroid B-structure_element are O roughly O at O the O same O location O , O while O the O rest O of O the O structure B-evidence exhibits O noticeable O changes O . O In O addition O , O our O earlier O biochemical B-experimental_method observation I-experimental_method that O the O enzymatic O activity O of O LdcIa B-protein is O unaffected O by O RavA B-protein binding O is O consistent O with O the O relatively O small O changes O undergone O by O the O active B-site site I-site upon O transition O from O LdcIa B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly . O Rearrangements O of O the O ppGpp B-site binding I-site pocket I-site upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O Indeed O , O all O CTDs B-structure_element have O very O similar O structures O ( O RMSDmin B-evidence < O 1 O Å O ). O In O our O previous O contribution O , O based O on O the O fit O of O the O LdcIi B-protein and O the O LARA B-structure_element crystal B-evidence structures I-evidence into O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly cryoEM B-experimental_method density B-evidence , O we O predicted O that O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O should O involve O the O C O - O terminal O two B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O the O LdcI B-protein . O Our O present O cryoEM B-experimental_method maps B-evidence and O pseudoatomic B-evidence models I-evidence provide O first O structure O - O based O insights O into O the O differences O between O the O inducible B-protein_state and O the O constitutive B-protein_state lysine B-protein_type decarboxylases I-protein_type . O Our O current O analysis O shows O that O Y697 B-residue_name_number is O strictly B-protein_state conserved I-protein_state in O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O group O whereas O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enzymes O always B-protein_state have I-protein_state a O lysine B-residue_name in O this O position O ; O it O also O uncovers O several O other O residues O potentially O essential O for O the O interaction O with O RavA B-protein which O can O now O be O addressed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O The O conformational O rearrangements O of O LdcI B-protein upon O enzyme O activation O and O RavA B-protein binding O revealed O in O this O work O , O and O our O amazing O finding O that O the O molecular O determinant O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O is O the O one O that O straightforwardly O determines O if O a O particular O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylase I-protein_type belongs O to O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O proteins O , O should O give O a O new O impetus O to O functional O studies O of O the O unique O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O 3D O cryoEM B-experimental_method reconstructions B-evidence of O LdcC B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein . O Only O one O of O the O two O rings B-structure_element of O the O double B-structure_element toroid I-structure_element is O shown O for O clarity O . O The O PLP B-chemical moieties O of O the O cartoon O ring B-structure_element are O shown O in O red O . O Stretching O of O the O LdcI B-protein monomer B-oligomeric_state upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O . O ( O D O – O F O ) O Inserts O zooming O at O the O CTD B-structure_element part O in O proximity O of O the O LARA B-site binding I-site site I-site . O ( O A O ) O Maximum B-evidence likelihood I-evidence tree I-evidence with O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O and O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O groups O highlighted O in O green O and O pink O , O respectively O . O Numbering O as O in O E B-species . I-species coli I-species . O ( O C O ) O Signature O sequences O of O LdcI B-protein and O LdcC B-protein in O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element . O Polarity O differences O are O highlighted O . O ( O D O ) O Position O and O nature O of O these O differences O at O the O surface O of O the O respective O cryoEM B-experimental_method maps B-evidence with O the O color O code O as O in O B O . O See O also O Fig O . O S7 O and O Tables O S3 O and O S4 O . O The O crystal B-evidence structure I-evidence of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state Mep2 B-mutant variants I-mutant from O C B-species . I-species albicans I-species show O large O conformational O changes O in O a O conserved B-protein_state and O functionally O important O region O of O the O CTR B-structure_element . O One O of O the O most O important O unresolved O questions O in O the O field O is O how O the O transceptors B-protein_type couple O to O downstream O signalling O pathways O . O One O hypothesis O is O that O downstream O signalling O is O dependent O on O a O specific O conformation O of O the O transporter B-protein_type . O Mep2 B-protein_type ( B-protein_type methylammonium I-protein_type ( I-protein_type MA I-protein_type ) I-protein_type permease I-protein_type ) I-protein_type proteins I-protein_type are O ammonium B-protein_type transceptors I-protein_type that O are O ubiquitous O in O fungi B-taxonomy_domain . O By O contrast O , O several O bacterial B-taxonomy_domain Amt B-protein_type orthologues O have O been O characterized O in O detail O via O high O - O resolution O crystal B-evidence structures I-evidence and O a O number O of O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O studies O . O The O structures B-evidence are O similar O to O each O other O but O show O considerable O differences O to O all O other O ammonium B-protein_type transporter I-protein_type structures B-evidence . O The O putative O phosphorylation B-site site I-site is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O In O the O remainder O of O the O manuscript O , O we O will O specifically O discuss O CaMep2 B-protein due O to O the O superior O resolution O of O the O structure B-evidence . O Moreover O , O the O N O terminus O of O one O monomer B-oligomeric_state interacts O with O the O extended O extracellular B-structure_element loop I-structure_element ECL5 B-structure_element of O a O neighbouring O monomer B-oligomeric_state . O Together O with O additional O , O smaller O differences O in O other O extracellular B-structure_element loops I-structure_element , O these O changes O generate O a O distinct O vestibule B-structure_element leading O to O the O ammonium B-site binding I-site site I-site that O is O much O more O pronounced O than O in O the O bacterial B-taxonomy_domain proteins O . O However O , O given O that O an O N O - O terminal O deletion B-protein_state mutant I-protein_state ( O 2 B-mutant - I-mutant 27Δ I-mutant ) O grows O as O well O as O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Mep2 B-protein on O minimal O ammonium B-chemical medium O ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ), O the O importance O of O the O N O terminus O for O Mep2 B-protein activity O is O not O clear O . O In O the O vicinity O of O the O Mep2 B-protein channel B-site exit I-site , O the O cytoplasmic O end O of O TM2 B-structure_element has O unwound O , O generating O a O longer O ICL1 B-structure_element even O though O there O are O no O insertions O in O this O region O compared O to O the O bacterial B-taxonomy_domain proteins O ( O Figs O 2 O and O 4 O ). O At O the O C O - O terminal O end O of O TM1 B-structure_element , O the O side O - O chain O hydroxyl O group O of O the O relatively B-protein_state conserved I-protein_state Tyr49 B-residue_name_number ( O Tyr53 B-residue_name_number in O ScMep2 B-protein ) O makes O a O strong O hydrogen O bond O with O the O ɛ2 O nitrogen O atom O of O the O absolutely B-protein_state conserved I-protein_state His342 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element ( O His348 B-residue_name_number in O ScMep2 B-protein ), O closing O the O channel B-site ( O Figs O 4 O and O 5 O ). O Compared O with O ICL1 B-structure_element , O the O backbone O conformational O changes O observed O for O the O neighbouring O ICL2 B-structure_element are O smaller O , O but O large O shifts O are O nevertheless O observed O for O the O conserved B-protein_state residues O Glu140 B-residue_name_number and O Arg141 B-residue_name_number ( O Fig O . O 4 O ). O The O closed B-protein_state state O of O the O channel B-site might O also O explain O why O no B-evidence density I-evidence , O which O could O correspond O to O ammonium B-chemical ( O or O water B-chemical ), O is O observed O in O the O hydrophobic O part O of O the O Mep2 B-protein channel B-site close O to O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O result O of O these O interactions O is O that O the O CTR B-structure_element ‘ O hugs O ' O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O Fig O . O 4 O ). O Despite O its O location O at O the O periphery O of O the O trimer B-oligomeric_state , O the O electron B-evidence density I-evidence for O the O serine B-residue_name is O well O defined O in O both O Mep2 B-protein structures B-evidence and O corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O Fig O . O 6 O ). O The O data O behind O this O hypothesis O is O the O observation O that O a O ScMep2 B-protein 449 B-mutant - I-mutant 485Δ I-mutant deletion B-protein_state mutant I-protein_state lacking B-protein_state the O AI B-structure_element region I-structure_element is O highly B-protein_state active I-protein_state in O MA B-chemical uptake O both O in O the O triple B-mutant mepΔ I-mutant and O triple B-mutant mepΔ I-mutant npr1Δ I-mutant backgrounds O , O implying O that O this O Mep2 B-mutant variant I-mutant has O a O constitutively B-protein_state open I-protein_state channel B-site . O The O latter O model O would O fit O well O with O the O NH3 B-chemical / O H B-chemical + I-chemical symport O model O in O which O the O proton O is O relayed O by O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O side O - O chain O hydroxyl O of O Ser457 B-residue_name_number / O 453 B-residue_number is O located O in O a O well O - O defined O electronegative B-site pocket I-site that O is O solvent B-protein_state accessible I-protein_state ( O Fig O . O 6 O ). O The O closest O atoms O to O the O serine B-residue_name hydroxyl O group O are O the O backbone O carbonyl O atoms O of O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number , O which O are O 3 O – O 4 O Å O away O . O The O ammonium B-chemical uptake O activity O of O the O S B-species . I-species cerevisiae I-species version O of O the O DD B-mutant mutant I-mutant is O the O same O as O that O of O WT B-protein_state Mep2 B-protein and O the O S453D B-mutant mutant B-protein_state , O indicating O that O the O mutations O do O not O affect O transporter O functionality O in O the O triple B-mutant mepΔ I-mutant background O ( O Fig O . O 3 O ). O By O contrast O , O the O conserved B-protein_state part O of O the O CTR B-structure_element has O undergone O a O large O conformational O change O involving O formation O of O a O 12 B-structure_element - I-structure_element residue I-structure_element - I-structure_element long I-structure_element α I-structure_element - I-structure_element helix I-structure_element from O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range . O As O shown O in O Supplementary O Fig O . O 4 O , O the O consequence O of O the O single B-mutant D I-mutant mutation B-experimental_method is O very O similar O to O that O of O the O DD B-mutant substitution I-mutant , O with O conformational O changes O and O increased O dynamics O confined O to O the O conserved B-protein_state part O of O the O CTR B-structure_element ( O Supplementary O Fig O . O 4 O ). O As O the O simulation B-experimental_method proceeds O , O the O side O chains O of O the O acidic O residues O move O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number , O presumably O to O avoid O electrostatic O repulsion O . O The O short B-structure_element helix I-structure_element formed O by O residues O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range unravels O during O the O simulations B-experimental_method to O a O disordered B-protein_state state O . O One O possible O explanation O is O that O the O mutants B-mutant do O not O accurately O mimic O a O phosphoserine B-residue_name , O but O the O observation O that O the O S453D B-mutant and O DD B-mutant mutants I-mutant are O fully B-protein_state active I-protein_state in O the O absence B-protein_state of I-protein_state Npr1 B-protein suggests O that O the O mutations B-experimental_method do O mimic O the O effect O of O phosphorylation B-ptm ( O Fig O . O 3 O ). O Interestingly O , O phosphomimetic B-mutant mutations I-mutant introduced O into O one O monomer B-oligomeric_state inactivate O the O entire O trimer B-oligomeric_state , O indicating O that O ( O i O ) O heterotrimerization O occurs O and O ( O ii O ) O the O CTR B-structure_element mediates O allosteric O regulation O of O ammonium B-chemical transport O activity O via O phosphorylation B-ptm . O Such O mutations O likely O cause O structural O changes O in O the O CTR B-structure_element that O prevent O close O contacts O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element , O thereby O stabilizing O a O closed B-protein_state state O that O may O be O similar O to O that O observed O in O Mep2 B-protein . O However O , O the O absence B-protein_state of I-protein_state GlnK B-protein_type proteins I-protein_type in O eukaryotes B-taxonomy_domain suggests O that O phosphorylation B-ptm - O based O regulation O of O ammonium B-chemical transport O may O be O widespread O . O The O conserved B-protein_state RxK B-structure_element motif I-structure_element in O ICL1 B-structure_element is O boxed O in O blue O , O the O ER B-structure_element motif I-structure_element in O ICL2 B-structure_element in O cyan O , O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element in O red O and O the O AI B-structure_element region I-structure_element in O yellow O . O Coloured O residues O are O functionally O important O and O correspond O to O those O of O the O Phe B-site gate I-site ( O blue O ), O the O binding B-site site I-site Trp B-residue_name residue O ( O magenta O ) O and O the O twin O - O His O motif O ( O red O ). O ( O a O ) O The O triple B-mutant mepΔ I-mutant strain O ( O black O ) O and O triple O mepΔ O npr1Δ O strain O ( O grey O ) O containing O plasmids O expressing O WT B-protein_state and O variant B-mutant ScMep2 I-mutant were O grown B-experimental_method on I-experimental_method minimal I-experimental_method medium I-experimental_method containing O 1 O mM O ammonium B-chemical sulphate I-chemical . O Channel O closures O in O Mep2 B-protein . O ( O c O ) O Cytoplasmic O view O of O the O Mep2 B-protein trimer B-oligomeric_state indicating O the O large O distance O between O Ser453 B-residue_name_number and O the O channel B-site exits I-site ( O circles O ; O Ile52 B-residue_name_number lining O the O channel B-site exit I-site is O shown O ). O Side O chains O for O residues O 452 B-residue_number and O 453 B-residue_number are O shown O as O stick O models O . O ( O a O ) O In O the O closed B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O i O ), O the O CTR B-structure_element ( O magenta O ) O and O ICL3 B-structure_element ( O green O ) O are O far O apart O with O the O latter O blocking O the O intracellular O channel B-site exit I-site ( O indicated O with O a O hatched O circle O ). O We O determined B-experimental_method four I-experimental_method structures I-experimental_method of O an O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical at O resolutions O between O 2 O . O 0 O and O 1 O . O 5 O Å O . O These O structures B-evidence together O with O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method reveal O unforeseen O roles O for O U2AF65 B-protein inter B-site - I-site domain I-site residues I-site in O recognizing O a O contiguous B-structure_element , O nine O - O nucleotide B-chemical Py B-chemical tract I-chemical . O In O turn O , O the O ternary B-complex_assembly complex I-complex_assembly of O U2AF65 B-protein with O SF1 B-protein and O U2AF35 B-protein identifies O the O surrounding O BPS B-site and O 3 B-site ′ I-site splice I-site site I-site junctions O . O Biochemical B-experimental_method characterizations I-experimental_method of O U2AF65 B-protein demonstrated O that O tandem O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRM1 B-structure_element and O RRM2 B-structure_element ) O recognize O the O Py B-chemical tract I-chemical ( O Fig O . O 1a O ). O Milestone O crystal B-evidence structures I-evidence of O the O core B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O shortened B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O dU2AF651 B-mutant , I-mutant 2 I-mutant ) O detailed O a O subset O of O nucleotide O interactions O with O the O individual O U2AF65 B-protein RRMs B-structure_element . O The O RNA B-evidence affinity I-evidence of O the O minimal B-protein_state U2AF651 B-mutant , I-mutant 2 I-mutant domain O comprising O the O core B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element folds B-structure_element ( O U2AF651 B-mutant , I-mutant 2 I-mutant , O residues O 148 B-residue_range – I-residue_range 336 I-residue_range ) O is O relatively O weak O compared O with O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1a O , O b O ; O Supplementary O Fig O . O 1 O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element associate O with O the O Py B-chemical tract I-chemical in O a O parallel B-protein_state , O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O ( O shown O for O representative O structure O iv O in O Fig O . O 2b O , O c O ; O Supplementary O Movie O 1 O ). O Based O on O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence , O we O originally O hypothesized O that O the O U2AF65 B-protein RRMs B-structure_element would O bind O the O minimal B-protein_state seven O nucleotides B-chemical observed O in O these O structures B-evidence . O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence characterize O ribose B-chemical ( O r B-chemical ) O nucleotides B-chemical at O all O of O the O binding B-site sites I-site except O the O seventh B-residue_number and O eighth B-residue_number deoxy B-chemical -( I-chemical d I-chemical ) I-chemical U I-chemical , O which O are O likely O to O lack O 2 O ′- O hydroxyl O contacts O based O on O the O RNA B-protein_state - I-protein_state bound I-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence . O The O rU6 B-residue_name_number base O edge O is O relatively O solvent B-protein_state exposed I-protein_state ; O accordingly O , O the O rU6 B-residue_name_number hydrogen O bonds O with O U2AF65 B-protein are O water B-chemical mediated O apart O from O a O single O direct O interaction O by O the O RRM1 B-structure_element - O N196 B-residue_name_number side O chain O . O The O energetic O penalties O due O to O these O mutations O ( O ΔΔG B-evidence 0 O . O 8 O – O 0 O . O 9 O kcal O mol O − O 1 O ) O are O consistent O with O the O loss O of O each O hydrogen O bond O with O the O rU5 B-residue_name_number base O and O support O the O relevance O of O the O central O nucleotide O interactions O observed O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence . O Despite O 12 B-experimental_method concurrent I-experimental_method mutations I-experimental_method , O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 12Gly I-mutant variant B-protein_state was O reduced O by O only O three O - O fold O relative O to O the O unmodified B-protein_state protein B-protein ( O Fig O . O 4b O ), O which O is O less O than O the O penalty O of O the O V254P B-mutant mutation O that O disrupts O the O rU5 B-residue_name_number hydrogen O bond O ( O Fig O . O 3d O , O i O ). O To O test O the O interplay O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element with O its O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element , O we O constructed B-experimental_method an O internal O linker B-experimental_method deletion I-experimental_method of O 20 B-residue_range - I-residue_range residues I-residue_range within O the O extended B-protein_state RNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O dU2AF651 B-mutant , I-mutant 2L I-mutant ). O Notably O , O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method reduced O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant protein O by O 30 O - O fold O more O than O would O be O expected O based O on O simple O addition O of O the O ΔΔG B-evidence ' O s O for O the O single O mutations O . O This O difference O indicates O that O the O linearly B-protein_state distant I-protein_state regions B-structure_element of O the O U2AF65 B-protein primary O sequence O , O including O Q147 B-residue_name_number in O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element and O R227 B-residue_name_number / O V254 B-residue_name_number in O the O N O -/ O C O - O terminal O linker B-structure_element regions I-structure_element at O the O fifth B-site nucleotide I-site site I-site , O cooperatively O recognize O the O Py B-chemical tract I-chemical . O As O a O representative O splicing O substrate O , O we O utilized O a O well O - O characterized O minigene B-chemical splicing I-chemical reporter I-chemical ( O called O pyPY B-chemical ) O comprising O a O weak O ( O that O is O , O degenerate O , O py B-chemical ) O and O strong O ( O that O is O , O U B-structure_element - I-structure_element rich I-structure_element , O PY B-chemical ) O polypyrimidine B-chemical tracts I-chemical preceding O two O alternative O splice B-site sites I-site ( O Fig O . O 5a O ). O The O inter B-structure_element - I-structure_element RRM I-structure_element dynamics O of O U2AF65 B-protein were O followed O using O FRET B-experimental_method between O fluorophores B-chemical attached O to O RRM1 B-structure_element and O RRM2 B-structure_element ( O Fig O . O 6a O , O b O , O Methods O ). O Criteria O included O ( O i O ) O residue O locations O that O are O distant O from O and O hence O not O expected O to O interfere O with O the O RRM B-complex_assembly / I-complex_assembly RNA I-complex_assembly or O inter B-site - I-site RRM I-site interfaces I-site , O ( O ii O ) O inter O - O dye O distances O ( O 50 O Å O for O U2AF651 B-complex_assembly , I-complex_assembly 2L I-complex_assembly – I-complex_assembly Py I-complex_assembly tract I-complex_assembly and O 30 O Å O for O the O closed B-protein_state apo B-protein_state - O model O ) O that O are O expected O to O be O near O the O Förster B-experimental_method radius I-experimental_method ( I-experimental_method Ro I-experimental_method ) I-experimental_method for O the O Cy3 B-chemical / O Cy5 B-chemical pair O ( O 56 O Å O ), O where O changes O in O the O efficiency O of O energy O transfer O are O most O sensitive O to O distance O , O and O ( O iii O ) O FRET B-evidence efficiencies I-evidence that O are O calculated O to O be O significantly O greater O for O the O ‘ O closed B-protein_state ' O apo B-protein_state - O model O as O opposed O to O the O ‘ O open B-protein_state ' O RNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence ( O by O ∼ O 30 O %). O Double O - O cysteine B-residue_name variant B-protein_state of O U2AF651 B-mutant , I-mutant 2 I-mutant was O modified B-experimental_method with O equimolar O amount O of O Cy3 B-chemical and O Cy5 B-chemical . O We O first O characterized O the O conformational O dynamics O spectrum O of O U2AF65 B-protein in O the O absence B-protein_state of I-protein_state RNA B-chemical ( O Fig O . O 6c O , O d O ; O Supplementary O Fig O . O 7a O , O b O ). O The O FRET B-evidence distribution I-evidence histogram I-evidence built O from O more O than O a O thousand O traces B-evidence of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state ligand B-chemical showed O an O extremely O broad O distribution O centred O at O a O FRET B-evidence efficiency I-evidence of O ∼ O 0 O . O 4 O ( O Fig O . O 6d O ). O Despite O the O large O width O of O the O FRET B-evidence - I-evidence distribution I-evidence histogram I-evidence , O the O majority O ( O 80 O %) O of O traces B-evidence that O showed O fluctuations O sampled O only O two O distinct O FRET B-evidence states I-evidence ( O for O example O , O Supplementary O Fig O . O 7a O ). O We O introduced B-experimental_method an O rArA B-chemical purine B-chemical dinucleotide I-chemical within O a O variant O of O the O AdML B-gene Py B-chemical tract I-chemical ( O detailed O in O Methods O ). O Nevertheless O , O the O predominant O 0 O . O 45 O FRET B-evidence state I-evidence in O the O presence O of O RNA B-chemical agrees O with O the O Py B-protein_state - I-protein_state tract I-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant . O Notably O , O a O triple B-protein_state mutation I-protein_state of O three O residues O ( O V254P B-mutant , O Q147A B-mutant and O R227A B-mutant ) O in O the O respective O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element non O - O additively O reduce O RNA B-evidence binding I-evidence by O 150 O - O fold O . O Altogether O , O these O data O indicate O that O interactions O among O the O U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element , O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element are O mutually O inter O - O dependent O for O cognate O Py B-chemical - I-chemical tract I-chemical recognition O . O These O transitions O could O correspond O to O rearrangement O from O the O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O U2AF65 B-protein conformation O in O which O the O RNA B-site - I-site binding I-site surface I-site of O only O a O single B-protein_state RRM B-structure_element is O exposed O and O available O for O RNA O binding O , O to O the O structural O state O seen O in O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence . O The O regions O of O RRM1 B-structure_element , O RRM2 B-structure_element and O linker B-structure_element contacts O are O indicated O above O by O respective O black O and O blue O arrows O from O N O - O to O C O - O terminus O . O Crystallographic O statistics O are O given O in O Table O 1 O and O the O overall O conformations O of O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant / O U2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence are O compared O in O Supplementary O Fig O . O 2 O . O Residues O V249 B-residue_name_number , O V250 B-residue_name_number , O V254 B-residue_name_number ( O yellow O ) O are O mutated B-experimental_method to O V249G B-mutant / O V250G B-mutant / O V254G B-mutant in O the O 3Gly B-mutant mutant I-mutant ; O residues O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O P255 B-residue_name_number ( O red O ) O along O with O V254 B-residue_name_number are O mutated B-experimental_method to O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 5Gly B-mutant mutant I-mutant or O to O S251N B-mutant / O T252L B-mutant / O V253A B-mutant / O V254L B-mutant / O P255A B-mutant in O the O NLALA B-mutant mutant I-mutant ; O residues O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number ( O orange O ) O along O with O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number are O mutated B-experimental_method to O M144G B-mutant / O L235G B-mutant / O M238G B-mutant / O V244G B-mutant / O V246G B-mutant / O V249G B-mutant / O V250G B-mutant / O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 12Gly B-mutant mutant I-mutant . O Other O linker B-structure_element residues O are O coloured O either O dark O blue O for O new O residues O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structure O or O light O blue O for O the O remaining O inter B-structure_element - I-structure_element RRM I-structure_element residues O . O The O central O panel O shows O an O overall O view O with O stick O diagrams O for O mutated O residues O ; O boxed O regions O are O expanded O to O show O the O C O - O terminal O ( O bottom O left O ) O and O central B-structure_element linker I-structure_element regions I-structure_element ( O top O ) O at O the O inter B-structure_element - I-structure_element RRM I-structure_element interfaces I-structure_element , O and O N O - O terminal O linker O region O contacts O with O RRM1 B-structure_element ( O bottom O right O ). O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O 3Gly B-mutant , O 47 O ± O 4 O nM O ; O 5Gly B-mutant , O 61 O ± O 3 O nM O ; O 12Gly B-mutant , O 88 O ± O 21 O nM O ; O NLALA B-mutant , O 45 O ± O 3 O nM O ; O dU2AF651 B-mutant , I-mutant 2L I-mutant , O 123 O ± O 5 O nM O ; O dU2AF651 B-mutant , I-mutant 2 I-mutant , O 5000 O ± O 100 O nM O ; O 3Mut B-mutant , O 5630 O ± O 70 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O Schematic O models O of O U2AF65 B-protein recognizing O the O Py B-chemical tract I-chemical . O ( O b O ) O Following O binding O to O the O Py B-chemical - I-chemical tract I-chemical RNA I-chemical , O a O conformation O corresponding O to O high B-evidence FRET I-evidence and O consistent O with O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state apo B-protein_state - O U2AF65 B-protein model O resulting O from O PRE B-experimental_method / O NMR B-experimental_method characterization O ( O PDB O ID O 2YH0 O ) O often O transitions O to O a O conformation O corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence , O which O is O consistent O with O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state RRMs B-structure_element such O as O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Floral O abscission O is O controlled O by O the O leucine B-protein_type - I-protein_type rich I-protein_type repeat I-protein_type receptor I-protein_type kinase I-protein_type ( O LRR B-protein_type - I-protein_type RK I-protein_type ) O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O It O is O unknown O how O expression O of O IDA B-protein in O the O abscission O zone O leads O to O HAESA B-protein activation O . O Here O we O show O that O IDA B-protein is O sensed O directly O by O the O HAESA B-protein ectodomain B-structure_element . O However O , O the O molecular O details O of O how O IDA B-protein triggers O organ O shedding O are O not O clear O . O Santiago O et O al O . O used O protein B-experimental_method biochemistry I-experimental_method , O structural B-experimental_method biology I-experimental_method and O genetics B-experimental_method to O uncover O how O the O IDA B-protein hormone B-chemical activates O HAESA B-protein . O HAESA B-protein is O shown O in O blue O ( O ribbon O diagram O ), O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element ( O left O panel O ), O the O central O Hyp B-structure_element anchor I-structure_element ( O center O ) O and O the O N O - O terminal O Pro B-structure_element - I-structure_element rich I-structure_element motif I-structure_element in O IDA B-protein ( O right O panel O ) O are O shown O in O yellow O ( O in O bonds O representation O ). O Structure B-experimental_method - I-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O HAESA B-protein_type family I-protein_type members I-protein_type : O Arabidopsis B-species thaliana I-species HAESA B-protein ( O Uniprot O ( O http O :// O www O . O uniprot O . O org O ) O ID O P47735 O ), O Arabidopsis B-species thaliana I-species HSL2 B-protein ( O Uniprot O ID O C0LGX3 O ), O Capsella B-species rubella I-species HAESA B-protein ( O Uniprot O ID O R0F2U6 O ), O Citrus B-species clementina I-species HSL2 B-protein ( O Uniprot O ID O V4U227 O ), O Vitis B-species vinifera I-species HAESA B-protein ( O Uniprot O ID O F6HM39 O ). O The O alignment O includes O a O secondary O structure O assignment O calculated O with O the O program O DSSP O and O colored O according O to O Figure O 1 O , O with O the O N O - O and O C O - O terminal O caps B-structure_element and O the O 21 O LRR B-structure_element motifs I-structure_element indicated O in O orange O and O blue O , O respectively O . O HAESA B-protein residues O interacting O with O the O IDA B-chemical peptide I-chemical and O / O or O the O SERK1 B-protein co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type ectodomain B-structure_element are O highlighted O in O blue O and O orange O , O respectively O . O The O PKGV B-structure_element motif I-structure_element present O in O our O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-chemical peptide I-chemical is O highlighted O in O red O . O ( O B O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O the O HAESA B-protein ectodomain B-structure_element vs O . O IDA B-protein and O including O the O synthetic B-protein_state peptide B-chemical sequence O . O IDA B-protein ( O in O bonds O representation O , O surface O view O included O ) O is O depicted O in O yellow O . O Active B-protein_state IDA B-protein_type - I-protein_type family I-protein_type peptide I-protein_type hormones I-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O Void O ( O V0 O ) O volume O and O total O volume O ( O Vt O ) O are O shown O , O together O with O elution O volumes O for O molecular O mass O standards O ( O A O , O Thyroglobulin B-protein , O 669 O , O 000 O Da O ; O B O , O Ferritin B-protein , O 440 O , O 00 O Da O , O C O , O Aldolase B-protein , O 158 O , O 000 O Da O ; O D O , O Conalbumin B-protein , O 75 O , O 000 O Da O ; O E O , O Ovalbumin B-protein , O 44 O , O 000 O Da O ; O F O , O Carbonic B-protein anhydrase I-protein , O 29 O , O 000 O Da O ). O The O titration B-experimental_method of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state versus O the O isolated O HAESA B-protein ectodomain B-structure_element from O Figure O 1B O is O shown O for O comparison O ( O red O line O ; O n O . O d O . O We O next O determined O crystal B-evidence structures I-evidence of O the O apo B-protein_state HAESA B-protein ectodomain B-structure_element and O of O a O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O , O at O 1 O . O 74 O and O 1 O . O 86 O Å O resolution O , O respectively O ( O Figure O 1C O ; O Figure O 1 O — O figure O supplement O 1B O – O D O ; O Tables O 1 O , O 2 O ). O The O COO O - O group O of O Asn69IDA B-residue_name_number is O in O direct O contact O with O Arg407HAESA B-residue_name_number and O Arg409HAESA B-residue_name_number and O HAESA B-protein cannot O bind O a O C B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-mutant - I-mutant SFVN I-mutant peptide O ( O Figures O 1D O , O F O , O 2D O ). O A O 2 O . O 56 O Å O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O IDL1 B-protein reveals O that O different O IDA B-protein_type family I-protein_type members I-protein_type use O a O common O binding O mode O to O interact O with O HAESA B-protein_type - I-protein_type type I-protein_type receptors I-protein_type ( O Figure O 2A O – O C O , O E O , O Table O 2 O ). O The O N O - O terminal O capping B-structure_element domain I-structure_element of O SERK1 B-protein ( O in O orange O ) O directly O contacts O the O C O - O terminal O part O of O IDA B-protein ( O in O yellow O , O in O bonds O representation O ) O and O the O receptor B-protein_type HAESA B-protein ( O in O blue O ). O The O SERK1 B-protein ectodomain B-structure_element interacts O with O the O IDA B-site peptide I-site binding I-site site I-site using O a O loop B-structure_element region I-structure_element ( O residues O 51 B-residue_range - I-residue_range 59SERK1 I-residue_range ) O from O its O N O - O terminal O cap B-structure_element ( O Figure O 4A O , O C O ). O SERK1 B-protein binds O HAESA B-protein using O these O two O distinct O interaction B-site surfaces I-site ( O Figure O 1 O — O figure O supplement O 3 O ), O with O the O N B-structure_element - I-structure_element cap I-structure_element of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element partially O covering O the O IDA B-site peptide I-site binding I-site cleft I-site . O ( O A O ) O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O similar O to O Figure O 3B O , O D O reveal O that O IDA B-protein mutant B-protein_state peptides B-chemical targeting O the O C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element do O not O form O biochemically B-protein_state stable I-protein_state HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complexes O . O Purified B-experimental_method HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O Note O that O the O HAESA B-protein and O SERK1 B-protein input O lanes O have O already O been O shown O in O Figure O 3D O . O ( O B O ) O Isothermal B-evidence titration I-evidence thermographs I-evidence of O wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state IDA B-chemical peptides I-chemical titrated B-experimental_method into O a O HAESA B-protein - O SERK1 B-protein mixture O in O the O cell O . O Table O summaries O for O calorimetric B-evidence binding I-evidence constants I-evidence and O stoichoimetries O for O different O IDA B-chemical peptides I-chemical binding O to O the O HAESA B-protein – O SERK1 B-protein ectodomain B-structure_element mixture O ( O ± O fitting O errors O ; O n O . O d O . O Up O to O inflorescence O position O 4 O , O petal O break O in O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state plants B-taxonomy_domain was O significantly O increased O compared O to O both O Col O - O 0 O control O plants B-taxonomy_domain ( O b O ) O and O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain ( O c O ) O ( O D O ) O Normalized O expression O levels O ( O relative O expression O ± O standard O error O ; O ida O : O - O 0 O . O 02 O ± O 0 O . O 001 O ; O Col O - O 0 O : O 1 O ± O 0 O . O 11 O ; O 35S B-gene :: O IDA B-protein 124 O ± O 0 O . O 75 O ; O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant : O 159 O ± O 0 O . O 58 O ) O of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state transcripts O in O the O 35S B-experimental_method promoter I-experimental_method over I-experimental_method - I-experimental_method expression I-experimental_method lines I-experimental_method analyzed O in O ( O C O ). O ( O E O ) O Magnified O view O of O representative O abscission O zones O from O 35S B-gene :: O IDA B-protein , O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state T3 B-experimental_method transgenic I-experimental_method lines I-experimental_method . O The O four O C O - O terminal O residues O in O IDA B-protein ( O Lys66IDA B-residue_range - I-residue_range Asn69IDA I-residue_range ) O are O conserved B-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type and O are O in O direct O contact O with O SERK1 B-protein ( O Figures O 1A O , O 4C O ). O We O found O that O over B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state IDA B-protein leads O to O early O floral O abscission O and O an O enlargement O of O the O abscission O zone O ( O Figure O 5C O – O E O ). O SERK1 O has O been O previously O reported O as O a O positive O regulator O in O plant B-taxonomy_domain embryogenesis O , O male O sporogenesis O , O brassinosteroid O signaling O and O in O phytosulfokine O perception O . O The O fact O that O SERK1 B-protein specifically O interacts O with O the O very O C O - O terminus O of O IDLs B-protein_type may O allow O for O the O rational O design O of O peptide B-chemical hormone I-chemical antagonists I-chemical , O as O previously O demonstrated O for O the O brassinosteroid O pathway O . O These O residues O are O not O involved O in O the O sensing O of O the O steroid B-chemical hormone I-chemical brassinolide B-chemical . O Structure B-experimental_method - I-experimental_method guided I-experimental_method multiple I-experimental_method sequence I-experimental_method alignment I-experimental_method of O IDA B-protein and O IDA B-chemical - I-chemical like I-chemical peptides I-chemical with O other O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type , O including O CLAVATA3 B-protein_type – I-protein_type EMBRYO I-protein_type SURROUNDING I-protein_type REGION I-protein_type - I-protein_type RELATED I-protein_type ( O CLV3 B-protein_type / I-protein_type CLE I-protein_type ), O ROOT B-protein_type GROWTH I-protein_type FACTOR I-protein_type – I-protein_type GOLVEN I-protein_type ( O RGF B-protein_type / I-protein_type GLV I-protein_type ), O PRECURSOR B-protein_type GENE I-protein_type PROPEP1 I-protein_type ( O PEP1 B-protein_type ) O from O Arabidopsis B-species thaliana I-species . O Our O experiments O reveal O that O SERK1 B-protein recognizes O a O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O A O unified O mechanism O for O proteolysis O and O autocatalytic B-ptm activation I-ptm in O the O 20S B-complex_assembly proteasome I-complex_assembly Here O we O use O mutagenesis B-experimental_method , O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O biochemical B-experimental_method assays I-experimental_method to O suggest O that O Lys33 B-residue_name_number initiates O nucleophilic O attack O of O the O propeptide B-structure_element by O deprotonating O the O Thr1 B-residue_name_number hydroxyl O group O and O that O both O residues O together O with O Asp17 B-residue_name_number are O part O of O a O catalytic B-site triad I-site . O Here O , O the O authors O use O structural O biology O and O biochemistry O to O investigate O the O role O of O proteasome B-complex_assembly active B-site site I-site residues O on O maturation O and O activity O . O In O the O last O stage O of O CP B-complex_assembly biogenesis O , O the O prosegments B-structure_element are O autocatalytically B-ptm removed I-ptm through O nucleophilic O attack O by O the O active B-site site I-site residue I-site Thr1 B-residue_name_number on O the O preceding O peptide O bond O involving O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Release O of O the O propeptides B-structure_element creates O a O functionally O active B-protein_state CP B-complex_assembly that O cleaves O proteins O into O short O peptides O . O Viability O is O restored O if O the O β5 B-mutant - I-mutant T1A I-mutant subunit O has O its O propeptide B-structure_element ( O pp B-chemical ) O deleted B-experimental_method but I-experimental_method expressed I-experimental_method separately I-experimental_method in O trans B-protein_state ( O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state ), O although O substantial O phenotypic O impairment O remains O ( O Table O 1 O ). O In O the O final O steps O of O proteasome B-complex_assembly biogenesis O , O the O propeptides B-structure_element are O autocatalytically B-ptm cleaved I-ptm from O the O mature B-protein_state β B-protein - I-protein subunit I-protein domains I-protein . O Instead O , O the O plasticity O of O the O β5 B-protein S1 B-site pocket I-site caused O by O the O rotational O flexibility O of O Met45 B-residue_name_number might O prevent O stable O accommodation O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O the O S1 B-site site I-site and O thus O also O promote O its O immediate O release O after O autolysis B-ptm . O As O histidine B-residue_name commonly O functions O as O a O proton O shuttle O in O the O catalytic B-site triads I-site of O serine B-protein_type proteases I-protein_type , O we O investigated O the O role O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O processing O of O the O β5 B-protein propeptide B-structure_element by O exchanging B-experimental_method it I-experimental_method for I-experimental_method Asn B-residue_name , O Lys B-residue_name , O Phe B-residue_name and O Ala B-residue_name . O All O yeast B-taxonomy_domain mutants O were O viable O at O 30 O ° O C O , O but O suffered O from O growth O defects O at O 37 O ° O C O with O the O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutants O being O most O affected O ( O Supplementary O Fig O . O 3b O and O Table O 1 O ). O We O determined O crystal B-evidence structures I-evidence of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutants O ( O Supplementary O Table O 1 O ). O The O active B-site site I-site of O the O proteasome B-complex_assembly Twenty O years O later O , O with O a O plethora O of O yCP B-complex_assembly X B-evidence - I-evidence ray I-evidence structures I-evidence in O hand O , O we O decided O to O re O - O analyse O the O active B-site site I-site of O the O proteasome B-complex_assembly and O to O resolve O the O uncertainty O regarding O the O nature O of O the O general O base O . O As O determined O by O crystallographic B-experimental_method analysis I-experimental_method , O this O mutant B-protein_state β5 B-protein subunit O was O partially B-protein_state processed I-protein_state ( O Table O 1 O ) O but O displayed O impaired O reactivity O towards O the O proteasome B-complex_assembly inhibitor O carfilzomib B-chemical compared O with O the O subunits O β1 B-protein and O β2 B-protein , O and O with O WT B-protein_state β5 B-protein ( O Supplementary O Fig O . O 7a O ). O This O observation O is O consistent O with O a O strongly O reduced O reactivity O of O β5 B-protein - O Thr1 B-residue_name_number and O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical cis B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical . O In O agreement O , O an O E17A B-mutant mutant B-protein_state in O the O proteasomal O β B-protein - I-protein subunit I-protein of O the O archaeon B-taxonomy_domain Thermoplasma B-species acidophilum I-species prevents O autolysis B-ptm and O catalysis O . O This O model O is O also O consistent O with O the O fact O that O no O defined O water B-chemical molecule O is O observed O in O the O mature B-protein_state WT B-protein_state proteasomal O active B-site site I-site that O could O shuttle O the O proton O from O Thr1Oγ B-residue_name_number to O Thr1NH2 B-residue_name_number . O The O β5 B-mutant - I-mutant D166N I-mutant pp B-chemical cis B-protein_state yeast B-taxonomy_domain mutant B-protein_state is O significantly O impaired O in O growth O and O its O ChT O - O L O activity O is O drastically O reduced O ( O Supplementary O Fig O . O 6a O , O b O and O Table O 1 O ). O Instead O , O a O water B-chemical molecule O is O bound B-protein_state to I-protein_state Ser129OH B-residue_name_number and O Thr1NH2 B-residue_name_number ( O Supplementary O Fig O . O 8b O ), O which O may O enable O precursor B-ptm processing I-ptm . O In O one O of O the O two O β5 B-protein subunits O , O however O , O we O found O the O cleaved B-protein_state propeptide B-structure_element still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4c O ). O In O agreement O , O soaking B-experimental_method crystals I-experimental_method with O the O CP B-complex_assembly inhibitors O bortezomib B-chemical or O carfilzomib B-chemical modifies O only O the O β1 B-protein and O β2 B-protein active B-site sites I-site , O while O leaving O the O β5 B-mutant - I-mutant T1C I-mutant proteolytic B-site centres I-site unmodified B-protein_state even O though O they O are O only O partially O occupied O by O the O cleaved B-protein_state propeptide B-structure_element remnant O . O However O , O the O apo B-protein_state crystal B-evidence structure I-evidence revealed O that O Ser1Oγ B-residue_name_number is O turned O away O from O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4g O ). O Lys33NH2 B-residue_name_number is O expected O to O act O as O the O proton O acceptor O during O autocatalytic B-ptm removal I-ptm of O the O propeptides B-structure_element , O as O well O as O during O substrate O proteolysis O , O while O Asp17Oδ B-residue_name_number orients O Lys33NH2 B-residue_name_number and O makes O it O more O prone O to O protonation O by O raising O its O pKa O ( O hydrogen O bond O distance O : O Lys33NH3 B-residue_name_number +– O Asp17Oδ B-residue_name_number : O 2 O . O 9 O Å O ). O Thus O , O specific O protein O surroundings O can O significantly O alter O the O chemical O properties O of O amino O acids O such O as O Lys B-residue_name to O function O as O an O acid O – O base O catalyst O . O The O resulting O uncharged O Thr1NH2 B-residue_name_number is O hydrogen O - O bridged O to O the O C3 O - O OH O group O . O The O greater O suitability O of O threonine B-residue_name for O the O proteasome B-complex_assembly active B-site site I-site , O which O has O been O noted O in O biochemical O as O well O as O in O kinetic O studies O , O constitutes O a O likely O reason O for O the O conservation B-protein_state of O the O Thr1 B-residue_name_number residue O in O all O proteasomes B-complex_assembly from O bacteria B-taxonomy_domain to O eukaryotes B-taxonomy_domain . O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant , O the O β2 B-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant propeptide B-structure_element remnants O depict O their O differences O in O conformation O . O While O residue O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O β1 B-protein and O β2 B-protein prosegments B-structure_element fit O the O S1 B-site pocket I-site , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element occupies O the O S2 B-site pocket I-site . O ( O a O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant mutant B-protein_state propeptide B-structure_element . O ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-protein propeptides B-structure_element in O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant , O β5 B-mutant -( I-mutant H I-mutant - I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state proteasomes B-complex_assembly . O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O matured B-protein_state β2 B-protein active B-site site I-site , O the O WT B-protein_state β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant mutant B-protein_state propeptide B-structure_element . O ( O a O ) O Hydrogen B-site - I-site bonding I-site network I-site at O the O mature B-protein_state WT B-protein_state β5 B-protein proteasomal O active B-site site I-site ( O dotted O lines O ). O The O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen O bonds O with O Ser129Oγ B-residue_name_number , O the O carbonyl O oxygen O of O residue O 168 B-residue_number , O Ser169Oγ B-residue_name_number and O Asp166Oδ B-residue_name_number . O ( O b O ) O The O orientations O of O the O active B-site - I-site site I-site residues I-site involved O in O hydrogen O bonding O are O strictly B-protein_state conserved I-protein_state in O each O proteolytic B-site centre I-site , O as O shown O by O superposition B-experimental_method of O the O β B-protein subunits I-protein . O The O strictly B-protein_state conserved I-protein_state oxyanion O hole O Gly47NH B-residue_name_number stabilizing O the O negatively O charged O intermediate O is O illustrated O as O a O semicircle O . O On O hydrolysis O of O the O latter O , O the O active B-site - I-site site I-site Thr1 B-residue_name_number is O ready O for O catalysis O ( O right O set O of O structures O ). O ( O a O ) O Growth B-experimental_method tests I-experimental_method by I-experimental_method serial I-experimental_method dilution I-experimental_method of O WT B-protein_state and O pre2 O ( O β5 B-protein ) O mutant B-protein_state yeast B-taxonomy_domain cultures O reveal O growth O defects O of O the O active B-site - I-site site I-site mutants B-experimental_method under O the O indicated O conditions O after O 2 O days O ( O 2 O d O ) O of O incubation O . O Notably O , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number does O not O occupy O the O S1 B-site pocket I-site formed O by O Met45 B-residue_name_number , O similar O to O what O was O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O ( O g O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state active B-site sites I-site reveals O different O orientations O of O the O hydroxyl O groups O of O Thr1 B-residue_name_number and O Ser1 B-residue_name_number , O respectively O . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O