Molecular O Dissection O of O Xyloglucan B-chemical Recognition O in O a O Prominent O Human B-species Gut O Symbiont O Polysaccharide B-gene utilization I-gene loci I-gene ( O PUL B-gene ) O within O the O genomes O of O resident O human B-species gut O Bacteroidetes B-taxonomy_domain are O central O to O the O metabolism O of O the O otherwise O indigestible O complex O carbohydrates B-chemical known O as O “ O dietary O fiber O .” O However O , O functional O characterization O of O PUL B-gene lags O significantly O behind O sequencing O efforts O , O which O limits O physiological O understanding O of O the O human B-species - O bacterial B-taxonomy_domain symbiosis O . O In O particular O , O the O molecular O basis O of O complex B-chemical polysaccharide I-chemical recognition O , O an O essential O prerequisite O to O hydrolysis O by O cell O surface O glycosidases B-protein_type and O subsequent O metabolism O , O is O generally O poorly O understood O . O Here O , O we O present O the O biochemical B-experimental_method , I-experimental_method structural I-experimental_method , I-experimental_method and I-experimental_method reverse I-experimental_method genetic I-experimental_method characterization I-experimental_method of O two O unique O cell B-protein_type surface I-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O SGBPs B-protein_type ) O encoded O by O a O xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O from O Bacteroides B-species ovatus I-species , O which O are O integral O to O growth O on O this O key O dietary O vegetable B-taxonomy_domain polysaccharide B-chemical . O Biochemical B-experimental_method analysis I-experimental_method reveals O that O these O outer B-protein_type membrane I-protein_type - I-protein_type anchored I-protein_type proteins I-protein_type are O in O fact O exquisitely O specific O for O the O highly O branched O xyloglucan B-chemical ( O XyG B-chemical ) O polysaccharide B-chemical . O The O crystal B-evidence structure I-evidence of O SGBP B-protein - I-protein A I-protein , O a O SusD B-protein homolog O , O with O a O bound B-protein_state XyG B-chemical tetradecasaccharide B-chemical reveals O an O extended O carbohydrate B-site - I-site binding I-site platform I-site that O primarily O relies O on O recognition O of O the O β B-chemical - I-chemical glucan I-chemical backbone O . O The O unique O , O tetra B-structure_element - I-structure_element modular I-structure_element structure B-evidence of O SGBP B-protein - I-protein B I-protein is O comprised O of O tandem B-structure_element Ig I-structure_element - I-structure_element like I-structure_element folds I-structure_element , O with O XyG B-chemical binding O mediated O at O the O distal O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O Despite O displaying O similar O affinities B-evidence for O XyG B-chemical , O reverse B-experimental_method - I-experimental_method genetic I-experimental_method analysis I-experimental_method reveals O that O SGBP B-protein - I-protein B I-protein is O only O required O for O the O efficient O capture O of O smaller O oligosaccharides B-chemical , O whereas O the O presence O of O SGBP B-protein - I-protein A I-protein is O more O critical O than O its O carbohydrate B-chemical - O binding O ability O for O growth O on O XyG B-chemical . O Together O , O these O data O demonstrate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein play O complementary O , O specialized O roles O in O carbohydrate B-chemical capture O by O B B-species . I-species ovatus I-species and O elaborate O a O model O of O how O vegetable B-taxonomy_domain xyloglucans B-chemical are O accessed O by O the O Bacteroidetes B-taxonomy_domain . O The O Bacteroidetes B-taxonomy_domain are O dominant O bacteria B-taxonomy_domain in O the O human B-species gut O that O are O responsible O for O the O digestion O of O the O complex B-chemical polysaccharides I-chemical that O constitute O “ O dietary O fiber O .” O Although O this O symbiotic O relationship O has O been O appreciated O for O decades O , O little O is O currently O known O about O how O Bacteroidetes B-taxonomy_domain seek O out O and O bind O plant B-taxonomy_domain cell O wall O polysaccharides B-chemical as O a O necessary O first O step O in O their O metabolism O . O Here O , O we O provide O the O first O biochemical B-experimental_method , I-experimental_method crystallographic I-experimental_method , I-experimental_method and I-experimental_method genetic I-experimental_method insight I-experimental_method into O how O two O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type from O the O complex O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O enable O recognition O and O uptake O of O this O ubiquitous O vegetable B-taxonomy_domain polysaccharide B-chemical . O Our O combined O analysis O illuminates O new O fundamental O aspects O of O complex B-chemical polysaccharide I-chemical recognition O , O cleavage O , O and O import O at O the O Bacteroidetes B-taxonomy_domain cell O surface O that O may O facilitate O the O development O of O prebiotics O to O target O this O phylum O of O gut O bacteria B-taxonomy_domain . O The O human B-species gut O microbiota B-taxonomy_domain influences O the O course O of O human B-species development O and O health O , O playing O key O roles O in O immune O stimulation O , O intestinal O cell O proliferation O , O and O metabolic O balance O . O This O microbial B-taxonomy_domain community O is O largely O bacterial B-taxonomy_domain , O with O the O Bacteroidetes B-taxonomy_domain , O Firmicutes B-taxonomy_domain , O and O Actinobacteria B-taxonomy_domain comprising O the O dominant O phyla O . O The O ability O to O acquire O energy O from O carbohydrates B-chemical of O dietary O or O host O origin O is O central O to O the O adaptation O of O human B-species gut O bacterial B-taxonomy_domain species O to O their O niche O . O More O importantly O , O this O makes O diet O a O tractable O way O to O manipulate O the O abundance O and O metabolic O output O of O the O microbiota B-taxonomy_domain toward O improved O human B-species health O . O However O , O there O is O a O paucity O of O data O regarding O how O the O vast O array O of O complex B-chemical carbohydrate I-chemical structures O are O selectively O recognized O and O imported O by O members O of O the O microbiota B-taxonomy_domain , O a O critical O process O that O enables O these O organisms O to O thrive O in O the O competitive O gut O environment O . O The O human B-species gut O bacteria B-taxonomy_domain Bacteroidetes B-taxonomy_domain share O a O profound O capacity O for O dietary O glycan B-chemical degradation O , O with O many O species O containing O > O 250 O predicted O carbohydrate O - O active O enzymes O ( O CAZymes O ), O compared O to O 50 O to O 100 O within O many O Firmicutes B-taxonomy_domain and O only O 17 O in O the O human B-species genome O devoted O toward O carbohydrate O utilization O . O A O remarkable O feature O of O the O Bacteroidetes B-taxonomy_domain is O the O packaging O of O genes O for O carbohydrate O catabolism O into O discrete O polysaccharide B-gene utilization I-gene loci I-gene ( O PUL B-gene ), O which O are O transcriptionally O regulated O by O specific O substrate O signatures O . O The O archetypal O PUL B-gene - O encoded O system O is O the O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly ( O Sus B-complex_assembly ) O ( O Fig O . O 1B O ) O of O Bacteroides B-species thetaiotaomicron I-species . O The O Sus B-complex_assembly includes O a O lipid B-protein_state - I-protein_state anchored I-protein_state , O outer O membrane O endo B-protein_type - I-protein_type amylase I-protein_type , O SusG B-protein ; O a O TonB B-protein_type - I-protein_type dependent I-protein_type transporter I-protein_type ( O TBDT B-protein_type ), O SusC B-protein , O which O imports O oligosaccharides B-chemical with O the O help O of O an O associated O starch B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O SusD B-protein ; O two O additional O carbohydrate B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type , O SusE B-protein and O SusF B-protein ; O and O two O periplasmic O exo B-protein_type - I-protein_type glucosidases I-protein_type , O SusA B-protein and O SusB B-protein , O which O generate O glucose B-chemical for O transport O into O the O cytoplasm O . O The O importance O of O PUL B-gene as O a O successful O evolutionary O strategy O is O underscored O by O the O observation O that O Bacteroidetes B-taxonomy_domain such O as O B B-species . I-species thetaiotaomicron I-species and O Bacteroides B-species ovatus I-species devote O ~ O 18 O % O of O their O genomes O to O these O systems O . O Moving O beyond O seminal O genomic O and O transcriptomic O analyses O , O the O current O state O - O of O - O the O - O art O PUL B-gene characterization O involves O combined O reverse B-experimental_method - I-experimental_method genetic I-experimental_method , I-experimental_method biochemical I-experimental_method , I-experimental_method and I-experimental_method structural I-experimental_method studies I-experimental_method to O illuminate O the O molecular O details O of O PUL B-gene function O . O Xyloglucan B-chemical and O the O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ). O ( O A O ) O Representative O structures B-evidence of O common O xyloglucans B-chemical using O the O Consortium O for O Functional O Glycomics O Symbol O Nomenclature O ( O http O :// O www O . O functionalglycomics O . O org O / O static O / O consortium O / O Nomenclature O . O shtml O ). O Cleavage O sites O for O BoXyGUL B-gene glycosidases B-protein_type ( O GHs B-protein_type ) O are O indicated O for O solanaceous B-taxonomy_domain xyloglucan B-chemical . O ( O B O ) O BtSus B-gene and O BoXyGUL B-gene . O ( O C O ) O Localization O of O BoXyGUL B-gene - O encoded O proteins O in O cellular O membranes O and O concerted O modes O of O action O in O the O degradation O of O xyloglucans B-chemical to O monosaccharides O . O The O location O of O SGBP B-protein - I-protein A I-protein / O B B-protein is O presented O in O this O work O ; O the O location O of O GH5 B-protein has O been O empirically O determined O , O and O the O enzymes O have O been O placed O based O upon O their O predicted O cellular O location O . O We O recently O reported O the O detailed O molecular O characterization O of O a O PUL B-gene that O confers O the O ability O of O the O human B-species gut O commensal O B B-species . I-species ovatus I-species ATCC I-species 8483 I-species to O grow O on O a O prominent O family O of O plant B-taxonomy_domain cell O wall O glycans B-chemical , O the O xyloglucans B-chemical ( O XyG B-chemical ). O XyG B-chemical variants O ( O Fig O . O 1A O ) O constitute O up O to O 25 O % O of O the O dry O weight O of O common O vegetables B-taxonomy_domain . O Analogous O to O the O Sus B-gene locus I-gene , O the O xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O encodes O a O cohort O of O carbohydrate B-protein_type - I-protein_type binding I-protein_type , I-protein_type - I-protein_type hydrolyzing I-protein_type , I-protein_type and I-protein_type - I-protein_type importing I-protein_type proteins I-protein_type ( O Fig O . O 1B O and O C O ). O The O number O of O glycoside B-protein_type hydrolases I-protein_type ( O GHs B-protein_type ) O encoded O by O the O XyGUL B-gene is O , O however O , O more O expansive O than O that O by O the O Sus B-gene locus I-gene ( O Fig O . O 1B O ), O which O reflects O the O greater O complexity O of O glycosidic O linkages O found O in O XyG B-chemical vis O - O à O - O vis O starch B-chemical . O Whereas O our O previous O study O focused O on O the O characterization O of O the O linkage O specificity O of O these O GHs B-protein_type , O a O key O outstanding O question O regarding O this O locus O is O how O XyG B-chemical recognition O is O mediated O at O the O cell O surface O . O In O the O archetypal O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O starch O binding O to O the O cell O surface O is O mediated O at O eight O distinct O starch B-site - I-site binding I-site sites I-site distributed O among O four O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O SGBPs B-protein_type ): O two O within O the O amylase B-protein_type SusG B-protein , O one O within O SusD B-protein , O two O within O SusE B-protein , O and O three O within O SusF B-protein . O The O functional O redundancy O of O many O of O these O sites O is O high O : O whereas O SusD B-protein is O essential O for O growth O on O starch B-chemical , O combined O mutations O of O the O SusE B-protein , O SusF B-protein , O and O SusG B-protein binding B-site sites I-site are O required O to O impair O growth O on O the O polysaccharide B-chemical . O Bacteroidetes B-taxonomy_domain PUL B-gene ubiquitously O encode O homologs O of O SusC B-protein and O SusD B-protein , O as O well O as O proteins O whose O genes O are O immediately O downstream O of O susD B-gene , O akin O to O susE B-gene / I-gene F I-gene , O and O these O are O typically O annotated O as O “ O putative B-protein_state lipoproteins B-protein_type ”. O The O genes O coding O for O these O proteins O , O sometimes O referred O to O as O “ O susE B-gene / I-gene F I-gene positioned O ,” O display O products O with O a O wide O variation O in O amino O acid O sequence O and O which O have O little O or O no O homology O to O other O PUL B-gene - O encoded O proteins O or O known O carbohydrate B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type . O As O the O Sus B-complex_assembly SGBPs B-protein_type remain O the O only O structurally O characterized O cohort O to O date O , O we O therefore O wondered O whether O such O glycan B-chemical binding O and O function O are O extended O to O other O PUL B-gene that O target O more O complex O and O heterogeneous O polysaccharides B-chemical , O such O as O XyG B-chemical . O We O describe O here O the O detailed O functional B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O the O noncatalytic B-protein_state SGBPs B-protein_type encoded O by O Bacova_02651 B-gene and O Bacova_02650 B-gene of O the O XyGUL B-gene , O here O referred O to O as O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O to O elucidate O their O molecular O roles O in O carbohydrate O acquisition O in O vivo O . O Combined O biochemical B-experimental_method , I-experimental_method structural I-experimental_method , I-experimental_method and I-experimental_method reverse I-experimental_method - I-experimental_method genetic I-experimental_method approaches I-experimental_method clearly O illuminate O the O distinct O , O yet O complementary O , O functions O that O these O two O proteins O play O in O XyG B-chemical recognition O as O it O impacts O the O physiology O of O B B-species . I-species ovatus I-species . O These O data O extend O our O current O understanding O of O the O Sus O - O like O glycan B-chemical uptake O paradigm O within O the O Bacteroidetes B-taxonomy_domain and O reveals O how O the O complex O dietary O polysaccharide B-chemical xyloglucan B-chemical is O recognized O at O the O cell O surface O . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type , I-protein_type xyloglucan I-protein_type - I-protein_type specific I-protein_type binding I-protein_type proteins I-protein_type . O SGBP B-protein - I-protein A I-protein , O encoded O by O the O XyGUL B-gene locus O tag O Bacova_02651 B-gene ( O Fig O . O 1B O ), O shares O 26 O % O amino O acid O sequence O identity O ( O 40 O % O similarity O ) O with O its O homolog O , O B B-species . I-species thetaiotaomicron I-species SusD B-protein , O and O similar O homology O with O the O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type encoded O within O syntenic O XyGUL B-gene identified O in O our O earlier O work O . O In O contrast O , O SGBP B-protein - I-protein B I-protein , O encoded O by O locus O tag O Bacova_02650 B-gene , O displays O little O sequence O similarity O to O the O products O of O similarly O positioned O genes O in O syntenic O XyGUL B-gene nor O to O any O other O gene O product O among O the O diversity O of O Bacteroidetes B-taxonomy_domain PUL B-gene . O Whereas O sequence O similarity O among O SusC B-protein / O SusD B-protein homolog O pairs O often O serves O as O a O hallmark O for O PUL B-gene identification O , O the O sequence O similarities O of O downstream O genes O encoding O SGBPs B-protein_type are O generally O too O low O to O allow O reliable O bioinformatic O classification O of O their O products O into O protein O families O , O let O alone O prediction O of O function O . O Hence O , O there O is O a O critical O need O for O the O elucidation O of O detailed O structure O - O function O relationships O among O PUL B-gene SGBPs B-protein_type , O in O light O of O the O manifold O glycan B-chemical structures O in O nature O . O Immunofluorescence B-experimental_method of O formaldehyde O - O fixed O , O nonpermeabilized O cells O grown O in O minimal O medium O with O XyG B-chemical as O the O sole O carbon O source O to O induce O XyGUL B-gene expression O , O reveals O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O presented O on O the O cell O surface O by O N O - O terminal O lipidation B-ptm , O as O predicted O by O signal O peptide O analysis O with O SignalP O ( O Fig O . O 2 O ). O Here O , O the O SGBPs B-protein_type very O likely O work O in O concert O with O the O cell B-protein_type - I-protein_type surface I-protein_type - I-protein_type localized I-protein_type endo I-protein_type - I-protein_type xyloglucanase I-protein_type B B-species . I-species ovatus I-species GH5 B-protein ( O BoGH5 B-protein ) O to O recruit O and O cleave O XyG B-chemical for O subsequent O periplasmic O import O via O the O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type of O the O XyGUL B-gene ( O Fig O . O 1B O and O C O ). O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein visualized O by O immunofluorescence B-experimental_method . O Formalin O - O fixed O , O nonpermeabilized O B B-species . I-species ovatus I-species cells O were O grown O in O minimal O medium O plus O XyG B-chemical , O probed O with O custom O rabbit O antibodies O to O SGBP B-protein - I-protein A I-protein or O SGBP B-protein - I-protein B I-protein , O and O then O stained O with O Alexa O Fluor O 488 O goat O anti O - O rabbit O IgG O . O ( O A O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O A O . O ( O B O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O B O . O ( O C O ) O Bright B-evidence - I-evidence field I-evidence image I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O ( O D O ) O FITC B-evidence images I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O Cells O lacking B-protein_state SGBP B-protein - I-protein A I-protein ( O ΔSGBP B-mutant - I-mutant A I-mutant ) O do O not O grow O on O XyG B-chemical and O therefore O could O not O be O tested O in O parallel O . O In O our O initial O study O focused O on O the O functional O characterization O of O the O glycoside B-protein_type hydrolases I-protein_type of O the O XyGUL B-gene , O we O reported O preliminary O affinity B-experimental_method PAGE I-experimental_method and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O data O indicating O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O competent O xyloglucan B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O affinity B-evidence constant I-evidence [ O Ka B-evidence ] O values O of O 3 O . O 74 O × O 105 O M O − O 1 O and O 4 O . O 98 O × O 104 O M O − O 1 O , O respectively O [ O 23 O ]). O Additional O affinity B-experimental_method PAGE I-experimental_method analysis O ( O Fig O . O 3 O ) O demonstrates O that O SGBP B-protein - I-protein A I-protein also O has O moderate O affinity O for O the O artificial O soluble O cellulose O derivative O hydroxyethyl B-chemical cellulose I-chemical [ O HEC B-chemical ; O a O β B-chemical ( I-chemical 1 I-chemical → I-chemical 4 I-chemical )- I-chemical glucan I-chemical ] O and O limited O affinity O for O mixed B-chemical - I-chemical linkage I-chemical β I-chemical ( I-chemical 1 I-chemical → I-chemical 3 I-chemical )/ I-chemical β I-chemical ( I-chemical 1 I-chemical → I-chemical 4 I-chemical )- I-chemical glucan I-chemical ( O MLG B-chemical ) O and O glucomannan B-chemical ( O GM B-chemical ; O mixed O glucosyl B-chemical and O mannosyl B-chemical backbone O ), O which O together O indicate O general O binding O to O polysaccharide B-chemical backbone O residues O and O major O contributions O from O side O - O chain O recognition O . O In O contrast O , O SGBP B-protein - I-protein B I-protein bound O to O HEC B-chemical more O weakly O than O SGBP B-protein - I-protein A I-protein and O did O not O bind O to O MLG B-chemical or O GM B-chemical . O Neither O SGBP B-protein_type recognized O galactomannan B-chemical ( O GGM B-chemical ), O starch B-chemical , O carboxymethylcellulose B-chemical , O or O mucin B-chemical ( O see O Fig O . O S1 O in O the O supplemental O material O ). O Together O , O these O results O highlight O the O high O specificities O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein for O XyG B-chemical , O which O is O concordant O with O their O association O with O XyG B-protein_type - I-protein_type specific I-protein_type GHs I-protein_type in O the O XyGUL B-gene , O as O well O as O transcriptomic O analysis O indicating O that O B B-species . I-species ovatus I-species has O discrete O PUL B-gene for O MLG B-chemical , O GM B-chemical , O and O GGM B-chemical ( O 11 O ). O Notably O , O the O absence O of O carbohydrate B-site - I-site binding I-site modules I-site in O the O GHs B-protein_type encoded O by O the O XyGUL B-gene implies O that O noncatalytic O recognition O of O xyloglucan B-chemical is O mediated O entirely O by O SGBP B-protein - I-protein A I-protein and O - B-protein B I-protein . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein preferentially O bind O xyloglucan B-chemical . O Affinity B-experimental_method electrophoresis I-experimental_method ( O 10 O % O acrylamide O ) O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein with O BSA B-protein as O a O control O protein O . O All O samples O were O loaded O on O the O same O gel O next O to O the O BSA B-protein controls O ; O thin O black O lines O indicate O where O intervening O lanes O were O removed O from O the O final O image O for O both O space O and O clarity O . O The O percentage O of O polysaccharide B-chemical incorporated O into O each O native O gel O is O displayed O . O The O vanguard O endo B-protein_type - I-protein_type xyloglucanase I-protein_type of O the O XyGUL B-gene , O BoGH5 B-protein , O preferentially O cleaves O the O polysaccharide B-chemical at O unbranched O glucosyl B-chemical residues O to O generate O xylogluco B-chemical - I-chemical oligosaccharides I-chemical ( O XyGOs B-chemical ) O comprising O a O Glc4 B-structure_element backbone I-structure_element with O variable B-structure_element side I-structure_element - I-structure_element chain I-structure_element galactosylation I-structure_element ( O XyGO1 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 1 O ) O as O the O limit O of O digestion O products O in O vitro O ; O controlled B-experimental_method digestion I-experimental_method and I-experimental_method fractionation I-experimental_method by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method allow O the O production O of O higher O - O order O oligosaccharides B-chemical ( O e O . O g O ., O XyGO2 B-chemical ) O ( O Fig O . O 1A O ; O n O = O 2 O ). O ITC B-experimental_method demonstrates O that O SGBP B-protein - I-protein A I-protein binds O to O XyG B-chemical polysaccharide B-chemical and O XyGO2 B-chemical ( O based O on O a O Glc8 B-structure_element backbone I-structure_element ) O with O essentially O equal O affinities B-evidence , O while O no O binding O of O XyGO1 B-chemical ( O Glc4 B-structure_element backbone I-structure_element ) O was O detectable O ( O Table O 1 O ; O see O Fig O . O S2 O and O S3 O in O the O supplemental O material O ). O Similarly O , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyG B-chemical and O XyGO2 B-chemical with O approximately O equal O affinities B-evidence , O although O in O both O cases O , O Ka B-evidence values O were O nearly O 10 O - O fold O lower O than O those O for O SGBP B-protein - I-protein A I-protein . O Also O in O contrast O to O SGBP B-protein - I-protein A I-protein , O SGBP B-protein - I-protein B I-protein also O bound B-protein_state to I-protein_state XyGO1 B-chemical , O yet O the O affinity B-evidence for O this O minimal B-structure_element repeating I-structure_element unit I-structure_element was O poor O , O with O a O Ka B-evidence value O of O ca O . O 1 O order O of O magnitude O lower O than O for O XyG B-chemical and O XyGO2 B-chemical . O Together O , O these O data O clearly O suggest O that O polysaccharide B-chemical binding O of O both O SGBPs B-protein_type is O fulfilled O by O a O dimer B-oligomeric_state of O the O minimal B-structure_element repeat I-structure_element , O corresponding O to O XyGO2 B-chemical ( O cf O . O The O observation O by O affinity B-experimental_method PAGE I-experimental_method that O these O proteins O specifically O recognize O XyG B-chemical is O further O substantiated O by O their O lack O of O binding O for O the O undecorated O oligosaccharide B-chemical cellotetraose B-chemical ( O Table O 1 O ; O see O Fig O . O S3 O ). O Furthermore O , O SGBP B-protein - I-protein A I-protein binds O cellohexaose B-chemical with O ~ O 770 O - O fold O weaker O affinity B-evidence than O XyG B-chemical , O while O SGBP B-protein - I-protein B I-protein displays O no O detectable O binding O to O this O linear O hexasaccharide B-chemical . O To O provide O molecular O - O level O insight O into O how O the O XyGUL B-gene SGBPs B-protein_type equip O B B-species . I-species ovatus I-species to O specifically O harvest O XyG B-chemical from O the O gut O environment O , O we O performed O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method analysis O of O both O SGBP B-protein - I-protein A I-protein and O SGPB B-protein - I-protein B I-protein in O oligosaccharide B-complex_assembly - I-complex_assembly complex I-complex_assembly forms I-complex_assembly . O Summary O of O thermodynamic O parameters O for O wild B-protein_state - I-protein_state type I-protein_state SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein obtained O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method at O 25 O ° O Ca O SGBP B-protein - I-protein A I-protein is O a O SusD B-protein homolog O with O an O extensive O glycan B-site - I-site binding I-site platform I-site . O As O anticipated O by O sequence O similarity O , O the O high O - O resolution O tertiary O structure B-evidence of O apo B-protein_state - O SGBP B-protein - I-protein A I-protein ( O 1 O . O 36 O Å O , O Rwork B-evidence = O 14 O . O 7 O %, O Rfree B-evidence = O 17 O . O 4 O %, O residues O 28 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Table O 2 O ) O displays O the O canonical O “ B-structure_element SusD I-structure_element - I-structure_element like I-structure_element ” I-structure_element protein I-structure_element fold I-structure_element dominated O by O four O tetratrico B-structure_element - I-structure_element peptide I-structure_element repeat I-structure_element ( O TPR B-structure_element ) O motifs O that O cradle O the O rest O of O the O structure B-evidence ( O Fig O . O 4A O ). O Specifically O , O SGBP B-protein - I-protein A I-protein overlays B-experimental_method B B-species . I-species thetaiotaomicron I-species SusD B-protein ( O BtSusD B-protein ) O with O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O value O of O 2 O . O 2 O Å O for O 363 O Cα O pairs O , O which O is O notable O given O the O 26 O % O amino O acid O identity O ( O 40 O % O similarity O ) O between O these O homologs O ( O Fig O . O 4C O ). O Cocrystallization B-experimental_method of O SGBP B-protein - I-protein A I-protein with O XyGO2 B-chemical generated O a O substrate B-complex_assembly complex I-complex_assembly structure B-evidence ( O 2 O . O 3 O Å O , O Rwork B-evidence = O 21 O . O 8 O %, O Rfree B-evidence = O 24 O . O 8 O %, O residues O 36 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Fig O . O 4A O and O B O ; O Table O 2 O ) O that O revealed O the O distinct O binding B-site - I-site site I-site architecture O of O the O XyG B-protein_type binding I-protein_type protein I-protein_type . O The O SGBP B-complex_assembly - I-complex_assembly A I-complex_assembly : I-complex_assembly XyGO2 I-complex_assembly complex O superimposes B-experimental_method closely O with O the O apo B-protein_state structure B-evidence ( O RMSD B-evidence of O 0 O . O 6 O Å O ) O and O demonstrates O that O no O major O conformational O change O occurs O upon O substrate O binding O ; O small O deviations O in O the O orientation O of O several O surface O loops O are O likely O the O result O of O differential O crystal O packing O . O It O is O particularly O notable O that O although O the O location O of O the O ligand B-site - I-site binding I-site site I-site is O conserved B-protein_state between O SGBP B-protein - I-protein A I-protein and O SusD B-protein , O that O of O SGBP B-protein - I-protein A I-protein displays O an O ~ O 29 O - O Å O - O long O aromatic B-site platform I-site to O accommodate O the O extended O , O linear O XyG B-chemical chain O ( O see O reference O for O a O review O of O XyG B-chemical secondary O structure O ), O versus O the O shorter O , O ~ O 18 O - O Å O - O long O , O site B-site within O SusD B-protein that O complements O the O helical O conformation O of O amylose B-chemical ( O Fig O . O 4C O and O D O ). O Molecular O structure B-evidence of O SGBP B-protein - I-protein A I-protein ( O Bacova_02651 B-gene ). O ( O A O ) O Overlay B-experimental_method of O SGBP B-protein - I-protein A I-protein from O the O apo B-protein_state ( O rainbow O ) O and O XyGO2 B-chemical ( O gray O ) O structures B-evidence . O The O apo B-protein_state structure B-evidence is O color O ramped O from O blue O to O red O . O An O omit B-evidence map I-evidence ( O 2σ O ) O for O XyGO2 B-chemical ( O orange O and O red O sticks O ) O is O displayed O . O ( O B O ) O Close O - O up O view O of O the O omit B-evidence map I-evidence as O in O panel O A O , O rotated O 90 O ° O clockwise O . O ( O C O ) O Overlay B-experimental_method of O the O Cα O backbones O of O SGBP B-protein - I-protein A I-protein ( O black O ) O with O XyGO2 B-chemical ( O orange O and O red O spheres O ) O and O BtSusD B-protein ( O blue O ) O with O maltoheptaose B-chemical ( O pink O and O red O spheres O ), O highlighting O the O conservation O of O the O glycan B-site - I-site binding I-site site I-site location O . O ( O D O ) O Close O - O up O of O the O SGBP B-protein - I-protein A I-protein ( O black O and O orange O ) O and O SusD B-protein ( O blue O and O pink O ) O glycan B-site - I-site binding I-site sites I-site . O The O approximate O length O of O each O glycan B-site - I-site binding I-site site I-site is O displayed O , O colored O to O match O the O protein B-evidence structures I-evidence . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein A I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O The O backbone O glucose B-chemical residues O are O numbered O from O the O nonreducing O end O ; O xylose B-chemical residues O are O labeled O X1 B-residue_name_number and O X2 B-residue_name_number . O Seven O of O the O eight O backbone O glucosyl B-chemical residues O of O XyGO2 B-chemical could O be O convincingly O modeled O in O the O ligand B-evidence electron I-evidence density I-evidence , O and O only O two O α B-chemical ( I-chemical 1 I-chemical → I-chemical 6 I-chemical )- I-chemical linked I-chemical xylosyl I-chemical residues O were O observed O ( O Fig O . O 4B O ; O cf O . O Indeed O , O the O electron B-evidence density I-evidence for O the O ligand O suggests O some O disorder O , O which O may O arise O from O multiple O oligosaccharide B-chemical orientations O along O the O binding B-site site I-site . O Three O aromatic O residues O — O W82 B-residue_name_number , O W283 B-residue_name_number , O W306 B-residue_name_number — O comprise O the O flat B-site platform I-site that O stacks O along O the O naturally O twisted O β B-chemical - I-chemical glucan I-chemical backbone O ( O Fig O . O 4E O ). O The O functional O importance O of O this O platform B-site is O underscored O by O the O observation O that O the O W82A B-mutant W283A B-mutant W306A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein A I-protein , O designated O SGBP B-mutant - I-mutant A I-mutant *, I-mutant is O completely B-protein_state devoid I-protein_state of I-protein_state XyG I-protein_state affinity I-protein_state ( O Table O 3 O ; O see O Fig O . O S4 O in O the O supplemental O material O ). O Dissection O of O the O individual O contribution O of O these O residues O reveals O that O the O W82A B-mutant mutant B-protein_state displays O a O significant O 4 O . O 9 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O while O the O W306A B-mutant substitution B-experimental_method completely O abolishes B-protein_state XyG I-protein_state binding I-protein_state . O Contrasting O with O the O clear O importance O of O these O hydrophobic O interactions O , O there O are O remarkably O few O hydrogen O - O bonding O interactions O with O the O ligand B-chemical , O which O are O provided O by O R65 B-residue_name_number , O N83 B-residue_name_number , O and O S308 B-residue_name_number , O which O are O proximal O to O Glc5 B-residue_name_number and O Glc3 B-residue_name_number . O Most O surprising O in O light O of O the O saccharide B-evidence - I-evidence binding I-evidence data I-evidence , O however O , O was O a O lack O of O extensive O recognition O of O the O XyG B-chemical side O chains O ; O only O Y84 B-residue_name_number appeared O to O provide O a O hydrophobic B-site interface I-site for O a O xylosyl B-chemical residue O ( O Xyl1 B-residue_name_number ). O Summary O of O thermodynamic O parameters O for O site O - O directed O mutants O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein obtained O by O ITC B-experimental_method with O XyG B-chemical at O 25 O ° O Ca O Protein O name O Ka B-evidence ΔG O ( O kcal O ⋅ O mol O − O 1 O ) O ΔH B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O TΔS B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O Fold O changeb O M O − O 1 O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant ) O c O 4 O . O 9 O 9 O . O 1 O × O 104 O − O 6 O . O 8 O − O 6 O . O 3 O 0 O . O 5 O SGBP B-protein - I-protein A I-protein ( O W306 B-residue_name_number ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein B I-protein ( O 230 B-residue_range – I-residue_range 489 I-residue_range ) O 0 O . O 7 O ( O 8 O . O 6 O ± O 0 O . O 20 O ) O × O 104 O − O 6 O . O 7 O − O 14 O . O 9 O ± O 0 O . O 1 O − O 8 O . O 2 O SGBP B-protein - I-protein B I-protein ( O Y363A B-mutant ) O 19 O . O 7 O ( O 2 O . O 9 O ± O 0 O . O 10 O ) O × O 103 O − O 4 O . O 7 O − O 18 O . O 1 O ± O 0 O . O 1 O − O 13 O . O 3 O SGBP B-protein - I-protein B I-protein ( O W364A B-mutant ) O ND O Weak O Weak O Weak O Weak O SGBP B-protein - I-protein B I-protein ( O F414A B-mutant ) O 3 O . O 2 O ( O 1 O . O 80 O ± O 0 O . O 03 O ) O × O 104 O − O 5 O . O 8 O − O 11 O . O 4 O ± O 0 O . O 1 O − O 5 O . O 6 O Binding O thermodynamics O are O based O on O the O concentration O of O the O binding O unit O , O XyGO2 B-chemical . O Weak O binding O represents O a O Ka B-evidence of O < O 500 O M O − O 1 O . O Ka B-evidence fold O change O = O Ka B-evidence of O wild B-protein_state - I-protein_state type I-protein_state protein O / O Ka B-evidence of O mutant O protein O for O xyloglucan B-chemical binding O . O SGBP B-protein - I-protein B I-protein has O a O multimodular O structure O with O a O single O , O C O - O terminal O glycan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element . O The O crystal B-evidence structure I-evidence of O full B-protein_state - I-protein_state length I-protein_state SGBP B-protein - I-protein B I-protein in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 2 O . O 37 O Å O , O Rwork B-evidence = O 19 O . O 9 O %, O Rfree B-evidence = O 23 O . O 9 O %, O residues O 34 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ) O revealed O an O extended O structure B-evidence composed O of O three O tandem B-structure_element immunoglobulin I-structure_element ( I-structure_element Ig I-structure_element )- I-structure_element like I-structure_element domains I-structure_element ( O domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element ) O followed O at O the O C O terminus O by O a O novel O xyloglucan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O domain O D B-structure_element ) O ( O Fig O . O 5A O ). O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element display O similar O β B-structure_element - I-structure_element sandwich I-structure_element folds I-structure_element ; O domains O B B-structure_element ( O residues O 134 B-residue_range to I-residue_range 230 I-residue_range ) O and O C B-structure_element ( O residues O 231 B-residue_range to I-residue_range 313 I-residue_range ) O can O be O superimposed B-experimental_method onto O domain O A B-structure_element ( O residues O 34 B-residue_range to I-residue_range 133 I-residue_range ) O with O RMSDs B-evidence of O 1 O . O 1 O and O 1 O . O 2 O Å O , O respectively O , O for O 47 O atom O pairs O ( O 23 O % O and O 16 O % O sequence O identity O , O respectively O ). O These B-structure_element domains I-structure_element also O display O similarity O to O the O C O - O terminal O β B-structure_element - I-structure_element sandwich I-structure_element domains I-structure_element of O many O GH13 B-protein_type enzymes I-protein_type , O including O the O cyclodextrin B-protein_type glucanotransferase I-protein_type of O Geobacillus B-species stearothermophilus I-species ( O Fig O . O 5B O ). O Such B-structure_element domains I-structure_element are O not O typically O involved O in O carbohydrate B-chemical binding O . O Indeed O , O visual B-experimental_method inspection I-experimental_method of O the O SGBP B-protein - I-protein B I-protein structure B-evidence , O as O well O as O individual O production O of O the O A B-structure_element and O B B-structure_element domains O and O affinity B-experimental_method PAGE I-experimental_method analysis O ( O see O Fig O . O S5 O in O the O supplemental O material O ), O indicates O that O these O domains O do O not O contribute O to O XyG B-chemical capture O . O On O the O other O hand O , O production B-experimental_method of O the O fused B-mutant domains I-mutant C I-mutant and I-mutant D I-mutant in O tandem O ( O SGBP B-protein - I-protein B I-protein residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O retains O complete O binding O of O xyloglucan B-chemical in O vitro O , O with O the O observed O slight O increase O in O affinity O likely O arising O from O a O reduced O potential O for O steric O hindrance O of O the O smaller O protein O construct O during O polysaccharide B-chemical interactions O ( O Table O 3 O ). O While O neither O the O full B-protein_state - I-protein_state length I-protein_state protein O nor O domain O D B-structure_element displays O structural O homology O to O known O XyG B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type , O the O topology O of O SGBP B-protein - I-protein B I-protein resembles O the O xylan B-protein_type - I-protein_type binding I-protein_type protein I-protein_type Bacova_04391 B-protein ( O PDB O 3ORJ O ) O encoded O within O a O xylan B-chemical - O targeting O PUL B-gene of O B B-species . I-species ovatus I-species ( O Fig O . O 5C O ). O The O structure B-experimental_method - I-experimental_method based I-experimental_method alignment I-experimental_method of O these O proteins O reveals O 17 O % O sequence O identity O , O with O a O core O RMSD B-evidence of O 3 O . O 6 O Å O for O 253 O aligned O residues O . O While O there O is O no O substrate O - O complexed O structure O of O Bacova_04391 B-protein available O , O the O binding B-site site I-site is O predicted O to O include O W241 B-residue_name_number and O Y404 B-residue_name_number , O which O are O proximal O to O the O XyGO B-site binding I-site site I-site in O SGBP B-protein - I-protein B I-protein . O However O , O the O opposing B-protein_state , I-protein_state clamp I-protein_state - I-protein_state like I-protein_state arrangement I-protein_state of O these B-structure_element residues I-structure_element in O Bacova_04391 B-protein is O clearly O distinct O from O the O planar B-site surface I-site arrangement I-site of O the O residues B-structure_element that O interact O with O XyG B-chemical in O SGBP B-protein - I-protein B I-protein ( O described O below O ). O Multimodular O structure O of O SGBP B-protein - I-protein B I-protein ( O Bacova_02650 B-gene ). O ( O A O ) O Full B-protein_state - I-protein_state length I-protein_state structure B-evidence of O SGBP B-protein - I-protein B I-protein , O color O coded O by O domain O as O indicated O . O Prolines B-residue_name between O domains O are O indicated O as O spheres O . O An O omit B-evidence map I-evidence ( O 2σ O ) O for O XyGO2 B-chemical is O displayed O to O highlight O the O location O of O the O glycan B-site - I-site binding I-site site I-site . O ( O B O ) O Overlay O of O SGBP B-protein - I-protein B I-protein domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element ( O colored O as O in O panel O A O ), O with O a O C O - O terminal O Ig B-structure_element - I-structure_element like I-structure_element domain I-structure_element of O the O G B-species . I-species stearothermophilus I-species cyclodextrin B-protein_type glucanotransferase I-protein_type ( O PDB O 1CYG O [ O residues O 375 B-residue_range to I-residue_range 493 I-residue_range ]) O in O green O . O ( O C O ) O Cα O overlay B-experimental_method of O SGBP B-protein - I-protein B I-protein ( O gray O ) O and O Bacova_04391 B-protein ( O PDB O 3ORJ O ) O ( O pink O ). O ( O D O ) O Close O - O up O omit B-evidence map I-evidence for O the O XyGO2 B-chemical ligand O , O contoured O at O 2σ O . O ( O E O ) O Stereo O view O of O the O xyloglucan B-site - I-site binding I-site site I-site of O SGBP B-protein - I-protein B I-protein , O displaying O all O residues O within O 4 O Å O of O the O ligand O . O The O backbone O glucose B-chemical residues O are O numbered O from O the O nonreducing O end O , O xylose B-chemical residues O are O shown O as O X1 B-residue_name_number , O X2 B-residue_name_number , O and O X3 B-residue_name_number , O potential O hydrogen O - O bonding O interactions O are O shown O as O dashed O lines O , O and O the O distance O is O shown O in O angstroms O . O Inspection O of O the O tertiary O structure B-evidence indicates O that O domains O C B-structure_element and O D B-structure_element are O effectively O inseparable O , O with O a O contact O interface O of O 396 O Å2 O . O Domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element do O not O pack O against O each O other O . O Moreover O , O the O five B-structure_element - I-structure_element residue I-structure_element linkers I-structure_element between O these O first O three O domains O all O feature O a O proline B-residue_name as O the O middle B-structure_element residue I-structure_element , O suggesting O significant O conformational O rigidity O ( O Fig O . O 5A O ). O Despite O the O lack O of O sequence O and O structural O conservation O , O a O similarly O positioned O proline B-residue_name joins O the O Ig B-structure_element - I-structure_element like I-structure_element domains I-structure_element of O the O xylan O - O binding O Bacova_04391 B-protein and O the O starch B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type SusE B-protein and O SusF B-protein . O We O speculate O that O this O is O a O biologically O important O adaptation O that O serves O to O project O the O glycan B-site binding I-site site I-site of O these O proteins O far O from O the O membrane O surface O . O Any O mobility O of O SGBP B-protein - I-protein B I-protein on O the O surface O of O the O cell O ( O beyond O lateral O diffusion O within O the O membrane O ) O is O likely O imparted O by O the O eight B-structure_element - I-structure_element residue I-structure_element linker I-structure_element that O spans O the O predicted O lipidated B-protein_state Cys B-residue_name ( O C28 B-residue_name_number ) O and O the O first B-structure_element β I-structure_element - I-structure_element strand I-structure_element of O domain O A B-structure_element . O Other O outer B-protein_type membrane I-protein_type proteins I-protein_type from O various O Sus B-complex_assembly - I-complex_assembly like I-complex_assembly systems I-complex_assembly possess O a O similar O 10 B-structure_element - I-structure_element to I-structure_element 20 I-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element flexible I-structure_element linker I-structure_element between O the O lipidated B-protein_state Cys B-residue_name that O tethers O the O protein O to O the O outside O the O cell O and O the O first O secondary O structure O element O . O Analogously O , O the O outer B-protein_state membrane I-protein_state - I-protein_state anchored I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type BoGH5 B-protein of O the O XyGUL B-gene contains O a O 100 B-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element , I-structure_element all I-structure_element - I-structure_element β I-structure_element - I-structure_element strand I-structure_element , O N B-structure_element - I-structure_element terminal I-structure_element module I-structure_element and O flexible B-structure_element linker I-structure_element that O imparts O conformational O flexibility O and O distances O the O catalytic B-structure_element module I-structure_element from O the O cell O surface O . O XyG B-chemical binds B-protein_state to I-protein_state domain O D B-structure_element of O SGBP B-protein - I-protein B I-protein at O the O concave B-site interface I-site of O the O top O β B-structure_element - I-structure_element sheet I-structure_element , O with O binding O mediated O by O loops B-structure_element connecting O the O β B-structure_element - I-structure_element strands I-structure_element . O Six O glucosyl B-chemical residues O , O comprising O the O main O chain O , O and O three O branching O xylosyl B-chemical residues O of O XyGO2 B-chemical can O be O modeled O in O the O density B-evidence ( O Fig O . O 5D O ; O cf O . O The O backbone O is O flat O , O with O less O of O the O “ O twisted O - O ribbon O ” O geometry O observed O in O some O cello B-chemical - I-chemical and I-chemical xylogluco I-chemical - I-chemical oligosaccharides I-chemical . O The O aromatic B-site platform I-site created O by O W330 B-residue_name_number , O W364 B-residue_name_number , O and O Y363 B-residue_name_number spans O four O glucosyl B-chemical residues O , O compared O to O the O longer B-protein_state platform B-site of O SGBP B-protein - I-protein A I-protein , O which O supports O six O glucosyl B-chemical residues O ( O Fig O . O 5E O ). O The O Y363A B-mutant site B-experimental_method - I-experimental_method directed I-experimental_method mutant I-experimental_method of O SGBP B-protein - I-protein B I-protein displays O a O 20 O - O fold O decrease O in O the O Ka B-evidence for O XyG B-chemical , O while O the O W364A B-mutant mutant B-protein_state lacks B-protein_state XyG I-protein_state binding I-protein_state ( O Table O 3 O ; O see O Fig O . O S6 O in O the O supplemental O material O ). O There O are O no O additional O contacts O between O the O protein O and O the O β B-chemical - I-chemical glucan I-chemical backbone O and O surprisingly O few O interactions O with O the O side O - O chain O xylosyl B-chemical residues O , O despite O that O fact O that O ITC B-experimental_method data O demonstrate O that O SGBP B-protein - I-protein B I-protein does O not O measurably O bind O the O cellohexaose B-chemical ( O Table O 1 O ). O F414 B-residue_name_number stacks O with O the O xylosyl B-chemical residue O of O Glc3 B-residue_name_number , O while O Q407 B-residue_name_number is O positioned O for O hydrogen O bonding O with O the O O4 O of O xylosyl B-chemical residue O Xyl1 B-residue_name_number . O Surprisingly O , O an O F414A B-mutant mutant B-protein_state of O SGBP B-protein - I-protein B I-protein displays O only O a O mild O 3 O - O fold O decrease O in O the O Ka B-evidence value O for O XyG B-chemical , O again O suggesting O that O glycan B-chemical recognition O is O primarily O mediated O via O contact O with O the O β O - O glucan O backbone O ( O Table O 3 O ; O see O Fig O . O S6 O ). O Additional O residues B-structure_element surrounding O the O binding B-site site I-site , O including O Y369 B-residue_name_number and O E412 B-residue_name_number , O may O contribute O to O the O recognition O of O more O highly O decorated O XyG B-chemical , O but O precisely O how O this O is O mediated O is O presently O unclear O . O Hoping O to O achieve O a O higher O - O resolution O view O of O the O SGBP B-protein - I-protein B I-protein – O xyloglucan B-chemical interaction O , O we O solved B-experimental_method the O crystal B-evidence structure I-evidence of O the O fused B-mutant CD I-mutant domains I-mutant in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 1 O . O 57 O Å O , O Rwork B-evidence = O 15 O . O 6 O %, O Rfree B-evidence = O 17 O . O 1 O %, O residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ). O The O CD B-structure_element domains I-structure_element of O the O truncated B-protein_state and O full B-protein_state - I-protein_state length I-protein_state proteins O superimpose B-experimental_method with O a O 0 O . O 4 O - O Å O RMSD B-evidence of O the O Cα O backbone O , O with O no O differences O in O the O position O of O any O of O the O glycan B-site - I-site binding I-site residues I-site ( O see O Fig O . O S7A O in O the O supplemental O material O ). O While O density B-evidence is O observed O for O XyGO2 B-chemical , O the O ligand O could O not O be O unambiguously O modeled O into O this O density B-evidence to O achieve O a O reasonable O fit O between O the O X B-evidence - I-evidence ray I-evidence data I-evidence and O the O known O stereochemistry O of O the O sugar O ( O see O Fig O . O S7B O and O C O ). O While O this O may O occur O for O a O number O of O reasons O in O crystal B-evidence structures I-evidence , O it O is O likely O that O the O poor O ligand O density O even O at O higher O resolution O is O due O to O movement O or O multiple O orientations O of O the O sugar B-chemical averaged O throughout O the O lattice O . O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein have O distinct O , O coordinated O functions O in O vivo O . O The O similarity O of O the O glycan B-chemical specificity O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein presents O an O intriguing O conundrum O regarding O their O individual O roles O in O XyG B-chemical utilization O by O B B-species . I-species ovatus I-species . O To O disentangle O the O functions O of O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein in O XyG B-chemical recognition O and O uptake O , O we O created O individual O in B-experimental_method - I-experimental_method frame I-experimental_method deletion I-experimental_method and I-experimental_method complementation I-experimental_method mutant I-experimental_method strains O of O B B-species . I-species ovatus I-species . O In O these O growth B-experimental_method experiments I-experimental_method , O overnight O cultures O of O strains O grown O on O minimal O medium O plus O glucose B-chemical were O back O - O diluted O 1 O : O 100 O - O fold O into O minimal O medium O containing O 5 O mg O / O ml O of O the O reported O carbohydrate B-chemical . O Growth O on O glucose B-chemical displayed O the O shortest O lag B-evidence time I-evidence for O each O strain O , O and O so O lag B-evidence times I-evidence were O normalized O for O each O carbohydrate B-chemical by O subtracting O the O lag B-evidence time I-evidence of O that O strain O in O glucose B-chemical ( O Fig O . O 6 O ; O see O Fig O . O S8 O in O the O supplemental O material O ). O A O strain O in O which O the O entire O XyGUL B-gene is O deleted B-experimental_method displays O a O lag B-evidence of O 24 O . O 5 O h O during O growth O on O glucose B-chemical compared O to O the O isogenic O parental O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Δtdk B-mutant strain O , O for O which O exponential O growth O lags B-evidence for O 19 O . O 8 O h O ( O see O Fig O . O S8D O ). O It O is O unknown O whether O this O is O because O cultures O were O not O normalized O by O the O starting O optical O density O ( O OD O ) O or O viable O cells O or O reflects O a O minor O defect O for O glucose B-chemical utilization O . O The O former O seems O more O likely O as O the O growth O rates O are O nearly O identical O for O these O strains O on O glucose B-chemical and O xylose B-chemical . O The O ΔXyGUL B-mutant and O WT B-protein_state Δtdk B-mutant strains O display O normalized O lag B-evidence times I-evidence on O xylose B-chemical within O experimental O error O , O and O curiously O some O of O the O mutant O and O complemented O strains O display O a O nominally O shorter O lag B-evidence time I-evidence on O xylose B-chemical than O the O WT B-protein_state Δtdk B-mutant strain O . O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O The O reason O for O this O observation O on O XyGO2 B-chemical is O unclear O , O as O the O ΔSGBP B-mutant - I-mutant B I-mutant mutant B-protein_state does O not O have O a O significantly O different O growth O rate O from O the O WT B-protein_state on O XyGO2 B-chemical . O Growth O of O select O XyGUL B-gene mutants O on O xyloglucan B-chemical and O oligosaccharides B-chemical . O B B-species . I-species ovatus I-species mutants O were O created O in O a O thymidine B-mutant kinase I-mutant deletion I-mutant ( O Δtdk B-mutant ) O mutant O as O described O previously O . O SGBP B-mutant - I-mutant A I-mutant * I-mutant denotes O the O Bacova_02651 B-gene ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O allele O , O and O the O GH9 B-protein gene O is O Bacova_02649 B-gene . O Growth O was O measured O over O time O in O minimal O medium O containing O ( O A O ) O XyG B-chemical , O ( O B O ) O XyGO2 B-chemical , O ( O C O ) O XyGO1 B-chemical , O ( O D O ) O glucose B-chemical , O and O ( O E O ) O xylose B-chemical . O In O panel O F O , O the O growth O rate O of O each O strain O on O the O five O carbon O sources O is O displayed O , O and O in O panel O G O , O the O normalized O lag B-evidence time I-evidence of O each O culture O , O relative O to O its O growth O on O glucose B-chemical , O is O displayed O . O Solid O bars O indicate O conditions O that O are O not O statistically O significant O from O the O WT B-protein_state Δtdk B-mutant cultures O grown O on O the O indicated O carbohydrate B-chemical , O while O open O bars O indicate O a O P O value O of O < O 0 O . O 005 O compared O to O the O WT B-protein_state Δtdk B-mutant strain O . O Conditions O denoted O by O the O same O letter O ( O b O , O c O , O or O d O ) O are O not O statistically O significant O from O each O other O but O are O significantly O different O from O the O condition O labeled O “ O a O .” O Complementation O of O ΔSGBP B-mutant - I-mutant A I-mutant and O ΔSBGP B-mutant - I-mutant B I-mutant was O performed O by O allelic O exchange O of O the O wild B-protein_state - I-protein_state type I-protein_state genes O back O into O the O genome O for O expression O via O the O native O promoter O : O these O growth O curves O , O quantified O rates O and O lag B-evidence times I-evidence are O displayed O in O Fig O . O S8 O in O the O supplemental O material O . O The O ΔSGBP B-mutant - I-mutant A I-mutant ( O ΔBacova_02651 B-mutant ) O strain O ( O cf O . O Fig O . O 1B O ) O was O completely O incapable O of O growth O on O XyG B-chemical , O XyGO1 B-chemical , O and O XyGO2 B-chemical , O indicating O that O SGBP B-protein - I-protein A I-protein is O essential O for O XyG B-chemical utilization O ( O Fig O . O 6 O ). O This O result O mirrors O our O previous O data O for O the O canonical O Sus B-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O which O revealed O that O a O homologous O ΔsusD B-mutant mutant B-protein_state is O unable O to O grow O on O starch B-chemical or O malto B-chemical - I-chemical oligosaccharides I-chemical , O despite O normal O cell O surface O expression O of O all O other O PUL B-gene - O encoded O proteins O . O More O recently O , O we O demonstrated O that O this O phenotype O is O due O to O the O loss O of O the O physical O presence O of O SusD B-protein ; O complementation B-experimental_method of O ΔsusD B-mutant with O SusD B-mutant *, I-mutant a O triple B-protein_state site I-protein_state - I-protein_state directed I-protein_state mutant I-protein_state ( O W96A B-mutant W320A B-mutant Y296A B-mutant ) O that O ablates B-protein_state glycan I-protein_state binding I-protein_state , O restores O B B-species . I-species thetaiotaomicron I-species growth O on O malto B-chemical - I-chemical oligosaccharides I-chemical and O starch B-chemical when O sus B-gene transcription O is O induced O by O maltose B-chemical addition O . O Similarly O , O the O function O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical binding O . O Complementation B-experimental_method of O ΔSGBP B-mutant - I-mutant A I-mutant with O the O SGBP B-mutant - I-mutant A I-mutant * I-mutant ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O variant O , O which O does O not B-protein_state bind I-protein_state XyG B-chemical , O supports O growth O on O XyG B-chemical and O XyGOs B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant *), I-mutant with O growth O rates O that O are O ~ O 70 O % O that O of O the O WT B-protein_state . O In O previous O studies O , O we O observed O that O carbohydrate B-chemical binding O by O SusD B-protein enhanced O the O sensitivity O of O the O cells O to O limiting O concentrations O of O malto O - O oligosaccharides O by O several O orders O of O magnitude O , O such O that O the O addition O of O 0 O . O 5 O g O / O liter O maltose B-chemical was O required O to O restore O growth O of O the O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O on O starch B-chemical , O which O nonetheless O occurred O following O an O extended O lag B-evidence phase I-evidence . O In O contrast O , O the O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O does O not O display O an O extended O lag B-evidence time I-evidence on O any O of O the O xyloglucan B-chemical substrates O compared O to O the O WT B-protein_state ( O Fig O . O 6 O ). O The O specific O glycan B-chemical signal O that O upregulates O BoXyGUL B-gene is O currently O unknown O . O From O our O present O data O , O we O cannot O eliminate O the O possibility O that O the O glycan B-chemical binding O by O SGBP B-protein - I-protein A I-protein enhances O transcriptional O activation O of O the O XyGUL B-gene . O However O , O the O modest O rate O defect O displayed O by O the O SGBP B-protein - I-protein A I-protein :: O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O suggests O that O recognition O of O XyG B-chemical and O product O import O is O somewhat O less O efficient O in O these O cells O . O Intriguingly O , O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O ( O ΔBacova_02650 B-mutant ) O ( O cf O . O Fig O . O 1B O ) O exhibited O a O minor O growth O defect O on O both O XyG B-chemical and O XyGO2 B-chemical , O with O rates O 84 O . O 6 O % O and O 93 O . O 9 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O . O However O , O growth O of O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O on O XyGO1 B-chemical was O 54 O . O 2 O % O the O rate O of O the O parental O strain O , O despite O the O fact O that O SGBP B-protein - I-protein B I-protein binds O this O substrate O ca O . O 10 O - O fold O more O weakly O than O XyGO2 B-chemical and O XyG B-chemical ( O Fig O . O 6 O ; O Table O 1 O ). O As O such O , O the O data O suggest O that O SGBP B-protein - I-protein A I-protein can O compensate O for O the O loss O of O function O of O SGBP B-protein - I-protein B I-protein on O longer O oligo B-chemical - I-chemical and I-chemical polysaccharides I-chemical , O while O SGBP B-protein - I-protein B I-protein may O adapt O the O cell O to O recognize O smaller O oligosaccharides B-chemical efficiently O . O Indeed O , O a O double B-protein_state mutant I-protein_state , O consisting O of O a O crippled B-protein_state SGBP B-protein - I-protein A I-protein and O a O deletion B-experimental_method of I-experimental_method SGBP B-protein - I-protein B I-protein ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant */ I-mutant ΔSGBP B-mutant - I-mutant B I-mutant ), O exhibits O an O extended O lag B-evidence time I-evidence on O both O XyG B-chemical and O XyGO2 B-chemical , O as O well O as O XyGO1 B-chemical . O Taken O together O , O the O data O indicate O that O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein functionally O complement O each O other O in O the O capture O of O XyG B-chemical polysaccharide B-chemical , O while O SGBP B-protein - I-protein B I-protein may O allow O B B-species . I-species ovatus I-species to O scavenge O smaller O XyGOs B-chemical liberated O by O other O gut O commensals O . O This O additional O role O of O SGBP B-protein - I-protein B I-protein is O especially O notable O in O the O context O of O studies O on O BtSusE B-protein and O BtSusF B-protein ( O positioned O similarly O in O the O archetypal O Sus B-gene locus I-gene ) O ( O Fig O . O 1B O ), O for O which O growth O defects O on O starch B-chemical or O malto B-chemical - I-chemical oligosaccharides I-chemical have O never O been O observed O . O Beyond O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein , O we O speculated O that O the O catalytically B-protein_state feeble I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type GH9 B-protein , O which O is O expendable O for O growth O in O the O presence O of O GH5 B-protein , O might O also O play O a O role O in O glycan B-chemical binding O to O the O cell O surface O . O However O , O combined B-experimental_method deletion I-experimental_method of I-experimental_method the I-experimental_method genes I-experimental_method encoding I-experimental_method GH9 B-protein ( O encoded O by O Bacova_02649 B-gene ) O and O SGBP B-protein - I-protein B I-protein does O not O exacerbate O the O growth O defect O on O XyGO1 B-chemical ( O Fig O . O 6 O ; O ΔSGBP B-mutant - I-mutant B I-mutant / O ΔGH9 B-mutant ). O The O necessity O of O SGBP B-protein - I-protein B I-protein is O elevated O in O the O SGBP B-mutant - I-mutant A I-mutant * I-mutant strain O , O as O the O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-mutant - I-mutant A I-mutant */ I-mutant ΔSGBP B-mutant - I-mutant B I-mutant mutant B-protein_state displays O an O extended O lag B-evidence during O growth O on O XyG B-chemical and O xylogluco B-chemical - I-chemical oligosaccharides I-chemical , O while O growth O rate O differences O are O more O subtle O . O The O precise O reason O for O this O lag B-evidence is O unclear O , O but O recapitulating O our O findings O on O the O role O of O SusD B-protein in O malto B-chemical - I-chemical oligosaccharide I-chemical sensing O in O B B-species . I-species thetaiotaomicron I-species , O this O extended O lag B-evidence may O be O due O to O inefficient O import O and O thus O sensing O of O xyloglucan B-chemical in O the O environment O in O the O absence O of O glycan B-chemical binding O by O essential O SGBPs B-protein_type . O Our O previous O work O demonstrates O that O B B-species . I-species ovatus I-species cells O grown O in O minimal O medium O plus O glucose B-chemical express O low O levels O of O the O XyGUL B-gene transcript O . O Thus O , O in O our O experiments O , O we O presume O that O each O strain O , O initially O grown O in O glucose B-chemical , O expresses O low O levels O of O the O XyGUL B-gene transcript O and O thus O low O levels O of O the O XyGUL B-gene - O encoded O surface O proteins O , O including O the O vanguard O GH5 B-protein . O Presumably O without O glycan B-chemical binding O by O the O SGBPs B-protein_type , O the O GH5 B-protein protein O cannot O efficiently O process O xyloglucan B-chemical , O and O / O or O the O lack O of O SGBP B-protein_type function O prevents O efficient O capture O and O import O of O the O processed O oligosaccharides B-chemical . O It O may O then O be O that O only O after O a O sufficient O amount O of O glycan B-chemical is O processed O and O imported O by O the O cell O is O XyGUL B-gene upregulated O and O exponential O growth O on O the O glycan B-chemical can O begin O . O We O hypothesize O that O during O exponential O growth O the O essential O role O of O SGBP B-protein - I-protein A I-protein extends O beyond O glycan B-chemical recognition O , O perhaps O due O to O a O critical O interaction O with O the O TBDT B-protein_type . O In O the O BtSus B-gene , O SusD B-protein and O the O TBDT B-protein_type SusC B-protein interact O , O and O we O speculate O that O this O interaction O is O necessary O for O glycan B-chemical uptake O , O as O suggested O by O the O fact O that O a O ΔsusD B-mutant mutant B-protein_state cannot O grow O on O starch B-chemical , O but O a O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O regains O this O ability O if O a O transcriptional B-protein_type activator I-protein_type of O the O sus B-gene operon I-gene is O supplied O . O Likewise O , O such O cognate O interactions O between O homologous O protein O pairs O such O as O SGBP B-protein - I-protein A I-protein and O its O TBDT B-protein_type may O underlie O our O observation O that O a O ΔSGBP B-mutant - I-mutant A I-mutant mutant B-protein_state cannot O grow O on O xyloglucan B-chemical . O However O , O unlike O the O Sus B-complex_assembly , O in O which O elimination B-experimental_method of I-experimental_method SusE B-protein and O SusF B-protein does O not O affect O growth O on O starch B-chemical , O SGBP B-protein - I-protein B I-protein appears O to O have O a O dedicated O role O in O growth O on O small O xylogluco B-chemical - I-chemical oligosaccharides I-chemical . O The O ability O of O gut O - O adapted O microorganisms B-taxonomy_domain to O thrive O in O the O gastrointestinal O tract O is O critically O dependent O upon O their O ability O to O efficiently O recognize O , O cleave O , O and O import O glycans B-chemical . O The O human B-species gut O , O in O particular O , O is O a O densely O packed O ecosystem O with O hundreds O of O species O , O in O which O there O is O potential O for O both O competition O and O synergy O in O the O utilization O of O different O substrates O . O Recent O work O has O elucidated O that O Bacteroidetes B-taxonomy_domain cross O - O feed O during O growth O on O many O glycans B-chemical ; O the O glycoside B-protein_type hydrolases I-protein_type expressed O by O one O species O liberate O oligosaccharides B-chemical for O consumption O by O other O members O of O the O community O . O Thus O , O understanding O glycan B-chemical capture O at O the O cell O surface O is O fundamental O to O explaining O , O and O eventually O predicting O , O how O the O carbohydrate O content O of O the O diet O shapes O the O gut O community O structure O as O well O as O its O causative O health O effects O . O Here O , O we O demonstrate O that O the O surface B-protein_type glycan I-protein_type binding I-protein_type proteins I-protein_type encoded O within O the O BoXyGUL B-gene play O unique O and O essential O roles O in O the O acquisition O of O the O ubiquitous O and O abundant O vegetable B-taxonomy_domain polysaccharide B-chemical xyloglucan B-chemical . O Yet O , O a O number O of O questions O remain O regarding O the O molecular O interplay O of O SGBPs B-protein_type with O their O cotranscribed O cohort O of O glycoside B-protein_type hydrolases I-protein_type and O TonB B-protein_type - I-protein_type dependent I-protein_type transporters I-protein_type . O A O particularly O understudied O aspect O of O glycan B-chemical utilization O is O the O mechanism O of O import O via O TBDTs B-protein_type ( O SusC B-protein homologs O ) O ( O Fig O . O 1 O ), O which O are O ubiquitous O and O defining O components O of O all O PUL B-gene . O PUL B-gene - O encoded O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain are O larger O than O the O well O - O characterized O iron B-protein_type - I-protein_type targeting I-protein_type TBDTs I-protein_type from O many O Proteobacteria B-taxonomy_domain and O are O further O distinguished O as O the O only O known O glycan B-protein_type - I-protein_type importing I-protein_type TBDTs I-protein_type coexpressed O with O an O SGBP B-protein_type . O A O direct O interaction O between O the O BtSusC B-protein TBDT B-protein_type and O the O SusD B-protein SGBP B-protein_type has O been O previously O demonstrated O , O as O has O an O interaction O between O the O homologous O components O encoded O by O an O N O - O glycan B-chemical - O scavenging O PUL B-gene of O Capnocytophaga B-species canimorsus I-species . O Our O observation O here O that O the O physical O presence O of O the O SusD B-protein homolog O SGBP B-protein - I-protein A I-protein , O independent O of O XyG B-chemical - O binding O ability O , O is O both O necessary O and O sufficient O for O XyG B-chemical utilization O further O supports O a O model O of O glycan B-chemical import O whereby O the O SusC B-protein_type - I-protein_type like I-protein_type TBDTs I-protein_type and O the O SusD B-protein_type - I-protein_type like I-protein_type SGBPs I-protein_type must O be O intimately O associated O to O support O glycan B-chemical uptake O ( O Fig O . O 1C O ). O It O is O yet O presently O unclear O whether O this O interaction O is O static O or O dynamic O and O to O what O extent O the O association O of O cognate O TBDT B-protein_type / O SGBPs B-protein_type is O dependent O upon O the O structure O of O the O carbohydrate B-chemical to O be O imported O . O On O the O other O hand O , O there O is O clear O evidence O for O independent O TBDTs B-protein_type in O Bacteroidetes B-taxonomy_domain that O do O not O require O SGBP B-protein_type association O for O activity O . O For O example O , O it O was O recently O demonstrated O that O expression O of O nanO B-gene , O which O encodes O a O SusC B-protein_type - I-protein_type like I-protein_type TBDT I-protein_type as O part O of O a O sialic O - O acid O - O targeting O PUL B-gene from O B B-species . I-species fragilis I-species , O restored O growth O on O this O monosaccharide B-chemical in O a O mutant O strain O of O E B-species . I-species coli I-species . O In O this O instance O , O coexpression O of O the O susD B-gene - O like O gene O nanU B-gene was O not O required O , O nor O did O the O expression O of O the O nanU B-gene gene O enhance O growth O kinetics O . O Similarly O , O the O deletion O of O BT1762 B-gene encoding O a O fructan B-protein_type - I-protein_type targeting I-protein_type SusD I-protein_type - I-protein_type like I-protein_type protein I-protein_type in O B B-species . I-species thetaiotaomicron I-species did O not O result O in O a O dramatic O loss O of O growth O on O fructans B-chemical . O Thus O , O the O strict O dependence O on O a O SusD B-protein_type - I-protein_type like I-protein_type SGBP I-protein_type for O glycan B-chemical uptake O in O the O Bacteroidetes B-taxonomy_domain may O be O variable O and O substrate O dependent O . O Furthermore O , O considering O the O broader O distribution O of O TBDTs B-protein_type in O PUL B-gene lacking O SGBPs B-protein_type ( O sometimes O known O as O carbohydrate B-gene utilization I-gene containing I-gene TBDT I-gene [ I-gene CUT I-gene ] I-gene loci I-gene ; O see O reference O and O reviewed O in O reference O ) O across O bacterial B-taxonomy_domain phyla O , O it O appears O that O the O intimate O biophysical O association O of O these O substrate O - O transport O and O - O binding O proteins O is O the O result O of O specific O evolution O within O the O Bacteroidetes B-taxonomy_domain . O Equally O intriguing O is O the O observation O that O while O SusD B-protein_type - I-protein_type like I-protein_type proteins I-protein_type such O as O SGBP B-protein - I-protein A I-protein share O moderate O primary O and O high O tertiary O structural O conservation O , O the O genes O for O the O SGBPs B-protein_type encoded O immediately O downstream O ( O Fig O . O 1B O [ O sometimes O referred O to O as O “ O susE O positioned O ”]) O encode O glycan B-protein_type - I-protein_type binding I-protein_type lipoproteins I-protein_type with O little O or O no O sequence O or O structural O conservation O , O even O among O syntenic O PUL B-gene that O target O the O same O polysaccharide B-chemical . O Such O is O the O case O for O XyGUL B-gene from O related O Bacteroides B-taxonomy_domain species O , O which O may O encode O either O one O or O two O of O these O predicted O SGBPs B-protein_type , O and O these O proteins O vary O considerably O in O length O . O The O extremely O low O similarity O of O these O SGBPs B-protein_type is O striking O in O light O of O the O moderate O sequence O conservation O observed O among O homologous O GHs B-protein_type in O syntenic O PUL B-gene . O This O , O together O with O the O observation O that O these O SGBPs B-protein_type , O as O exemplified O by O BtSusE B-protein and O BtSusF B-protein and O the O XyGUL B-gene SGBP B-protein - I-protein B I-protein of O the O present O study O , O are O expendable O for O polysaccharide B-chemical growth O , O implies O a O high O degree O of O evolutionary O flexibility O to O enhance O glycan B-chemical capture O at O the O cell O surface O . O Because O the O intestinal O ecosystem O is O a O dense O consortium O of O bacteria B-taxonomy_domain that O must O compete O for O their O nutrients O , O these O multimodular O SGBPs B-protein_type may O reflect O ongoing O evolutionary O experiments O to O enhance O glycan B-chemical uptake O efficiency O . O Whether O organisms O that O express O longer O SGBPs B-protein_type , O extending O further O above O the O cell O surface O toward O the O extracellular O environment O , O are O better O equipped O to O compete O for O available O carbohydrates B-chemical is O presently O unknown O . O However O , O the O natural O diversity O of O these O proteins O represents O a O rich O source O for O the O discovery O of O unique O carbohydrate B-structure_element - I-structure_element binding I-structure_element motifs I-structure_element to O both O inform O gut O microbiology O and O generate O new O , O specific O carbohydrate B-chemical analytical O reagents O . O In O conclusion O , O the O present O study O further O illuminates O the O essential O role O that O surface B-protein_type - I-protein_type glycan I-protein_type binding I-protein_type proteins I-protein_type play O in O facilitating O the O catabolism O of O complex O dietary O carbohydrates B-chemical by O Bacteroidetes B-taxonomy_domain . O The O ability O of O our O resident O gut O bacteria B-taxonomy_domain to O recognize O polysaccharides B-chemical is O the O first O committed O step O of O glycan B-chemical consumption O by O these O organisms O , O a O critical O process O that O influences O the O community O structure O and O thus O the O metabolic O output O ( O i O . O e O ., O short O - O chain O fatty O acid O and O metabolite O profile O ) O of O these O organisms O . O A O molecular O understanding O of O glycan B-chemical uptake O by O human B-species gut O bacteria B-taxonomy_domain is O therefore O central O to O the O development O of O strategies O to O improve O human B-species health O through O manipulation O of O the O microbiota B-taxonomy_domain . O Mucosal O glycan B-chemical foraging O enhances O fitness O and O transmission O of O a O saccharolytic O human O gut O bacterial O symbiont O The O Structural O Basis O of O Coenzyme B-chemical A I-chemical Recycling O in O a O Bacterial B-taxonomy_domain Organelle O Bacterial B-taxonomy_domain Microcompartments B-complex_assembly ( O BMCs B-complex_assembly ) O are O proteinaceous O organelles O that O encapsulate O critical O segments O of O autotrophic O and O heterotrophic O metabolic O pathways O ; O they O are O functionally O diverse O and O are O found O across O 23 O different O phyla O . O The O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O compartmentalize O a O common O core O of O enzymes O to O metabolize O compounds O via O a O toxic O and O / O or O volatile O aldehyde B-chemical intermediate O . O The O core O enzyme O phosphotransacylase B-protein_type ( O PTAC B-protein_type ) O recycles O Coenzyme B-chemical A I-chemical and O generates O an O acyl B-chemical phosphate I-chemical that O can O serve O as O an O energy O source O . O The O PTAC B-protein_type predominantly O associated O with O metabolosomes B-complex_assembly ( O PduL B-protein_type ) O has O no O sequence O homology O to O the O PTAC B-protein_type ubiquitous O among O fermentative B-taxonomy_domain bacteria I-taxonomy_domain ( O Pta B-protein_type ). O Here O , O we O report O two O high O - O resolution O PduL B-protein_type crystal B-evidence structures I-evidence with B-protein_state bound I-protein_state substrates I-protein_state . O The O PduL B-protein_type fold B-structure_element is O unrelated O to O that B-structure_element of O Pta B-protein_type ; O it O contains O a O dimetal B-site active I-site site I-site involved O in O a O catalytic O mechanism O distinct O from O that O of O the O housekeeping B-protein_state PTAC B-protein_type . O Accordingly O , O PduL B-protein_type and O Pta B-protein_type exemplify O functional O , O but O not O structural O , O convergent O evolution O . O The O PduL B-protein_type structure B-evidence , O in O the O context O of O the O catalytic O core O , O completes O our O understanding O of O the O structural O basis O of O cofactor O recycling O in O the O metabolosome B-complex_assembly lumen O . O This O study O describes O the O structure B-evidence of O a O novel O phosphotransacylase B-protein_type enzyme O that O facilitates O the O recycling O of O the O essential O cofactor O acetyl B-chemical - I-chemical CoA I-chemical within O a O bacterial B-taxonomy_domain organelle O and O discusses O the O properties O of O the O enzyme O ' O s O active B-site site I-site and O how O it O is O packaged O into O the O organelle O . O In O metabolism O , O molecules O with O “ O high O - O energy O ” O bonds O ( O e O . O g O ., O ATP B-chemical and O Acetyl B-chemical ~ I-chemical CoA I-chemical ) O are O critical O for O both O catabolic O and O anabolic O processes O . O The O phosphotransacylase B-protein_type ( O Pta B-protein_type ) O enzyme O catalyzes O the O conversion O between O acyl B-chemical - I-chemical CoA I-chemical and O acyl B-chemical - I-chemical phosphate I-chemical . O This O reaction O directly O links O an O acyl B-chemical - I-chemical CoA I-chemical with O ATP B-chemical generation O via O substrate O - O level O phosphorylation O , O producing O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical ( O e O . O g O ., O acetate B-chemical ), O and O also O provides O a O path O for O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical to O enter O central O metabolism O . O Due O to O this O key O function O , O Pta O is O conserved B-protein_state across O the O bacterial B-taxonomy_domain kingdom I-taxonomy_domain . O Recently O , O a O new O type O of O phosphotransacylase B-protein_type was O described O that O shares O no O evolutionary O relation O to O Pta B-protein_type . O This O enzyme O , O PduL B-protein_type , O is O exclusively B-protein_state associated O with O organelles O called O bacterial B-taxonomy_domain microcompartments B-complex_assembly , O which O are O used O to O catabolize O various O compounds O . O Not O only O does O PduL B-protein_type facilitate O substrate O level O phosphorylation O , O but O it O also O is O critical O for O cofactor O recycling O within O , O and O product O efflux O from O , O the O organelle O . O We O solved B-experimental_method the O structure B-evidence of O this O convergent B-protein_state phosphotransacylase B-protein_type and O show O that O it O is O completely O structurally O different O from O Pta B-protein_type , O including O its O active B-site site I-site architecture O . O Bacterial B-taxonomy_domain Microcompartments B-complex_assembly ( O BMCs B-complex_assembly ) O are O organelles O that O encapsulate O enzymes O for O sequential O biochemical O reactions O within O a O protein O shell B-structure_element . O The O shell B-structure_element is O typically O composed O of O three O types O of O protein O subunits O , O which O form O either O hexagonal B-protein_state ( O BMC B-complex_assembly - I-complex_assembly H I-complex_assembly and O BMC B-complex_assembly - I-complex_assembly T I-complex_assembly ) O or O pentagonal B-protein_state ( O BMC B-complex_assembly - I-complex_assembly P I-complex_assembly ) O tiles O that O assemble O into O a O polyhedral B-protein_state shell B-structure_element . O The O facets O of O the O shell B-structure_element are O composed O primarily O of O hexamers B-oligomeric_state that O are O typically O perforated O by O pores B-site lined O with O highly B-protein_state conserved I-protein_state , O polar B-protein_state residues B-structure_element that O presumably O function O as O the O conduits O for O metabolites O into O and O out O of O the O shell B-structure_element . O The O vitamin B-complex_assembly B12 I-complex_assembly - I-complex_assembly dependent I-complex_assembly propanediol I-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly PDU I-complex_assembly ) I-complex_assembly BMC I-complex_assembly was O one O of O the O first O functionally O characterized O catabolic B-protein_state BMCs B-complex_assembly ; O subsequently O , O other O types O have O been O implicated O in O the O degradation O of O ethanolamine B-chemical , O choline B-chemical , O fucose B-chemical , O rhamnose B-chemical , O and O ethanol B-chemical , O all O of O which O produce O different O aldehyde B-chemical intermediates O ( O Table O 1 O ). O More O recently O , O bioinformatic B-experimental_method studies I-experimental_method have O demonstrated O the O widespread O distribution O of O BMCs B-complex_assembly among O diverse O bacterial B-taxonomy_domain phyla I-taxonomy_domain and O grouped O them O into O 23 O different O functional O types O . O The O reactions O carried O out O in O the O majority O of O catabolic B-protein_state BMCs B-complex_assembly ( O also O known O as O metabolosomes B-complex_assembly ) O fit O a O generalized O biochemical O paradigm O for O the O oxidation O of O aldehydes B-chemical ( O Fig O 1 O ). O This O involves O a O BMC B-complex_assembly - O encapsulated O signature O enzyme O that O generates O a O toxic O and O / O or O volatile O aldehyde B-chemical that O the O BMC B-complex_assembly shell B-structure_element sequesters O from O the O cytosol O . O The O aldehyde B-chemical is O subsequently O converted O into O an O acyl B-chemical - I-chemical CoA I-chemical by O aldehyde B-protein_type dehydrogenase I-protein_type , O which O uses O NAD B-chemical + I-chemical and O CoA B-chemical as O cofactors O . O These O two O cofactors O are O relatively O large O , O and O their O diffusion O across O the O protein B-structure_element shell I-structure_element is O thought O to O be O restricted O , O necessitating O their O regeneration O within O the O BMC B-complex_assembly lumen O . O NAD B-chemical + I-chemical is O recycled O via O alcohol B-protein_type dehydrogenase I-protein_type , O and O CoA B-chemical is O recycled O via O phosphotransacetylase B-protein_type ( O PTAC B-protein_type ) O ( O Fig O 1 O ). O The O final O product O of O the O BMC B-complex_assembly , O an O acyl B-chemical - I-chemical phosphate I-chemical , O can O then O be O used O to O generate O ATP B-chemical via O acyl B-protein_type kinase I-protein_type , O or O revert O back O to O acyl B-chemical - I-chemical CoA I-chemical by O Pta B-protein_type for O biosynthesis O . O Collectively O , O the O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type , O as O well O as O the O PTAC B-protein_type , O constitute O the O common O metabolosome B-complex_assembly core O . O General O biochemical O model O of O aldehyde B-protein_state - I-protein_state degrading I-protein_state BMCs B-complex_assembly ( O metabolosomes B-complex_assembly ) O illustrating O the O common O metabolosome B-complex_assembly core O enzymes O and O reactions O . O Substrates O and O cofactors O involving O the O PTAC B-protein_type reaction O are O shown O in O red O ; O other O substrates O and O enzymes O are O shown O in O black O , O and O other O cofactors O are O shown O in O gray O . O Characterized O and O predicted O catabolic B-protein_state BMC B-complex_assembly ( O metabolosome B-complex_assembly ) O types O that O represent O the O aldehyde B-chemical - O degrading O paradigm O ( O for O definition O of O types O see O Kerfeld O and O Erbilgin O ). O Name O PTAC B-protein_type Type O Sequestered O Aldehyde B-chemical PDU B-complex_assembly * O PduL B-protein_type propionaldehyde B-chemical EUT1 B-complex_assembly PTA_PTB B-protein_type acetaldehyde B-chemical EUT2 B-complex_assembly PduL B-protein_type acetaldehyde B-chemical ETU B-complex_assembly None O acetaldehyde B-chemical GRM1 B-complex_assembly / I-complex_assembly CUT I-complex_assembly PduL B-protein_type acetaldehyde B-chemical GRM2 B-complex_assembly PduL B-protein_type acetaldehyde B-chemical GRM3 B-complex_assembly *, I-complex_assembly 4 I-complex_assembly PduL B-protein_type propionaldehyde B-chemical GRM5 B-complex_assembly / I-complex_assembly GRP I-complex_assembly PduL B-protein_type propionaldehyde B-chemical PVM B-complex_assembly * O PduL B-protein_type lactaldehyde B-chemical RMM1 B-complex_assembly , I-complex_assembly 2 I-complex_assembly None O unknown O SPU B-complex_assembly PduL B-protein_type unknown O * O PduL B-protein_type from O these O functional O types O of O metabolosomes B-complex_assembly were O purified O in O this O study O . O The O activities O of O core O enzymes O are O not O confined O to O BMC B-complex_assembly - O associated O functions O : O aldehyde B-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type are O utilized O in O diverse O metabolic O reactions O , O and O PTAC B-protein_type catalyzes O a O key O biochemical O reaction O in O the O process O of O obtaining O energy O during O fermentation O . O The O concerted O functioning O of O a O PTAC B-protein_type and O an O acetate B-protein_type kinase I-protein_type ( O Ack B-protein_type ) O is O crucial O for O ATP B-chemical generation O in O the O fermentation O of O pyruvate B-chemical to O acetate B-chemical ( O see O Reactions O 1 O and O 2 O ). O Both O enzymes O are O , O however O , O not O restricted O to O fermentative B-taxonomy_domain organisms I-taxonomy_domain . O They O can O also O work O in O the O reverse O direction O to O activate O acetate B-chemical to O the O CoA B-chemical - I-chemical thioester I-chemical . O This O occurs O , O for O example O , O during O acetoclastic O methanogenesis O in O the O archaeal B-taxonomy_domain Methanosarcina B-taxonomy_domain species I-taxonomy_domain . O Reaction O 1 O : O acetyl B-chemical - I-chemical S I-chemical - I-chemical CoA I-chemical + O Pi B-chemical ←→ O acetyl B-chemical phosphate I-chemical + O CoA B-chemical - I-chemical SH I-chemical ( O PTAC B-protein_type ) O Reaction O 2 O : O acetyl B-chemical phosphate I-chemical + O ADP B-chemical ←→ O acetate B-chemical + O ATP B-chemical ( O Ack B-protein_type ) O The O canonical O PTAC B-protein_type , O Pta B-protein_type , O is O an O ancient O enzyme O found O in O some O eukaryotes B-taxonomy_domain and O archaea B-taxonomy_domain , O and O widespread O among O the O bacteria B-taxonomy_domain ; O 90 O % O of O the O bacterial B-taxonomy_domain genomes O in O the O Integrated O Microbial O Genomes O database O contain O a O gene O encoding O the O PTA_PTB B-protein_type phosphotransacylase I-protein_type ( O Pfam O domain O PF01515 B-structure_element ). O Pta B-protein_type has O been O extensively O characterized O due O to O its O key O role O in O fermentation O . O More O recently O , O a O second O type O of O PTAC B-protein_type without O any O sequence O homology O to O Pta B-protein_type was O identified O . O This O protein O , O PduL B-protein_type ( O Pfam O domain O PF06130 B-structure_element ), O was O shown O to O catalyze O the O conversion O of O propionyl B-chemical - I-chemical CoA I-chemical to O propionyl B-chemical - I-chemical phosphate I-chemical and O is O associated O with O a O BMC B-complex_assembly involved O in O propanediol O utilization O , O the O PDU B-complex_assembly BMC I-complex_assembly . O Both O pduL B-gene and O pta B-gene genes O can O be O found O in O genetic O loci O of O functionally O distinct O BMCs B-complex_assembly , O although O the O PduL B-protein_type type O is O much O more O prevalent O , O being O found O in O all O but O one O type O of O metabolosome B-gene locus I-gene : O EUT1 B-gene ( O Table O 1 O ). O Furthermore O , O in O the O Integrated O Microbial O Genomes O Database O , O 91 O % O of O genomes O that O encode O PF06130 B-structure_element also O encode O genes O for O shell O proteins O . O As O a O member O of O the O core O biochemical O machinery O of O functionally O diverse O aldehyde B-protein_state - I-protein_state oxidizing I-protein_state metabolosomes B-complex_assembly , O PduL B-protein_type must O have O a O certain O level O of O substrate O plasticity O ( O see O Table O 1 O ) O that O is O not O required O of O Pta B-protein_type , O which O has O generally O been O observed O to O prefer O acetyl B-chemical - I-chemical CoA I-chemical . O PduL B-protein_type from O the O PDU B-complex_assembly BMC I-complex_assembly of O Salmonella B-species enterica I-species favors O propionyl B-chemical - I-chemical CoA I-chemical over O acetyl B-chemical - I-chemical CoA I-chemical , O and O it O is O likely O that O PduL B-protein_type orthologs O in O functionally O diverse O BMCs B-complex_assembly would O have O substrate O preferences O for O other O CoA B-chemical derivatives O . O Another O distinctive O feature O of O BMC B-protein_state - I-protein_state associated I-protein_state PduL B-protein_type homologs O is O an O N O - O terminal O encapsulation B-structure_element peptide I-structure_element ( O EP B-structure_element ) O that O is O thought O to O “ O target O ” O proteins O for O encapsulation O by O the O BMC B-complex_assembly shell B-structure_element . O EPs B-structure_element are O frequently O found O on O BMC B-protein_type - I-protein_type associated I-protein_type proteins I-protein_type and O have O been O shown O to O interact O with O shell O proteins O . O EPs B-structure_element have O also O been O observed O to O cause O proteins O to O aggregate O , O and O this O has O recently O been O suggested O to O be O functionally O relevant O as O an O initial O step O in O metabolosome B-complex_assembly assembly O , O in O which O a O multifunctional O protein O core O is O formed O , O around O which O the O shell B-structure_element assembles O . O Of O the O three O common O metabolosome B-complex_assembly core O enzymes O , O crystal B-evidence structures I-evidence are O available O for O both O the O alcohol B-protein_type and I-protein_type aldehyde I-protein_type dehydrogenases I-protein_type . O In O contrast O , O the O structure B-evidence of O PduL B-protein_type , O the O PTAC B-protein_type found O in O the O vast O majority O of O catabolic B-protein_state BMCs B-complex_assembly , O has O not O been O determined O . O This O is O a O major O gap O in O our O understanding O of O metabolosome B-complex_assembly - O encapsulated O biochemistry O and O cofactor O recycling O . O Moreover O , O it O will O be O useful O for O guiding O efforts O to O engineer O novel O BMC B-complex_assembly cores O for O biotechnological O applications O . O The O primary O structure O of O PduL B-protein_type homologs O is O subdivided O into O two O PF06130 B-structure_element domains O , O each O roughly O 80 B-residue_range residues I-residue_range in I-residue_range length I-residue_range . O No O available O protein O structures O contain O the O PF06130 B-structure_element domain O , O and O homology B-experimental_method searches I-experimental_method using O the O primary O structure O of O PduL B-protein_type do O not O return O any O significant O results O that O would O allow O prediction O of O the O structure B-evidence . O Moreover O , O the O evident O novelty O of O PduL B-protein_type makes O its O structure B-evidence interesting O in O the O context O of O convergent O evolution O of O PTAC B-protein_type function O ; O to O - O date O , O only O the O Pta B-protein_type active B-site site I-site and O catalytic O mechanism O is O known O . O Here O we O report O high O - O resolution O crystal B-evidence structures I-evidence of O a O PduL B-protein_type - I-protein_type type I-protein_type PTAC I-protein_type in O both O CoA B-protein_state - I-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state forms O , O completing O our O understanding O of O the O structural O basis O of O catalysis O by O the O metabolosome B-complex_assembly common O core O enzymes O . O We O propose O a O catalytic O mechanism O analogous O but O yet O distinct O from O the O ubiquitous O Pta B-protein_type enzyme O , O highlighting O the O functional O convergence O of O two O enzymes O with O completely O different O structures O and O metal O requirements O . O We O also O investigate O the O quaternary O structures O of O three O different O PduL B-protein_type homologs O and O situate O our O findings O in O the O context O of O organelle O biogenesis O in O functionally O diverse O BMCs B-complex_assembly . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type We O cloned B-experimental_method , I-experimental_method expressed I-experimental_method , I-experimental_method and I-experimental_method purified I-experimental_method three O different O PduL B-protein_type homologs O from O functionally O distinct O BMCs B-complex_assembly ( O Table O 1 O ): O from O the O well O - O studied O pdu B-gene locus I-gene in O S B-species . I-species enterica I-species Typhimurium I-species LT2 I-species ( O sPduL B-protein ), O from O the O recently O characterized O pvm B-gene locus I-gene in O Planctomyces B-species limnophilus I-species ( O pPduL B-protein ), O and O from O the O grm3 B-gene locus I-gene in O Rhodopseudomonas B-species palustris I-species BisB18 I-species ( O rPduL B-protein ). O While O purifying O full B-protein_state - I-protein_state length I-protein_state sPduL B-protein , O we O observed O a O tendency O to O aggregation O as O described O previously O , O with O a O large O fraction O of O the O expressed O protein O found O in O the O insoluble O fraction O in O a O white O , O cake O - O like O pellet O . O Remarkably O , O after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 27 B-residue_range amino I-residue_range acids I-residue_range ), O most O of O the O sPduLΔEP B-mutant protein O was O in O the O soluble O fraction O upon O cell O lysis O . O Similar O differences O in O solubility O were O observed O for O pPduL B-protein and O rPduL B-protein when O comparing O EP B-protein_state - I-protein_state truncated I-protein_state forms O to O the O full B-protein_state - I-protein_state length I-protein_state protein O , O but O none O were O quite O as O dramatic O as O for O sPduL B-protein . O We O confirmed O that O all O homologs O were O active B-protein_state ( O S1a O and O S1b O Fig O ). O Among O these O , O we O were O only O able O to O obtain O diffraction B-evidence - I-evidence quality I-evidence crystals I-evidence of O rPduL B-protein after O removing B-experimental_method the O N O - O terminal O putative O EP B-structure_element ( O 33 B-residue_range amino I-residue_range acids I-residue_range , O also O see O Fig O 2a O ) O ( O rPduLΔEP B-mutant ). O Truncated B-protein_state rPduLΔEP B-mutant had O comparable O enzymatic O activity O to O the O full B-protein_state - I-protein_state length I-protein_state enzyme O ( O S1a O Fig O ). O Structural O overview O of O R B-species . I-species palustris I-species PduL B-protein_type from O the O grm3 B-gene locus I-gene . O ( O a O ) O Primary O and O secondary O structure O of O rPduL B-protein ( O tubes O represent O α B-structure_element - I-structure_element helices I-structure_element , O arrows O β B-structure_element - I-structure_element sheets I-structure_element and O dashed O line O residues O disordered O in O the O structure B-evidence . O The O first B-residue_range 33 I-residue_range amino I-residue_range acids I-residue_range are O present O only O in O the O wildtype O construct O and O contains O the O predicted O EP B-structure_element alpha B-structure_element helix I-structure_element , O α0 B-structure_element ); O the O truncated B-protein_state rPduLΔEP B-mutant that O was O crystallized B-experimental_method begins O with O M B-residue_name - O G B-residue_name - O V B-residue_name . O Coloring O is O according O to O structural O domains O ( O domain B-structure_element 1 I-structure_element D36 B-residue_range - I-residue_range N46 I-residue_range / O Q155 B-residue_range - I-residue_range C224 I-residue_range , O blue O ; O loop B-structure_element insertion I-structure_element G61 B-residue_range - I-residue_range E81 I-residue_range , O grey O ; O domain B-structure_element 2 I-structure_element R47 B-residue_range - I-residue_range F60 I-residue_range / O E82 B-residue_range - I-residue_range A154 I-residue_range , O red O ). O Metal B-site coordination I-site residues I-site are O highlighted O in O light O blue O and O CoA B-site contacting I-site residues I-site in O magenta O , O residues O contacting O the O CoA B-chemical of O the O other O chain O are O also O outlined O . O ( O b O ) O Cartoon O representation O of O the O structure B-evidence colored O by O domains O and O including O secondary O structure B-evidence numbering O . O Coenzyme B-chemical A I-chemical is O shown O in O magenta O sticks O and O Zinc B-chemical ( O grey O ) O as O spheres O . O We O collected B-experimental_method a I-experimental_method native I-experimental_method dataset I-experimental_method from O rPduLΔEP B-mutant crystals B-evidence diffracting O to O a O resolution O of O 1 O . O 54 O Å O ( O Table O 2 O ). O Using O a O mercury B-experimental_method - I-experimental_method derivative I-experimental_method crystal I-experimental_method form O diffracting O to O 1 O . O 99 O Å O ( O Table O 2 O ), O we O obtained O high O quality O electron B-evidence density I-evidence for O model O building O and O used O the O initial O model O to O refine O against O the O native O data O to O Rwork B-evidence / O Rfree B-evidence values O of O 18 O . O 9 O / O 22 O . O 1 O %. O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O of O the O P212121 O unit O cell O . O We O were O able O to O fit O all O of O the O primary O structure O of O PduLΔEP B-mutant into O the O electron B-evidence density I-evidence with O the O exception O of O three O amino O acids O at O the O N O - O terminus O and O two O amino O acids O at O the O C O - O terminus O ( O Fig O 2a O ); O the O model O is O of O excellent O quality O ( O Table O 2 O ). O A O CoA B-chemical cofactor O as O well O as O two O metal O ions O are O clearly O resolved O in O the O density B-evidence ( O for O omit B-evidence maps I-evidence of O CoA B-chemical see O S2 O Fig O ). O Structurally O , O PduL B-protein_type consists O of O two O domains B-structure_element ( O Fig O 2 O , O blue O / O red O ), O each O a O beta B-structure_element - I-structure_element barrel I-structure_element that O is O capped O on O both O ends O by O short O α B-structure_element - I-structure_element helices I-structure_element . O β B-structure_element - I-structure_element Barrel I-structure_element 1 I-structure_element consists O of O the O N O - O terminal O β B-structure_element strand I-structure_element and O β B-structure_element strands I-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O polypeptide O chain O ( O β1 B-structure_element , O β10 B-structure_element - I-structure_element β14 I-structure_element ; O residues O 37 B-residue_range – I-residue_range 46 I-residue_range and O 155 B-residue_range – I-residue_range 224 I-residue_range ). O β B-structure_element - I-structure_element Barrel I-structure_element 2 I-structure_element consists O mainly O of O the O central O segment O of O primary O structure O ( O β2 B-structure_element , O β5 B-structure_element – I-structure_element β9 I-structure_element ; O residues O 47 B-residue_range – I-residue_range 60 I-residue_range and O 82 B-residue_range – I-residue_range 154 I-residue_range ) O ( O Fig O 2 O , O red O ), O but O is O interrupted O by O a O short B-structure_element two I-structure_element - I-structure_element strand I-structure_element beta I-structure_element sheet I-structure_element ( O β3 B-structure_element - I-structure_element β4 I-structure_element , O residues O 61 B-residue_range – I-residue_range 81 I-residue_range ). O This O β B-structure_element - I-structure_element sheet I-structure_element is O involved O in O contacts O between O the O two O domains O and O forms O a O lid O over O the O active B-site site I-site . O Residues O in O this O region O ( O Gln42 B-residue_name_number , O Pro43 B-residue_name_number , O Gly44 B-residue_name_number ), O covering O the O active B-site site I-site , O are O strongly B-protein_state conserved I-protein_state ( O Fig O 3 O ). O This O structural O arrangement O is O completely O different O from O the O functionally O related O Pta B-protein_type , O which O is O composed O of O two O domains B-structure_element , O each O consisting O of O a O central O flat O beta B-structure_element sheet I-structure_element with O alpha B-structure_element - I-structure_element helices I-structure_element on O the O top O and O bottom O . O Primary O structure O conservation O of O the O PduL B-protein_type protein O family O . O Sequence O logo O calculated O from O the O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PduL B-protein_type homologs O ( O see O Materials O and O Methods O ), O but O not B-protein_state including I-protein_state putative O EP B-structure_element sequences O . O Residues O 100 O % O conserved O across O all O PduL B-protein_type homologs O in O our O dataset O are O noted O with O an O asterisk O , O and O residues O conserved O in O over O 90 O % O of O sequences O are O noted O with O a O colon O . O The O sequences O aligning O to O the O PF06130 B-structure_element domain O ( O determined O by O BLAST O ) O are O highlighted O in O red O and O blue O . O The O position O numbers O shown O correspond O to O the O residue O numbering O of O rPduL B-protein ; O note O that O some O positions O in O the O logo O represent O gaps O in O the O rPduL B-protein sequence O . O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O forming O a O butterfly B-protein_state - I-protein_state shaped I-protein_state dimer B-oligomeric_state ( O Fig O 4c O ). O Consistent O with O this O , O results O from O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O rPduLΔEP B-mutant suggest O that O it O is O a O dimer B-oligomeric_state in O solution O ( O Fig O 5e O ). O The O interface B-site between O the O two O chains O buries O 882 O Å2 O per O monomer B-oligomeric_state and O is O mainly O formed O by O α B-structure_element - I-structure_element helices I-structure_element 2 I-structure_element and I-structure_element 4 I-structure_element and O parts O of O β B-structure_element - I-structure_element sheets I-structure_element 12 I-structure_element and I-structure_element 14 I-structure_element , O as O well O as O a O π O – O π O stacking O of O the O adenine B-chemical moiety O of O CoA B-chemical with O Phe116 B-residue_name_number of O the O adjacent O chain O ( O Fig O 4c O ). O The O folds O of O the O two O chains O in O the O asymmetric O unit O are O very O similar O , O superimposing B-experimental_method with O a O rmsd B-evidence of O 0 O . O 16 O Å O over O 2 O , O 306 O aligned O atom O pairs O . O The O peripheral O helices B-structure_element and O the O short B-structure_element antiparallel I-structure_element β3 I-structure_element – I-structure_element 4 I-structure_element sheet I-structure_element mediate O most O of O the O crystal O contacts O . O Details O of O active B-site site I-site , O dimeric B-oligomeric_state assembly O , O and O sequence O conservation O of O PduL B-protein_type . O ( O a O , O b O ) O Proposed O active B-site site I-site of O PduL B-protein_type with O relevant O residues O shown O as O sticks O in O atom O coloring O ( O nitrogen B-chemical blue O , O oxygen B-chemical red O , O sulfur B-chemical yellow O ), O zinc B-chemical as O grey O colored O spheres O and O coordinating O ordered O water B-chemical molecules O in O red O . O Distances O between O atom O centers O are O indicated O in O Å O . O ( O a O ) O Coenzyme B-chemical A I-chemical containing O , O ( O b O ) O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence . O ( O c O ) O View O of O the O dimer B-oligomeric_state in O the O asymmetric O unit O from O the O side O , O domains B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element colored O as O in O Fig O 2 O and O the O two O chains O differentiated O by O blue O / O red O versus O slate O / O firebrick O . O The O asterisk O and O double O arrow O marks O the O location O of O the O π O – O π O interaction O between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O ( O d O ) O Surface O representation O of O the O structure B-evidence with O indicated O conservation O ( O red O : O high O , O white O : O intermediate O , O yellow O : O low O ). O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PduL B-protein_type homologs O . O ( O a O )–( O c O ): O Chromatograms B-evidence of O sPduL B-protein ( O a O ), O rPduL B-protein ( O b O ), O and O pPduL B-protein ( O c O ) O with O ( O orange O ) O or O without O ( O blue O ) O the O predicted O EP B-structure_element , O post O - O nickel B-experimental_method affinity I-experimental_method purification I-experimental_method , O applied O over O a O preparative O size O exclusion O column O ( O see O Materials O and O Methods O ). O ( O d O )–( O f O ): O Chromatograms B-evidence of O sPduL B-protein ( O d O ), O rPduL B-protein ( O e O ), O and O pPduL B-protein ( O f O ) O post O - O preparative O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O different O size O fractions O separated O , O applied O over O an O analytical O size O exclusion O column O ( O see O Materials O and O Methods O ). O All O chromatograms B-evidence are O cropped O to O show O only O the O linear O range O of O separation O based O on O standard O runs O , O shown O in O black O squares O with O a O dashed O linear O trend O line O . O Active B-site Site I-site Properties O CoA B-chemical and O the O metal O ions O bind O between O the O two O domains O , O presumably O in O the O active B-site site I-site ( O Figs O 2b O and O 4a O ). O To O identify O the O bound O metals O , O we O performed O an O X B-experimental_method - I-experimental_method ray I-experimental_method fluorescence I-experimental_method scan I-experimental_method on O the O crystals B-evidence at O various O wavelengths O ( O corresponding O to O the O K O - O edges O of O Mn B-chemical , O Fe B-chemical , O Co B-chemical , O Ni B-chemical , O Cu B-chemical , O and O Zn B-chemical ). O There O was O a O large O signal O at O the O zinc O edge O , O and O we O tested O for O the O presence O of O zinc B-chemical by O collecting B-experimental_method full I-experimental_method data I-experimental_method sets I-experimental_method before I-experimental_method and I-experimental_method after I-experimental_method the I-experimental_method Zn I-experimental_method K I-experimental_method - I-experimental_method edge I-experimental_method ( I-experimental_method 1 I-experimental_method . I-experimental_method 2861 I-experimental_method and I-experimental_method 1 I-experimental_method . I-experimental_method 2822 I-experimental_method Å I-experimental_method , O respectively O ). O The O large O differences O between O the O anomalous O signals O confirm O the O presence O of O zinc B-chemical at O both O metal O sites O ( O S3 O Fig O ). O The O first O zinc B-chemical ion O ( O Zn1 B-chemical ) O is O in O a O tetrahedral O coordination O state O with O His48 B-residue_name_number , O His50 B-residue_name_number , O Glu109 B-residue_name_number , O and O the O CoA B-chemical sulfur B-chemical ( O Fig O 4a O ). O The O second O ( O Zn2 B-chemical ) O is O in O octahedral O coordination O by O three O conserved B-protein_state histidine B-residue_name residues O ( O His157 B-residue_name_number , O His159 B-residue_name_number and O His204 B-residue_name_number ) O as O well O as O three O water B-chemical molecules O ( O Fig O 4a O ). O The O nitrogen O atom O coordinating O the O zinc B-chemical is O the O Nε O in O each O histidine B-residue_name residue O , O as O is O typical O for O this O interaction O . O When O the O crystals B-experimental_method were I-experimental_method soaked I-experimental_method in O a O sodium B-chemical phosphate I-chemical solution O for O 2 O d O prior O to O data O collection O , O the O CoA B-chemical dissociates O , O and O density B-evidence for O a O phosphate B-chemical molecule O is O visible O at O the O active B-site site I-site ( O Table O 2 O , O Fig O 4b O ). O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence aligns B-experimental_method well O with O the O CoA B-protein_state - I-protein_state bound I-protein_state structure B-evidence ( O 0 O . O 43 O Å O rmsd B-evidence over O 2 O , O 361 O atoms O for O the O monomer B-oligomeric_state , O 0 O . O 83 O Å O over O 5 O , O 259 O aligned O atoms O for O the O dimer B-oligomeric_state ). O The O phosphate B-chemical contacts O both O zinc B-chemical atoms O ( O Fig O 4b O ) O and O replaces O the O coordination O by O CoA B-chemical at O Zn1 B-chemical ; O the O coordination O for O Zn2 B-chemical changes O from O octahedral O with O three O bound O waters B-chemical to O tetrahedral O with O a O phosphate B-chemical ion O as O one O of O the O ligands O ( O Fig O 4b O ). O Conserved B-protein_state Arg103 B-residue_name_number seems O to O be O involved O in O maintaining O the O phosphate B-chemical in O that O position O . O The O two O zinc B-chemical atoms O are O slightly O closer O together O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state form O ( O 5 O . O 8 O Å O vs O 6 O . O 3 O Å O ), O possibly O due O to O the O bridging O effect O of O the O phosphate B-chemical . O An O additional O phosphate B-chemical molecule O is O bound O at O a O crystal O contact O interface O , O perhaps O accounting O for O the O 14 O Å O shorter O c O - O axis O in O the O phosphate B-protein_state - I-protein_state bound I-protein_state crystal O form O ( O Table O 2 O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element Interestingly O , O some O of O the O residues O important O for O dimerization O of O rPduL B-protein , O particularly O Phe116 B-residue_name_number , O are O poorly B-protein_state conserved I-protein_state across O PduL B-protein_type homologs O associated O with O functionally O diverse O BMCs B-complex_assembly ( O Figs O 4c O and O 3 O ), O suggesting O that O they O may O have O alternative O oligomeric O states O . O We O tested O this O hypothesis O by O performing O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method on O both O full B-protein_state - I-protein_state length I-protein_state and O truncated O variants O ( O lacking B-protein_state the O EP B-structure_element , O ΔEP B-mutant ) O of O sPduL B-protein , O rPduL B-protein , O and O pPduL B-protein . O These O three O homologs O are O found O in O functionally O distinct O BMCs B-complex_assembly ( O Table O 1 O ). O It O has O been O proposed O that O the O catabolic B-protein_state BMCs B-complex_assembly may O assemble O in O a O core O - O first O manner O , O with O the O luminal O enzymes O ( O signature O enzyme O , O aldehyde B-protein_type , I-protein_type and I-protein_type alcohol I-protein_type dehydrogenases I-protein_type and O the O BMC B-complex_assembly PTAC B-protein_type ) O forming O an O initial O bolus O , O or O prometabolosome O , O around O which O a O shell B-structure_element assembles O . O Given O the O diversity O of O signature O enzymes O ( O Table O 1 O ), O it O is O plausible O that O PduL B-protein_type orthologs O may O adopt O different O oligomeric O states O that O reflect O the O differences O in O the O proteins O being O packaged O with O them O in O the O organelle O lumen O . O We O found O that O not O only O did O the O different O orthologs O appear O to O assemble O into O different O oligomeric O states O , O but O that O quaternary O structure O was O dependent O on O whether O or O not O the O EP B-structure_element was O present O . O Full B-protein_state - I-protein_state length I-protein_state sPduL B-protein was O unstable O in O solution O — O precipitating O over O time O — O and O eluted O throughout O the O entire O volume O of O a O size O exclusion O column O , O indicating O it O was O nonspecifically O aggregating O . O However O , O when O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 27 I-residue_range ) O was O removed B-experimental_method ( O sPduL B-mutant ΔEP I-mutant ), O the O truncated B-protein_state protein O was O stable O and O eluted O as O a O single O peak O ( O Fig O 5a O ) O consistent O with O the O size O of O a O monomer B-oligomeric_state ( O Fig O 5d O , O blue O curve O ). O In O contrast O , O both O full B-protein_state - I-protein_state length I-protein_state rPduL B-protein and O pPduL B-protein appeared O to O exist O in O two O distinct O oligomeric O states O ( O Fig O 5b O and O 5c O respectively O , O orange O curves O ), O one O form O of O the O approximate O size O of O a O dimer B-oligomeric_state and O the O second O , O a O higher O molecular O weight O oligomer B-oligomeric_state (~ O 150 O kDa O ). O Upon O deletion B-experimental_method of O the O putative O EP B-structure_element ( O residues O 1 B-residue_range – I-residue_range 47 I-residue_range for O rPduL B-protein , O and O 1 B-residue_range – I-residue_range 20 I-residue_range for O pPduL B-protein ), O there O was O a O distinct O change O in O the O elution O profiles O ( O Fig O 5b O and O 5c O respectively O , O blue O curves O ). O pPduLΔEP B-mutant eluted O as O two O smaller O forms O , O possibly O corresponding O to O a O trimer B-oligomeric_state and O a O monomer B-oligomeric_state . O In O contrast O , O rPduLΔEP B-mutant eluted O as O one O smaller O oligomer O , O possibly O a O dimer B-oligomeric_state . O We O also O analyzed O purified O rPduL B-protein and O rPduLΔEP B-mutant by O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method coupled O with O multiangle B-experimental_method light I-experimental_method scattering I-experimental_method ( O SEC B-experimental_method - I-experimental_method MALS I-experimental_method ) O for O a O complementary O approach O to O assessing O oligomeric O state O . O SEC B-experimental_method - I-experimental_method MALS I-experimental_method analysis O of O rPdulΔEP B-mutant is O consistent O with O a O dimer B-oligomeric_state ( O as O observed O in O the O crystal B-evidence structure I-evidence ) O with O a O weighted B-evidence average I-evidence ( I-evidence Mw I-evidence ) I-evidence and I-evidence number I-evidence average I-evidence ( I-evidence Mn I-evidence ) I-evidence of I-evidence the I-evidence molar I-evidence mass I-evidence of O 58 O . O 4 O kDa O +/− O 11 O . O 2 O % O and O 58 O . O 8 O kDa O +/− O 10 O . O 9 O %, O respectively O ( O S4a O Fig O ). O rPduL B-protein full B-protein_state length I-protein_state runs O as O Mw B-evidence = O 140 O . O 3 O kDa O +/− O 1 O . O 2 O % O and O Mn B-evidence = O 140 O . O 5 O kDa O +/− O 1 O . O 2 O %. O This O corresponds O to O an O oligomeric O state O of O six B-oligomeric_state subunits I-oligomeric_state ( O calculated O molecular B-evidence weight I-evidence of O 144 O kDa O ). O Collectively O , O these O data O strongly O suggest O that O the O N O - O terminal O EP B-structure_element of O PduL B-protein_type plays O a O role O in O defining O the O quaternary O structure O of O the O protein O . O The O BMC B-complex_assembly shell B-structure_element not O only O sequesters O specific O enzymes O but O also O their O cofactors O , O thereby O establishing O a O private O cofactor O pool O dedicated O to O the O encapsulated O reactions O . O In O catabolic B-protein_state BMCs B-complex_assembly , O CoA B-chemical and O NAD B-chemical + I-chemical must O be O continually O recycled O within O the O organelle O ( O Fig O 1 O ). O Homologs O of O the O predominant O cofactor O utilizer O ( O aldehyde B-protein_type dehydrogenase I-protein_type ) O and O NAD B-chemical + I-chemical regenerator O ( O alcohol B-protein_type dehydrogenase I-protein_type ) O have O been O structurally O characterized O , O but O until O now O structural O information O was O lacking O for O PduL B-protein_type , O which O recycles O CoA B-chemical in O the O organelle O lumen O . O Curiously O , O while O the O housekeeping B-protein_state Pta B-protein_type could O provide O this O function O , O and O indeed O does O so O in O the O case O of O one O type O of O ethanolamine B-complex_assembly - I-complex_assembly utilizing I-complex_assembly ( I-complex_assembly EUT I-complex_assembly ) I-complex_assembly BMC I-complex_assembly , O the O evolutionarily O unrelated O PduL B-protein_type fulfills O this O function O for O the O majority O of O metabolosomes B-complex_assembly using O a O novel O structure B-evidence and O active B-site site I-site for O convergent O evolution O of O function O . O The O Tertiary O Structure O of O PduL B-protein_type Is O Formed O by O Discontinuous O Segments O of O Primary O Structure O The O structure B-evidence of O PduL B-protein_type consists O of O two B-structure_element β I-structure_element - I-structure_element barrel I-structure_element domains I-structure_element capped O by O short B-structure_element alpha I-structure_element helical I-structure_element segments I-structure_element ( O Fig O 2b O ). O The O two O domains O are O structurally O very O similar O ( O superimposing B-experimental_method with O a O rmsd B-evidence of O 1 O . O 34 O Å O ( O over O 123 O out O of O 320 O / O 348 O aligned O backbone O atoms O , O S5a O Fig O ). O However O , O the O amino O acid O sequences O of O the O two O domains O are O only O 16 O % O identical O ( O mainly O the O RHxH B-structure_element motif I-structure_element , O β2 B-structure_element and O β10 B-structure_element ), O and O 34 O % O similar O . O Our O structure B-evidence reveals O that O the O two O assigned O PF06130 B-structure_element domains O ( O Fig O 3 O ) O do O not O form O structurally O discrete O units O ; O this O reduces O the O apparent O sequence O conservation O at O the O level O of O primary O structure O . O One O strand B-structure_element of O the O domain B-structure_element 1 I-structure_element beta B-structure_element barrel I-structure_element ( O shown O in O blue O in O Fig O 2 O ) O is O contributed O by O the O N O - O terminus O , O while O the O rest O of O the O domain O is O formed O by O the O residues O from O the O C B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein B-protein_type . O When O aligned B-experimental_method by O structure B-evidence , O the O β1 B-structure_element strand I-structure_element of O the O first B-structure_element domain I-structure_element ( O Fig O 2a O and O 2b O , O blue O ) O corresponds O to O the O final B-structure_element strand I-structure_element of O the O second B-structure_element domain I-structure_element ( O β9 B-structure_element ), O effectively O making O the O domains O continuous O if O the O first O strand O was O transplanted O to O the O C O - O terminus O . O Refined O domain O assignment O based O on O our O structure B-evidence should O be O able O to O predict O domains O of O PF06130 B-structure_element homologs O much O more O accurately O . O The O closest O structural O homolog O of O the O PduL B-protein_type barrel B-structure_element domain I-structure_element is O a O subdomain O of O a O multienzyme O complex O , O the O alpha B-structure_element subunit I-structure_element of O ethylbenzene B-protein_type dehydrogenase I-protein_type ( O S5b O Fig O , O rmsd B-evidence of O 2 O . O 26 O Å O over O 226 O aligned O atoms O consisting O of O one O beta B-structure_element barrel I-structure_element and O one O capping B-structure_element helix I-structure_element ). O In O contrast O to O PduL B-protein_type , O there O is O only O one O barrel B-structure_element present O in O ethylbenzene B-protein_type dehydrogenase I-protein_type , O and O there O is O no O comparable O active B-site site I-site arrangement O . O The O PduL B-protein_type signature O primary O structure O , O two O PF06130 B-structure_element domains O , O occurs O in O some O multidomain O proteins O , O most O of O them O annotated O as O Acks B-protein_type , O suggesting O that O PduL B-protein_type may O also O replace O Pta B-protein_type in O variants O of O the O phosphotransacetylase B-protein_type - O Ack B-protein_type pathway O . O These O PduL B-protein_type homologs O lack B-protein_state EPs B-structure_element , O and O their B-protein_type fusion O to O Ack B-protein_type may O have O evolved O as O a O way O to O facilitate O substrate O channeling O between O the O two O enzymes O . O Implications O for O Metabolosome B-complex_assembly Core O Assembly O For O BMC B-complex_assembly - O encapsulated O proteins O to O properly O function O together O , O they O must O be O targeted O to O the O lumen O and O assemble O into O an O organization O that O facilitates O substrate O / O product O channeling O among O the O different O catalytic B-site sites I-site of O the O signature O and O core O enzymes O . O The O N B-structure_element - I-structure_element terminal I-structure_element extension I-structure_element on O PduL B-protein_type homologs O may O serve O both O of O these O functions O . O The B-structure_element extension I-structure_element shares O many O features O with O previously O characterized O EPs B-structure_element : O it O is O present O only O in O homologs O associated O with O BMC B-gene loci I-gene , O and O it O is O predicted O to O form O an O amphipathic B-protein_state α B-structure_element - I-structure_element helix I-structure_element . O Moreover O , O its O removal B-experimental_method affects O the O oligomeric O state O of O the O protein O . O EP B-structure_element - O mediated O oligomerization O has O been O observed O for O the O signature O and O core O BMC B-complex_assembly enzymes O ; O for O example O , O full B-protein_state - I-protein_state length I-protein_state propanediol B-protein_type dehydratase I-protein_type and O ethanolamine B-protein_type ammonia I-protein_type - I-protein_type lyase I-protein_type ( O signature O enzymes O for O PDU B-complex_assembly and O EUT B-complex_assembly BMCs I-complex_assembly ) O subunits O are O also O insoluble O , O but O become O soluble O upon O removal O of O the O predicted O EP B-structure_element . O sPduL B-protein has O also O previously O been O reported O to O localize O to O inclusion O bodies O when O overexpressed B-experimental_method ; O we O show O here O that O this O is O dependent O on O the O presence O of O the O EP B-structure_element . O This O propensity O of O the O EP B-structure_element to O cause O proteins O to O form O complexes O ( O Fig O 5 O ) O might O not O be O a O coincidence O , O but O could O be O a O necessary O step O in O the O assembly O of O BMCs B-complex_assembly . O Structured O aggregation O of O the O core O enzymes O has O been O proposed O to O be O the O initial O step O in O metabolosome B-complex_assembly assembly O and O is O known O to O be O the O first O step O of O β O - O carboxysome O biogenesis O , O where O the O core O enzyme O Ribulose B-protein_type Bisphosphate I-protein_type Carboxylase I-protein_type / I-protein_type Oxygenase I-protein_type ( O RuBisCO B-protein_type ) O is O aggregated O by O the O CcmM B-protein_type protein O . O Likewise O , O CsoS2 B-protein_type , O a O protein O in O the O α B-complex_assembly - I-complex_assembly carboxysome I-complex_assembly core O , O also O aggregates O when O purified O and O is O proposed O to O facilitate O the O nucleation O and O encapsulation O of O RuBisCO B-protein_type molecules O in O the O lumen O of O the O organelle O . O This O role O for O EPs B-structure_element in O BMC B-complex_assembly assembly O is O in O addition O to O their O interaction O with O shell O proteins O . O Moreover O , O the O PduL B-protein_type crystal B-evidence structures I-evidence offer O a O clue O as O to O how O required O cofactors O enter O the O BMC B-complex_assembly lumen O during O assembly O . O Free O CoA B-chemical and O NAD B-chemical +/ I-chemical H B-chemical could O potentially O be O bound O to O the O enzymes O as O the O core O assembles O and O is O encapsulated O . O Our O PduL B-protein_type crystals B-evidence contained O CoA B-chemical that O was O captured O from O the O Escherichia B-species coli I-species cytosol O , O indicating O that O the O “ O ground O state O ” O of O PduL B-protein_type is O in O the O CoA B-protein_state - I-protein_state bound I-protein_state form O ; O this O could O provide O an O elegantly O simple O means O of O guaranteeing O a O 1 O : O 1 O ratio O of O CoA B-complex_assembly : I-complex_assembly PduL I-complex_assembly within O the O metabolosome B-complex_assembly lumen O . O Active B-site Site I-site Identification O and O Structural O Insights O into O Catalysis O The O active B-site site I-site of O PduL B-protein_type is O formed O at O the O interface B-site of O the O two O structural O domains B-structure_element ( O Fig O 2b O ). O As O expected O , O the O amino O acid O sequence O conservation O is O highest O in O the O region O around O the O proposed O active B-site site I-site ( O Fig O 4d O ); O highly B-protein_state conserved I-protein_state residues O are O also O involved O in O CoA B-chemical binding O ( O Figs O 2a O and O 3 O , O residues O Ser45 B-residue_name_number , O Lys70 B-residue_name_number , O Arg97 B-residue_name_number , O Leu99 B-residue_name_number , O His204 B-residue_name_number , O Asn211 B-residue_name_number ). O All O of O the O metal B-site - I-site coordinating I-site residues I-site ( O Fig O 2a O ) O are O absolutely B-protein_state conserved I-protein_state , O implicating O them O in O catalysis O or O the O correct O spatial O orientation O of O the O substrates O . O Arg103 B-residue_name_number , O which O contacts O the O phosphate B-chemical ( O Fig O 4b O ), O is O present O in O all O PduL B-protein_type homologs O . O The O close O resemblance O between O the O structures O binding O CoA B-chemical and O phosphate B-chemical likely O indicates O that O no O large O changes O in O protein O conformation O are O involved O in O catalysis O , O and O that O our O crystal B-evidence structures I-evidence are O representative O of O the O active B-protein_state form O . O The O native O substrate O for O the O forward O reaction O of O rPduL B-protein and O pPduL B-protein , O propionyl B-chemical - I-chemical CoA I-chemical , O most O likely O binds O to O the O enzyme O in O the O same O way O at O the O observed O nucleotide B-chemical and O pantothenic B-chemical acid I-chemical moiety O , O but O the O propionyl O group O in O the O CoA B-chemical - I-chemical thioester I-chemical might O point O in O a O different O direction O . O There O is O a O pocket B-site nearby O the O active B-site site I-site between O the O well B-protein_state - I-protein_state conserved I-protein_state residues O Ser45 B-residue_name_number and O Ala154 B-residue_name_number , O which O could O accommodate O the O propionyl O group O ( O S6 O Fig O ). O A O homology B-experimental_method model I-experimental_method of O sPduL B-protein indicates O that O the O residues O making O up O this O pocket B-site and O the O surrounding O active B-site site I-site region O are O identical O to O that O of O rPduL B-protein , O which O is O not O surprising O , O because O these O two O homologs O presumably O have O the O same O propionyl B-chemical - I-chemical CoA I-chemical substrate O . O The O homology B-experimental_method model I-experimental_method of O pPduL B-protein also O has O identical O residues O making O up O the O pocket B-site , O but O with O a O key O difference O in O the O vicinity O of O the O active B-site site I-site : O Gln77 B-residue_name_number of O rPduL B-protein is O replaced O by O a O tyrosine B-residue_name ( O Tyr77 B-residue_name_number ) O in O pPduL B-protein . O The O physiological O substrate O of O pPduL B-protein ( O Table O 1 O ) O is O thought O to O be O lactyl B-chemical - I-chemical CoA I-chemical , O which O contains O an O additional O hydroxyl O group O relative O to O propionyl B-chemical - I-chemical CoA I-chemical . O The O presence O of O an O aromatic B-protein_state residue B-structure_element at O this O position O may O underlie O the O substrate O preference O of O the O PduL B-protein_type enzyme O from O the O pvm B-gene locus I-gene . O Indeed O , O in O the O majority O of O PduLs B-protein_type encoded O in O pvm B-gene loci I-gene , O Gln77 B-residue_name_number is O substituted O by O either O a O Tyr B-residue_name or O Phe B-residue_name , O whereas O it O is O typically O a O Gln B-residue_name or O Glu B-residue_name in O PduLs B-protein_type in O all O other O BMC B-complex_assembly types O that O degrade O acetyl B-chemical - I-chemical or O propionyl B-chemical - I-chemical CoA I-chemical . O A O comparison B-experimental_method of O the O PduL B-protein_type active B-site site I-site to O that O of O the O functionally O identical O Pta B-protein_type suggests O that O the O two O enzymes O have O distinctly O different O mechanisms O . O The O catalytic O mechanism O of O Pta B-protein_type involves O the O abstraction O of O a O thiol O hydrogen O by O an O aspartate B-residue_name residue O , O resulting O in O the O nucleophilic O attack O of O thiolate O upon O the O carbonyl O carbon O of O acetyl B-chemical - I-chemical phosphate I-chemical , O oriented O by O an O arginine B-residue_name and O stabilized O by O a O serine B-residue_name — O there O are O no O metals O involved O . O In O contrast O , O in O the O rPduL B-protein structure B-evidence , O there O are O no O conserved O aspartate B-residue_name residues O in O or O around O the O active B-site site I-site , O and O the O only O well B-protein_state - I-protein_state conserved I-protein_state glutamate B-residue_name residue O in O the O active B-site site I-site is O involved O in O coordinating O one O of O the O metal O ions O . O These O observations O strongly O suggest O that O an O acidic B-protein_state residue B-structure_element is O not O directly O involved O in O catalysis O by O PduL B-protein_type . O Instead O , O the O dimetal B-site active I-site site I-site of O PduL B-protein_type may O create O a O nucleophile O from O one O of O the O hydroxyl O groups O on O free O phosphate B-chemical to O attack O the O carbonyl O carbon O of O the O thioester O bond O of O an O acyl B-chemical - I-chemical CoA I-chemical . O In O the O reverse O direction O , O the O metal O ion O ( O s O ) O could O stabilize O the O thiolate O anion O that O would O attack O the O carbonyl O carbon O of O an O acyl B-chemical - I-chemical phosphate I-chemical ; O a O similar O mechanism O has O been O described O for O phosphatases B-protein_type where O hydroxyl O groups O or O hydroxide O ions O can O act O as O a O base O when O coordinated O by O a O dimetal B-site active I-site site I-site . O Our O structures B-evidence provide O the O foundation O for O studies O to O elucidate O the O details O of O the O catalytic O mechanism O of O PduL B-protein_type . O Conserved B-protein_state residues O in O the O active B-site site I-site that O may O contribute O to O substrate O binding O and O / O or O transition O state O stabilization O include O Ser127 B-residue_name_number , O Arg103 B-residue_name_number , O Arg194 B-residue_name_number , O Gln107 B-residue_name_number , O Gln74 B-residue_name_number , O and O Gln B-residue_name_number / O Glu77 B-residue_name_number . O In O the O phosphate B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence , O Ser127 B-residue_name_number and O Arg103 B-residue_name_number appear O to O position O the O phosphate B-chemical ( O Fig O 4b O ). O Alternatively O , O Arg103 B-residue_name_number might O act O as O a O base O to O render O the O phosphate B-chemical more O nucleophilic O . O The O functional O groups O of O Gln74 B-residue_name_number , O Gln B-residue_name_number / O Glu77 B-residue_name_number , O and O Arg194 B-residue_name_number are O directed O away O from O the O active B-site site I-site in O both O CoA B-protein_state and O phosphate B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structures I-evidence and O do O not O appear O to O be O involved O in O hydrogen O bonding O with O these O substrates O , O although O they O could O be O important O for O positioning O an O acyl B-chemical - I-chemical phosphate I-chemical . O The O free O CoA B-protein_state - I-protein_state bound I-protein_state form O is O presumably O poised O for O attack O upon O an O acyl B-chemical - I-chemical phosphate I-chemical , O indicating O that O the O enzyme O initially O binds O CoA B-chemical as O opposed O to O acyl B-chemical - I-chemical phosphate I-chemical . O This O hypothesis O is O strengthened O by O the O fact O that O the O CoA B-protein_state - I-protein_state bound I-protein_state crystals B-evidence were O obtained O without O added O CoA B-chemical , O indicating O that O the O protein O bound B-protein_state CoA B-chemical from O the O E B-species . I-species coli I-species expression O strain O and O retained O it O throughout O purification O and O crystallization O . O The O phosphate B-protein_state - I-protein_state bound I-protein_state structure B-evidence indicates O that O in O the O opposite O reaction O direction O phosphate B-chemical is O bound O first O , O and O then O an O acyl B-chemical - I-chemical CoA I-chemical enters O . O The O two O high O - O resolution O crystal B-evidence structures I-evidence presented O here O will O serve O as O the O foundation O for O mechanistic O studies O on O this O noncanonical O PTAC B-protein_type enzyme O to O determine O how O the O dimetal B-site active I-site site I-site functions O to O catalyze O both O forward O and O reverse O reactions O . O Functional O , O but O Not O Structural O , O Convergence O of O PduL B-protein_type and O Pta B-protein_type PduL B-protein_type and O Pta B-protein_type are O mechanistically O and O structurally O distinct O enzymes O that O catalyze O the O same O reaction O , O a O prime O example O of O evolutionary O convergence O upon O a O function O . O There O are O several O examples O of O such O functional O convergence O of O enzymes O , O although O typically O the O enzymes O have O independently O evolved O similar O , O or O even O identical O active B-site sites I-site ; O for O example O , O the O carbonic B-protein_type anhydrase I-protein_type family O . O However O , O apparently O less O frequent O is O functional O convergence O that O is O supported O by O distinctly O different O active B-site sites I-site and O accordingly O catalytic O mechanism O , O as O revealed O by O comparison O of O the O structures O of O Pta B-protein_type and O PduL B-protein_type . O One O well O - O studied O example O of O this O is O the O β B-protein_type - I-protein_type lactamase I-protein_type family O of O enzymes O , O in O which O the O active B-site site I-site of O Class O A O and O Class O C O enzymes O involve O serine O - O based O catalysis O , O but O Class O B O enzymes O are O metalloproteins B-protein_type . O This O is O not O surprising O , O as O β B-protein_type - I-protein_type lactamases I-protein_type are O not O so O widespread O among O bacteria B-taxonomy_domain and O therefore O would O be O expected O to O have O evolved O independently O several O times O as O a O defense O mechanism O against O β O - O lactam O antibiotics O . O However O , O nearly O all O bacteria B-taxonomy_domain encode O Pta B-protein_type , O and O it O is O not O immediately O clear O why O the O Pta B-protein_type / O PduL B-protein_type functional O convergence O should O have O evolved O : O it O would O seem O to O be O evolutionarily O more O resourceful O for O the O Pta B-gene - I-gene encoding I-gene gene I-gene to O be O duplicated O and O repurposed O for O BMCs B-complex_assembly , O as O is O apparently O the O case O in O one O type O of O BMC B-complex_assembly — I-complex_assembly EUT1 I-complex_assembly ( O Table O 1 O ). O There O could O be O some O intrinsic O biochemical O difference O between O the O two O enzymes O that O renders O PduL B-protein_type a O more O attractive O candidate O for O encapsulation O in O a O BMC B-complex_assembly — O for O example O , O PduL B-protein_type might O be O more O amenable O to O tight O packaging O , O or O is O better O suited O for O the O chemical O microenvironment O formed O within O the O lumen O of O the O BMC B-complex_assembly , O which O can O be O quite O different O from O the O cytosol O . O Further O biochemical O comparison O between O the O two O PTACs B-protein_type will O likely O yield O exciting O results O that O could O answer O this O evolutionary O question O . O BMCs B-complex_assembly are O now O known O to O be O widespread O among O the O bacteria B-taxonomy_domain and O are O involved O in O critical O segments O of O both O autotrophic O and O heterotrophic O biochemical O pathways O that O confer O to O the O host O organism O a O competitive O ( O metabolic O ) O advantage O in O select O niches O . O As O one O of O the O three O common O metabolosome B-complex_assembly core O enzymes O , O the O structure B-evidence of O PduL B-protein_type provides O a O key O missing O piece O to O our O structural O picture O of O the O shared O core O biochemistry O ( O Fig O 1 O ) O of O functionally O diverse O catabolic B-protein_state BMCs B-complex_assembly . O We O have O observed O the O oligomeric O state O differences O of O PduL B-protein_type to O correlate O with O the O presence O of O an O EP B-structure_element , O providing O new O insight O into O the O function O of O this O sequence O extension O in O BMC B-complex_assembly assembly O . O Moreover O , O our O results O suggest O a O means O for O Coenzyme B-chemical A I-chemical incorporation O during O metabolosome B-complex_assembly biogenesis O . O A O detailed O understanding O of O the O underlying O principles O governing O the O assembly O and O internal O structural O organization O of O BMCs B-complex_assembly is O a O requisite O for O synthetic O biologists O to O design O custom O nanoreactors O that O use O BMC B-complex_assembly architectures O as O a O template O . O Furthermore O , O given O the O growing O number O of O metabolosomes B-complex_assembly implicated O in O pathogenesis O , O the O PduL B-protein_type structure B-evidence will O be O useful O in O the O development O of O therapeutics O . O The O fact O that O PduL B-protein_type is O confined O almost O exclusively O to O metabolosomes B-complex_assembly can O be O used O to O develop O an O inhibitor O that O blocks O only O PduL B-protein_type and O not O Pta B-protein_type as O a O way O to O selectively O disrupt O BMC B-complex_assembly - O based O metabolism O , O while O not O affecting O most O commensal O organisms O that O require O PTAC B-protein_type activity O . O Crystal B-evidence Structure I-evidence and O Activity B-experimental_method Studies I-experimental_method of O the O C11 B-protein_type Cysteine B-protein_type Peptidase I-protein_type from O Parabacteroides B-species merdae I-species in O the O Human B-species Gut O Microbiome O * O Clan B-protein_type CD I-protein_type cysteine I-protein_type peptidases I-protein_type , O a O structurally O related O group O of O peptidases B-protein_type that O include O mammalian B-taxonomy_domain caspases B-protein_type , O exhibit O a O wide O range O of O important O functions O , O along O with O a O variety O of O specificities O and O activation O mechanisms O . O However O , O for O the O clostripain B-protein_type family I-protein_type ( O denoted O C11 B-protein_type ), O little O is O currently O known O . O Here O , O we O describe O the O first O crystal B-evidence structure I-evidence of O a O C11 B-protein_type protein O from O the O human B-species gut O bacterium B-taxonomy_domain , O Parabacteroides B-species merdae I-species ( O PmC11 B-protein ), O determined O to O 1 O . O 7 O - O Å O resolution O . O PmC11 B-protein is O a O monomeric B-oligomeric_state cysteine B-protein_type peptidase I-protein_type that O comprises O an O extended B-structure_element caspase I-structure_element - I-structure_element like I-structure_element α I-structure_element / I-structure_element β I-structure_element / I-structure_element α I-structure_element sandwich I-structure_element and O an O unusual O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O It O shares O core O structural O elements O with O clan B-protein_type CD I-protein_type cysteine I-protein_type peptidases I-protein_type but O otherwise O structurally O differs O from O the O other O families O in O the O clan O . O These O studies O also O revealed O a O well O ordered O break O in O the O polypeptide O chain O at O Lys147 B-residue_name_number , O resulting O in O a O large O conformational O rearrangement O close O to O the O active B-site site I-site . O Biochemical B-experimental_method and I-experimental_method kinetic I-experimental_method analysis I-experimental_method revealed O Lys147 B-residue_name_number to O be O an O intramolecular B-site processing I-site site I-site at O which O cleavage B-ptm is O required O for O full B-protein_state activation I-protein_state of O the O enzyme B-protein , O suggesting O an O autoinhibitory O mechanism O for O self O - O preservation O . O PmC11 B-protein has O an O acidic B-site binding I-site pocket I-site and O a O preference O for O basic O substrates O , O and O accepts O substrates O with O Arg B-residue_name and O Lys B-residue_name in O P1 B-residue_number and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O Collectively O , O these O data O provide O insights O into O the O mechanism O and O activity O of O PmC11 B-protein and O a O detailed O framework O for O studies O on O C11 B-protein_type peptidases I-protein_type from O other O phylogenetic O kingdoms O . O Cysteine B-protein_type peptidases I-protein_type play O crucial O roles O in O the O virulence O of O bacterial B-taxonomy_domain and O other O eukaryotic B-taxonomy_domain pathogens O . O In O the O MEROPS O peptidase O database O , O clan B-protein_type CD I-protein_type contains O groups O ( O or O families O ) O of O cysteine B-protein_type peptidases I-protein_type that O share O some O highly B-protein_state conserved I-protein_state structural O elements O . O Clan B-protein_type CD I-protein_type families I-protein_type are O typically O described O using O the O name O of O their O archetypal O , O or O founding O , O member O and O also O given O an O identification O number O preceded O by O a O “ O C O ,” O to O denote O cysteine B-protein_type peptidase I-protein_type . O Although O seven O families O ( O C14 O is O additionally O split O into O three O subfamilies O ) O have O been O described O for O this O clan O , O crystal B-evidence structures I-evidence have O only O been O determined O from O four O : O legumain B-protein ( O C13 B-protein_type ), O caspase B-protein ( O C14a B-protein_type ), O paracaspase B-protein ( O C14b B-protein_type ( I-protein_type P I-protein_type ), O metacaspase B-protein ( O C14b B-protein_type ( I-protein_type M I-protein_type ), O gingipain B-protein ( O C25 B-protein_type ), O and O the O cysteine B-structure_element peptidase I-structure_element domain I-structure_element ( O CPD B-structure_element ) O of O various O toxins O ( O C80 B-protein_type ). O No O structural O information O is O available O for O clostripain B-protein ( O C11 B-protein_type ), O separase B-protein ( O C50 B-protein_type ), O or O PrtH B-protein - I-protein peptidase I-protein ( O C85 B-protein_type ). O Clan B-protein_type CD I-protein_type enzymes I-protein_type have O a O highly B-protein_state conserved I-protein_state His B-site / I-site Cys I-site catalytic I-site dyad I-site and O exhibit O strict O specificity O for O the O P1 B-residue_number residue O of O their O substrates O . O However O , O despite O these O similarities O , O clan B-protein_type CD I-protein_type forms O a O functionally O diverse O group O of O enzymes O : O the O overall O structural O diversity O between O ( O and O at O times O within O ) O the O various O families O provides O these O peptidases B-protein_type with O a O wide O variety O of O substrate O specificities O and O activation O mechanisms O . O The O archetypal O and O arguably O most O notable O family O in O the O clan O is O that O of O the O mammalian B-taxonomy_domain caspases B-protein_type ( O C14a B-protein_type ), O although O clan B-protein_type CD I-protein_type members O are O distributed O throughout O the O entire O phylogenetic O kingdom O and O are O often O required O in O fundamental O biological O processes O . O Interestingly O , O little O is O known O about O the O structure O or O function O of O the O C11 B-protein_type proteins O , O despite O their O widespread O distribution O and O its O archetypal O member O , O clostripain B-protein from O Clostridium B-species histolyticum I-species , O first O reported O in O the O literature O in O 1938 O . O Clostripain B-protein has O been O described O as O an O arginine B-protein_type - I-protein_type specific I-protein_type peptidase I-protein_type with O a O requirement O for O Ca2 B-chemical + I-chemical and O loss O of O an O internal B-structure_element nonapeptide I-structure_element for O full B-protein_state activation I-protein_state ; O lack O of O structural O information O on O the O family O appears O to O have O prohibited O further O investigation O . O As O part O of O an O ongoing O project O to O characterize O commensal O bacteria B-taxonomy_domain in O the O microbiome O that O inhabit O the O human B-species gut O , O the O structure B-evidence of O C11 B-protein_type peptidase I-protein_type , O PmC11 B-protein , O from O Parabacteroides B-species merdae I-species was O determined O using O the O Joint O Center O for O Structural O Genomics O ( O JCSG O ) O 4 O HTP O structural O biology O pipeline O . O The O structure B-experimental_method was I-experimental_method analyzed I-experimental_method , O and O the O enzyme O was O biochemically B-experimental_method characterized I-experimental_method to O provide O the O first O structure O / O function O correlation O for O a O C11 B-protein_type peptidase I-protein_type . O Structure B-evidence of O PmC11 B-protein The O crystal B-evidence structure I-evidence of O the O catalytically B-protein_state active I-protein_state form O of O PmC11 B-protein revealed O an O extended B-structure_element caspase I-structure_element - I-structure_element like I-structure_element α I-structure_element / I-structure_element β I-structure_element / I-structure_element α I-structure_element sandwich I-structure_element architecture O comprised O of O a O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O with O an O unusual O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element ), O starting O at O Lys250 B-residue_name_number . O A O single B-ptm cleavage I-ptm was O observed O in O the O polypeptide O chain O at O Lys147 B-residue_name_number ( O Fig O . O 1 O , O A O and O B O ), O where O both O ends O of O the O cleavage B-site site I-site are O fully O visible O and O well O ordered O in O the O electron B-evidence density I-evidence . O The O central O nine B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element – I-structure_element β9 I-structure_element ) O of O PmC11 B-protein consists O of O six O parallel B-structure_element and O three O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element strands I-structure_element with O 4 O ↑ O 3 O ↓ O 2 O ↑ O 1 O ↑ O 5 O ↑ O 6 O ↑ O 7 O ↓ O 8 O ↓ O 9 O ↑ O topology O ( O Fig O . O 1A O ) O and O the O overall O structure B-evidence includes O 14 O α B-structure_element - I-structure_element helices I-structure_element with O six O ( O α1 B-structure_element – I-structure_element α2 I-structure_element and O α4 B-structure_element – I-structure_element α7 I-structure_element ) O closely O surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element in O an O approximately O parallel O orientation O . O Helices B-structure_element α1 B-structure_element , O α7 B-structure_element , O and O α6 B-structure_element are O located O on O one O side O of O the O β B-structure_element - I-structure_element sheet I-structure_element with O α2 B-structure_element , O α4 B-structure_element , O and O α5 B-structure_element on O the O opposite O side O ( O Fig O . O 1A O ). O Helix B-structure_element α3 B-structure_element sits O at O the O end O of O the O loop B-structure_element following O β5 B-structure_element ( O L5 B-structure_element ), O just O preceding O the O Lys147 B-residue_name_number cleavage B-site site I-site , O with O both O L5 B-structure_element and O α3 B-structure_element pointing O away O from O the O central O β B-structure_element - I-structure_element sheet I-structure_element and O toward O the O CTD B-structure_element , O which O starts O with O α8 B-structure_element . O The O structure B-evidence also O includes O two O short O β B-structure_element - I-structure_element hairpins I-structure_element ( O βA B-structure_element – I-structure_element βB I-structure_element and O βD B-structure_element – I-structure_element βE I-structure_element ) O and O a O small B-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O βC B-structure_element – I-structure_element βF I-structure_element ), O which O is O formed O from O two O distinct O regions O of O the O sequence O ( O βC B-structure_element precedes O α11 B-structure_element , O α12 B-structure_element and O β9 B-structure_element , O whereas O βF B-structure_element follows O the O βD B-structure_element - I-structure_element βE I-structure_element hairpin B-structure_element ) O in O the O middle O of O the O CTD B-structure_element ( O Fig O . O 1B O ). O Crystal B-evidence structure I-evidence of O a O C11 B-protein_type peptidase I-protein_type from O P B-species . I-species merdae I-species . O A O , O primary B-experimental_method sequence I-experimental_method alignment I-experimental_method of O PmC11 B-protein ( O Uniprot O ID O A7A9N3 O ) O and O clostripain B-protein ( O Uniprot O ID O P09870 O ) O from O C B-species . I-species histolyticum I-species with O identical O residues O highlighted O in O gray O shading O . O The O secondary O structure O of O PmC11 B-protein from O the O crystal B-evidence structure I-evidence is O mapped O onto O its O sequence O with O the O position O of O the O PmC11 B-protein catalytic B-site dyad I-site , O autocatalytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number ), O and O S1 B-site binding I-site pocket I-site Asp B-residue_name ( O Asp177 B-residue_name_number ) O highlighted O by O a O red O star O , O a O red O downturned O triangle O , O and O a O red O upturned O triangle O , O respectively O . O Connecting O loops B-structure_element are O colored O gray O , O the O main O β B-structure_element - I-structure_element sheet I-structure_element is O in O orange O , O with O other O strands O in O olive O , O α B-structure_element - I-structure_element helices I-structure_element are O in O blue O , O and O the O nonapeptide B-structure_element linker I-structure_element of O clostripain B-protein that O is O excised O upon O autocleavage B-ptm is O underlined O in O red O . O Sequences O around O the O catalytic B-site site I-site of O clostripain B-protein and O PmC11 B-protein align O well O . O B O , O topology O diagram O of O PmC11 B-protein colored O as O in O A O except O that O additional O ( O non O - O core O ) O β B-structure_element - I-structure_element strands I-structure_element are O in O yellow O . O Helices O found O on O either O side O of O the O central O β B-structure_element - I-structure_element sheet I-structure_element are O shown O above O and O below O the O sheet B-structure_element , O respectively O . O The O position O of O the O catalytic B-site dyad I-site ( O H B-residue_name , O C B-residue_name ) O and O the O processing B-site site I-site ( O Lys147 B-residue_name_number ) O are O highlighted O . O Helices O ( O 1 O – O 14 O ) O and O β B-structure_element - I-structure_element strands I-structure_element ( O 1 O – O 9 O and O A O - O F O ) O are O numbered O from O the O N O terminus O . O The O core B-structure_element caspase I-structure_element - I-structure_element fold I-structure_element is O highlighted O in O a O box O . O C O , O tertiary O structure O of O PmC11 B-protein . O The O N O and O C O termini O ( O N O and O C O ) O of O PmC11 B-protein along O with O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O 1 O – O 9 O ), O helix B-structure_element α5 B-structure_element , O and O helices B-structure_element α8 B-structure_element , O α11 B-structure_element , O and O α13 B-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O are O all O labeled O . O Loops O are O colored O gray O , O the O main O β B-structure_element - I-structure_element sheet I-structure_element is O in O orange O , O with O other O β B-structure_element - I-structure_element strands I-structure_element in O yellow O , O and O α B-structure_element - I-structure_element helices I-structure_element are O in O blue O . O The O CTD B-structure_element of O PmC11 B-protein is O composed O of O a O tight B-structure_element helical I-structure_element bundle I-structure_element formed O from O helices B-structure_element α8 B-structure_element – I-structure_element α14 I-structure_element and O includes O strands B-structure_element βC B-structure_element and O βF B-structure_element , O and O β B-structure_element - I-structure_element hairpin I-structure_element βD B-structure_element – I-structure_element βE I-structure_element . O The O CTD B-structure_element sits O entirely O on O one O side O of O the O enzyme O interacting O only O with O α3 B-structure_element , O α5 B-structure_element , O β9 B-structure_element , O and O the O loops B-structure_element surrounding O β8 B-structure_element . O Of O the O interacting O secondary O structure O elements O , O α5 B-structure_element is O perhaps O the O most O interesting O . O This B-structure_element helix I-structure_element makes O a O total O of O eight O hydrogen O bonds O with O the O CTD B-structure_element , O including O one O salt O bridge O ( O Arg191 B-residue_name_number - O Asp255 B-residue_name_number ) O and O is O surrounded O by O the O CTD B-structure_element on O one O side O and O the O main B-structure_element core I-structure_element of O the O enzyme O on O the O other O , O acting O like O a O linchpin O holding O both O components O together O ( O Fig O . O 1C O ). O PmC11 B-protein is O , O as O expected O , O most O structurally O similar O to O other O members O of O clan B-protein_type CD I-protein_type with O the O top O hits O in O a O search O of O known O structures B-evidence being O caspase B-protein - I-protein 7 I-protein , O gingipain B-protein - I-protein K I-protein , O and O legumain B-protein ( O PBD O codes O 4hq0 O , O 4tkx O , O and O 4aw9 O , O respectively O ) O ( O Table O 2 O ). O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element is O unique O to O PmC11 B-protein within O clan B-protein_type CD I-protein_type and O structure B-experimental_method comparisons I-experimental_method for O this B-structure_element domain I-structure_element alone I-structure_element does O not O produce O any O hits O in O the O PDB O ( O DaliLite B-experimental_method , O PDBeFold B-experimental_method ), O suggesting O a O completely O novel O fold O . O As O the O archetypal O and O arguably O most O well O studied O member O of O clan B-protein_type CD I-protein_type , O the O caspases B-protein_type were O used O as O the O basis O to O investigate O the O structure O / O function O relationships O in O PmC11 B-protein , O with O caspase B-protein - I-protein 7 I-protein as O the O representative O member O . O Six O of O the O central O β B-structure_element - I-structure_element strands I-structure_element in O PmC11 B-protein ( O β1 B-structure_element – I-structure_element β2 I-structure_element and O β5 B-structure_element – I-structure_element β8 I-structure_element ) O share O the O same O topology O as O the O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element found O in O caspases B-protein_type , O with O strands B-structure_element β3 B-structure_element , O β4 B-structure_element , O and O β9 B-structure_element located O on O the O outside O of O this O core B-structure_element structure I-structure_element ( O Fig O . O 1B O , O box O ). O His133 B-residue_name_number and O Cys179 B-residue_name_number were O found O at O locations O structurally O homologous O to O the O caspase B-protein_type catalytic B-site dyad I-site , O and O other O clan B-protein_type CD I-protein_type structures B-evidence , O at O the O C O termini O of O strands B-structure_element β5 B-structure_element and O β6 B-structure_element , O respectively O ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O C11 B-protein_type proteins O revealed O that O these O residues O are O highly B-protein_state conserved I-protein_state ( O data O not O shown O ). O Summary O of O PDBeFOLD B-experimental_method superposition I-experimental_method of O structures O found O to O be O most O similar O to O PmC11 B-protein in O the O PBD O based O on O DaliLite B-experimental_method Biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O PmC11 B-protein . O A O , O ribbon O representation O of O the O overall O structure O of O PmC11 B-protein illustrating O the O catalytic B-site site I-site , O cleavage O site O displacement O , O and O potential O S1 B-site binding I-site site I-site . O The O overall O structure B-evidence of O PmC11 B-protein is O shown O in O gray O , O looking O down O into O the O catalytic B-site site I-site with O the O catalytic B-site dyad I-site in O red O . O The O two O ends O of O the O autolytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number and O Ala148 B-residue_name_number , O green O ) O are O displaced O by O 19 O . O 5 O Å O ( O thin O black O line O ) O from O one O another O and O residues O in O the O potential O substrate B-site binding I-site pocket I-site are O highlighted O in O blue O . O B O , O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PmC11 B-protein . O PmC11 O migrates O as O a O monomer B-oligomeric_state with O a O molecular O mass O around O 41 O kDa O calculated O from O protein O standards O of O known O molecular O weights O . O Elution O fractions O across O the O major O peak O ( O 1 O – O 6 O ) O were O analyzed O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method on O a O 4 O – O 12 O % O gel O in O MES O buffer O . O C O , O the O active B-protein_state form O of O PmC11 B-protein and O two O mutants O , O PmC11C179A B-mutant ( O C O ) O and O PmC11K147A B-mutant ( O K O ), O were O examined O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method ( O lane O 1 O ) O and O Western B-experimental_method blot I-experimental_method analysis O using O an O anti O - O His O antibody O ( O lane O 2 O ) O show O that O PmC11 B-protein autoprocesses B-ptm , O whereas O mutants O , O PmC11C179A B-mutant and O PmC11K147A B-mutant , O do O not O show O autoprocessing B-ptm in O vitro O . O D O , O cysteine O peptidase O activity O of O PmC11 B-protein . O Km O and O Vmax B-evidence of O PmC11 B-protein and O K147A B-mutant mutant O were O determined O by O monitoring O change O in O the O fluorescence O corresponding O to O AMC O release O from O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical . O E O , O intermolecular B-ptm processing I-ptm of O PmC11C179A B-mutant by O PmC11 B-protein . O PmC11C179A O ( O 20 O μg O ) O was O incubated O overnight O at O 37 O ° O C O with O increasing O amounts O of O processed O PmC11 B-protein and O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O Inactive O PmC11C179A B-mutant was O not O processed O to O a O major O extent O by O active B-protein_state PmC11 B-protein until O around O a O ratio O of O 1 O : O 4 O ( O 5 O μg O of O active B-protein_state PmC11 B-protein ). O A O single O lane O of O 20 O μg O of O active B-protein_state PmC11 B-protein ( O labeled O 20 O ) O is O shown O for O comparison O . O F O , O activity B-evidence of O PmC11 B-protein against O basic O substrates O . O G O , O electrostatic O surface O potential O of O PmC11 B-protein shown O in O a O similar O orientation O , O where O blue O and O red O denote O positively O and O negatively O charged O surface O potential O , O respectively O , O contoured O at O ± O 5 O kT O / O e O . O The O position O of O the O catalytic B-site dyad I-site , O one O potential O key B-site substrate I-site binding I-site residue I-site Asp177 B-residue_name_number , O and O the O ends O of O the O cleavage B-site site I-site Lys147 B-residue_name_number and O Ala148 B-residue_name_number are O indicated O . O Five O of O the O α B-structure_element - I-structure_element helices I-structure_element surrounding O the O β B-structure_element - I-structure_element sheet I-structure_element of O PmC11 B-protein ( O α1 B-structure_element , O α2 B-structure_element , O α4 B-structure_element , O α6 B-structure_element , O and O α7 B-structure_element ) O are O found O in O similar O positions O to O the O five O structurally B-protein_state conserved I-protein_state helices B-structure_element in O caspases B-protein_type and O other O members O of O clan B-protein_type CD I-protein_type , O apart O from O family O C80 B-protein_type . O Other O than O its O more O extended B-structure_element β I-structure_element - I-structure_element sheet I-structure_element , O PmC11 B-protein differs O most O significantly O from O other O clan B-protein_type CD I-protein_type members O at O its O C O terminus O , O where O the O CTD B-structure_element contains O a O further O seven O α B-structure_element - I-structure_element helices I-structure_element and O four O β B-structure_element - I-structure_element strands I-structure_element after O β8 B-structure_element . O Autoprocessing B-ptm of O PmC11 B-protein Purification B-experimental_method of O recombinant O PmC11 B-protein ( O molecular O mass O = O 42 O . O 6 O kDa O ) O revealed O partial O processing O into O two O cleavage O products O of O 26 O . O 4 O and O 16 O . O 2 O kDa O , O related O to O the O observed O cleavage B-ptm at O Lys147 B-residue_name_number in O the O crystal B-evidence structure I-evidence ( O Fig O . O 2A O ). O Incubation B-experimental_method of O PmC11 B-protein at O 37 O ° O C O for O 16 O h O , O resulted O in O a O fully B-protein_state processed I-protein_state enzyme O that O remained O as O an O intact B-protein_state monomer B-oligomeric_state when O applied O to O a O size O - O exclusion O column O ( O Fig O . O 2B O ). O The O single O cleavage B-site site I-site of O PmC11 B-protein at O Lys147 B-residue_name_number is O found O immediately O after O α3 B-structure_element , O in O loop B-structure_element L5 B-structure_element within O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O Figs O . O 1 O , O A O and O B O , O and O 2A O ). O The O two O ends O of O the O cleavage B-site site I-site are O remarkably O well O ordered O in O the O crystal B-evidence structure I-evidence and O displaced O from O one O another O by O 19 O . O 5 O Å O ( O Fig O . O 2A O ). O Moreover O , O the O C O - O terminal O side O of O the O cleavage B-site site I-site resides O near O the O catalytic B-site dyad I-site with O Ala148 B-residue_name_number being O 4 O . O 5 O and O 5 O . O 7 O Å O from O His133 B-residue_name_number and O Cys179 B-residue_name_number , O respectively O . O Consequently O , O it O appears O feasible O that O the O helix B-structure_element attached O to O Lys147 B-residue_name_number ( O α3 B-structure_element ) O could O be O responsible O for O steric O autoinhibition O of O PmC11 B-protein when O Lys147 B-residue_name_number is O covalently O bonded O to O Ala148 B-residue_name_number . O Thus O , O the O cleavage B-ptm would O be O required O for O full B-protein_state activation I-protein_state of O PmC11 B-protein . O To O investigate O this O possibility O , O two O mutant O forms O of O the O enzyme O were O created O : O PmC11C179A B-mutant ( O a O catalytically B-protein_state inactive I-protein_state mutant I-protein_state ) O and O PmC11K147A B-mutant ( O a O cleavage B-protein_state - I-protein_state site I-protein_state mutant I-protein_state ). O Initial O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O Western B-experimental_method blot I-experimental_method analysis O of O both O mutants O revealed O no O discernible O processing O occurred O as O compared O with O active B-protein_state PmC11 B-protein ( O Fig O . O 2C O ). O The O PmC11K147A B-mutant mutant B-protein_state enzyme O had O a O markedly O different O reaction B-evidence rate I-evidence ( O Vmax B-evidence ) O compared O with O WT B-protein_state , O where O the O reaction B-evidence velocity I-evidence of O PmC11 B-protein was O 10 O times O greater O than O that O of O PmC11K147A B-mutant ( O Fig O . O 2D O ). O Taken O together O , O these O data O reveal O that O PmC11 B-protein requires O processing O at O Lys147 B-residue_name_number for O optimum O activity O . O To O investigate O whether O processing O is O a O result O of O intra O - O or O intermolecular O cleavage O , O the O PmC11C179A B-mutant mutant B-protein_state was O incubated B-experimental_method with I-experimental_method increasing I-experimental_method concentrations I-experimental_method of O processed B-protein_state and O activated B-protein_state PmC11 B-protein . O These O studies O revealed O that O there O was O no O apparent O cleavage O of O PmC11C179A B-mutant by O the O active B-protein_state enzyme O at B-experimental_method low I-experimental_method concentrations I-experimental_method of O PmC11 B-protein and O that O only O limited O cleavage O was O observed O when O the O ratio O of O active B-protein_state enzyme O ( O PmC11 B-protein : O PmC11C179A B-mutant ) O was O increased B-experimental_method to I-experimental_method ∼ I-experimental_method 1 I-experimental_method : I-experimental_method 10 I-experimental_method and I-experimental_method 1 I-experimental_method : I-experimental_method 4 I-experimental_method , O with O complete O cleavage O observed O at O a O ratio B-experimental_method of I-experimental_method 1 I-experimental_method : I-experimental_method 1 I-experimental_method ( O Fig O . O 2E O ). O This O suggests O that O cleavage B-ptm of O PmC11C179A B-mutant was O most O likely O an O effect O of O the O increasing O concentration O of O PmC11 B-protein and O intermolecular O cleavage O . O Collectively O , O these O data O suggest O that O the O pro B-protein_state - I-protein_state form I-protein_state of O PmC11 B-protein is O autoinhibited B-protein_state by O a O section O of O L5 B-structure_element blocking O access O to O the O active B-site site I-site , O prior O to O intramolecular B-ptm cleavage I-ptm at O Lys147 B-residue_name_number . O This O cleavage B-ptm subsequently O allows O movement O of O the O region O containing O Lys147 B-residue_name_number and O the O active B-site site I-site to O open B-protein_state up O for O substrate O access O . O Substrate O Specificity O of O PmC11 B-protein The O autocatalytic B-ptm cleavage I-ptm of O PmC11 B-protein at O Lys147 B-residue_name_number ( O sequence O KLK O ∧ O A O ) O demonstrates O that O the O enzyme O accepts O substrates O with O Lys B-residue_name in O the O P1 B-residue_number position O . O As O expected O , O PmC11 B-protein showed O no O activity O against O substrates O with O Pro B-residue_name or O Asp B-residue_name in O P1 B-residue_number but O was O active B-protein_state toward O substrates O with O a O basic O residue O in O P1 B-residue_number such O as O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical , O Z B-chemical - I-chemical GGR I-chemical - I-chemical AMC I-chemical , O and O BOC B-chemical - I-chemical VLK I-chemical - I-chemical AMC I-chemical . O The O rate O of O cleavage O was O ∼ O 3 O - O fold O greater O toward O the O single O Arg B-residue_name substrate O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical than O for O the O other O two O ( O Fig O . O 2F O ) O and O , O unexpectedly O , O PmC11 B-protein showed O no O activity O toward O BOC B-chemical - I-chemical K I-chemical - I-chemical AMC I-chemical . O These O results O confirm O that O PmC11 B-protein accepts O substrates O containing O Arg B-residue_name or O Lys B-residue_name in O P1 B-residue_number with O a O possible O preference O for O Arg B-residue_name . O The O catalytic B-site dyad I-site of O PmC11 B-protein sits O near O the O bottom O of O an O open B-protein_state pocket B-site on O the O surface O of O the O enzyme O at O a O conserved B-protein_state location I-protein_state in O the O clan O CD B-protein_type family I-protein_type . O The O PmC11 B-protein structure B-evidence reveals O that O the O catalytic B-site dyad I-site forms O part O of O a O large O acidic B-site pocket I-site ( O Fig O . O 2G O ), O consistent O with O a O binding B-site site I-site for O a O basic O substrate O . O This O pocket B-site is O lined O with O the O potential O functional O side O chains O of O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Thr204 B-residue_name_number with O Gly134 B-residue_name_number , O Asp207 B-residue_name_number , O and O Met205 B-residue_name_number also O contributing O to O the O pocket B-site ( O Fig O . O 2A O ). O Interestingly O , O these O residues O are O in O regions O that O are O structurally B-protein_state similar I-protein_state to O those O involved O in O the O S1 B-site binding I-site pockets I-site of O other O clan B-protein_type CD I-protein_type members I-protein_type ( O shown O in O Ref O .). O Because O PmC11 B-protein recognizes O basic O substrates O , O the O tetrapeptide O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O tested O as O an O enzyme O inhibitor O and O was O found O to O inhibit B-protein_state both O the O autoprocessing B-ptm and O activity O of O PmC11 B-protein ( O Fig O . O 3A O ). O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O also O shown O to O bind O to O the O enzyme O : O a O size B-evidence - I-evidence shift I-evidence was O observed O , O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O , O in O the O larger O processed O product O of O PmC11 B-protein suggesting O that O the O inhibitor B-protein_state bound I-protein_state to O the O active B-site site I-site ( O Fig O . O 3B O ). O A O structure B-experimental_method overlay I-experimental_method of O PmC11 B-protein with O the O MALT1 B-protein - I-protein paracacaspase I-protein ( O MALT1 B-protein - I-protein P I-protein ), O in O complex B-protein_state with O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical , O revealed O that O the O PmC11 B-protein dyad B-site sits O in O a O very O similar O position O to O that O of O active B-protein_state MALT1 B-protein - I-protein P I-protein and O that O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number superimpose O well O with O the O principal O MALT1 B-protein - I-protein P I-protein inhibitor B-site binding I-site residues I-site ( O Asp365 B-residue_name_number , O Asp462 B-residue_name_number , O and O Glu500 B-residue_name_number , O respectively O ( O VRPR B-chemical - I-chemical FMK I-chemical from O MALT1 B-protein - I-protein P I-protein with O the O corresponding O PmC11 B-protein residues O from O the O structural B-experimental_method overlay I-experimental_method is O shown O in O Fig O . O 1D O ), O as O described O in O Ref O .). O Asp177 B-residue_name_number is O located O near O the O catalytic B-protein_state cysteine B-residue_name and O is O conserved B-protein_state throughout I-protein_state the O C11 B-protein_type family I-protein_type , O suggesting O it O is O the O primary O S1 B-site binding I-site site I-site residue I-site . O In O the O structure B-evidence of O PmC11 B-protein , O Asp207 B-residue_name_number resides O on O a O flexible O loop B-structure_element pointing O away O from O the O S1 B-site binding I-site pocket I-site ( O Fig O . O 3C O ). O However O , O this O loop B-structure_element has O been O shown O to O be O important O for O substrate O binding O in O clan B-protein_type CD I-protein_type and O this O residue O could O easily O rotate O and O be O involved O in O substrate O binding O in O PmC11 B-protein . O Thus O , O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number are O most O likely O responsible O for O the O substrate O specificity O of O PmC11 B-protein . O Asp177 B-residue_name_number is O highly B-protein_state conserved I-protein_state throughout O the O clan B-protein_type CD I-protein_type C11 I-protein_type peptidases I-protein_type and O is O thought O to O be O primarily O responsible O for O substrate O specificity O of O the O clan B-protein_type CD I-protein_type enzymes I-protein_type , O as O also O illustrated O from O the O proximity O of O these O residues O relative O to O the O inhibitor O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical when O PmC11 B-protein is O overlaid B-experimental_method on O the O MALT1 B-protein - I-protein P I-protein structure B-evidence ( O Fig O . O 3C O ). O PmC11 B-protein binds O and O is O inhibited O by O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O A O , O PmC11 O activity O is O inhibited O by O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O Cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O a O fluorometric B-experimental_method activity I-experimental_method assay I-experimental_method with O (+, O purple O ) O and O without O (−, O red O ) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical . O B O , O gel B-experimental_method - I-experimental_method shift I-experimental_method assay I-experimental_method reveals O that O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical binds O to O PmC11 B-protein . O PmC11 O was O incubated B-experimental_method with O (+) O or O without O (−) O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical and O the O samples O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O A O size B-evidence shift I-evidence can O be O observed O in O the O larger O processed O product O of O PmC11 B-protein ( O 26 O . O 1 O kDa O ). O C O , O PmC11 B-protein with O the O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical from O the O MALT1 B-protein - I-protein paracacaspase I-protein ( O MALT1 B-protein - I-protein P I-protein ) O superimposed B-experimental_method . O A O three B-experimental_method - I-experimental_method dimensional I-experimental_method structural I-experimental_method overlay I-experimental_method of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical from O the O MALT1 B-protein - I-protein P I-protein complex O onto O PmC11 B-protein . O The O position O and O orientation O of O Z B-chemical - I-chemical VRPR I-chemical - I-chemical FMK I-chemical was O taken O from O superposition B-experimental_method of O the O PmC11 B-protein and O MALTI_P B-protein structures B-evidence and O indicates O the O presumed O active B-site site I-site of O PmC11 B-protein . O Residues O surrounding O the O inhibitor O are O labeled O and O represent O potentially O important O binding B-site site I-site residues I-site , O labeled O in O black O and O shown O in O an O atomic O representation O . O C O , O divalent O cations O do O not O increase O the O activity O of O PmC11 B-protein . O The O cleavage O of O Bz B-chemical - I-chemical R I-chemical - I-chemical AMC I-chemical by O PmC11 B-protein was O measured O in O the O presence O of O the O cations O Ca2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Cu2 B-chemical +, I-chemical Mg2 B-chemical +, I-chemical and O Fe3 B-chemical + I-chemical with O EGTA B-chemical as O a O negative O control O , O and O relative B-experimental_method fluorescence I-experimental_method measured I-experimental_method against I-experimental_method time I-experimental_method ( O min O ). O The O addition B-experimental_method of I-experimental_method cations I-experimental_method produced O no O improvement O in O activity O of O PmC11 B-protein when O compared O in O the O presence O of O EGTA B-chemical , O suggesting O that O PmC11 B-protein does O not O require O metal O ions O for O proteolytic O activity O . O Furthermore O , O Cu2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical appear O to O inhibit B-protein_state PmC11 B-protein . O Comparison O with O Clostripain B-protein Clostripain B-protein from O C B-species . I-species histolyticum I-species is O the O founding O member O of O the O C11 B-protein_type family I-protein_type of O peptidases B-protein_type and O contains O an O additional O 149 B-residue_range residues I-residue_range compared O with O PmC11 B-protein . O A O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method revealed O that O most O of O the O secondary B-structure_element structural I-structure_element elements I-structure_element are O conserved B-protein_state between O the O two O enzymes O , O although O they O are O only O ∼ O 23 O % O identical O ( O Fig O . O 1A O ). O Nevertheless O , O PmC11 B-protein may O be O a O good O model O for O the O core O structure O of O clostripain B-protein . O The O primary B-experimental_method structural I-experimental_method alignment I-experimental_method also O shows O that O the O catalytic B-site dyad I-site in O PmC11 B-protein is O structurally B-protein_state conserved I-protein_state in O clostripain B-protein ( O Fig O . O 1A O ). O Unlike O PmC11 B-protein , O clostripain B-protein has O two O cleavage B-site sites I-site ( O Arg181 B-residue_name_number and O Arg190 B-residue_name_number ), O which O results O in O the O removal O of O a O nonapeptide B-structure_element , O and O is O required O for O full B-protein_state activation I-protein_state of O the O enzyme O ( O highlighted O in O Fig O . O 1A O ). O Interestingly O , O Arg190 B-residue_name_number was O found O to O align O with O Lys147 B-residue_name_number in O PmC11 B-protein . O In O addition O , O the O predicted O primary O S1 B-site - I-site binding I-site residue I-site in O PmC11 B-protein Asp177 B-residue_name_number also O overlays B-experimental_method with O the O residue O predicted O to O be O the O P1 B-site specificity I-site determining I-site residue I-site in O clostripain B-protein ( O Asp229 B-residue_name_number , O Fig O . O 1A O ). O As O studies O on O clostripain B-protein revealed O addition O of O Ca2 B-chemical + I-chemical ions O are O required O for O full B-protein_state activation I-protein_state , O the O Ca2 B-chemical + I-chemical dependence O of O PmC11 B-protein was O examined O . O Surprisingly O , O Ca2 B-chemical + I-chemical did O not O enhance O PmC11 B-protein activity O and O , O furthermore O , O other O divalent O cations O , O Mg2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical and O Cu2 B-chemical +, I-chemical were O not O necessary O for O PmC11 B-protein activity O ( O Fig O . O 3D O ). O In O support O of O these O findings O , O EGTA B-chemical did O not O inhibit O PmC11 B-protein suggesting O that O , O unlike O clostripain B-protein , O PmC11 B-protein does O not O require O Ca2 B-chemical + I-chemical or O other O divalent O cations O , O for O activity O . O The O crystal B-evidence structure I-evidence of O PmC11 B-protein now O provides O three O - O dimensional O information O for O a O member O of O the O clostripain B-protein C11 B-protein_type family I-protein_type of O cysteine B-protein_type peptidases I-protein_type . O The O enzyme O exhibits O all O of O the O key O structural O elements O of O clan B-protein_type CD I-protein_type members I-protein_type , O but O is O unusual O in O that O it O has O a O nine O - O stranded O central O β B-structure_element - I-structure_element sheet I-structure_element with O a O novel O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element . O The O structural O similarity O of O PmC11 B-protein with O its O nearest O structural O neighbors O in O the O PDB O is O decidedly O low O , O overlaying O better O with O six O - O stranded O caspase B-protein - I-protein 7 I-protein than O any O of O the O other O larger O members O of O the O clan O ( O Table O 2 O ). O The O substrate O specificity O of O PmC11 B-protein is O Arg B-residue_name / O Lys B-residue_name and O the O crystal B-evidence structure I-evidence revealed O an O acidic B-site pocket I-site for O specific O binding O of O such O basic O substrates O . O In O addition O , O the O structure B-evidence suggested O a O mechanism O of O self O - O inhibition O in O both O PmC11 B-protein and O clostripain B-protein and O an O activation O mechanism O that O requires O autoprocessing B-ptm . O PmC11 B-protein differs O from O clostripain B-protein in O that O is O does O not O appear O to O require O divalent O cations O for O activation O . O Several O other O members O of O clan B-protein_type CD I-protein_type require O processing B-ptm for O full B-protein_state activation I-protein_state including O legumain B-protein , O gingipain B-protein - I-protein R I-protein , O MARTX B-protein - I-protein CPD I-protein , O and O the O effector B-protein_type caspases I-protein_type , O e O . O g O . O caspase B-protein - I-protein 7 I-protein . O To O date O , O the O effector B-protein_type caspases I-protein_type are O the O only O group O of O enzymes O that O require O cleavage B-ptm of O a O loop B-structure_element within O the O central O β B-structure_element - I-structure_element sheet I-structure_element . O This O is O also O the O case O in O PmC11 B-protein , O although O the O cleavage B-ptm loop B-structure_element is O structurally O different O to O that O found O in O the O caspases B-protein_type and O follows O the O catalytic B-protein_state His B-residue_name ( O Fig O . O 1A O ), O as O opposed O to O the O Cys B-residue_name in O the O caspases B-protein_type . O All O other O clan B-protein_type CD I-protein_type members I-protein_type requiring O cleavage B-ptm for O full B-protein_state activation I-protein_state do O so O at O sites B-site external O to O their O central O sheets B-structure_element . O The O caspases B-protein_type and O gingipain B-protein - I-protein R I-protein both O undergo O intermolecular B-ptm ( I-ptm trans I-ptm ) I-ptm cleavage I-ptm and O legumain B-protein and O MARTX B-protein - I-protein CPD I-protein are O reported O to O perform O intramolecular B-ptm ( I-ptm cis I-ptm ) I-ptm cleavage I-ptm . O In O addition O , O several O members O of O clan B-protein_type CD I-protein_type exhibit O self O - O inhibition O , O whereby O regions B-structure_element of O the O enzyme O block O access O to O the O active B-site site I-site . O Like O PmC11 B-protein , O these O structures O show O preformed O catalytic O machinery O and O , O for O a O substrate O to O gain O access O , O movement O and O / O or O cleavage B-ptm of O the O blocking B-structure_element region I-structure_element is O required O . O The O structure B-evidence of O PmC11 B-protein gives O the O first O insight O into O this O class O of O relatively O unexplored O family O of O proteins O and O should O allow O important O catalytic O and O substrate O binding O residues O to O be O identified O in O a O variety O of O orthologues O . O Indeed O , O insights O gained O from O an O analysis O of O the O PmC11 B-protein structure B-evidence revealed O the O identity O of O the O Trypanosoma B-species brucei I-species PNT1 B-protein protein O as O a O C11 B-protein_type cysteine I-protein_type peptidase I-protein_type with O an O essential O role O in O organelle O replication O . O The O PmC11 B-protein structure B-evidence should O provide O a O good O basis O for O structural B-experimental_method modeling I-experimental_method and O , O given O the O importance O of O other O clan B-protein_type CD I-protein_type enzymes I-protein_type , O this O work O should O also O advance O the O exploration O of O these O peptidases B-protein_type and O potentially O identify O new O biologically O important O substrates O . O Structural O insights O into O the O regulatory O mechanism O of O the O Pseudomonas B-species aeruginosa I-species YfiBNR B-complex_assembly system O YfiBNR B-complex_assembly is O a O recently O identified O bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O signaling O system O in O opportunistic O pathogens O . O In O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O can O sequester O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O provoking O the O diguanylate O cyclase O activity O of O YfiN B-protein to O induce O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O . O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O of O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant complexed B-protein_state with I-protein_state YfiR B-protein with O 2 O : O 2 O stoichiometry O . O Structural B-experimental_method analyses I-experimental_method revealed O that O in O contrast O to O the O compact B-protein_state conformation I-protein_state of O the O dimeric B-oligomeric_state YfiB B-protein alone B-protein_state , O YfiBL43P B-mutant adopts O a O stretched B-protein_state conformation I-protein_state allowing O activated B-protein_state YfiB B-protein to O penetrate O the O peptidoglycan B-chemical ( O PG B-chemical ) O layer O and O access O YfiR B-protein . O YfiBL43P B-mutant shows O a O more O compact O PG B-site - I-site binding I-site pocket I-site and O much O higher O PG B-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O suggesting O a O tight O correlation O between O PG O binding O and O YfiB B-protein activation O . O In O addition O , O our O crystallographic B-experimental_method analyses I-experimental_method revealed O that O YfiR B-protein binds O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical at O a O YfiB B-site - I-site binding I-site site I-site and O that O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical are O able O to O reduce O YfiBL43P B-mutant - O induced O biofilm O formation O . O Based O on O the O structural B-evidence and I-evidence biochemical I-evidence data I-evidence , O we O propose O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O . O Bis B-chemical -( I-chemical 3 I-chemical ’- I-chemical 5 I-chemical ’)- I-chemical cyclic I-chemical dimeric I-chemical GMP I-chemical ( O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ) O is O a O ubiquitous O second O messenger O that O bacteria B-taxonomy_domain use O to O facilitate O behavioral O adaptations O to O their O ever O - O changing O environment O . O An O increase O in O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical promotes O biofilm O formation O , O and O a O decrease O results O in O biofilm O degradation O ( O Boehm O et O al O .,; O Duerig O et O al O .,; O Hickman O et O al O .,; O Jenal O ,; O Romling O et O al O .,). O The O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O is O regulated O by O two O reciprocal O enzyme O systems O , O namely O , O diguanylate B-protein_type cyclases I-protein_type ( O DGCs B-protein_type ) O that O synthesize O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical and O phosphodiesterases B-protein_type ( O PDEs B-protein_type ) O that O hydrolyze O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical ( O Kulasakara O et O al O .,; O Ross O et O al O .,; O Ross O et O al O .,). O Many O of O these O enzymes O are O multiple O - O domain O proteins O containing O a O variable O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element that O commonly O acts O as O a O signal O sensor O or O transduction O module O , O followed O by O the O relatively B-protein_state conserved I-protein_state GGDEF B-structure_element motif I-structure_element in O DGCs B-protein_type or O EAL B-structure_element / I-structure_element HD I-structure_element - I-structure_element GYP I-structure_element domains I-structure_element in O PDEs B-protein_type ( O Hengge O ,; O Navarro O et O al O .,; O Schirmer O and O Jenal O ,). O Intriguingly O , O studies O in O diverse O species O have O revealed O that O a O single O bacterium B-taxonomy_domain can O have O dozens O of O DGCs B-protein_type and O PDEs B-protein_type ( O Hickman O et O al O .,; O Kirillina O et O al O .,; O Kulasakara O et O al O .,; O Tamayo O et O al O .,). O In O Pseudomonas B-species aeruginosa I-species in O particular O , O 42 O genes O containing O putative O DGCs B-protein_type and O / O or O PDEs B-protein_type were O identified O ( O Kulasakara O et O al O .,). O The O functional O role O of O a O number O of O downstream O effectors O of O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical has O been O characterized O as O affecting O exopolysaccharide B-chemical ( O EPS B-chemical ) O production O , O transcription O , O motility O , O and O surface O attachment O ( O Caly O et O al O .,; O Camilli O and O Bassler O ,; O Ha O and O O O ’ O Toole O ,; O Pesavento O and O Hengge O ,). O However O , O due O to O the O intricacy O of O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O networks O and O the O diversity O of O experimental O cues O , O the O detailed O mechanisms O by O which O these O signaling O pathways O specifically O sense O and O integrate O different O inputs O remain O largely O elusive O . O Biofilm O formation O protects O pathogenic O bacteria B-taxonomy_domain from O antibiotic O treatment O , O and O c O - O di O - O GMP O - O regulated O biofilm O formation O has O been O extensively O studied O in O P B-species . I-species aeruginosa I-species ( O Evans O ,; O Kirisits O et O al O .,; O Malone O ,; O Reinhardt O et O al O .,). O In O the O lungs O of O cystic O fibrosis O ( O CF O ) O patients O , O adherent O biofilm O formation O and O the O appearance O of O small O colony O variant O ( O SCV O ) O morphologies O of O P B-species . I-species aeruginosa I-species correlate O with O prolonged O persistence O of O infection O and O poor O lung O function O ( O Govan O and O Deretic O ,; O Haussler O et O al O .,; O Haussler O et O al O .,; O Parsek O and O Singh O ,; O Smith O et O al O .,). O Recently O , O Malone O and O coworkers O identified O the O tripartite B-protein_state c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical signaling O module O system O YfiBNR B-complex_assembly ( O also O known O as O AwsXRO B-complex_assembly ( O Beaumont O et O al O .,; O Giddens O et O al O .,) O or O Tbp B-complex_assembly ( O Ueda O and O Wood O ,)) O by O genetic B-experimental_method screening I-experimental_method for O mutants O that O displayed O SCV O phenotypes O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,; O Malone O et O al O .,). O The O YfiBNR B-complex_assembly system O contains O three O protein O members O and O modulates O intracellular O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical levels O in O response O to O signals O received O in O the O periplasm O ( O Malone O et O al O .,). O More O recently O , O this O system O was O also O reported O in O other O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain , O such O as O Escherichia B-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O Klebsiella B-species pneumonia I-species ( O Huertas O et O al O .,) O and O Yersinia B-species pestis I-species ( O Ren O et O al O .,). O YfiN B-protein is O an O integral O inner O - O membrane O protein O with O two O potential O transmembrane B-structure_element helices I-structure_element , O a O periplasmic O Per B-structure_element - I-structure_element Arnt I-structure_element - I-structure_element Sim I-structure_element ( O PAS B-structure_element ) O domain O , O and O cytosolic O domains O containing O a O HAMP B-structure_element domain I-structure_element ( O mediate O input O - O output O signaling O in O histidine B-protein_type kinases I-protein_type , O adenylyl B-protein_type cyclases I-protein_type , O methyl B-protein_type - I-protein_type accepting I-protein_type chemotaxis I-protein_type proteins I-protein_type , O and O phosphatases B-protein_type ) O and O a O C O - O terminal O GGDEF B-structure_element domain I-structure_element indicating O a O DGC B-protein_type ’ O s O function O ( O Giardina O et O al O .,; O Malone O et O al O .,). O YfiN B-protein is O repressed B-protein_state by I-protein_state specific O interaction O between O its O periplasmic O PAS B-structure_element domain I-structure_element and O the O periplasmic O protein O YfiR B-protein ( O Malone O et O al O .,). O YfiB B-protein is O an O OmpA B-protein_type / I-protein_type Pal I-protein_type - I-protein_type like I-protein_type outer O - O membrane O lipoprotein B-protein_type ( O Parsons O et O al O .,) O that O can O activate O YfiN B-protein by O sequestering O YfiR B-protein ( O Malone O et O al O .,) O in O an O unknown O manner O . O Whether O YfiB B-protein directly O recruits O YfiR B-protein or O recruits O YfiR B-protein via O a O third O partner O is O an O open O question O . O After O the O sequestration O of O YfiR B-protein by O YfiB B-protein , O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical produced O by O activated B-protein_state YfiN B-protein increases O the O biosynthesis O of O the O Pel B-chemical and O Psl B-chemical EPSs B-chemical , O resulting O in O the O appearance O of O the O SCV O phenotype O , O which O indicates O enhanced O biofilm O formation O ( O Malone O et O al O .,). O It O has O been O reported O that O the O activation O of O YfiN B-protein may O be O induced O by O redox O - O driven O misfolding O of O YfiR B-protein ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O It O is O also O proposed O that O the O sequestration O of O YfiR B-protein by O YfiB B-protein can O be O induced O by O certain O YfiB B-protein - O mediated O cell O wall O stress O , O and O mutagenesis B-experimental_method studies I-experimental_method revealed O a O number O of O activation B-structure_element residues I-structure_element of O YfiB B-protein that O were O located O in O close O proximity O to O the O predicted B-protein_state first B-structure_element helix I-structure_element of O the O periplasmic B-structure_element domain I-structure_element ( O Malone O et O al O .,). O In O addition O , O quorum O sensing O - O related O dephosphorylation O of O the O PAS B-structure_element domain I-structure_element of O YfiN B-protein may O also O be O involved O in O the O regulation O ( O Ueda O and O Wood O ,; O Xu O et O al O .,). O Recently O , O we O solved O the O crystal B-evidence structure I-evidence of O YfiR B-protein in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O , O revealing O breakage O / O formation O of O one O disulfide B-ptm bond I-ptm ( O Cys71 B-residue_name_number - O Cys110 B-residue_name_number ) O and O local O conformational O change O around O the O other O one O ( O Cys145 B-residue_name_number - O Cys152 B-residue_name_number ), O indicating O that O Cys145 B-residue_name_number - O Cys152 B-residue_name_number plays O an O important O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O In O the O present O study O , O we O solved O the O crystal B-evidence structures I-evidence of O an O N O - O terminal O truncated B-protein_state form O of O YfiB B-protein ( O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant . O Most O recently O , O Li O and O coworkers O reported O the O crystal B-evidence structures I-evidence of O YfiB B-protein ( O 27 B-residue_range – I-residue_range 168 I-residue_range ) O alone B-protein_state and O YfiRC71S B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiB B-protein ( O 59 B-residue_range – I-residue_range 168 I-residue_range ) O ( O Li O et O al O .,). O Compared O with O the O reported O complex O structure O , O YfiBL43P B-mutant in O our O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O structure B-evidence has O additional O visible O N O - O terminal O residues O 44 B-residue_range – I-residue_range 58 I-residue_range that O are O shown O to O play O essential O roles O in O YfiB B-protein activation O and O biofilm O formation O . O Therefore O , O we O are O able O to O visualize O the O detailed O allosteric O arrangement O of O the O N O - O terminal O structure O of O YfiB B-protein and O its O important O role O in O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O . O In O addition O , O we O found O that O the O YfiBL43P B-mutant shows O a O much O higher O PG B-evidence - I-evidence binding I-evidence affinity I-evidence than O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein , O most O likely O due O to O its O more O compact O PG B-site - I-site binding I-site pocket I-site . O Moreover O , O we O found O that O Vitamin B-chemical B6 I-chemical ( O VB6 B-chemical ) O or O L B-chemical - I-chemical Trp I-chemical can O bind O YfiR B-protein with O an O affinity B-evidence in O the O ten O millimolar O range O . O Together O with O functional O data O , O these O results O provide O new O mechanistic O insights O into O how O activated B-protein_state YfiB B-protein sequesters O YfiR B-protein and O releases O the O suppression O of O YfiN B-protein . O These O findings O may O facilitate O the O development O and O optimization O of O anti O - O biofilm O drugs O for O the O treatment O of O chronic O infections O . O Overall O structure B-evidence of O YfiB B-protein We O obtained O two O crystal B-evidence forms I-evidence of O YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element from O residues O 1 B-residue_range – I-residue_range 26 I-residue_range and O periplasmic O residues O 27 B-residue_range – I-residue_range 33 I-residue_range ), O crystal O forms O I O and O II O , O belonging O to O space O groups O P21 O and O P41 O , O respectively O . O Overall O structure B-evidence of O YfiB B-protein . O ( O A O ) O The O overall O structure B-evidence of O the O YfiB B-protein monomer B-oligomeric_state . O ( O B O ) O A O topology O diagram O of O the O YfiB B-protein monomer B-oligomeric_state . O ( O C O and O D O ) O The O analytical B-experimental_method ultracentrifugation I-experimental_method experiment O results O for O the O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant Two O dimeric B-oligomeric_state types O of O YfiB B-protein dimer B-oligomeric_state . O ( O A O – O C O ) O The O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state . O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state . O ( O A O ) O and O ( O E O ) O indicate O the O front O views O of O the O two O dimers B-oligomeric_state , O ( O B O ) O and O ( O F O ) O indicate O the O top O views O of O the O two O dimers B-oligomeric_state , O and O ( O C O ) O and O ( O D O ) O indicate O the O details O of O the O two O dimeric B-site interfaces I-site The O crystal B-evidence structure I-evidence of O YfiB B-protein monomer B-oligomeric_state consists O of O a O five B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element ( O β1 B-structure_element - I-structure_element 2 I-structure_element - I-structure_element 5 I-structure_element - I-structure_element 3 I-structure_element - I-structure_element 4 I-structure_element ) O flanked O by O five B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O α1 B-structure_element – I-structure_element 5 I-structure_element ) O on O one O side O . O In O addition O , O there O is O a O short O helix B-structure_element turn I-structure_element connecting O the O β4 B-structure_element strand I-structure_element and O α4 B-structure_element helix I-structure_element ( O Fig O . O 1A O and O 1B O ). O Each O crystal O form O contains O three O different O dimeric B-oligomeric_state types O of O YfiB B-protein , O two O of O which O are O present O in O both O , O suggesting O that O the O rest O of O the O dimeric B-oligomeric_state types O may O result O from O crystal O packing O . O Here O , O we O refer O to O the O two O dimeric B-oligomeric_state types O as O “ O head B-protein_state to I-protein_state head I-protein_state ” O and O “ O back B-protein_state to I-protein_state back I-protein_state ” O according O to O the O interacting O mode O ( O Fig O . O 2A O and O 2E O ), O with O the O total O buried O surface O areas O being O 316 O . O 8 O Å2 O and O 554 O . O 3 O Å2 O , O respectively O . O The O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state exhibits O a O clamp B-protein_state shape I-protein_state . O The O dimerization O occurs O mainly O via O hydrophobic O interactions O formed O by O A37 B-residue_name_number and O I40 B-residue_name_number on O the O α1 B-structure_element helices I-structure_element , O L50 B-residue_name_number on O the O β1 B-structure_element strands I-structure_element , O and O W55 B-residue_name_number on O the O β2 B-structure_element strands I-structure_element of O both O molecules O , O making O a O hydrophobic B-site interacting I-site core I-site ( O Fig O . O 2A O – O C O ). O The O “ O back B-protein_state to I-protein_state back I-protein_state ” O dimer B-oligomeric_state presents O a O Y B-protein_state shape I-protein_state . O The O dimeric O interaction O is O mainly O hydrophilic O , O occurring O among O the O main O - O chain O and O side O - O chain O atoms O of O N68 B-residue_name_number , O L69 B-residue_name_number , O D70 B-residue_name_number and O R71 B-residue_name_number on O the O α2 B-structure_element - I-structure_element α3 I-structure_element loops I-structure_element and O R116 B-residue_name_number and O S120 B-residue_name_number on O the O α4 B-structure_element helices I-structure_element of O both O molecules O , O resulting O in O a O complex O hydrogen B-site bond I-site network I-site ( O Fig O . O 2D O – O F O ). O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O Overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O and O the O conserved B-site surface I-site in O YfiR B-protein . O ( O A O ) O The O overall O structure B-evidence of O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O . O The O YfiBL43P B-mutant molecules O are O shown O in O cyan O and O yellow O . O The O YfiR B-protein molecules O are O shown O in O green O and O magenta O . O Two O interacting O regions O are O highlighted O by O red O rectangles O . O ( O B O ) O Structural B-experimental_method superposition I-experimental_method of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O To O illustrate O the O differences O between O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O apo B-protein_state YfiB B-protein is O shown O in O pink O , O except O residues O 34 B-residue_range – I-residue_range 70 I-residue_range are O shown O in O red O , O whereas O the O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O , O except O residues O 44 B-residue_range – I-residue_range 70 I-residue_range are O shown O in O blue O . O ( O C O ) O Close O - O up O view O of O the O differences O between O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant . O The O residues O proposed O to O contribute O to O YfiB B-protein activation O are O illustrated O in O sticks O . O The O key O residues O in O apo B-protein_state YfiB B-protein are O shown O in O red O and O those O in O YfiBL43P B-mutant are O shown O in O blue O . O ( O D O ) O Close O - O up O views O showing O interactions O in O regions B-structure_element I I-structure_element and I-structure_element II I-structure_element . O YfiBL43P B-mutant and O YfiR B-protein are O shown O in O cyan O and O green O , O respectively O . O ( O E O and O F O ) O The O conserved B-site surface I-site in O YfiR B-protein contributes O to O the O interaction O with O YfiB B-protein . O ( O G O ) O The O residues B-structure_element of O YfiR B-protein responsible O for O interacting O with O YfiB B-protein are O shown O in O green O sticks O , O and O the O proposed O YfiN B-site - I-site interacting I-site residues I-site are O shown O in O yellow O sticks O . O The O red O sticks O , O which O represent O the O YfiB B-site - I-site interacting I-site residues I-site , O are O also O responsible O for O the O proposed O interactions O with O YfiN B-protein To O gain O structural O insights O into O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O we O co B-experimental_method - I-experimental_method expressed I-experimental_method YfiB B-protein ( O residues O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein ( O residues O 35 B-residue_range – I-residue_range 190 I-residue_range , O lacking B-protein_state the O signal B-structure_element peptide I-structure_element ), O but O failed O to O obtain O the O complex O , O in O accordance O with O a O previous O report O in O which O no B-protein_state stable I-protein_state complex O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly was O observed O ( O Malone O et O al O .,). O It O has O been O reported O that O single B-experimental_method mutants I-experimental_method of I-experimental_method Q39 B-residue_name_number , O L43 B-residue_name_number , O F48 B-residue_name_number and O W55 B-residue_name_number contribute O to O YfiB B-protein activation O leading O to O the O induction O of O the O SCV O phenotype O in O P B-species . I-species aeruginosa I-species PAO1 I-species ( O Malone O et O al O .,). O It O is O likely O that O these O residues O may O be O involved O in O the O conformational O changes O of O YfiB B-protein that O are O related O to O YfiR B-protein sequestration O ( O Fig O . O 3C O ). O Therefore O , O we O constructed B-experimental_method two I-experimental_method such I-experimental_method single I-experimental_method mutants I-experimental_method of O YfiB B-protein ( O YfiBL43P B-mutant and O YfiBF48S B-mutant ). O As O expected O , O both O mutants O form O a O stable B-protein_state complex B-protein_state with I-protein_state YfiR B-protein . O Finally O , O we O crystalized B-experimental_method YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state the O YfiBL43P B-mutant mutant B-protein_state and O solved O the O structure B-evidence at O 1 O . O 78 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method using O YfiR B-protein and O YfiB B-protein as O models O . O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O is O a O 2 O : O 2 O heterotetramer B-oligomeric_state ( O Fig O . O 3A O ) O in O which O the O YfiR B-protein dimer B-oligomeric_state is O clamped O by O two O separated O YfiBL43P B-mutant molecules O with O a O total O buried O surface O area O of O 3161 O . O 2 O Å2 O . O The O YfiR B-protein dimer B-oligomeric_state in O the O complex O is O identical O to O the O non B-protein_state - I-protein_state oxidized I-protein_state YfiR B-protein dimer B-oligomeric_state alone B-protein_state ( O Yang O et O al O .,), O with O only O Cys145 B-residue_name_number - O Cys152 B-residue_name_number of O the O two O disulfide B-ptm bonds I-ptm well O formed O , O suggesting O Cys71 B-residue_name_number - O Cys110 B-residue_name_number disulfide B-ptm bond I-ptm formation O is O not O essential O for O forming O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O . O The O N O - O terminal O structural O conformation O of O YfiBL43P B-mutant , O from O the O foremost O N O - O terminus O to O residue O D70 B-residue_name_number , O is O significantly O altered O compared O with O that O of O the O apo B-protein_state YfiB B-protein . O The O majority O of O the O α1 B-structure_element helix I-structure_element ( O residues O 34 B-residue_range – I-residue_range 43 I-residue_range ) O is O invisible O on O the O electron B-evidence density I-evidence map I-evidence , O and O the O α2 B-structure_element helix I-structure_element and O β1 B-structure_element and O β2 B-structure_element strands I-structure_element are O rearranged O to O form O a O long O loop B-structure_element containing O two O short O α B-structure_element - I-structure_element helix I-structure_element turns I-structure_element ( O Fig O . O 3B O and O 3C O ), O thus O embracing O the O YfiR B-protein dimer B-oligomeric_state . O The O observed O changes O in O conformation O of O YfiB B-protein and O the O results O of O mutagenesis B-experimental_method suggest O a O mechanism O by O which O YfiB B-protein sequesters O YfiR B-protein . O The O YfiB B-site - I-site YfiR I-site interface I-site can O be O divided O into O two O regions O ( O Fig O . O 3A O and O 3D O ). O Region B-structure_element I I-structure_element is O formed O by O numerous O main O - O chain O and O side O - O chain O hydrophilic O interactions O between O residues O E45 B-residue_name_number , O G47 B-residue_name_number and O E53 B-residue_name_number from O the O N O - O terminal O extended O loop B-structure_element of O YfiB B-protein and O residues O S57 B-residue_name_number , O R60 B-residue_name_number , O A89 B-residue_name_number and O H177 B-residue_name_number from O YfiR B-protein ( O Fig O . O 3D O - O I O ( O i O )). O Additionally O , O three O hydrophobic B-site anchoring I-site sites I-site exist O in O region B-structure_element I I-structure_element . O The O residues O F48 B-residue_name_number and O W55 B-residue_name_number of O YfiB B-protein are O inserted O into O the O hydrophobic B-site cores I-site mainly O formed O by O the O main O chain O and O side O chain O carbon O atoms O of O residues O S57 B-residue_name_number / O Q88 B-residue_name_number / O A89 B-residue_name_number / O N90 B-residue_name_number and O R60 B-residue_name_number / O R175 B-residue_name_number / O H177 B-residue_name_number of O YfiR B-protein , O respectively O ; O and O F57 B-residue_name_number of O YfiB B-protein is O inserted O into O the O hydrophobic B-site pocket I-site formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O In O region B-structure_element II I-structure_element , O the O side O chains O of O R96 B-residue_name_number , O E98 B-residue_name_number and O E157 B-residue_name_number from O YfiB B-protein interact O with O the O side O chains O of O E163 B-residue_name_number , O S146 B-residue_name_number and O R171 B-residue_name_number from O YfiR B-protein , O respectively O . O Additionally O , O the O main O chains O of O I163 B-residue_name_number and O V165 B-residue_name_number from O YfiB B-protein form O hydrogen O bonds O with O the O main O chains O of O L166 B-residue_name_number and O A164 B-residue_name_number from O YfiR B-protein , O respectively O , O and O the O main O chain O of O P166 B-residue_name_number from O YfiB B-protein interacts O with O the O side O chain O of O R185 B-residue_name_number from O YfiR B-protein ( O Fig O . O 3D O - O II O ). O These O two O regions O contribute O a O robust O hydrogen B-site - I-site bonding I-site network I-site to O the O YfiB B-site - I-site YfiR I-site interface I-site , O resulting O in O a O tightly O bound O complex O . O Based O on O the O observations O that O two O separated O YfiBL43P B-mutant molecules O form O a O 2 O : O 2 O complex O structure B-evidence with O YfiR B-protein dimer B-oligomeric_state , O we O performed O an O analytical B-experimental_method ultracentrifugation I-experimental_method experiment O to O check O the O oligomeric O states O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant . O The O results O showed O that O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein exists O in O both O monomeric B-oligomeric_state and O dimeric B-oligomeric_state states O in O solution O , O while O YfiBL43P B-mutant primarily O adopts O the O monomer B-oligomeric_state state O in O solution O ( O Fig O . O 1C O – O D O ). O This O suggests O that O the O N O - O terminus O of O YfiB B-protein plays O an O important O role O in O forming O the O dimeric B-oligomeric_state YfiB B-protein in O solution O and O that O the O conformational O change O of O residue O L43 B-residue_name_number is O associated O with O the O stretch O of O the O N O - O terminus O and O opening O of O the O dimer B-oligomeric_state . O Therefore O , O it O is O possible O that O both O dimeric B-oligomeric_state types O might O exist O in O solution O . O For O simplicity O , O we O only O discuss O the O “ O head B-protein_state to I-protein_state head I-protein_state ” O dimer B-oligomeric_state in O the O following O text O . O The O PG B-site - I-site binding I-site site I-site of O YfiB B-protein The O PG B-site - I-site binding I-site site I-site in O YfiB B-protein . O ( O A O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O the O H B-species . I-species influenzae I-species Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant complexed B-protein_state with I-protein_state sulfate B-chemical ions O . O ( O B O ) O Close O - O up O view O showing O the O key O residues O of O Pal B-protein_type interacting O with O the O m B-chemical - I-chemical Dap5 I-chemical ε I-chemical - I-chemical carboxylate I-chemical group O of O PG B-chemical - I-chemical P I-chemical . O Pal B-protein_type is O shown O in O wheat O and O PG B-chemical - I-chemical P I-chemical is O in O magenta O . O ( O C O ) O Close O - O up O view O showing O the O key O residues O of O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant interacting O with O a O sulfate B-chemical ion O . O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant is O shown O in O cyan O ; O the O sulfate B-chemical ion O , O in O green O ; O and O the O water B-chemical molecule O , O in O yellow O . O ( O D O ) O Structural B-experimental_method superposition I-experimental_method of O the O PG B-site - I-site binding I-site sites I-site of O apo B-protein_state YfiB B-protein and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant , O the O key O residues O are O shown O in O stick O . O Apo B-protein_state YfiB B-protein is O shown O in O yellow O and O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant in O cyan O . O ( O E O and O F O ) O MST B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state and O ( O F O ) O YfiBL43P B-mutant with O PG B-chemical . O ( O G O ) O The O sequence B-experimental_method alignment I-experimental_method of O P B-species . I-species aeruginosa I-species and O E B-species . I-species coli I-species sources O of O YfiB B-protein , O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type PG B-protein_type - I-protein_type associated I-protein_type lipoprotein I-protein_type ( O Pal B-protein_type ) O is O highly B-protein_state conserved I-protein_state in O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain and O anchors O to O the O outer O membrane O through O an O N O - O terminal O lipid O attachment O and O to O PG O layer O through O its O periplasmic B-structure_element domain I-structure_element , O which O is O implicated O in O maintaining O outer O membrane O integrity O . O Previous O homology B-experimental_method modeling I-experimental_method studies O suggested O that O YfiB B-protein contains O a O Pal B-site - I-site like I-site PG I-site - I-site binding I-site site I-site ( O Parsons O et O al O .,), O and O the O mutation B-experimental_method of I-experimental_method two I-experimental_method residues I-experimental_method at O this O site O , O D102 B-residue_name_number and O G105 B-residue_name_number , O reduces O the O ability O for O biofilm O formation O and O surface O attachment O ( O Malone O et O al O .,). O In O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O , O one O sulfate B-chemical ion O is O found O at O the O bottom O of O each O YfiBL43P B-mutant molecule O ( O Fig O . O 3A O ) O and O forms O a O strong O hydrogen O bond O with O D102 B-residue_name_number of O YfiBL43P B-mutant ( O Fig O . O 4A O and O 4C O ). O Structural B-experimental_method superposition I-experimental_method between O YfiBL43P B-mutant and O Haemophilus B-species influenzae I-species Pal B-protein_type complexed B-protein_state with I-protein_state biosynthetic O peptidoglycan B-chemical precursor I-chemical ( O PG B-chemical - I-chemical P I-chemical ), O UDP B-chemical - I-chemical N I-chemical - I-chemical acetylmuramyl I-chemical - I-chemical L I-chemical - I-chemical Ala I-chemical - I-chemical α I-chemical - I-chemical D I-chemical - I-chemical Glu I-chemical - I-chemical m I-chemical - I-chemical Dap I-chemical - I-chemical D I-chemical - I-chemical Ala I-chemical - I-chemical D I-chemical - I-chemical Ala I-chemical ( O m B-chemical - I-chemical Dap I-chemical is O meso B-chemical - I-chemical diaminopimelate I-chemical ) O ( O PDB O code O : O 2aiz O ) O ( O Parsons O et O al O .,), O revealed O that O the O sulfate B-chemical ion O is O located O at O the O position O of O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O in O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O ( O Fig O . O 4A O ). O In O the O Pal B-complex_assembly / I-complex_assembly PG I-complex_assembly - I-complex_assembly P I-complex_assembly complex O structure B-evidence , O the O m B-chemical - I-chemical Dap5 I-chemical ϵ I-chemical - I-chemical carboxylate I-chemical group O interacts O with O the O side O - O chain O atoms O of O D71 B-residue_name_number and O the O main O - O chain O amide O of O D37 B-residue_name_number ( O Fig O . O 4B O ). O Similarly O , O in O the O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant structure B-evidence , O the O sulfate B-chemical ion O interacts O with O the O side O - O chain O atoms O of O D102 B-residue_name_number ( O corresponding O to O D71 B-residue_name_number in O Pal B-protein_type ) O and O R117 B-residue_name_number ( O corresponding O to O R86 B-residue_name_number in O Pal B-protein_type ) O and O the O main O - O chain O amide O of O N68 B-residue_name_number ( O corresponding O to O D37 B-residue_name_number in O Pal B-protein_type ). O Moreover O , O a O water B-chemical molecule O was O found O to O bridge O the O sulfate B-chemical ion O and O the O side O chains O of O N67 B-residue_name_number and O D102 B-residue_name_number , O strengthening O the O hydrogen B-site bond I-site network I-site ( O Fig O . O 4C O ). O In O addition O , O sequence B-experimental_method alignment I-experimental_method of O YfiB B-protein with O Pal B-protein_type and O the O periplasmic B-structure_element domain I-structure_element of O OmpA B-protein_type ( O proteins O containing O PG B-site - I-site binding I-site site I-site ) O showed O that O N68 B-residue_name_number and O D102 B-residue_name_number are O highly B-protein_state conserved I-protein_state ( O Fig O . O 4G O , O blue O stars O ), O suggesting O that O these O residues O contribute O to O the O PG O - O binding O ability O of O YfiB B-protein . O Interestingly O , O superposition B-experimental_method of O apo B-protein_state YfiB B-protein with O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant revealed O that O the O PG B-site - I-site binding I-site region I-site is O largely O altered O mainly O due O to O different B-protein_state conformation I-protein_state of O the O N68 B-residue_name_number containing O loop B-structure_element . O Compared O to O YfiBL43P B-mutant , O the O N68 B-residue_name_number - O containing O loop B-structure_element of O the O apo B-protein_state YfiB B-protein flips O away O about O 7 O Å O , O and O D102 B-residue_name_number and O R117 B-residue_name_number swing O slightly O outward O ; O thus O , O the O PG B-site - I-site binding I-site pocket I-site is O enlarged O with O no O sulfate B-chemical ion O or O water B-chemical bound O ( O Fig O . O 4D O ). O Therefore O , O we O proposed O that O the O PG B-chemical - O binding O ability O of O inactive B-protein_state YfiB B-protein might O be O weaker O than O that O of O active B-protein_state YfiB B-protein . O To O validate O this O , O we O performed O a O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ) O assay O to O measure O the O binding B-evidence affinities I-evidence of O PG B-chemical to O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein and O YfiBL43P B-mutant , O respectively O . O The O results O indicated O that O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiBL43P B-mutant is O 65 O . O 5 O μmol O / O L O , O which O is O about O 16 O - O fold O stronger O than O that O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein ( O Kd O = O 1 O . O 1 O mmol O / O L O ) O ( O Fig O . O 4E O – O F O ). O As O the O experiment O is O performed O in B-protein_state the I-protein_state absence I-protein_state of I-protein_state YfiR B-protein , O it O suggests O that O an O increase O in O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiB B-protein is O not O a O result O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O and O is O highly O coupled O to O the O activation O of O YfiB B-protein characterized O by O a O stretched B-protein_state N I-protein_state - I-protein_state terminal I-protein_state conformation I-protein_state . O The O conserved B-site surface I-site in O YfiR B-protein is O functional O for O binding O YfiB B-protein and O YfiN B-protein Calculation O using O the O ConSurf B-experimental_method Server I-experimental_method ( O http O :// O consurf O . O tau O . O ac O . O il O /), O which O estimates O the O evolutionary B-evidence conservation I-evidence of O amino O acid O positions O and O visualizes O information O on O the O structure B-site surface I-site , O revealed O a O conserved B-site surface I-site on O YfiR B-protein that O contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O Interestingly O , O the O majority O of O this O conserved B-site surface I-site contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O Malone O JG O et O al O . O have O reported O that O F151 B-residue_name_number , O E163 B-residue_name_number , O I169 B-residue_name_number and O Q187 B-residue_name_number , O located O near O the O C O - O terminus O of O YfiR B-protein , O comprise O a O putative O YfiN B-site binding I-site site I-site ( O Malone O et O al O .,). O Interestingly O , O these O residues O are O part O of O the O conserved B-site surface I-site of O YfiR B-protein ( O Fig O . O 3G O ). O F151 B-residue_name_number , O E163 B-residue_name_number and O I169 B-residue_name_number form O a O hydrophobic B-site core I-site while O , O Q187 B-residue_name_number is O located O at O the O end O of O the O α6 B-structure_element helix I-structure_element . O E163 B-residue_name_number and O I169 B-residue_name_number are O YfiB B-site - I-site interacting I-site residues I-site of O YfiR B-protein , O in O which O E163 B-residue_name_number forms O a O hydrogen O bond O with O R96 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O II O ) O and O I169 B-residue_name_number is O involved O in O forming O the O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number hydrophobic B-site core I-site for O anchoring O F57 B-residue_name_number of O YfiB B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O Collectively O , O a O part O of O the O YfiB B-site - I-site YfiR I-site interface I-site overlaps O with O the O proposed O YfiR B-site - I-site YfiN I-site interface I-site , O suggesting O alteration O in O the O association O - O disassociation O equilibrium O of O YfiR B-protein - O YfiN B-protein and O hence O the O ability O of O YfiB B-protein to O sequester O YfiR B-protein . O YfiR B-protein binds O small O molecules O Previous O studies O indicated O that O YfiR B-protein constitutes O a O YfiB B-protein - O independent O sensing O device O that O can O activate O YfiN B-protein in O response O to O the O redox O status O of O the O periplasm O , O and O we O have O reported O YfiR B-protein structures B-evidence in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O earlier O , O revealing O that O the O Cys145 B-residue_name_number - O Cys152 B-residue_name_number disulfide B-ptm bond I-ptm plays O an O essential O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O However O , O whether O YfiR B-protein is O involved O in O other O regulatory O mechanisms O is O still O an O open O question O . O Overall O Structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O A O ) O Superposition B-experimental_method of O the O overall O structures B-evidence of O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein . O ( O B O ) O Close O - O up O views O showing O the O key O residues O of O YfiR B-protein that O bind O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical . O The O electron B-evidence densities I-evidence of O VB6 B-chemical and O Trp B-chemical are O countered O at O 3 O . O 0σ O and O 2 O . O 3σ O , O respectively O , O in O | B-evidence Fo I-evidence |-| I-evidence Fc I-evidence | I-evidence maps I-evidence . O ( O C O ) O Superposition B-experimental_method of O the O hydrophobic B-site pocket I-site of O YfiR B-protein with O VB6 B-chemical , O L B-chemical - I-chemical Trp I-chemical and O F57 B-residue_name_number of O YfiB B-protein Intriguingly O , O a O Dali B-experimental_method search I-experimental_method ( O Holm O and O Rosenstrom O ,) O indicated O that O the O closest O homologs O of O YfiR B-protein shared O the O characteristic O of O being O able O to O bind O several O structurally O similar O small O molecules O , O such O as O L B-chemical - I-chemical Trp I-chemical , O L B-chemical - I-chemical Phe I-chemical , O B O - O group O vitamins O and O their O analogs O , O encouraging O us O to O test O whether O YfiR B-protein can O recognize O these O molecules O . O For O this O purpose O , O we O co B-experimental_method - I-experimental_method crystallized I-experimental_method YfiR B-protein or O soaked B-experimental_method YfiR B-protein crystals B-evidence with O different O small O molecules O , O including O L B-chemical - I-chemical Trp I-chemical and O B O - O group O vitamins O . O Fortunately O , O we O found O obvious O small B-evidence - I-evidence molecule I-evidence density I-evidence in O the O VB6 B-protein_state - I-protein_state bound I-protein_state and O Trp B-protein_state - I-protein_state bound I-protein_state YfiR B-protein crystal B-evidence structures I-evidence ( O Fig O . O 5A O and O 5B O ), O and O in O both O structures B-evidence , O the O YfiR B-protein dimers B-oligomeric_state resemble O the O oxidized B-protein_state YfiR B-protein structure B-evidence in O which O both O two O disulfide B-ptm bonds I-ptm are O well O formed O ( O Yang O et O al O .,). O Functional O analysis O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical . O ( O A O and O B O ) O The O effect B-experimental_method of I-experimental_method increasing I-experimental_method concentrations I-experimental_method of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical on O YfiBL43P B-mutant - O induced O attachment O ( O bars O ). O The O relative B-evidence optical I-evidence density I-evidence is O represented O as O curves O . O Wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein is O used O as O negative O control O . O ( O C O and O D O ) O BIAcore B-experimental_method data O and O analysis O for O binding B-evidence affinities I-evidence of O ( O C O ) O VB6 B-chemical and O ( O D O ) O L B-chemical - I-chemical Trp I-chemical with O YfiR B-protein . O ( O E O – O G O ) O ITC B-experimental_method data O and O analysis O for O titration B-experimental_method of O ( O E O ) O YfiB B-protein wild B-protein_state - I-protein_state type I-protein_state , O ( O F O ) O YfiBL43P O , O and O ( O G O ) O YfiBL43P B-mutant / O F57A B-mutant into O YfiR B-protein Structural B-experimental_method analyses I-experimental_method revealed O that O the O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical molecules O are O bound B-protein_state at I-protein_state the O periphery O of O the O YfiR B-protein dimer B-oligomeric_state , O but O not O at O the O dimer B-site interface I-site . O Interestingly O , O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical were O found O to O occupy O the O same O hydrophobic B-site pocket I-site , O formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein , O which O is O also O a O binding B-site pocket I-site for O F57 B-residue_name_number of O YfiB B-protein , O as O observed O in O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O ( O Fig O . O 5C O ). O To O evaluate O the O importance O of O F57 B-residue_name_number in O YfiBL43P B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O binding B-evidence affinities I-evidence of O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant for O YfiR B-protein were O measured O by O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O The O results O showed O Kd B-evidence values O of O 1 O . O 4 O × O 10 O − O 7 O mol O / O L O and O 5 O . O 3 O × O 10 O − O 7 O mol O / O L O for O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant , O respectively O , O revealing O that O the O YfiBL43P B-mutant / O F57A B-mutant mutant B-protein_state caused O a O 3 O . O 8 O - O fold O reduction O in O the O binding B-evidence affinity I-evidence compared O with O the O YfiBL43P B-mutant mutant B-protein_state ( O Fig O . O 6F O and O 6G O ). O In O parallel O , O to O better O understand O the O putative O functional O role O of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O yfiB B-gene was O deleted B-experimental_method in O a O PAO1 B-species wild B-protein_state - I-protein_state type I-protein_state strain O , O and O a O construct B-experimental_method expressing I-experimental_method the O YfiBL43P B-mutant mutant B-protein_state was O transformed B-experimental_method into I-experimental_method the O PAO1 B-species ΔyfiB B-mutant strain O to O trigger O YfiBL43P B-mutant - O induced O biofilm O formation O . O Growth B-experimental_method and I-experimental_method surface I-experimental_method attachment I-experimental_method assays I-experimental_method were O carried O out O for O the O yfiB B-mutant - I-mutant L43P I-mutant strain O in O the O presence O of O increasing B-experimental_method concentrations I-experimental_method of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical . O As O shown O in O Fig O . O 6A O and O 6B O , O the O over B-experimental_method - I-experimental_method expression I-experimental_method of O YfiBL43P B-mutant induced O strong O surface O attachment O and O much O slower O growth O of O the O yfiB B-mutant - I-mutant L43P I-mutant strain O , O and O as O expected O , O a O certain O amount O of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical ( O 4 O – O 6 O mmol O / O L O for O VB6 B-chemical and O 6 O – O 10 O mmol O / O L O for O L B-chemical - I-chemical Trp I-chemical ) O could O reduce O the O surface O attachment O . O Interestingly O , O at O a O concentration O higher O than O 8 O mmol O / O L O , O VB6 B-chemical lost O its O ability O to O inhibit O biofilm O formation O , O implying O that O the O VB6 B-chemical - O involving O regulatory O mechanism O is O highly O complicated O and O remains O to O be O further O investigated O . O Of O note O , O both O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical have O been O reported O to O correlate O with O biofilm O formation O in O certain O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacteria I-taxonomy_domain ( O Grubman O et O al O .,; O Shimazaki O et O al O .,). O In O Helicobacter B-species pylori I-species in O particular O , O VB6 B-chemical biosynthetic O enzymes O act O as O novel O virulence O factors O , O and O VB6 B-chemical is O required O for O full O motility O and O virulence O ( O Grubman O et O al O .,). O In O E B-species . I-species coli I-species , O mutants O with O decreased O tryptophan B-chemical synthesis O show O greater O biofilm O formation O , O and O matured O biofilm O is O degraded O by O L B-chemical - I-chemical tryptophan I-chemical addition O ( O Shimazaki O et O al O .,). O To O answer O the O question O whether O competition O of O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical for O the O YfiB B-protein F57 B-site - I-site binding I-site pocket I-site of O YfiR B-protein plays O an O essential O role O in O inhibiting O biofilm O formation O , O we O measured O the O binding B-evidence affinities I-evidence of O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical for O YfiR B-protein via O BIAcore B-experimental_method experiments O . O The O results O showed O relatively O weak O Kd B-evidence values O of O 35 O . O 2 O mmol O / O L O and O 76 O . O 9 O mmol O / O L O for O VB6 B-chemical and O L B-chemical - I-chemical Trp I-chemical , O respectively O ( O Fig O . O 6C O and O 6D O ). O Based O on O our O results O , O we O concluded O that O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical can O bind O to O YfiR B-protein , O however O , O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical alone B-protein_state may O have O little O effects O in O interrupting O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O , O the O mechanism O by O which O VB6 B-chemical or O L B-chemical - I-chemical Trp I-chemical inhibits O biofilm O formation O remains O unclear O and O requires O further O investigation O . O Previous O studies O suggested O that O in O response O to O cell O stress O , O YfiB B-protein in O the O outer O membrane O sequesters O the O periplasmic O protein O YfiR B-protein , O releasing O its O inhibition O of O YfiN B-protein on O the O inner O membrane O and O thus O inducing O the O diguanylate O cyclase O activity O of O YfiN B-protein to O allow O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O ( O Giardina O et O al O .,; O Malone O et O al O .,; O Malone O et O al O .,). O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiR B-protein , O indicating O that O YfiR B-protein forms O a O 2 O : O 2 O complex B-protein_state with I-protein_state YfiB B-protein via O a O region O composed O of O conserved O residues O . O Our O structural B-experimental_method data I-experimental_method analysis I-experimental_method shows O that O the O activated B-protein_state YfiB B-protein has O an O N B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element that O is O largely O altered O , O adopting O a O stretched B-protein_state conformation I-protein_state compared O with O the O compact B-protein_state conformation I-protein_state of O the O apo B-protein_state YfiB B-protein . O The O apo B-protein_state YfiB B-protein structure B-evidence constructed O beginning O at O residue O 34 B-residue_number has O a O compact B-protein_state conformation I-protein_state of O approximately O 45 O Å O in O length O . O In O addition O to O the O preceding B-residue_range 8 I-residue_range aa I-residue_range loop B-structure_element ( O from O the O lipid O acceptor O Cys26 B-residue_range to I-residue_range Gly34 I-residue_range ), O the O full B-protein_state length I-protein_state of O the O periplasmic O portion O of O apo B-protein_state YfiB B-protein can O reach O approximately O 60 O Å O . O It O was O reported O that O the O distance O between O the O outer O membrane O and O the O cell O wall O is O approximately O 50 O Å O and O that O the O thickness O of O the O PG O layer O is O approximately O 70 O Å O ( O Matias O et O al O .,). O Thus O , O YfiB B-protein alone B-protein_state represents O an O inactive B-protein_state form O that O may O only O partially O insert O into O the O PG O matrix O . O By O contrast O , O YfiR B-protein_state - I-protein_state bound I-protein_state YfiBL43P B-mutant ( O residues O 44 B-residue_range – I-residue_range 168 I-residue_range ) O has O a O stretched B-protein_state conformation I-protein_state of O approximately O 55 O Å O in O length O . O In O addition O to O the O 17 B-residue_range preceding I-residue_range intracellular I-residue_range residues I-residue_range ( O from O the O lipid O acceptor O Cys26 B-residue_range to I-residue_range Leu43 I-residue_range ), O the O length O of O the O intracellular O portion O of O active B-protein_state YfiB B-protein may O extend O over O 100 O Å O , O assuming O a O fully B-protein_state stretched I-protein_state conformation I-protein_state . O Provided O that O the O diameter O of O the O widest O part O of O the O YfiB B-protein dimer B-oligomeric_state is O approximately O 64 O Å O , O which O is O slightly O smaller O than O the O smallest O diameter O of O the O PG O pore O ( O 70 O Å O ) O ( O Meroueh O et O al O .,), O the O YfiB B-protein dimer B-oligomeric_state should O be O able O to O penetrate O the O PG O layer O . O Regulatory O model O of O the O YfiBNR B-complex_assembly tripartite B-protein_state system O . O The O periplasmic B-structure_element domain I-structure_element of O YfiB B-protein and O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O are O depicted O according O to O the O crystal B-evidence structures I-evidence . O The O lipid O acceptor O Cys26 B-residue_name_number is O indicated O as O blue O ball O . O The O loop B-structure_element connecting O Cys26 B-residue_name_number and O Gly34 B-residue_name_number of O YfiB B-protein is O modeled O . O The O PAS B-structure_element domain I-structure_element of O YfiN B-protein is O shown O as O pink O oval O . O Once O activated B-protein_state by O certain O cell O stress O , O the O dimeric B-oligomeric_state YfiB B-protein transforms O from O a O compact B-protein_state conformation I-protein_state to O a O stretched B-protein_state conformation I-protein_state , O allowing O the O periplasmic B-structure_element domain I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state , O thus O relieving O the O repression O of O YfiN B-protein These O results O , O together O with O our O observation O that O activated B-protein_state YfiB B-protein has O a O much O higher O cell B-evidence wall I-evidence binding I-evidence affinity I-evidence , O and O previous O mutagenesis O data O showing O that O ( O 1 O ) O both O PG B-chemical binding O and O membrane O anchoring O are O required O for O YfiB B-protein activity O and O ( O 2 O ) O activating O mutations O possessing O an O altered O N O - O terminal O loop B-structure_element length O are O dominant O over O the O loss O of O PG B-chemical binding O ( O Malone O et O al O .,), O suggest O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O ( O Fig O . O 7 O ). O In O this O model O , O in O response O to O a O particular O cell O stress O that O is O yet O to O be O identified O , O the O dimeric B-oligomeric_state YfiB B-protein is O activated B-protein_state from O a O compact B-protein_state , O inactive B-protein_state conformation B-protein_state to O a O stretched B-protein_state conformation I-protein_state , O which O possesses O increased O PG B-chemical binding O affinity O . O This O allows O the O C B-structure_element - I-structure_element terminal I-structure_element portion I-structure_element of O the O membrane B-protein_state - I-protein_state anchored I-protein_state YfiB B-protein to O reach O , O bind O and O penetrate O the O cell O wall O and O sequester O the O YfiR B-protein dimer B-oligomeric_state . O The O YfiBNR B-complex_assembly system O provides O a O good O example O of O a O delicate O homeostatic O system O that O integrates O multiple O signals O to O regulate O the O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical level O . O Homologs O of O the O YfiBNR B-complex_assembly system O are O functionally B-protein_state conserved I-protein_state in O P B-species . I-species aeruginosa I-species ( O Malone O et O al O .,; O Malone O et O al O .,), O E B-species . I-species coli I-species ( O Hufnagel O et O al O .,; O Raterman O et O al O .,; O Sanchez O - O Torres O et O al O .,), O K B-species . I-species pneumonia I-species ( O Huertas O et O al O .,) O and O Y B-species . I-species pestis I-species ( O Ren O et O al O .,), O where O they O affect O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O and O biofilm O formation O . O The O mechanism O by O which O activated B-protein_state YfiB B-protein relieves O the O repression O of O YfiN B-protein may O be O applicable O to O the O YfiBNR B-complex_assembly system O in O other O bacteria B-taxonomy_domain and O to O analogous O outside O - O in O signaling O for O c B-chemical - I-chemical di I-chemical - I-chemical GMP I-chemical production O , O which O in O turn O may O be O relevant O to O the O development O of O drugs O that O can O circumvent O complicated O antibiotic O resistance O . O The O dynamic B-protein_state organization O of O fungal B-taxonomy_domain acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O catalyse O the O committed O step O in O fatty O - O acid O biosynthesis O : O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O They O are O important O regulatory O hubs O for O metabolic O control O and O relevant O drug O targets O for O the O treatment O of O the O metabolic O syndrome O and O cancer O . O Eukaryotic B-taxonomy_domain ACCs B-protein_type are O single B-protein_type - I-protein_type chain I-protein_type multienzymes I-protein_type characterized O by O a O large O , O non B-protein_state - I-protein_state catalytic I-protein_state central B-structure_element domain I-structure_element ( O CD B-structure_element ), O whose O role O in O ACC B-protein_type regulation O remains O poorly O characterized O . O Here O we O report O the O crystal B-evidence structure I-evidence of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element , O revealing O a O unique O four O - O domain O organization O . O A O regulatory B-structure_element loop I-structure_element , O which O is O phosphorylated B-protein_state at O the O key O functional O phosphorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type , O wedges O into O a O crevice O between O two O domains O of O CD B-structure_element . O Combining O the O yeast B-taxonomy_domain CD B-structure_element structure B-evidence with O intermediate O and O low O - O resolution O data O of O larger B-mutant fragments I-mutant up O to O intact B-protein_state ACCs B-protein_type provides O a O comprehensive O characterization O of O the O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type architecture O . O In O contrast O to O related O carboxylases B-protein_type , O large O - O scale O conformational O changes O are O required O for O substrate O turnover O , O and O are O mediated O by O the O CD B-structure_element under O phosphorylation B-ptm control O . O Acetyl B-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type are O central O regulatory O hubs O of O fatty O acid O metabolism O and O are O important O targets O for O drug O development O in O obesity O and O cancer O . O Here O , O the O authors O demonstrate O that O the O regulation O of O these O highly B-protein_state dynamic I-protein_state enzymes B-protein_type in O fungi B-taxonomy_domain is O governed O by O a O mechanism O based O on O phosphorylation B-ptm - O dependent O conformational O variability O . O Biotin B-protein_type - I-protein_type dependent I-protein_type acetyl I-protein_type - I-protein_type CoA I-protein_type carboxylases I-protein_type ( O ACCs B-protein_type ) O are O essential O enzymes O that O catalyse O the O ATP B-chemical - O dependent O carboxylation O of O acetyl B-chemical - I-chemical CoA I-chemical to O malonyl B-chemical - I-chemical CoA I-chemical . O This O reaction O provides O the O committed O activated O substrate O for O the O biosynthesis O of O fatty B-chemical acids I-chemical via O fatty B-protein_type - I-protein_type acid I-protein_type synthase I-protein_type . O By O catalysing O this O rate O - O limiting O step O in O fatty O - O acid O biosynthesis O , O ACC B-protein_type plays O a O key O role O in O anabolic O metabolism O . O ACC B-experimental_method inhibition I-experimental_method and I-experimental_method knock I-experimental_method - I-experimental_method out I-experimental_method studies I-experimental_method show O the O potential O of O targeting O ACC B-protein_type for O treatment O of O the O metabolic O syndrome O . O Furthermore O , O elevated O ACC B-protein_type activity O is O observed O in O malignant O tumours O . O A O direct O link O between O ACC B-protein_type and O cancer O is O provided O by O cancer O - O associated O mutations B-mutant in O the O breast B-protein cancer I-protein susceptibility I-protein gene I-protein 1 I-protein ( O BRCA1 B-protein ), O which O relieve O inhibitory O interactions O of O BRCA1 B-protein with O ACC B-protein_type . O Thus O , O ACC B-protein_type is O a O relevant O drug O target O for O type O 2 O diabetes O and O cancer O . O Microbial B-taxonomy_domain ACCs B-protein_type are O also O the O principal O target O of O antifungal O and O antibiotic O compounds O , O such O as O Soraphen B-chemical A I-chemical . O The O principal O functional O protein O components O of O ACCs B-protein_type have O been O described O already O in O the O late O 1960s O for O Escherichia B-species coli I-species ( O E B-species . I-species coli I-species ) O ACC B-protein_type : O Biotin B-protein_type carboxylase I-protein_type ( O BC B-protein_type ) O catalyses O the O ATP B-chemical - O dependent O carboxylation O of O a O biotin B-chemical moiety O , O which O is O covalently O linked O to O the O biotin B-protein_type carboxyl I-protein_type carrier I-protein_type protein I-protein_type ( O BCCP B-protein_type ). O Carboxyltransferase B-protein_type ( O CT B-protein_type ) O transfers O the O activated O carboxyl B-chemical group O from O carboxybiotin B-chemical to O acetyl B-chemical - I-chemical CoA I-chemical to O yield O malonyl B-chemical - I-chemical CoA I-chemical . O Prokaryotic B-taxonomy_domain ACCs B-protein_type are O transient B-protein_state assemblies O of O individual O BC B-protein_type , O CT B-protein_type and O BCCP B-protein_type subunits O . O Eukaryotic B-taxonomy_domain ACCs B-protein_type , O instead O , O are O multienzymes B-protein_type , O which O integrate O all O functional O components O into O a O single O polypeptide O chain O of O ∼ O 2 O , O 300 O amino O acids O . O Human B-species ACC B-protein_type occurs O in O two O closely O related O isoforms B-protein_state , O ACC1 B-protein and O 2 B-protein , O located O in O the O cytosol O and O at O the O outer O mitochondrial O membrane O , O respectively O . O In O addition O to O the O canonical O ACC B-structure_element components I-structure_element , O eukaryotic B-taxonomy_domain ACCs B-protein_type contain O two O non B-protein_state - I-protein_state catalytic I-protein_state regions B-structure_element , O the O large O central B-structure_element domain I-structure_element ( O CD B-structure_element ) O and O the O BC B-structure_element – I-structure_element CT I-structure_element interaction I-structure_element domain I-structure_element ( O BT B-structure_element ). O The O CD B-structure_element comprises O one O - O third O of O the O protein O and O is O a O unique B-protein_state feature I-protein_state of I-protein_state eukaryotic B-taxonomy_domain ACCs B-protein_type without O homologues O in O other O proteins O . O The O function O of O this O domain O remains O poorly O characterized O , O although O phosphorylation B-ptm of O several O serine B-residue_name residues O in O the O CD B-structure_element regulates O ACC B-protein_type activity O . O The O BT B-structure_element domain O has O been O visualized O in O bacterial B-taxonomy_domain carboxylases B-protein_type , O where O it O mediates O contacts O between O α B-structure_element - I-structure_element and O β B-structure_element - I-structure_element subunits I-structure_element . O Structural B-experimental_method studies I-experimental_method on O the O functional O architecture O of O intact B-protein_state ACCs B-protein_type have O been O hindered O by O their O huge O size O and O pronounced O dynamics O , O as O well O as O the O transient B-protein_state assembly O mode O of O bacterial B-taxonomy_domain ACCs B-protein_type . O However O , O crystal B-evidence structures I-evidence of O individual O components O or O domains O from O prokaryotic B-taxonomy_domain and O eukaryotic B-taxonomy_domain ACCs B-protein_type , O respectively O , O have O been O solved O . O The O structure B-experimental_method determination I-experimental_method of O the O holoenzymes B-protein_state of O bacterial B-taxonomy_domain biotin B-protein_type - I-protein_type dependent I-protein_type carboxylases I-protein_type , O which O lack B-protein_state the O characteristic O CD B-structure_element , O such O as O the O pyruvate B-protein_type carboxylase I-protein_type ( O PC B-protein_type ), O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type , O 3 B-protein_type - I-protein_type methyl I-protein_type - I-protein_type crotonyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type and O a O long B-protein_type - I-protein_type chain I-protein_type acyl I-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type revealed O strikingly O divergent O architectures O despite O a O general O conservation O of O all O functional O components O . O In O these O structures B-evidence , O the O BC B-protein_type and O CT B-protein_type active B-site sites I-site are O at O distances O between O 40 O and O 80 O Å O , O such O that O substrate O transfer O could O be O mediated O solely O by O the O mobility O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-protein_type . O Human B-species ACC1 B-protein is O regulated B-protein_state allosterically I-protein_state , O via O specific O protein O – O protein O interactions O , O and O by O reversible O phosphorylation B-ptm . O Dynamic O polymerization O of O human B-species ACC1 B-protein is O linked O to O increased O activity O and O is O regulated B-protein_state allosterically I-protein_state by O the O activator O citrate B-chemical and O the O inhibitor O palmitate B-chemical , O or O by O binding O of O the O small O protein O MIG B-protein - I-protein 12 I-protein ( O ref O .). O Human B-species ACC1 B-protein is O further O regulated O by O specific O phosphorylation B-ptm - O dependent O binding O of O BRCA1 B-protein to O Ser1263 B-residue_name_number in O the O CD B-structure_element . O BRCA1 B-protein binds O only O to O the O phosphorylated B-protein_state form O of O ACC1 B-protein and O prevents O ACC B-protein_type activation O by O phosphatase B-protein_type - O mediated O dephosphorylation O . O Furthermore O , O phosphorylation B-ptm by O AMP B-protein - I-protein activated I-protein protein I-protein kinase I-protein ( O AMPK B-protein ) O and O cAMP B-protein - I-protein dependent I-protein protein I-protein kinase I-protein ( O PKA B-protein ) O leads O to O a O decrease O in O ACC1 B-protein activity O . O AMPK B-protein phosphorylates O ACC1 B-protein in O vitro O at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1216 B-residue_name_number and O PKA B-protein at O Ser78 B-residue_name_number and O Ser1201 B-residue_name_number . O However O , O regulatory O effects O on O ACC1 B-protein activity O are O mainly O mediated O by O phosphorylation B-ptm of O Ser80 B-residue_name_number and O Ser1201 B-residue_name_number ( O refs O ). O Phosphorylated B-protein_state Ser80 B-residue_name_number , O which O is O highly B-protein_state conserved I-protein_state only O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O presumably O binds O into O the O Soraphen B-site A I-site - I-site binding I-site pocket I-site . O The O regulatory O Ser1201 B-residue_name_number shows O only O moderate B-protein_state conservation I-protein_state across O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O while O the O phosphorylated B-protein_state Ser1216 B-residue_name_number is O highly B-protein_state conserved I-protein_state across O all O eukaryotes B-taxonomy_domain . O However O , O no O effect O of O Ser1216 B-residue_name_number phosphorylation B-ptm on O ACC B-protein_type activity O has O been O reported O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain . O For O fungal B-taxonomy_domain ACC B-protein_type , O neither O spontaneous O nor O inducible O polymerization O has O been O detected O despite O considerable O sequence O conservation O to O human B-species ACC1 B-protein . O The O BRCA1 B-protein - O interacting O phosphoserine B-residue_name position O is O not B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain ACC B-protein_type , O and O no O other O phospho O - O dependent O protein O – O protein O interactions O of O fungal B-taxonomy_domain ACC B-protein_type have O been O described O . O In O yeast B-taxonomy_domain ACC B-protein_type , O phosphorylation B-site sites I-site have O been O identified O at O Ser2 B-residue_name_number , O Ser735 B-residue_name_number , O Ser1148 B-residue_name_number , O Ser1157 B-residue_name_number and O Ser1162 B-residue_name_number ( O ref O .). O Of O these O , O only O Ser1157 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain ACC B-protein_type and O aligns B-experimental_method to I-experimental_method Ser1216 B-residue_name_number in O human B-species ACC1 B-protein . O Its O phosphorylation B-ptm by O the O AMPK B-protein homologue O SNF1 B-protein results O in O strongly O reduced O ACC B-protein_type activity O . O Despite O the O outstanding O relevance O of O ACC B-protein_type in O primary O metabolism O and O disease O , O the O dynamic O organization O and O regulation O of O the O giant O eukaryotic B-taxonomy_domain , O and O in O particular O fungal B-taxonomy_domain ACC B-protein_type , O remain O poorly O characterized O . O Here O we O provide O the O structure B-evidence of O Saccharomyces B-species cerevisiae I-species ( O Sce B-species ) O ACC B-protein_type CD B-structure_element , O intermediate O - O and O low O - O resolution O structures B-evidence of O human B-species ( O Hsa B-species ) O ACC B-protein_type CD B-structure_element and O larger B-mutant fragments I-mutant of O fungal B-taxonomy_domain ACC B-protein_type from O Chaetomium B-species thermophilum I-species ( O Cth B-species ; O Fig O . O 1a O ). O Integrating O these O data O with O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O and O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O observations O yield O a O comprehensive O representation O of O the O dynamic O structure O and O regulation O of O fungal B-taxonomy_domain ACC B-protein_type . O The O organization O of O the O yeast B-taxonomy_domain ACC B-protein_type CD B-structure_element First O , O we O focused O on O structure B-experimental_method determination I-experimental_method of O the O 82 O - O kDa O CD B-structure_element . O The O crystal B-evidence structure I-evidence of O the O CD B-structure_element of O SceACC B-protein ( O SceCD B-species ) O was O determined O at O 3 O . O 0 O Å O resolution O by O experimental B-experimental_method phasing I-experimental_method and O refined B-experimental_method to O Rwork B-evidence / O Rfree B-evidence = O 0 O . O 20 O / O 0 O . O 24 O ( O Table O 1 O ). O The O overall O extent O of O the O SceCD B-species is O 70 O by O 75 O Å O ( O Fig O . O 1b O and O Supplementary O Fig O . O 1a O , O b O ), O and O the O attachment O points O of O the O N O - O terminal O 26 B-structure_element - I-structure_element residue I-structure_element linker I-structure_element to O the O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O separated O by O 46 O Å O ( O the O N O - O and O C O termini O are O indicated O with O spheres O in O Fig O . O 1b O ). O SceCD B-species comprises O four O distinct O domains O , O an O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element domain I-structure_element ( O CDN B-structure_element ), O and O a O central O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element linker I-structure_element domain I-structure_element ( O CDL B-structure_element ), O followed O by O two O α B-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element C I-structure_element - I-structure_element terminal I-structure_element domains I-structure_element ( O CDC1 B-structure_element / O CDC2 B-structure_element ). O CDN B-structure_element adopts O a O letter O C B-protein_state shape I-protein_state , O where O one O of O the O ends O is O a O regular B-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Nα3 B-structure_element - I-structure_element 6 I-structure_element ), O the O other O end O is O a O helical B-structure_element hairpin I-structure_element ( O Nα8 B-structure_element , I-structure_element 9 I-structure_element ) O and O the O bridging B-structure_element region I-structure_element comprises O six O helices B-structure_element ( O Nα1 B-structure_element , I-structure_element 2 I-structure_element , I-structure_element 7 I-structure_element , I-structure_element 10 I-structure_element – I-structure_element 12 I-structure_element ). O CDL B-structure_element is O composed O of O a O small B-structure_element , I-structure_element irregular I-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O Lα1 B-structure_element – I-structure_element 4 I-structure_element ) O and O tightly O interacts O with O the O open O face O of O CDC1 B-structure_element via O an O interface B-site of O 1 O , O 300 O Å2 O involving O helices B-structure_element Lα3 B-structure_element and O Lα4 B-structure_element . O CDL B-structure_element does O not O interact O with O CDN B-structure_element apart O from O the O covalent O linkage O and O forms O only O a O small O contact O to O CDC2 B-structure_element via O a O loop B-structure_element between O Lα2 B-structure_element / I-structure_element α3 I-structure_element and O the O N O - O terminal O end O of O Lα1 B-structure_element , O with O an O interface B-site area O of O 400 O Å2 O . O CDC1 B-structure_element / O CDC2 B-structure_element share O a O common O fold O ; O they O are O composed O of O six B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheets I-structure_element flanked O on O one O side O by O two O long B-structure_element , I-structure_element bent I-structure_element helices I-structure_element inserted O between O strands B-structure_element β3 B-structure_element / I-structure_element β4 I-structure_element and O β4 B-structure_element / I-structure_element β5 I-structure_element . O CDC2 B-structure_element is O extended B-protein_state at O its O C O terminus O by O an O additional O β B-structure_element - I-structure_element strand I-structure_element and O an O irregular B-structure_element β I-structure_element - I-structure_element hairpin I-structure_element . O On O the O basis O of O a O root B-evidence mean I-evidence square I-evidence deviation I-evidence of O main O chain O atom O positions O of O 2 O . O 2 O Å O , O CDC1 B-structure_element / O CDC2 B-structure_element are O structurally O more O closely O related O to O each O other O than O to O any O other O protein O ( O Fig O . O 1c O ); O they O may O thus O have O evolved O by O duplication O . O Close O structural O homologues O could O not O be O found O for O the O CDN B-structure_element or O the O CDC B-structure_element domains O . O A O regulatory B-structure_element loop I-structure_element mediates O interdomain O interactions O To O define O the O functional O state O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method ACC B-protein_type variants O , O we O employed O mass B-experimental_method spectrometry I-experimental_method ( O MS B-experimental_method ) O for O phosphorylation B-experimental_method site I-experimental_method detection I-experimental_method . O In O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state SceACC B-protein , O the O highly B-protein_state conserved I-protein_state Ser1157 B-residue_name_number is O the O only O fully B-protein_state occupied I-protein_state phosphorylation B-site site I-site with O functional O relevance O in O S B-species . I-species cerevisiae I-species . O Additional O phosphorylation B-ptm was O detected O for O Ser2101 B-residue_name_number and O Tyr2179 B-residue_name_number ; O however O , O these O sites O are O neither B-protein_state conserved I-protein_state across O fungal B-taxonomy_domain ACC B-protein_type nor B-protein_state natively I-protein_state phosphorylated I-protein_state in O yeast B-taxonomy_domain . O MS B-experimental_method analysis O of O dissolved B-experimental_method crystals I-experimental_method confirmed O the O phosphorylated B-protein_state state O of O Ser1157 B-residue_name_number also O in O SceCD B-species crystals B-evidence . O The O SceCD B-species structure B-evidence thus O authentically O represents O the O state O of O SceACC B-protein , O where O the O enzyme B-protein is O inhibited B-protein_state by O SNF1 B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm . O In O the O SceCD B-species crystal B-evidence structure I-evidence , O the O phosphorylated B-protein_state Ser1157 B-residue_name_number resides O in O a O regulatory B-structure_element 36 I-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element loop I-structure_element between O strands B-structure_element β2 B-structure_element and O β3 B-structure_element of O CDC1 B-structure_element ( O Fig O . O 1b O , O d O ), O which O contains O two O additional O less B-protein_state - I-protein_state conserved I-protein_state phosphorylation B-site sites I-site ( O Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number ) O confirmed O in O yeast B-taxonomy_domain , O but O not O occupied O here O . O This O regulatory B-structure_element loop I-structure_element wedges O between O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O and O provides O the O largest O contribution O to O the O interdomain B-site interface I-site . O The O N O - O terminal O region O of O the O regulatory B-structure_element loop I-structure_element also O directly O contacts O the O C O - O terminal O region O of O CDC2 B-structure_element leading O into O CT B-structure_element . O Phosphoserine B-residue_name_number 1157 I-residue_name_number is O tightly O bound O by O two O highly B-protein_state conserved I-protein_state arginines B-residue_name ( O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number ) O of O CDC1 B-structure_element ( O Fig O . O 1d O ). O Already O the O binding O of O phosphorylated B-protein_state Ser1157 B-residue_name_number apparently O stabilizes O the O regulatory B-structure_element loop I-structure_element conformation O ; O the O accessory O phosphorylation B-site sites I-site Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number in O the O same B-structure_element loop I-structure_element may O further O modulate O the O strength O of O interaction O between O the O regulatory B-structure_element loop I-structure_element and O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O . O Phosphorylation B-ptm of O the O regulatory B-structure_element loop I-structure_element thus O determines O interdomain O interactions O of O CDC1 B-structure_element and O CDC2 B-structure_element , O suggesting O that O it O may O exert O its O regulatory O function O by O modifying O the O overall O structure O and O dynamics O of O the O CD B-structure_element . O The O functional O role O of O Ser1157 B-residue_name_number was O confirmed O by O an O activity B-experimental_method assay I-experimental_method based O on O the O incorporation O of O radioactive O carbonate O into O acid O non O - O volatile O material O . O Phosphorylated B-protein_state SceACC B-protein shows O only O residual O activity O ( O kcat B-evidence = O 0 O . O 4 O ± O 0 O . O 2 O s O − O 1 O , O s O . O d O . O based O on O five O replicate O measurements O ), O which O increases O 16 O - O fold O ( O kcat B-evidence = O 6 O . O 5 O ± O 0 O . O 3 O s O − O 1 O ) O after O dephosphorylation O with O λ B-protein_type protein I-protein_type phosphatase I-protein_type . O The O values O obtained O for O dephosphorylated B-protein_state SceACC B-protein are O comparable O to O earlier O measurements O of O non B-protein_state - I-protein_state phosphorylated I-protein_state yeast B-taxonomy_domain ACC B-protein_type expressed B-experimental_method in I-experimental_method E B-species . I-species coli I-species . O The O variable O CD B-structure_element is O conserved B-protein_state between O yeast B-taxonomy_domain and O human B-species To O compare O the O organization O of O fungal B-taxonomy_domain and O human B-species ACC B-protein_type CD B-structure_element , O we O determined B-experimental_method the I-experimental_method structure I-experimental_method of O a O human B-species ACC1 B-mutant fragment I-mutant that O comprises O the O BT B-structure_element and O CD B-structure_element domains O ( O HsaBT B-mutant - I-mutant CD I-mutant ), O but O lacks B-protein_state the O mobile O BCCP B-structure_element in O between O ( O Fig O . O 1a O ). O An O experimentally B-evidence phased I-evidence map I-evidence was O obtained O at O 3 O . O 7 O Å O resolution O for O a O cadmium B-chemical - O derivatized O crystal O and O was O interpreted O by O a O poly O - O alanine O model O ( O Fig O . O 1e O and O Table O 1 O ). O Each O of O the O four O CD B-structure_element domains O in O HsaBT B-mutant - I-mutant CD I-mutant individually O resembles O the O corresponding O SceCD B-species domain O ; O however O , O human B-species and O yeast B-taxonomy_domain CDs B-structure_element exhibit O distinct O overall O structures B-evidence . O In O agreement O with O their O tight O interaction O in O SceCD B-species , O the O relative O spatial O arrangement O of O CDL B-structure_element and O CDC1 B-structure_element is O preserved O in O HsaBT B-mutant - I-mutant CD I-mutant , O but O the O human B-species CDL B-structure_element / O CDC1 B-structure_element didomain O is O tilted O by O 30 O ° O based O on O a O superposition B-experimental_method of O human B-species and O yeast B-taxonomy_domain CDC2 B-structure_element ( O Supplementary O Fig O . O 1c O ). O As O a O result O , O the O N O terminus O of O CDL B-structure_element at O helix B-structure_element Lα1 B-structure_element , O which O connects O to O CDN B-structure_element , O is O shifted O by O 12 O Å O . O Remarkably O , O CDN B-structure_element of O HsaBT B-mutant - I-mutant CD I-mutant adopts O a O completely O different O orientation O compared O with O SceCD B-species . O With O CDL B-structure_element / O CDC1 B-structure_element superposed B-experimental_method , O CDN B-structure_element in O HsaBT B-mutant - I-mutant CD I-mutant is O rotated O by O 160 O ° O around O a O hinge B-structure_element at O the O connection O of O CDN B-structure_element / O CDL B-structure_element ( O Supplementary O Fig O . O 1d O ). O This O rotation O displaces O the O N O terminus O of O CDN B-structure_element in O HsaBT B-mutant - I-mutant CD I-mutant by O 51 O Å O compared O with O SceCD B-species , O resulting O in O a O separation O of O the O attachment O points O of O the O N O - O terminal O linker B-structure_element to O the O BCCP B-structure_element domain I-structure_element and O the O C O - O terminal O CT B-structure_element domain O by O 67 O Å O ( O the O attachment O points O are O indicated O with O spheres O in O Fig O . O 1e O ). O The O BT B-structure_element domain O of O HsaBT B-mutant - I-mutant CD I-mutant consists O of O a O helix B-structure_element that O is O surrounded O at O its O N O terminus O by O an O antiparallel B-structure_element eight I-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element barrel I-structure_element . O It O resembles O the O BT B-structure_element of O propionyl B-protein_type - I-protein_type CoA I-protein_type carboxylase I-protein_type ; O only O the O four O C O - O terminal O strands B-structure_element of I-structure_element the I-structure_element β I-structure_element - I-structure_element barrel I-structure_element are O slightly O tilted O . O On O the O basis O of O MS B-experimental_method analysis O of O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method human B-species full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O Ser80 B-residue_name_number shows O the O highest O degree O of O phosphorylation B-ptm ( O 90 O %). O Ser29 B-residue_name_number and O Ser1263 B-residue_name_number , O implicated O in O insulin B-ptm - I-ptm dependent I-ptm phosphorylation I-ptm and O BRCA1 B-protein binding O , O respectively O , O are O phosphorylated B-protein_state at O intermediate O levels O ( O 40 O %). O The O highly B-protein_state conserved I-protein_state Ser1216 B-residue_name_number ( O corresponding O to O S B-species . I-species cerevisiae I-species Ser1157 B-residue_name_number ), O as O well O as O Ser1201 B-residue_name_number , O both O in O the O regulatory B-structure_element loop I-structure_element discussed O above O , O are O not B-protein_state phosphorylated I-protein_state . O However O , O residual O phosphorylation B-ptm levels O were O detected O for O Ser1204 B-residue_name_number ( O 7 O %) O and O Ser1218 B-residue_name_number ( O 7 O %) O in O the O same B-structure_element loop I-structure_element . O MS B-experimental_method analysis O of O the O HsaBT B-mutant - I-mutant CD I-mutant crystallization B-evidence sample I-evidence reveals O partial O proteolytic O digestion O of O the O regulatory B-structure_element loop I-structure_element . O Accordingly O , O most O of O this B-structure_element loop I-structure_element is O not O represented O in O the O HsaBT B-mutant - I-mutant CD I-mutant crystal B-evidence structure I-evidence . O The O absence B-protein_state of I-protein_state the O regulatory B-structure_element loop I-structure_element might O be O linked O to O the O less B-protein_state - I-protein_state restrained I-protein_state interface B-site of O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element and O altered O relative O orientations O of O these O domains B-structure_element . O Besides O the O regulatory B-structure_element loop I-structure_element , O also O the O phosphopeptide B-site target I-site region I-site for O BRCA1 B-protein interaction O is O not O resolved O presumably O because O of O pronounced O flexibility O . O At O the O level O of O isolated B-experimental_method yeast B-taxonomy_domain and O human B-species CD B-structure_element , O the O structural B-experimental_method analysis I-experimental_method indicates O the O presence O of O at O least O two O hinges B-structure_element , O one O with O large O - O scale O flexibility O at O the O CDN B-structure_element / I-structure_element CDL I-structure_element connection I-structure_element , O and O one O with O tunable O plasticity O between O CDL B-structure_element / O CDC1 B-structure_element and O CDC2 B-structure_element , O plausibly O affected O by O phosphorylation B-ptm in O the O regulatory B-structure_element loop I-structure_element region O . O The O integration O of O CD B-structure_element into O the O fungal B-taxonomy_domain ACC B-protein_type multienzyme I-protein_type To O further O obtain O insights O into O the O functional O architecture O of O fungal B-taxonomy_domain ACC B-protein_type , O we O characterized O larger B-mutant multidomain I-mutant fragments I-mutant up O to O the O intact B-protein_state enzymes B-protein . O Using O molecular B-experimental_method replacement I-experimental_method based O on O fungal B-taxonomy_domain ACC B-protein_type CD B-structure_element and O CT B-structure_element models O , O we O obtained O structures B-evidence of O a O variant B-mutant comprising O CthCT B-species and O CDC1 B-structure_element / O CDC2 B-structure_element in O two B-evidence crystal I-evidence forms I-evidence at O resolutions O of O 3 O . O 6 O and O 4 O . O 5 O Å O ( O CthCD B-mutant - I-mutant CTCter1 I-mutant / I-mutant 2 I-mutant ), O respectively O , O as O well O as O of O a O CthCT B-species linked O to O the O entire O CD B-structure_element at O 7 O . O 2 O Å O resolution O ( O CthCD B-mutant - I-mutant CT I-mutant ; O Figs O 1a O and O 2 O , O Table O 1 O ). O No O crystals O diffracting O to O sufficient O resolution O were O obtained O for O larger B-mutant BC I-mutant - I-mutant containing I-mutant fragments I-mutant , O or O for O full B-protein_state - I-protein_state length I-protein_state Cth B-species or O SceACC B-protein . O To O improve B-experimental_method crystallizability I-experimental_method , O we O generated B-experimental_method ΔBCCP B-mutant variants I-mutant of O full B-protein_state - I-protein_state length I-protein_state ACC B-protein_type , O which O , O based O on O SAXS B-experimental_method analysis I-experimental_method , O preserve O properties O of O intact B-protein_state ACC B-protein_type ( O Supplementary O Table O 1 O and O Supplementary O Fig O . O 2a O – O c O ). O For O CthΔBCCP B-mutant , O crystals B-evidence diffracting O to O 8 O . O 4 O Å O resolution O were O obtained O . O However O , O molecular B-experimental_method replacement I-experimental_method did O not O reveal O a O unique O positioning O of O the O BC B-structure_element domain O . O Owing O to O the O limited O resolution O the O discussion O of O structures B-evidence of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant is O restricted O to O the O analysis O of O domain O localization O . O Still O , O these B-evidence structures I-evidence contribute O considerably O to O the O visualization O of O an O intrinsically O dynamic B-protein_state fungal B-taxonomy_domain ACC B-protein_type . O In O all O these O crystal B-evidence structures I-evidence , O the O CT B-structure_element domains O build O a O canonical O head B-protein_state - I-protein_state to I-protein_state - I-protein_state tail I-protein_state dimer B-oligomeric_state , O with O active B-site sites I-site formed O by O contributions O from O both O protomers B-oligomeric_state ( O Fig O . O 2 O and O Supplementary O Fig O . O 3a O ). O The O connection B-structure_element of O CD B-structure_element and O CT B-structure_element is O provided O by O a O 10 B-residue_range - I-residue_range residue I-residue_range peptide I-residue_range stretch I-residue_range , O which O links O the O N O terminus O of O CT B-structure_element to O the O irregular B-structure_element β I-structure_element - I-structure_element hairpin I-structure_element / I-structure_element β I-structure_element - I-structure_element strand I-structure_element extension I-structure_element of O CDC2 B-structure_element ( O Supplementary O Fig O . O 3b O ). O The O connecting B-structure_element region I-structure_element is O remarkably O similar O in O isolated B-protein_state CD B-structure_element and O CthCD B-mutant - I-mutant CTCter I-mutant structures B-evidence , O indicating O inherent O conformational O stability O . O CD B-structure_element / O CT B-structure_element contacts O are O only O formed O in O direct O vicinity O of O the O covalent O linkage O and O involve O the O β B-structure_element - I-structure_element hairpin I-structure_element extension I-structure_element of O CDC2 B-structure_element as O well O as O the O loop B-structure_element between O strands B-structure_element β2 I-structure_element / I-structure_element β3 I-structure_element of O the O CT B-structure_element N I-structure_element - I-structure_element lobe I-structure_element , O which O contains O a O conserved B-protein_state RxxGxN B-structure_element motif I-structure_element . O The O neighbouring O loop B-structure_element on O the O CT B-structure_element side O ( O between O CT B-structure_element β1 B-structure_element / O β2 B-structure_element ) O is O displaced O by O 2 O . O 5 O Å O compared O to O isolated B-protein_state CT B-structure_element structures B-evidence ( O Supplementary O Fig O . O 3c O ). O On O the O basis O of O an O interface O area O of O ∼ O 600 O Å2 O and O its O edge O - O to O - O edge O connection O characteristics O , O the O interface B-site between O CT B-structure_element and O CD B-structure_element might O be O classified O as O conformationally O variable O . O Indeed O , O the O comparison O of O the O positioning O of O eight O instances O of O the O C O - O terminal O part O of O CD B-structure_element relative O to O CT B-structure_element in O crystal B-evidence structures I-evidence determined B-experimental_method here O , O reveals O flexible O interdomain O linking O ( O Fig O . O 3a O ). O The O CDC2 B-site / I-site CT I-site interface I-site acts O as O a O true B-structure_element hinge I-structure_element with O observed O rotation O up O to O 16 O °, O which O results O in O a O translocation O of O the O distal O end O of O CDC2 B-structure_element by O 8 O Å O . O The O interface B-site between O CDC2 B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element , O which O is O mediated O by O the O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element in O the O SceCD B-species structure B-evidence , O is O less O variable O than O the O CD B-structure_element – I-structure_element CT I-structure_element junction I-structure_element , O and O permits O only O limited O rotation O and O tilting O ( O Fig O . O 3b O ). O Analysis O of O the O impact O of O phosphorylation B-ptm on O the O interface B-site between O CDC2 B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element in O CthACC B-mutant variant I-mutant structures B-evidence is O precluded O by O the O limited O crystallographic O resolution O . O However O , O MS B-experimental_method analysis O of O CthCD B-mutant - I-mutant CT I-mutant and O CthΔBCCP B-mutant constructs O revealed O between O 60 O and O 70 O % O phosphorylation B-ptm of O Ser1170 B-residue_name_number ( O corresponding O to O SceACC B-protein Ser1157 B-residue_name_number ). O The O CDN B-structure_element domain O positioning O relative O to O CDL B-structure_element / O CDC1 B-structure_element is O highly O variable O with O three O main O orientations O observed O in O the O structures B-evidence of O SceCD B-species and O the O larger B-mutant CthACC I-mutant fragments I-mutant : O CDN B-structure_element tilts O , O resulting O in O a O displacement O of O its O N O terminus O by O 23 O Å O ( O Fig O . O 4a O , O observed O in O both O protomers B-oligomeric_state of O CthCD B-mutant - I-mutant CT I-mutant and O one O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthCD B-mutant - I-mutant CT1 I-mutant / I-mutant 2 I-mutant and O CthΔBCCP1 B-mutant , O respectively O ). O In O addition O , O CDN B-structure_element can O rotate O around O hinges B-structure_element in O the O connection O between O CDN B-structure_element / O CDL B-structure_element by O 70 O ° O ( O Fig O . O 4b O , O observed O in O the O second O protomer B-oligomeric_state of O CthΔBCCP B-mutant , O denoted O as O CthΔBCCP2 B-mutant ) O and O 160 O ° O ( O Fig O . O 4c O , O observed O in O SceCD B-species ) O leading O to O displacement O of O the O anchor B-site site I-site for O the O BCCP B-structure_element linker I-structure_element by O up O to O 33 O and O 40 O Å O , O respectively O . O Conformational O variability O in O the O CD B-structure_element thus O contributes O considerably O to O variations O in O the O spacing O between O the O BC B-structure_element and O CT B-structure_element domains O , O and O may O extend O to O distance O variations O beyond O the O mobility O range O of O the O flexibly B-protein_state tethered I-protein_state BCCP B-structure_element . O On O the O basis O of O the O occurrence O of O related O conformational O changes O between O fungal B-taxonomy_domain and O human B-species ACC B-mutant fragments I-mutant , O the O observed O set O of O conformations O may O well O represent O general O states O present O in O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O Large O - O scale O conformational O variability O of O fungal B-taxonomy_domain ACC B-protein_type To O obtain O a O comprehensive O view O of O fungal B-taxonomy_domain ACC B-protein_type dynamics O in B-protein_state solution I-protein_state , O we O employed O SAXS B-experimental_method and O EM B-experimental_method . O SAXS B-experimental_method analysis O of O CthACC B-protein agrees O with O a O dimeric B-oligomeric_state state O and O an O elongated B-protein_state shape I-protein_state with O a O maximum O extent O of O 350 O Å O ( O Supplementary O Table O 1 O ). O The O smooth O appearance O of O scattering B-evidence curves I-evidence and O derived B-evidence distance I-evidence distributions I-evidence might O indicate O substantial O interdomain O flexibility O ( O Supplementary O Fig O . O 2a O – O c O ). O Direct O observation O of O individual O full B-protein_state - I-protein_state length I-protein_state CthACC B-protein particles B-evidence , O according O to O MS B-experimental_method results O predominantly O in O a O phosphorylated B-protein_state low B-protein_state - I-protein_state activity I-protein_state state I-protein_state , O in O negative B-experimental_method stain I-experimental_method EM I-experimental_method reveals O a O large O set O of O conformations O from O rod B-protein_state - I-protein_state like I-protein_state extended I-protein_state to O U B-protein_state - I-protein_state shaped I-protein_state particles B-evidence . O Class B-evidence averages I-evidence , O obtained O by O maximum B-experimental_method - I-experimental_method likelihood I-experimental_method - I-experimental_method based I-experimental_method two I-experimental_method - I-experimental_method dimensional I-experimental_method ( I-experimental_method 2D I-experimental_method ) I-experimental_method classification I-experimental_method , O are O focused O on O the O dimeric B-oligomeric_state CT B-structure_element domain O and O the O full B-protein_state BC B-mutant – I-mutant BCCP I-mutant – I-mutant CD I-mutant domain O of O only O one O protomer B-oligomeric_state , O due O to O the O non O - O coordinated O motions O of O the O lateral O BC B-structure_element / O CD B-structure_element regions O relative O to O the O CT B-structure_element dimer B-oligomeric_state . O They O identify O the O connections O between O CDN B-structure_element / O CDL B-structure_element and O between O CDC2 B-structure_element / O CT B-structure_element as O major O contributors O to O conformational O heterogeneity O ( O Supplementary O Fig O . O 4a O , O b O ). O The O flexibility O in O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element appears O substantially O larger O than O the O variations O observed O in O the O set O of O crystal B-evidence structures I-evidence . O The O BC B-structure_element domain O is O not O completely O disordered O , O but O laterally O attached O to O BT B-structure_element / O CDN B-structure_element in O a O generally B-protein_state conserved I-protein_state position I-protein_state , O albeit O with O increased O flexibility O . O Surprisingly O , O in O both O the O linear B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state , O the O approximate O distances O between O the O BC B-structure_element and O CT B-structure_element active B-site sites I-site would O remain O larger O than O 110 O Å O . O These O observed O distances O are O considerably O larger O than O in O static B-protein_state structures B-evidence of O any O other O related O biotin B-protein_type - I-protein_type dependent I-protein_type carboxylase I-protein_type . O Furthermore O , O based O on O an O average O length O of O the O BCCP B-structure_element – I-structure_element CD I-structure_element linker I-structure_element in O fungal B-taxonomy_domain ACC B-protein_type of O 26 B-residue_range amino I-residue_range acids I-residue_range , O mobility O of O the O BCCP B-structure_element alone O would O not O be O sufficient O to O bridge O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O The O most O relevant O candidate O site O for O mediating O such O additional O flexibility O and O permitting O an O extended O set O of O conformations O is O the O CDC1 B-site / I-site CDC2 I-site interface I-site , O which O is O rigidified O by O the O Ser1157 B-residue_name_number - O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element , O as O depicted O in O the O SceCD B-species crystal B-evidence structure I-evidence . O Altogether O , O the O architecture O of O fungal B-taxonomy_domain ACC B-protein_type is O based O on O the O central O dimeric B-oligomeric_state CT B-structure_element domain O ( O Fig O . O 4d O ). O The O CD B-structure_element consists O of O four O distinct O subdomains B-structure_element and O acts O as O a O tether O from O the O CT B-structure_element to O the O mobile B-protein_state BCCP B-structure_element and O an O oriented B-protein_state BC B-structure_element domain O . O The O CD B-structure_element has O no O direct O role O in O substrate O recognition O or O catalysis O but O contributes O to O the O regulation O of O all O eukaryotic B-taxonomy_domain ACCs B-protein_type . O In O higher B-taxonomy_domain eukaryotic I-taxonomy_domain ACCs B-protein_type , O regulation O via O phosphorylation B-ptm is O achieved O by O combining O the O effects O of O phosphorylation B-ptm at O Ser80 B-residue_name_number , O Ser1201 B-residue_name_number and O Ser1263 B-residue_name_number . O In O fungal B-taxonomy_domain ACC B-protein_type , O however O , O Ser1157 B-residue_name_number in O the O regulatory B-structure_element loop I-structure_element of O the O CD B-structure_element is O the O only O phosphorylation B-site site I-site that O has O been O demonstrated O to O be O both O phosphorylated B-protein_state in O vivo O and O involved O in O the O regulation O of O ACC B-protein_type activity O . O In O its O phosphorylated B-protein_state state O , O the O regulatory B-structure_element loop I-structure_element containing O Ser1157 B-residue_name_number wedges O between O CDC1 B-structure_element / O CDC2 B-structure_element and O presumably O limits O the O conformational B-protein_state freedom I-protein_state at O this O interdomain B-site interface I-site . O However O , O flexibility O at O this O hinge B-structure_element may O be O required O for O full B-protein_state ACC I-protein_state activity I-protein_state , O as O the O distances O between O the O BCCP B-structure_element anchor I-structure_element points I-structure_element and O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element observed O here O are O such O large O that O mobility O of O the O BCCP B-structure_element alone O is O not O sufficient O for O substrate O transfer O . O The O current O data O thus O suggest O that O regulation O of O fungal B-taxonomy_domain ACC B-protein_type is O mediated O by O controlling O the O dynamics O of O the O unique B-protein_state CD B-structure_element , O rather O than O directly O affecting O catalytic O turnover O at O the O active B-site sites I-site of O BC B-structure_element and O CT B-structure_element . O A O comparison O between O fungal B-taxonomy_domain and O human B-species ACC B-protein_type will O help O to O further O discriminate O mechanistic O differences O that O contribute O to O the O extended O control O and O polymerization O of O human B-species ACC B-protein_type . O Most O recently O , O a O crystal B-evidence structure I-evidence of O near B-protein_state full I-protein_state - I-protein_state length I-protein_state non B-protein_state - I-protein_state phosphorylated I-protein_state ACC B-protein_type from O S B-species . I-species cerevisae I-species ( O lacking B-protein_state only I-protein_state 21 B-residue_range N O - O terminal O amino O acids O , O here O denoted O as O flACC B-mutant ) O was O published O by O Wei O and O Tong O . O In O flACC B-mutant , O the O ACC B-protein_type dimer B-oligomeric_state obeys O twofold O symmetry O and O assembles O in O a O triangular B-protein_state architecture I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O ( O Supplementary O Fig O . O 5a O ). O In O their O study O , O mutational B-experimental_method data I-experimental_method indicate O a O requirement O for O BC O dimerization O for O catalytic O activity O . O The O transition O from O the O elongated B-protein_state open I-protein_state shape I-protein_state , O observed O in O our O experiments O , O towards O a O compact B-protein_state triangular I-protein_state shape I-protein_state is O based O on O an O intricate O interplay O of O several O hinge O - O bending O motions O in O the O CD B-structure_element ( O Fig O . O 4d O ). O Comparison B-experimental_method of O flACC B-mutant with O our O CthΔBCCP B-mutant structure B-evidence reveals O the O CDC2 B-structure_element / I-structure_element CT I-structure_element hinge I-structure_element as O a O major O contributor O to O conformational O flexibility O ( O Supplementary O Fig O . O 5b O , O c O ). O In O flACC B-mutant , O CDC2 B-structure_element rotates O ∼ O 120 O ° O with O respect O to O the O CT B-structure_element domain O . O A O second B-structure_element hinge I-structure_element can O be O identified O between O CDC1 B-structure_element / O CDC2 B-structure_element . O On O the O basis O of O a O superposition B-experimental_method of O CDC2 B-structure_element , O CDC1 B-structure_element of O the O phosphorylated B-protein_state SceCD B-species is O rotated O by O 30 O ° O relative O to O CDC1 B-structure_element of O the O non B-protein_state - I-protein_state phosphorylated I-protein_state flACC B-mutant ( O Supplementary O Fig O . O 5d O ), O similar O to O what O we O have O observed O for O the O non B-protein_state - I-protein_state phosphorylated I-protein_state HsaBT B-mutant - I-mutant CD I-mutant ( O Supplementary O Fig O . O 1d O ). O When O inspecting B-experimental_method all O individual O protomer B-oligomeric_state and O fragment B-mutant structures B-evidence in O their O study O , O Wei O and O Tong O also O identify O the O CDN B-structure_element / I-structure_element CDC1 I-structure_element connection I-structure_element as O a O highly B-protein_state flexible I-protein_state hinge B-structure_element , O in O agreement O with O our O observations O . O The O only O bona O fide O regulatory B-protein_state phophorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type in O the O regulatory B-structure_element loop I-structure_element is O directly O participating O in O CDC1 B-structure_element / O CDC2 B-structure_element domain O interactions O and O thus O stabilizes O the O hinge B-structure_element conformation I-structure_element . O In O flACC B-mutant , O the O regulatory B-structure_element loop I-structure_element is O mostly B-protein_state disordered I-protein_state , O illustrating O the O increased O flexibility O due O to O the O absence O of O the O phosphoryl B-chemical group O . O Only O in O three O out O of O eight O observed O protomers B-oligomeric_state a O short B-structure_element peptide I-structure_element stretch O ( O including O Ser1157 B-residue_name_number ) O was O modelled B-evidence . O In O those O instances O the O Ser1157 B-residue_name_number residue O is O located O at O a O distance O of O 14 O – O 20 O Å O away O from O the O location O of O the O phosphorylated B-protein_state serine B-residue_name observed O here O , O based O on O superposition B-experimental_method of O either O CDC1 B-structure_element or O CDC2 B-structure_element . O Applying B-experimental_method the O conformation O of O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element observed O in O SceCD B-species on O flACC B-mutant leads O to O CDN B-structure_element sterically O clashing O with O CDC2 B-structure_element and O BT B-structure_element / O CDN B-structure_element clashing O with O CT B-structure_element ( O Supplementary O Fig O . O 6a O , O b O ). O Thus O , O in O accordance O with O the O results O presented O here O , O phosphorylation B-ptm of O Ser1157 B-residue_name_number in O SceACC B-protein most O likely O limits O flexibility O in O the O CDC1 B-structure_element / I-structure_element CDC2 I-structure_element hinge I-structure_element such O that O activation O through O BC B-structure_element dimerization O is O not O possible O ( O Fig O . O 4d O ), O which O however O does O not O exclude O intermolecular O dimerization O . O In O addition O , O EM B-experimental_method micrographs B-evidence of O phosphorylated B-protein_state and O dephosphorylated B-protein_state SceACC B-protein display O for O both O samples O mainly O elongated B-protein_state and I-protein_state U I-protein_state - I-protein_state shaped I-protein_state conformations I-protein_state and O reveal O no O apparent O differences O in O particle B-evidence shape I-evidence distributions I-evidence ( O Supplementary O Fig O . O 7 O ). O This O implicates O that O the O triangular B-protein_state shape I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O has O a O low O population O also O in O the O active B-protein_state form I-protein_state , O even O though O a O biasing O influence O of O grid O preparation O cannot O be O excluded O completely O . O Large O - O scale O conformational O variability O has O also O been O observed O in O most O other O carrier B-protein_type protein I-protein_type - I-protein_type based I-protein_type multienzymes I-protein_type , O including O polyketide B-protein_type and I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ( O with O the O exception O of O fungal B-protein_type - I-protein_type type I-protein_type fatty I-protein_type - I-protein_type acid I-protein_type synthases I-protein_type ), O non B-protein_type - I-protein_type ribosomal I-protein_type peptide I-protein_type synthetases I-protein_type and O the O pyruvate B-protein_type dehydrogenase I-protein_type complexes I-protein_type , O although O based O on O completely O different O architectures O . O Together O , O this O structural B-evidence information I-evidence suggests O that O variable O carrier O protein O tethering O is O not O sufficient O for O efficient O substrate O transfer O and O catalysis O in O any O of O these O systems O . O The O determination B-experimental_method of I-experimental_method a I-experimental_method set I-experimental_method of I-experimental_method crystal B-evidence structures I-evidence of O SceACC B-protein in O two O states O , O unphosphorylated B-protein_state and O phosphorylated B-protein_state at O the O major B-site regulatory I-site site I-site Ser1157 B-residue_name_number , O provides O a O unique O depiction O of O multienzyme O regulation O by O post O - O translational O modification O ( O Fig O . O 4d O ). O The O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element binds O to O an O allosteric B-site site I-site at O the O interface B-site of O two O non B-protein_state - I-protein_state catalytic I-protein_state domains O and O restricts O conformational O freedom O at O several O hinges B-structure_element in O the O dynamic B-protein_state ACC B-protein_type . O It O disfavours O the O adoption O of O a O rare B-protein_state , I-protein_state compact I-protein_state conformation I-protein_state , O in O which O intramolecular O dimerization O of O the O BC B-structure_element domains O results O in O catalytic O turnover O . O The O regulation O of O activity O thus O results O from O restrained O large O - O scale O conformational O dynamics O rather O than O a O direct O or O indirect O influence O on O active B-site site I-site structure I-site . O To O our O best O knowledge O , O ACC B-protein_type is O the O first O multienzyme B-protein_type for O which O such O a O phosphorylation B-ptm - O dependent O mechanical O control O mechanism O has O been O visualized O . O However O , O the O example O of O ACC B-protein_type now O demonstrates O the O possibility O of O regulating O activity O by O controlled O dynamics O of O non B-structure_element - I-structure_element enzymatic I-structure_element linker I-structure_element regions I-structure_element also O in O other O families O of O carrier B-protein_type - I-protein_type dependent I-protein_type multienzymes I-protein_type . O The O phosphorylated B-protein_state central B-structure_element domain I-structure_element of O yeast B-taxonomy_domain ACC B-protein_type . O ( O a O ) O Schematic O overview O of O the O domain O organization O of O eukaryotic B-taxonomy_domain ACCs B-protein_type . O Crystallized B-evidence constructs I-evidence are O indicated O . O ( O b O ) O Cartoon O representation O of O the O SceCD B-species crystal B-evidence structure I-evidence . O CDN B-structure_element is O linked O by O a O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O CDL B-structure_element ) O to O two B-structure_element α I-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element domains I-structure_element ( O CDC1 B-structure_element and O CDC2 B-structure_element ). O The O regulatory B-structure_element loop I-structure_element is O shown O as O bold O cartoon O , O and O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O marked O by O a O red O triangle O . O ( O c O ) O Superposition B-experimental_method of O CDC1 B-structure_element and O CDC2 B-structure_element reveals O highly B-protein_state conserved I-protein_state folds B-structure_element . O ( O d O ) O The O regulatory B-structure_element loop I-structure_element with O the O phosphorylated B-protein_state Ser1157 B-residue_name_number is O bound O into O a O crevice O between O CDC1 B-structure_element and O CDC2 B-structure_element , O the O conserved B-protein_state residues O Arg1173 B-residue_name_number and O Arg1260 B-residue_name_number coordinate O the O phosphoryl B-chemical - O group O . O ( O e O ) O Structural O overview O of O HsaBT B-mutant - I-mutant CD I-mutant . O The O attachment O points O to O the O N O - O terminal O BCCP B-structure_element domain O and O the O C O - O terminal O CT B-structure_element domain O are O indicated O with O spheres O . O Architecture O of O the O CD B-structure_element – O CT B-structure_element core O of O fungal B-taxonomy_domain ACC B-protein_type . O Cartoon O representation O of O crystal B-evidence structures I-evidence of O multidomain B-mutant constructs I-mutant of O CthACC B-protein . O One O protomer B-oligomeric_state is O shown O in O colour O and O one O in O grey O . O Individual O domains O are O labelled O ; O the O active B-site site I-site of O CT B-structure_element and O the O position O of O the O conserved B-protein_state regulatory B-protein_state phosphoserine B-site site I-site based O on O SceCD B-species are O indicated O by O an O asterisk O and O a O triangle O , O respectively O . O Variability O of O the O connections O of O CDC2 B-structure_element to O CT B-structure_element and O CDC1 B-structure_element in O fungal B-taxonomy_domain ACC B-protein_type . O ( O a O ) O Hinge B-structure_element properties O of O the O CDC2 B-structure_element – I-structure_element CT I-structure_element connection I-structure_element analysed O by O a O CT B-experimental_method - I-experimental_method based I-experimental_method superposition I-experimental_method of O eight O instances O of O the O CDC2 B-mutant - I-mutant CT I-mutant segment I-mutant . O For O clarity O , O only O one O protomer B-oligomeric_state of O CthCD B-mutant - I-mutant CTCter1 I-mutant is O shown O in O full O colour O as O reference O . O For O other O instances O , O CDC2 B-structure_element domains O are O shown O in O transparent O tube O representation O with O only O one O helix O each O highlighted O . O The O range O of O hinge O bending O is O indicated O and O the O connection O points O between O CDC2 B-structure_element and O CT B-structure_element ( O blue O ) O as O well O as O between O CDC1 B-structure_element and O CDC2 B-structure_element ( O green O and O grey O ) O are O marked O as O spheres O . O ( O b O ) O The O interdomain B-site interface I-site of O CDC1 B-structure_element and O CDC2 B-structure_element exhibits O only O limited O plasticity O . O Representation O as O in O a O , O but O the O CDC1 B-structure_element and O CDC2 B-structure_element are O superposed B-experimental_method based O on O CDC2 B-structure_element . O One O protomer B-oligomeric_state of O CthΔBCCP B-mutant is O shown O in O colour O , O the O CDL B-structure_element domains O are O omitted O for O clarity O and O the O position O of O the O phosphorylated B-protein_state serine B-residue_name based O on O SceCD B-species is O indicated O with O a O red O triangle O . O The O connection O points O from O CDC1 B-structure_element to O CDC2 B-structure_element and O to O CDL B-structure_element are O represented O by O green O spheres O . O The O conformational O dynamics O of O fungal B-taxonomy_domain ACC B-protein_type . O ( O a O – O c O ) O Large O - O scale O conformational O variability O of O the O CDN B-structure_element domain O relative O to O the O CDL B-structure_element / O CDC1 B-structure_element domain O . O CthCD B-mutant - I-mutant CT1 I-mutant ( O in O colour O ) O serves O as O reference O , O the O compared B-experimental_method structures I-experimental_method ( O as O indicated O , O numbers O after O construct O name O differentiate O between O individual O protomers B-oligomeric_state ) O are O shown O in O grey O . O Domains O other O than O CDN B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element are O omitted O for O clarity O . O The O domains O are O labelled O and O the O distances O between O the O N O termini O of O CDN B-structure_element ( O spheres O ) O in O the O compared O structures O are O indicated O . O ( O d O ) O Schematic O model O of O fungal B-taxonomy_domain ACC B-protein_type showing O the O intrinsic O , O regulated O flexibility O of O CD B-structure_element in O the O phosphorylated B-protein_state inhibited B-protein_state or O the O non B-protein_state - I-protein_state phosphorylated I-protein_state activated B-protein_state state O . O Flexibility O of O the O CDC2 B-structure_element / O CT B-structure_element and O CDN B-structure_element / O CDL B-structure_element hinges B-structure_element is O illustrated O by O arrows O . O The O Ser1157 B-residue_name_number phosphorylation B-ptm site O and O the O regulatory B-structure_element loop I-structure_element are O schematically O indicated O in O magenta O . O Structural O insights O into O the O Escherichia B-species coli I-species lysine B-protein_type decarboxylases I-protein_type and O molecular O determinants O of O interaction O with O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein The O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein is O an O important O enterobacterial B-taxonomy_domain acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type whereas O LdcC B-protein is O its O close O paralogue O thought O to O play O mainly O a O metabolic O role O . O A O unique O macromolecular O cage O formed O by O two O decamers B-oligomeric_state of O the O Escherichia B-species coli I-species LdcI B-protein and O five O hexamers B-oligomeric_state of O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein was O shown O to O counteract O acid O stress O under O starvation O . O Previously O , O we O proposed O a O pseudoatomic B-evidence model I-evidence of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O based O on O its O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method map B-evidence and O crystal B-evidence structures I-evidence of O an O inactive B-protein_state LdcI B-protein decamer B-oligomeric_state and O a O RavA B-protein monomer B-oligomeric_state . O We O now O present O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method 3D B-evidence reconstructions I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein , O and O an O improved B-evidence map I-evidence of O the O LdcI B-protein bound B-protein_state to I-protein_state the O LARA B-structure_element domain I-structure_element of O RavA B-protein , O at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O . O Comparison B-experimental_method with O each O other O and O with O available O structures B-evidence uncovers O differences O between O LdcI B-protein and O LdcC B-protein explaining O why O only O the O acid B-protein_type stress I-protein_type response I-protein_type enzyme I-protein_type is O capable O of O binding O RavA B-protein . O We O identify O interdomain O movements O associated O with O the O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O with O the O RavA B-protein binding O . O Multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method reveals O that O certain O enterobacteria B-taxonomy_domain exert O evolutionary O pressure O on O the O lysine B-protein_type decarboxylase I-protein_type towards O the O cage O - O like O assembly O with O RavA B-protein , O implying O that O this O complex O may O have O an O important O function O under O particular O stress O conditions O . O Enterobacterial B-taxonomy_domain inducible B-protein_state decarboxylases B-protein_type of O basic B-protein_state amino B-chemical acids I-chemical lysine B-residue_name , O arginine B-residue_name and O ornithine B-residue_name have O a O common O evolutionary O origin O and O belong O to O the O α B-protein_type - I-protein_type family I-protein_type of O pyridoxal B-chemical - I-chemical 5 I-chemical ′- I-chemical phosphate I-chemical ( O PLP B-chemical )- O dependent O enzymes O . O They O counteract O acid O stress O experienced O by O the O bacterium B-taxonomy_domain in O the O host O digestive O and O urinary O tract O , O and O in O particular O in O the O extremely O acidic O stomach O . O Each O decarboxylase B-protein_type is O induced O by O an O excess O of O the O target O amino B-chemical acid I-chemical and O a O specific O range O of O extracellular O pH O , O and O works O in O conjunction O with O a O cognate O inner B-protein_type membrane I-protein_type antiporter I-protein_type . O Decarboxylation O of O the O amino B-chemical acid I-chemical into O a O polyamine B-chemical is O catalysed O by O a O PLP B-chemical cofactor O in O a O multistep O reaction O that O consumes O a O cytoplasmic O proton B-chemical and O produces O a O CO2 B-chemical molecule O passively O diffusing O out O of O the O cell O , O while O the O polyamine B-chemical is O excreted O by O the O antiporter B-protein_type in O exchange O for O a O new O amino B-chemical acid I-chemical substrate O . O Consequently O , O these O enzymes O buffer O both O the O bacterial B-taxonomy_domain cytoplasm O and O the O local O extracellular O environment O . O These O amino B-protein_type acid I-protein_type decarboxylases I-protein_type are O therefore O called O acid O stress O inducible B-protein_state or O biodegradative B-protein_state to O distinguish O them O from O their O biosynthetic B-protein_state lysine B-protein_type and I-protein_type ornithine I-protein_type decarboxylase I-protein_type paralogs O catalysing O the O same O reaction O but O responsible O for O the O polyamine B-chemical production O at O neutral B-protein_state pH I-protein_state . O Inducible B-protein_state enterobacterial B-taxonomy_domain amino B-protein_type acid I-protein_type decarboxylases I-protein_type have O been O intensively O studied O since O the O early O 1940 O because O the O ability O of O bacteria B-taxonomy_domain to O withstand O acid O stress O can O be O linked O to O their O pathogenicity O in O humans B-species . O In O particular O , O the O inducible B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcI B-protein ( O or O CadA B-protein ) O attracts O attention O due O to O its O broad B-protein_state pH I-protein_state range I-protein_state of O activity O and O its O capacity O to O promote O survival O and O growth O of O pathogenic O enterobacteria B-taxonomy_domain such O as O Salmonella B-species enterica I-species serovar I-species Typhimurium I-species , O Vibrio B-species cholerae I-species and O Vibrio B-species vulnificus I-species under O acidic O conditions O . O Furthermore O , O both O LdcI B-protein and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylase I-protein_type LdcC B-protein of O uropathogenic B-species Escherichia I-species coli I-species ( O UPEC B-species ) O appear O to O play O an O important O role O in O increased O resistance O of O this O pathogen O to O nitrosative O stress O produced O by O nitric B-chemical oxide I-chemical and O other O damaging O reactive O nitrogen O intermediates O accumulating O during O the O course O of O urinary O tract O infections O ( O UTI O ). O This O effect O is O attributed O to O cadaverine B-chemical , O the O diamine O produced O by O decarboxylation O of O lysine B-residue_name by O LdcI B-protein and O LdcC B-protein , O that O was O shown O to O enhance O UPEC B-species colonisation O of O the O bladder O . O In O addition O , O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylase I-protein_type LdcC B-protein , O long O thought O to O be O constitutively O expressed O in O low O amounts O , O was O demonstrated O to O be O strongly O upregulated O by O fluoroquinolones B-chemical via O their O induction O of O RpoS B-protein . O A O direct O correlation O between O the O level O of O cadaverine B-chemical and O the O resistance O of O E B-species . I-species coli I-species to O these O antibiotics O commonly O used O as O a O first O - O line O treatment O of O UTI O could O be O established O . O Both O acid B-protein_state pH I-protein_state and O cadaverine B-chemical induce O closure O of O outer O membrane O porins B-protein_type thereby O contributing O to O bacterial B-taxonomy_domain protection O from O acid O stress O , O but O also O from O certain O antibiotics O , O by O reduction O in O membrane O permeability O . O The O crystal B-evidence structure I-evidence of O the O E B-species . I-species coli I-species LdcI B-protein as O well O as O its O low O resolution O characterisation O by O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O showed O that O it O is O a O decamer B-oligomeric_state made O of O two O pentameric B-oligomeric_state rings B-structure_element . O Each O monomer B-oligomeric_state is O composed O of O three O domains O – O an O N O - O terminal O wing B-structure_element domain I-structure_element ( O residues O 1 B-residue_range – I-residue_range 129 I-residue_range ), O a O PLP B-structure_element - I-structure_element binding I-structure_element core I-structure_element domain I-structure_element ( O residues O 130 B-residue_range – I-residue_range 563 I-residue_range ), O and O a O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element , O residues O 564 B-residue_range – I-residue_range 715 I-residue_range ). O Monomers B-oligomeric_state tightly O associate O via O their O core B-structure_element domains I-structure_element into O 2 B-protein_state - I-protein_state fold I-protein_state symmetrical I-protein_state dimers B-oligomeric_state with O two O complete O active B-site sites I-site , O and O further O build O a O toroidal B-structure_element D5 I-structure_element - I-structure_element symmetrical I-structure_element structure I-structure_element held O by O the O wing B-structure_element and O core B-structure_element domain I-structure_element interactions O around O the O central B-structure_element pore I-structure_element , O with O the O CTDs B-structure_element at O the O periphery O . O Ten O years O ago O we O showed O that O the O E B-species . I-species coli I-species AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein , O involved O in O multiple O stress O response O pathways O , O tightly O interacted O with O LdcI B-protein but O was O not O capable O of O binding O to O LdcC B-protein . O We O described O how O two O double O pentameric B-oligomeric_state rings B-structure_element of O the O LdcI B-protein tightly O associate O with O five O hexameric B-oligomeric_state rings B-structure_element of O RavA B-protein to O form O a O unique O cage O - O like O architecture O that O enables O the O bacterium B-taxonomy_domain to O withstand O acid O stress O even O under O conditions O of O nutrient O deprivation O eliciting O stringent O response O . O Furthermore O , O we O recently O solved B-experimental_method the I-experimental_method structure I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O by O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method ( O cryoEM B-experimental_method ) O and O combined O it O with O the O crystal B-evidence structures I-evidence of O the O individual O proteins O . O This O allowed O us O to O make O a O pseudoatomic B-evidence model I-evidence of O the O whole O assembly O , O underpinned O by O a O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O ( O with O LARA B-structure_element standing O for O LdcI B-structure_element associating I-structure_element domain I-structure_element of I-structure_element RavA I-structure_element ), O and O to O identify O conformational O rearrangements O and O specific O elements O essential O for O complex O formation O . O The O main O determinants O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O assembly O appeared O to O be O the O N O - O terminal O loop B-structure_element of O the O LARA B-structure_element domain I-structure_element of O RavA B-protein and O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O In O spite O of O this O wealth O of O structural B-evidence information I-evidence , O the O fact O that O LdcC B-protein does O not O interact O with O RavA B-protein , O although O the O two O lysine B-protein_type decarboxylases I-protein_type are O 69 O % O identical O and O 84 O % O similar O , O and O the O physiological O significance O of O the O absence O of O this O interaction O remained O unexplored O . O To O solve O this O discrepancy O , O in O the O present O work O we O provided O a O three O - O dimensional O ( O 3D O ) O cryoEM B-experimental_method reconstruction B-evidence of O LdcC B-protein and O compared O it O with O the O available O LdcI B-protein and O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly structures B-evidence . O Given O that O the O LdcI B-protein crystal B-evidence structures I-evidence were O obtained O at O high B-protein_state pH I-protein_state where O the O enzyme O is O inactive B-protein_state ( O LdcIi B-protein , O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ), O whereas O the O cryoEM B-experimental_method reconstructions B-evidence of O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly were O done O at O acidic B-protein_state pH I-protein_state optimal I-protein_state for O the O enzymatic O activity O , O for O a O meaningful O comparison O , O we O also O produced O a O 3D B-evidence reconstruction I-evidence of O the O LdcI B-protein at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ). O This O comparison O pinpointed O differences O between O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state lysine B-protein_type decarboxylases I-protein_type and O brought O to O light O interdomain O movements O associated O to O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O RavA B-protein binding O , O notably O at O the O predicted O RavA B-site binding I-site site I-site at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein . O Consequently O , O we O tested O the O capacity O of O cage O formation O by O LdcI B-mutant - I-mutant LdcC I-mutant chimeras I-mutant where O we O interchanged B-experimental_method the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element in O question O . O Finally O , O we O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O 22 O lysine B-protein_type decarboxylases I-protein_type from O Enterobacteriaceae B-taxonomy_domain containing O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O Remarkably O , O this O analysis O revealed O that O several O specific B-structure_element residues I-structure_element in O the O above O - O mentioned O β B-structure_element - I-structure_element sheet I-structure_element , O independently O of O the O rest O of O the O protein O sequence O , O are O sufficient O to O define O if O a O particular O lysine B-protein_type decarboxylase I-protein_type should O be O classified O as O an O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O an O “ O LdcI B-protein_type - I-protein_type like I-protein_type ”. O This O fascinating O parallelism O between O the O propensity O for O RavA B-protein binding O and O the O genetic O environment O of O an O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylase I-protein_type , O as O well O as O the O high B-protein_state degree I-protein_state of I-protein_state conservation I-protein_state of O this O small B-structure_element structural I-structure_element motif I-structure_element , O emphasize O the O functional O importance O of O the O interaction O between O biodegradative B-protein_state enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type and O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein . O CryoEM B-experimental_method 3D B-evidence reconstructions I-evidence of O LdcC B-protein , O LdcIa B-protein and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly In O the O frame O of O this O work O , O we O produced O two O novel O subnanometer O resolution O cryoEM B-experimental_method reconstructions B-evidence of O the O E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type at O pH B-protein_state optimal I-protein_state for O their O enzymatic O activity O – O a O 5 O . O 5 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O pH B-protein_state 7 I-protein_state . I-protein_state 5 I-protein_state ) O for O which O no O 3D O structural O information O has O been O previously O available O ( O Figs O 1A O , O B O and O S1 O ), O and O a O 6 O . O 1 O Å O resolution O cryoEM B-experimental_method map B-evidence of O the O LdcIa B-protein , O ( O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ) O ( O Figs O 1C O , O D O and O S2 O ). O In O addition O , O we O improved O our O earlier O cryoEM B-experimental_method map B-evidence of O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly complex O from O 7 O . O 5 O Å O to O 6 O . O 2 O Å O resolution O ( O Figs O 1E O , O F O and O S3 O ). O Based O on O these O reconstructions B-evidence , O reliable O pseudoatomic B-evidence models I-evidence of O the O three O assemblies O were O obtained O by O flexible B-experimental_method fitting I-experimental_method of I-experimental_method either O the O crystal B-evidence structure I-evidence of O LdcIi B-protein or O a O derived O structural B-experimental_method homology I-experimental_method model I-experimental_method of O LdcC B-protein ( O Table O S1 O ). O Significant O differences O between O these O pseudoatomic B-evidence models I-evidence can O be O interpreted O as O movements O between O specific O biological O states O of O the O proteins O as O described O below O . O The O wing B-structure_element domains I-structure_element as O a O stable O anchor O at O the O center O of O the O double B-structure_element - I-structure_element ring I-structure_element As O a O first O step O of O a O comparative O analysis O , O we O superimposed B-experimental_method the O three O cryoEM B-experimental_method reconstructions B-evidence ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O and O the O crystal B-evidence structure I-evidence of O the O LdcIi B-protein decamer B-oligomeric_state ( O Fig O . O 2 O and O Movie O S1 O ). O This O superposition B-experimental_method reveals O that O the O densities B-evidence lining O the O central B-structure_element hole I-structure_element of O the O toroid B-structure_element are O roughly O at O the O same O location O , O while O the O rest O of O the O structure B-evidence exhibits O noticeable O changes O . O Specifically O , O at O the O center O of O the O double B-structure_element - I-structure_element ring I-structure_element the O wing B-structure_element domains I-structure_element of O the O subunits O provide O the O conserved B-protein_state basis O for O the O assembly O with O the O lowest B-evidence root I-evidence mean I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O ( O between O 1 O . O 4 O and O 2 O Å O for O the O Cα O atoms O only O ), O whereas O the O peripheral O CTDs B-structure_element containing O the O RavA B-site binding I-site interface I-site manifest O the O highest O RMSD B-evidence ( O up O to O 4 O . O 2 O Å O ) O ( O Table O S2 O ). O In O addition O , O the O wing B-structure_element domains I-structure_element of O all O structures B-evidence are O very O similar O , O with O the O RMSD B-evidence after O optimal O rigid O body O alignment O ( O RMSDmin B-evidence ) O less O than O 1 O . O 1 O Å O . O Thus O , O taking O the O limited O resolution O of O the O cryoEM B-experimental_method maps B-evidence into O account O , O we O consider O that O the O wing B-structure_element domains I-structure_element of O all O the O four O structures B-evidence are O essentially O identical O and O that O in O the O present O study O the O RMSD B-evidence of O less O than O 2 O Å O can O serve O as O a O baseline O below O which O differences O may O be O assumed O as O insignificant O . O This O preservation O of O the O central B-structure_element part I-structure_element of O the O double O - O ring O assembly O may O help O the O enzymes O to O maintain O their O decameric B-oligomeric_state state O upon O activation O and O incorporation O into O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O The O core B-structure_element domain I-structure_element and O the O active B-site site I-site rearrangements O upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA O binding O Both O visual B-experimental_method inspection I-experimental_method ( O Fig O . O 2 O ) O and O RMSD B-experimental_method calculations I-experimental_method ( O Table O S2 O ) O show O that O globally O the O three O structures B-evidence at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcC B-protein ) O are O more O similar O to O each O other O than O to O the O structure O determined O at O high B-protein_state pH I-protein_state conditions O ( O LdcIi B-protein ). O The O decameric B-oligomeric_state enzyme O is O built O of O five O dimers B-oligomeric_state associating O into O a O 5 B-structure_element - I-structure_element fold I-structure_element symmetrical I-structure_element double I-structure_element - I-structure_element ring I-structure_element ( O two O monomers B-oligomeric_state making O a O dimer B-oligomeric_state are O delineated O in O Fig O . O 1 O ). O As O common O for O the O α B-protein_type family I-protein_type of O the O PLP B-protein_type - I-protein_type dependent I-protein_type decarboxylases I-protein_type , O dimerization O is O required O for O the O enzymatic O activity O because O the O active B-site site I-site is O buried O in O the O dimer B-site interface I-site ( O Fig O . O 3A O , O B O ). O This O interface B-site is O formed O essentially O by O the O core B-structure_element domains I-structure_element with O some O contribution O of O the O CTDs B-structure_element . O The O core B-structure_element domain I-structure_element is O built O by O the O PLP B-structure_element - I-structure_element binding I-structure_element subdomain I-structure_element ( O PLP B-structure_element - I-structure_element SD I-structure_element , O residues O 184 B-residue_range – I-residue_range 417 I-residue_range ) O flanked O by O two O smaller O subdomains B-structure_element rich O in O partly B-protein_state disordered I-protein_state loops B-structure_element – O the O linker B-structure_element region I-structure_element ( O residues O 130 B-residue_range – I-residue_range 183 I-residue_range ) O and O the O subdomain B-structure_element 4 I-structure_element ( O residues O 418 B-residue_range – I-residue_range 563 I-residue_range ). O Zooming O in O the O variations O in O the O PLP B-structure_element - I-structure_element SD I-structure_element shows O that O most O of O the O structural O changes O concern O displacements O in O the O active B-site site I-site ( O Fig O . O 3C O – O F O ). O The O most O conspicuous O differences O between O the O PLP B-structure_element - I-structure_element SDs I-structure_element can O be O linked O to O the O pH B-protein_state - I-protein_state dependent I-protein_state activation O of O the O enzymes O . O The O resolution O of O the O cryoEM B-experimental_method maps B-evidence does O not O allow O modeling O the O position O of O the O PLP B-chemical moiety O and O calls O for O caution O in O detailed O mechanistic O interpretations O in O terms O of O individual O amino B-chemical acids I-chemical . O In O particular O , O transition O from O LdcIi B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly involves O ~ O 3 O . O 5 O Å O and O ~ O 4 O . O 5 O Å O shifts O away O from O the O 5 O - O fold O axis O in O the O active B-site site I-site α B-structure_element - I-structure_element helices I-structure_element spanning O residues O 218 B-residue_range – I-residue_range 232 I-residue_range and O 246 B-residue_range – I-residue_range 254 I-residue_range respectively O ( O Fig O . O 3C O – O E O ). O Between O these O two O extremes O , O the O PLP B-structure_element - I-structure_element SDs I-structure_element of O LdcIa B-protein and O LdcC B-protein are O similar O both O in O the O context O of O the O decamer B-oligomeric_state ( O Fig O . O 3F O ) O and O in O terms O of O RMSDmin B-evidence = O 0 O . O 9 O Å O , O which O probably O reflects O the O fact O that O , O at O the O optimal B-protein_state pH I-protein_state , O these O lysine B-protein_type decarboxylases I-protein_type have O a O similar O enzymatic O activity O . O In O addition O , O our O earlier O biochemical B-experimental_method observation I-experimental_method that O the O enzymatic O activity O of O LdcIa B-protein is O unaffected O by O RavA B-protein binding O is O consistent O with O the O relatively O small O changes O undergone O by O the O active B-site site I-site upon O transition O from O LdcIa B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly . O Worthy O of O note O , O our O previous O comparison O of O the O crystal B-evidence structure I-evidence of O LdcIi B-protein with O that O of O the O inducible B-protein_state arginine B-protein_type decarboxylase I-protein_type AdiA B-protein revealed O high B-protein_state conservation I-protein_state of O the O PLP B-site - I-site coordinating I-site residues I-site and O identified O a O patch B-site of I-site negatively I-site charged I-site residues I-site lining O the O active B-site site I-site channel I-site as O a O potential O binding B-site site I-site for O the O target O amino B-chemical acid I-chemical substrate O ( O Figs O S3 O and O S4 O in O ref O .). O Rearrangements O of O the O ppGpp B-site binding I-site pocket I-site upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O An O inhibitor O of O the O LdcI B-protein and O LdcC B-protein activity O , O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical , O is O known O to O bind O at O the O interface B-site between O neighboring O monomers B-oligomeric_state within O each O ring B-structure_element ( O Fig O . O S4 O ). O The O ppGpp B-site binding I-site pocket I-site is O made O up O by O residues O from O all O domains O and O is O located O approximately O 30 O Å O away O from O the O PLP B-chemical moiety O . O Whereas O the O crystal B-evidence structure I-evidence of O the O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly was O solved B-experimental_method to O 2 O Å O resolution O , O only O a O 4 O . O 1 O Å O resolution O structure B-evidence of O the O ppGpp B-protein_state - I-protein_state free I-protein_state LdcIi B-protein could O be O obtained O . O At O this O resolution O , O the O apo B-protein_state - O LdcIi B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly structures B-evidence ( O both O solved O at O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ) O appeared O indistinguishable O except O for O the O presence O of O ppGpp B-chemical ( O Fig O . O S11 O in O ref O . O ). O Thus O , O we O speculated O that O inhibition O of O LdcI B-protein by O ppGpp B-chemical would O be O accompanied O by O a O transduction O of O subtle O structural O changes O at O the O level O of O individual O amino B-chemical acid I-chemical side O chains O between O the O ppGpp B-site binding I-site pocket I-site and O the O active B-site site I-site of O the O enzyme O . O All O our O current O cryoEM B-experimental_method reconstructions B-evidence of O the O lysine B-protein_type decarboxylases I-protein_type were O obtained O in O the O absence B-protein_state of I-protein_state ppGpp B-chemical in O order O to O be O closer O to O the O active B-protein_state state O of O the O enzymes O under O study O . O While O differences O in O the O ppGpp B-site binding I-site site I-site could O indeed O be O visualized O ( O Fig O . O S4 O ), O the O level O of O resolution O warns O against O speculations O about O their O significance O . O The O fact O that O interaction O with O RavA B-protein reduces O the O ppGpp B-chemical affinity O for O LdcI B-protein despite O the O long O distance O of O ~ O 30 O Å O between O the O LARA B-site domain I-site binding I-site site I-site and O the O closest O ppGpp B-site binding I-site pocket I-site ( O Fig O . O S5 O ) O seems O to O favor O an O allosteric O regulation O mechanism O . O Interestingly O , O although O a O number O of O ppGpp B-site binding I-site residues I-site are O strictly B-protein_state conserved I-protein_state between O LdcI B-protein and O AdiA B-protein that O also O forms O decamers B-oligomeric_state at O low B-protein_state pH I-protein_state optimal I-protein_state for O its O arginine B-protein_type decarboxylase I-protein_type activity O , O no O ppGpp B-chemical regulation O of O AdiA B-protein could O be O demonstrated O . O Swinging O and O stretching O of O the O CTDs B-structure_element upon O pH B-protein_state - I-protein_state dependent I-protein_state LdcI B-protein activation O and O LARA B-structure_element binding O Inspection O of O the O superimposed B-experimental_method decameric B-oligomeric_state structures B-evidence ( O Figs O 2 O and O S6 O ) O suggests O a O depiction O of O the O wing B-structure_element domains I-structure_element as O an O anchor O around O which O the O peripheral O CTDs B-structure_element swing O . O This O swinging O movement O seems O to O be O mediated O by O the O core B-structure_element domains I-structure_element and O is O accompanied O by O a O stretching O of O the O whole O LdcI B-protein subunits B-structure_element attracted O by O the O RavA B-protein magnets O . O Indeed O , O all O CTDs B-structure_element have O very O similar O structures O ( O RMSDmin B-evidence < O 1 O Å O ). O Yet O the O superposition B-experimental_method of O the O decamers B-oligomeric_state lays O bare O a O progressive O movement O of O the O CTD B-structure_element as O a O whole O upon O enzyme O activation O by O pH O and O the O binding O of O LARA B-structure_element . O The O LdcIi B-protein monomer B-oligomeric_state is O the O most B-protein_state compact I-protein_state , O whereas O LdcIa B-protein and O especially O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly gradually B-protein_state extend I-protein_state their O CTDs B-structure_element towards O the O LARA B-structure_element domain I-structure_element of O RavA B-protein ( O Figs O 2 O and O 4 O ). O These O small O but O noticeable O swinging O and O stretching O ( O up O to O ~ O 4 O Å O ) O may O be O related O to O the O incorporation O of O the O LdcI B-protein decamer B-oligomeric_state into O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O a O lysine B-protein_type decarboxylase I-protein_type as O a O major O determinant O of O the O interaction O with O RavA B-protein In O our O previous O contribution O , O based O on O the O fit O of O the O LdcIi B-protein and O the O LARA B-structure_element crystal B-evidence structures I-evidence into O the O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly cryoEM B-experimental_method density B-evidence , O we O predicted O that O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O should O involve O the O C O - O terminal O two B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheet I-structure_element of O the O LdcI B-protein . O Our O present O cryoEM B-experimental_method maps B-evidence and O pseudoatomic B-evidence models I-evidence provide O first O structure O - O based O insights O into O the O differences O between O the O inducible B-protein_state and O the O constitutive B-protein_state lysine B-protein_type decarboxylases I-protein_type . O Therefore O , O we O wanted O to O check O the O influence O of O the O primary O sequence O of O the O two O proteins O in O this O region O on O their O ability O to O interact O with O RavA B-protein . O To O this O end O , O we O swapped B-experimental_method the O relevant O β B-structure_element - I-structure_element sheets I-structure_element of O the O two O proteins O and O produced O their O chimeras B-mutant , O namely O LdcIC B-mutant ( O i O . O e O . O LdcI B-protein with O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcC B-protein ) O and O LdcCI B-mutant ( O i O . O e O . O LdcC B-protein with O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein ) O ( O Fig O . O 5A O – O C O ). O Both B-mutant constructs I-mutant could O be O purified O and O could O form O decamers B-oligomeric_state visually O indistinguishable O from O the O wild B-protein_state - I-protein_state type I-protein_state proteins O . O As O expected O , O binding O of O LdcI B-protein to O RavA B-protein was O completely O abolished O by O this O procedure O and O no O LdcIC B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O could O be O detected O . O On O the O contrary O , O introduction B-experimental_method of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O LdcI B-protein into O LdcC B-protein led O to O an O assembly O of O the O LdcCI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O . O On O the O negative B-experimental_method stain I-experimental_method EM I-experimental_method grid I-experimental_method , O the O chimeric B-protein_state cages O appeared O less O rigid O than O the O native B-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly , O which O probably O means O that O the O environment O of O the O β B-structure_element - I-structure_element sheet I-structure_element contributes O to O the O efficiency O of O the O interaction O and O the O stability O of O the O entire O architecture O ( O Fig O . O 5D O – O F O ). O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element of O a O lysine B-protein_type decarboxylase I-protein_type is O a O highly B-protein_state conserved I-protein_state signature O allowing O to O distinguish O between O LdcI B-protein and O LdcC B-protein Alignment B-experimental_method of I-experimental_method the I-experimental_method primary I-experimental_method sequences I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-protein and O LdcC B-protein shows O that O some O amino O acid O residues O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element are O the O same O in O the O two O proteins O , O whereas O others O are O notably O different O in O chemical O nature O . O Importantly O , O most O of O the O amino O acid O differences O between O the O two O enzymes O are O located O in O this O very B-structure_element region I-structure_element . O Thus O , O to O advance O beyond O our O experimental O confirmation O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element as O a O major O determinant O of O the O capacity O of O a O particular O lysine B-protein_type decarboxylase I-protein_type to O form O a O cage O with O RavA B-protein , O we O set O out O to O investigate O whether O certain B-structure_element residues I-structure_element in O this O β B-structure_element - I-structure_element sheet I-structure_element are O conserved B-protein_state in O lysine B-protein_type decarboxylases I-protein_type of O different O enterobacteria B-taxonomy_domain that O have O the O ravA B-gene - I-gene viaA I-gene operon I-gene in O their O genome O . O We O inspected B-experimental_method the I-experimental_method genetic I-experimental_method environment I-experimental_method of O lysine B-protein_type decarboxylases I-protein_type from O 22 O enterobacterial B-taxonomy_domain species O referenced O in O the O NCBI O database O , O corrected O the O gene O annotation O where O necessary O ( O Tables O S3 O and O S4 O ), O and O performed O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method coupled O to O a O phylogenetic B-experimental_method analysis I-experimental_method ( O see O Methods O ). O First O of O all O , O consensus B-evidence sequence I-evidence for O the O entire O lysine B-protein_type decarboxylase I-protein_type family O was O derived O . O Second O , O the O phylogenetic B-experimental_method analysis I-experimental_method clearly O split O the O lysine B-protein_type decarboxylases I-protein_type into O two O groups O ( O Fig O . O 6A O ). O All O lysine B-protein_type decarboxylases I-protein_type predicted O to O be O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O biodegradable B-protein_state based O on O their O genetic O environment O , O as O for O example O their O organization O in O an O operon O with O a O gene O encoding O the O CadB B-protein antiporter B-protein_type ( O see O Methods O ), O were O found O in O one O group O , O whereas O all O enzymes B-protein_type predicted O as O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O or O biosynthetic B-protein_state partitioned O into O another O group O . O Thus O , O consensus B-evidence sequences I-evidence could O also O be O determined O for O each O of O the O two O groups O ( O Figs O 6B O , O C O and O S7 O ). O Inspection O of O these O consensus B-evidence sequences I-evidence revealed O important O differences O between O the O groups O regarding O charge O , O size O and O hydrophobicity O of O several O residues O precisely O at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element that O is O responsible O for O the O interaction O with O RavA B-protein ( O Fig O . O 6B O – O D O ). O For O example O , O in O our O previous O study O , O site B-experimental_method - I-experimental_method directed I-experimental_method mutations I-experimental_method identified O Y697 B-residue_name_number as O critically O required O for O the O RavA B-protein binding O . O Our O current O analysis O shows O that O Y697 B-residue_name_number is O strictly B-protein_state conserved I-protein_state in O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O group O whereas O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enzymes O always B-protein_state have I-protein_state a O lysine B-residue_name in O this O position O ; O it O also O uncovers O several O other O residues O potentially O essential O for O the O interaction O with O RavA B-protein which O can O now O be O addressed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O The O third O and O most O remarkable O finding O was O that O exactly O the O same O separation O into O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type ”- I-protein_type like I-protein_type groups O can O be O obtained O based O on O a O comparison O of O the O C O - O terminal O β B-structure_element - I-structure_element sheets I-structure_element only O , O without O taking O the O rest O of O the O primary O sequence O into O account O . O Therefore O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element emerges O as O being O a O highly B-protein_state conserved I-protein_state signature B-structure_element sequence I-structure_element , O sufficient O to O unambiguously O discriminate O between O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type independently O of O any O other O information O ( O Figs O 6 O and O S7 O ). O Our O structures B-evidence show O that O this B-structure_element motif I-structure_element is O not O involved O in O the O enzymatic O activity O or O the O oligomeric O state O of O the O proteins O . O Thus O , O enterobacteria B-taxonomy_domain identified O here O ( O Fig O . O 6 O , O Table O S4 O ) O appear O to O exert O evolutionary O pressure O on O the O biodegradative B-protein_state lysine B-protein_type decarboxylase I-protein_type towards O the O RavA B-protein binding O . O One O of O the O elucidated O roles O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O is O to O maintain O LdcI B-protein activity O under O conditions O of O enterobacterial B-taxonomy_domain starvation O by O preventing O LdcI B-protein inhibition O by O the O stringent B-chemical response I-chemical alarmone I-chemical ppGpp B-chemical . O Furthermore O , O the O recently O documented O interaction O of O both O LdcI B-protein and O RavA B-protein with O specific O subunits B-structure_element of O the O respiratory B-protein_type complex I-protein_type I I-protein_type , O together O with O the O unanticipated O link O between O RavA B-protein and O maturation O of O numerous O iron B-protein_type - I-protein_type sulfur I-protein_type proteins I-protein_type , O tend O to O suggest O an O additional O intriguing O function O for O this O 3 O . O 5 O MDa O assembly O . O The O conformational O rearrangements O of O LdcI B-protein upon O enzyme O activation O and O RavA B-protein binding O revealed O in O this O work O , O and O our O amazing O finding O that O the O molecular O determinant O of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly interaction O is O the O one O that O straightforwardly O determines O if O a O particular O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylase I-protein_type belongs O to O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O or O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O proteins O , O should O give O a O new O impetus O to O functional O studies O of O the O unique O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O . O Besides O , O the O structures B-evidence and O the O pseudoatomic B-evidence models I-evidence of O the O active B-protein_state ppGpp B-protein_state - I-protein_state free I-protein_state states O of O both O the O biodegradative B-protein_state and O the O biosynthetic B-protein_state E B-species . I-species coli I-species lysine B-protein_type decarboxylases I-protein_type offer O an O additional O tool O for O analysis O of O their O role O in O UPEC B-species infectivity O . O Together O with O the O apo B-protein_state - O LdcI B-protein and O ppGpp B-complex_assembly - I-complex_assembly LdcIi I-complex_assembly crystal B-evidence structures I-evidence , O our O cryoEM B-experimental_method reconstructions B-evidence provide O a O structural O framework O for O future O studies O of O structure O - O function O relationships O of O lysine B-protein_type decarboxylases I-protein_type from O other O enterobacteria B-taxonomy_domain and O even O of O their O homologues O outside O Enterobacteriaceae B-taxonomy_domain . O For O example O , O the O lysine B-protein_type decarboxylase I-protein_type of O Eikenella B-species corrodens I-species is O thought O to O play O a O major O role O in O the O periodontal O disease O and O its O inhibitors O were O shown O to O retard O gingivitis O development O . O Finally O , O cadaverine B-chemical being O an O important O platform O chemical O for O the O production O of O industrial O polymers O such O as O nylon O , O structural O information O is O valuable O for O optimisation O of O bacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type used O for O its O production O in O biotechnology O . O 3D O cryoEM B-experimental_method reconstructions B-evidence of O LdcC B-protein , O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein . O ( O A O , O C O , O E O ) O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O A O ), O LdcIa B-protein ( O C O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ) O decamers B-oligomeric_state with O one O protomer B-oligomeric_state in O light O grey O . O In O the O rest O of O the O protomers B-oligomeric_state , O the O wing B-structure_element , O core B-structure_element and O C B-structure_element - I-structure_element terminal I-structure_element domains I-structure_element are O colored O from O light O to O dark O in O shades O of O green O for O LdcC B-protein ( O A O ), O pink O for O LdcIa B-protein ( O C O ) O and O blue O for O LdcI B-protein in O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O E O ). O In O ( O E O ), O the O LARA B-structure_element domain I-structure_element density O is O shown O in O dark O grey O . O Two O monomers B-oligomeric_state making O a O dimer B-oligomeric_state are O delineated O . O Scale O bar O 50 O Å O . O ( O B O , O D O , O F O ) O One O protomer B-oligomeric_state from O the O cryoEM B-experimental_method map B-evidence of O the O LdcC B-protein ( O B O ), O LdcIa B-protein ( O D O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O F O ) O in O light O grey O with O the O pseudoatomic B-evidence model I-evidence represented O as O cartoons O and O colored O as O the O densities O in O ( O A O , O C O , O E O ). O Superposition B-experimental_method of O the O pseudoatomic B-evidence models I-evidence of O LdcC B-protein , O LdcI B-protein from O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein colored O as O in O Fig O . O 1 O , O and O the O crystal B-evidence structure I-evidence of O LdcIi B-protein in O shades O of O yellow O . O Only O one O of O the O two O rings B-structure_element of O the O double B-structure_element toroid I-structure_element is O shown O for O clarity O . O The O dashed O circle O indicates O the O central O region B-structure_element that O remains O virtually O unchanged O between O all O the O structures B-evidence , O while O the O periphery O undergoes O visible O movements O . O Conformational O rearrangements O in O the O enzyme O active B-site site I-site . O ( O A O ) O LdcIi B-protein crystal B-evidence structure I-evidence , O with O one O ring B-structure_element represented O as O a O grey O surface O and O the O second O as O a O cartoon O . O A O monomer B-oligomeric_state with O its O PLP B-chemical cofactor O is O delineated O . O The O PLP B-chemical moieties O of O the O cartoon O ring B-structure_element are O shown O in O red O . O ( O B O ) O The O LdcIi B-protein dimer B-oligomeric_state extracted O from O the O crystal B-evidence structure I-evidence of O the O decamer B-oligomeric_state . O One O monomer B-oligomeric_state is O colored O in O shades O of O yellow O as O in O Figs O 1 O and O 2 O , O while O the O monomer B-oligomeric_state related O by O C2 O symmetry O is O grey O . O The O PLP B-chemical is O red O . O The O active B-site site I-site is O boxed O . O Stretching O of O the O LdcI B-protein monomer B-oligomeric_state upon O pH B-protein_state - I-protein_state dependent I-protein_state enzyme O activation O and O LARA B-structure_element binding O . O ( O A O – O C O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcI B-protein monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ) O The O rectangle O indicates O the O regions O enlarged O in O ( O D O – O F O ). O ( O A O ) O compares O LdcIi B-protein ( O yellow O ) O and O LdcIa B-protein ( O pink O ), O ( O B O ) O compares O LdcIa B-protein ( O pink O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O blue O ), O and O ( O C O ) O compares O LdcIi B-protein ( O yellow O ), O LdcIa B-protein ( O pink O ) O and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly ( O blue O ) O simultaneously O in O order O to O show O the O progressive O stretching O described O in O the O text O . O The O cryoEM B-experimental_method density B-evidence of O the O LARA B-structure_element domain I-structure_element is O represented O as O a O grey O surface O to O show O the O position O of O the O binding B-site site I-site and O the O direction O of O the O movement O . O ( O D O – O F O ) O Inserts O zooming O at O the O CTD B-structure_element part O in O proximity O of O the O LARA B-site binding I-site site I-site . O Analysis O of O the O LdcIC B-mutant and O LdcCI B-mutant chimeras B-mutant . O ( O A O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcIa B-protein ( O purple O ) O and O LdcC B-protein ( O green O ) O monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ). O ( O B O ) O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element in O LdcIa B-protein and O LdcC B-protein enlarged O from O ( O A O , O C O ) O Exchanged O primary O sequences O ( O capital O letters O ) O and O their O immediate O vicinity O ( O lower O case O letters O ) O colored O as O in O ( O A O , O B O ), O with O the O corresponding O secondary O structure O elements O and O the O amino O acid O numbering O shown O . O ( O D O , O E O ) O A O gallery O of O negative O stain O EM O images O of O ( O D O ) O the O wild B-protein_state type I-protein_state LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O and O ( O E O ) O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O ( O F O ) O Some O representative O class O averages O of O the O LdcCI B-mutant - I-mutant RavA I-mutant cage I-mutant - I-mutant like I-mutant particles I-mutant . O Sequence B-experimental_method analysis I-experimental_method of O enterobacterial B-taxonomy_domain lysine B-protein_type decarboxylases I-protein_type . O ( O A O ) O Maximum B-evidence likelihood I-evidence tree I-evidence with O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O and O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O groups O highlighted O in O green O and O pink O , O respectively O . O ( O B O ) O Analysis O of O consensus O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O and O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O sequences O around O the O first O and O second O C O - O terminal O β B-structure_element - I-structure_element strands I-structure_element . O Numbering O as O in O E B-species . I-species coli I-species . O ( O C O ) O Signature O sequences O of O LdcI B-protein and O LdcC B-protein in O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element . O Polarity O differences O are O highlighted O . O ( O D O ) O Position O and O nature O of O these O differences O at O the O surface O of O the O respective O cryoEM B-experimental_method maps B-evidence with O the O color O code O as O in O B O . O See O also O Fig O . O S7 O and O Tables O S3 O and O S4 O . O Structural O basis O for O Mep2 B-protein_type ammonium B-protein_type transceptor I-protein_type activation O by O phosphorylation B-ptm Mep2 B-protein_type proteins I-protein_type are O fungal B-taxonomy_domain transceptors B-protein_type that O play O an O important O role O as O ammonium B-chemical sensors O in O fungal B-taxonomy_domain development O . O Mep2 B-protein_type activity O is O tightly O regulated O by O phosphorylation B-ptm , O but O how O this O is O achieved O at O the O molecular O level O is O not O clear O . O Here O we O report O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type orthologues O from O Saccharomyces B-species cerevisiae I-species and O Candida B-species albicans I-species and O show O that O under O nitrogen O - O sufficient O conditions O the O transporters B-protein_type are O not B-protein_state phosphorylated I-protein_state and O present O in O closed B-protein_state , O inactive B-protein_state conformations O . O Relative O to O the O open B-protein_state bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O non B-protein_state - I-protein_state phosphorylated I-protein_state Mep2 B-protein_type exhibits O shifts O in O cytoplasmic B-structure_element loops I-structure_element and O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O to O occlude O the O cytoplasmic O exit B-site of O the O channel B-site and O to O interact O with O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O phosphorylation B-site site I-site in O the O CTR B-structure_element is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O The O crystal B-evidence structure I-evidence of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state Mep2 B-mutant variants I-mutant from O C B-species . I-species albicans I-species show O large O conformational O changes O in O a O conserved B-protein_state and O functionally O important O region O of O the O CTR B-structure_element . O The O results O allow O us O to O propose O a O model O for O regulation O of O eukaryotic B-taxonomy_domain ammonium B-chemical transport O by O phosphorylation B-ptm . O Mep2 B-protein_type proteins I-protein_type are O tightly O regulated O fungal B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O Here O , O the O authors O report O the O crystal B-evidence structures I-evidence of O closed B-protein_state states O of O Mep2 B-protein_type proteins I-protein_type and O propose O a O model O for O their O regulation O by B-experimental_method comparing I-experimental_method them I-experimental_method with I-experimental_method the O open B-protein_state ammonium B-protein_type transporters I-protein_type of O bacteria B-taxonomy_domain . O Transceptors B-protein_type are O membrane B-protein_type proteins I-protein_type that O function O not O only O as O transporters O but O also O as O receptors O / O sensors O during O nutrient O sensing O to O activate O downstream O signalling O pathways O . O A O common O feature O of O transceptors B-protein_type is O that O they O are O induced O when O cells O are O starved O for O their O substrate O . O While O most O studies O have O focused O on O the O Saccharomyces B-species cerevisiae I-species transceptors B-protein_type for O phosphate B-chemical ( O Pho84 B-protein ), O amino B-chemical acids I-chemical ( O Gap1 B-protein ) O and O ammonium B-chemical ( O Mep2 B-protein ), O transceptors B-protein_type are O found O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain as O well O ( O for O example O , O the O mammalian B-taxonomy_domain SNAT2 B-protein amino B-protein_type - I-protein_type acid I-protein_type transporter I-protein_type and O the O GLUT2 B-protein glucose B-protein_type transporter I-protein_type ). O One O of O the O most O important O unresolved O questions O in O the O field O is O how O the O transceptors B-protein_type couple O to O downstream O signalling O pathways O . O One O hypothesis O is O that O downstream O signalling O is O dependent O on O a O specific O conformation O of O the O transporter B-protein_type . O Mep2 B-protein_type ( B-protein_type methylammonium I-protein_type ( I-protein_type MA I-protein_type ) I-protein_type permease I-protein_type ) I-protein_type proteins I-protein_type are O ammonium B-protein_type transceptors I-protein_type that O are O ubiquitous O in O fungi B-taxonomy_domain . O They O belong O to O the O Amt B-protein_type / I-protein_type Mep I-protein_type / I-protein_type Rh I-protein_type family I-protein_type of I-protein_type transporters I-protein_type that O are O present O in O all B-taxonomy_domain kingdoms I-taxonomy_domain of I-taxonomy_domain life I-taxonomy_domain and O they O take O up O ammonium B-chemical from O the O extracellular O environment O . O Fungi B-taxonomy_domain typically O have O more O than O one O Mep B-protein_type paralogue O , O for O example O , O Mep1 B-protein - I-protein 3 I-protein in O S B-species . I-species cerevisiae I-species . O Of O these O , O only O Mep2 B-protein_type proteins I-protein_type function O as O ammonium B-chemical receptors O / O sensors O in O fungal B-taxonomy_domain development O . O Under O conditions O of O nitrogen O limitation O , O Mep2 B-protein initiates O a O signalling O cascade O that O results O in O a O switch O from O the O yeast O form O to O filamentous O ( O pseudohyphal O ) O growth O that O may O be O required O for O fungal B-taxonomy_domain pathogenicity O . O As O is O the O case O for O other O transceptors B-protein_type , O it O is O not O clear O how O Mep2 B-protein interacts O with O downstream O signalling O partners O , O but O the O protein O kinase O A O and O mitogen O - O activated O protein O kinase O pathways O have O been O proposed O as O downstream O effectors O of O Mep2 B-protein ( O refs O ). O Compared O with O Mep1 B-protein and O Mep3 B-protein , O Mep2 B-protein is O highly B-protein_state expressed I-protein_state and O functions O as O a O low O - O capacity O , O high O - O affinity O transporter O in O the O uptake O of O MA B-chemical . O In O addition O , O Mep2 B-protein is O also O important O for O uptake O of O ammonium B-chemical produced O by O growth O on O other O nitrogen B-chemical sources O . O With O the O exception O of O the O human B-species RhCG B-protein structure B-evidence , O no O structural O information O is O available O for O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O By O contrast O , O several O bacterial B-taxonomy_domain Amt B-protein_type orthologues O have O been O characterized O in O detail O via O high O - O resolution O crystal B-evidence structures I-evidence and O a O number O of O molecular B-experimental_method dynamics I-experimental_method ( O MD B-experimental_method ) O studies O . O All O the O solved O structures B-evidence including O that O of O RhCG B-protein are O very O similar O , O establishing O the O basic O architecture O of O ammonium B-protein_type transporters I-protein_type . O The O proteins O form O stable B-protein_state trimers B-oligomeric_state , O with O each O monomer B-oligomeric_state having O 11 O transmembrane B-structure_element ( O TM B-structure_element ) O helices B-structure_element and O a O central B-site channel I-site for O the O transport O of O ammonium B-chemical . O All O structures B-evidence show O the O transporters B-protein_type in O open B-protein_state conformations O . O Where O earlier O studies O favoured O the O transport O of O ammonia B-chemical gas O , O recent O data O and O theoretical O considerations O suggest O that O Amt B-protein_type / I-protein_type Mep I-protein_type proteins I-protein_type are O instead O active B-protein_state , O electrogenic B-protein_type transporters I-protein_type of O either O NH4 B-chemical + I-chemical ( O uniport O ) O or O NH3 B-chemical / O H B-chemical + I-chemical ( O symport O ). O A O highly B-protein_state conserved I-protein_state pair O of O channel B-site - O lining O histidine B-residue_name residues O dubbed O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element may O serve O as O a O proton O relay O system O while O NH3 B-chemical moves O through O the O channel B-site during O NH3 B-chemical / O H B-chemical + I-chemical symport O . O Ammonium B-chemical transport O is O tightly O regulated O . O In O animals B-taxonomy_domain , O this O is O due O to O toxicity O of O elevated O intracellular O ammonium B-chemical levels O , O whereas O for O microorganisms B-taxonomy_domain ammonium B-chemical is O a O preferred O nitrogen O source O . O In O bacteria B-taxonomy_domain , O amt B-gene genes O are O present O in O an O operon O with O glnK B-gene , O encoding O a O PII B-protein_type - I-protein_type like I-protein_type signal I-protein_type transduction I-protein_type class I-protein_type protein I-protein_type . O By O binding O tightly O to O Amt B-protein_type proteins I-protein_type without O inducing O a O conformational O change O in O the O transporter B-protein_type , O GlnK B-protein_type sterically O blocks O ammonium B-chemical conductance O when O nitrogen O levels O are O sufficient O . O Under O conditions O of O nitrogen B-chemical limitation O , O GlnK B-protein_type becomes O uridylated B-protein_state , O blocking O its O ability O to O bind O and O inhibit O Amt B-protein_type proteins I-protein_type . O Importantly O , O eukaryotes B-taxonomy_domain do O not O have O GlnK B-protein_type orthologues O and O have O a O different O mechanism O for O regulation O of O ammonium B-chemical transport O activity O . O In O plants B-taxonomy_domain , O transporter B-protein_type phosphorylation B-ptm and O dephosphorylation B-ptm are O known O to O regulate O activity O . O In O S B-species . I-species cerevisiae I-species , O phosphorylation B-ptm of O Ser457 B-residue_name_number within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O in O the O cytoplasm O was O recently O proposed O to O cause O Mep2 B-protein_type opening O , O possibly O via O inducing O a O conformational O change O . O To O elucidate O the O mechanism O of O Mep2 B-protein_type transport O regulation O , O we O present O here O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O the O Mep2 B-protein_type transceptors I-protein_type from O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species . O The O structures B-evidence are O similar O to O each O other O but O show O considerable O differences O to O all O other O ammonium B-protein_type transporter I-protein_type structures B-evidence . O The O most O striking O difference O is O the O fact O that O the O Mep2 B-protein_type proteins I-protein_type have O closed B-protein_state conformations O . O The O putative O phosphorylation B-site site I-site is O solvent B-protein_state accessible I-protein_state and O located O in O a O negatively B-site charged I-site pocket I-site ∼ O 30 O Å O away O from O the O channel B-site exit I-site . O The O channels B-site of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state mutants I-protein_state of O C B-species . I-species albicans I-species Mep2 B-protein are O still O closed B-protein_state but O show O large O conformational O changes O within O a O conserved B-protein_state part O of O the O CTR B-structure_element . O Together O with O a O structure B-evidence of O a O C O - O terminal O Mep2 B-mutant variant I-mutant lacking B-protein_state the O segment B-structure_element containing O the O phosphorylation B-site site I-site , O the O results O allow O us O to O propose O a O structural O model O for O phosphorylation O - O based O regulation O of O eukaryotic B-taxonomy_domain ammonium B-chemical transport O . O General O architecture O of O Mep2 B-protein_type ammonium B-protein_type transceptors I-protein_type The O Mep2 B-protein protein O of O S B-species . I-species cerevisiae I-species ( O ScMep2 B-protein ) O was O overexpressed B-experimental_method in O S B-species . I-species cerevisiae I-species in O high O yields O , O enabling O structure B-experimental_method determination I-experimental_method by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method using O data O to O 3 O . O 2 O Å O resolution O by O molecular B-experimental_method replacement I-experimental_method ( O MR B-experimental_method ) O with O the O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein structure B-evidence ( O see O Methods O section O ). O Given O that O the O modest O resolution O of O the O structure B-evidence and O the O limited O detergent O stability O of O ScMep2 B-protein would O likely O complicate O structure B-experimental_method – I-experimental_method function I-experimental_method studies I-experimental_method , O several O other O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O were O subsequently O overexpressed B-experimental_method and I-experimental_method screened I-experimental_method for I-experimental_method diffraction O - O quality O crystals B-evidence . O Of O these O , O Mep2 B-protein from O C B-species . I-species albicans I-species ( O CaMep2 B-protein ) O showed O superior O stability O in O relatively O harsh O detergents O such O as O nonyl O - O glucoside O , O allowing O structure B-experimental_method determination I-experimental_method in O two O different O crystal B-evidence forms I-evidence to O high O resolution O ( O up O to O 1 O . O 5 O Å O ). O Despite O different O crystal O packing O ( O Supplementary O Table O 1 O ), O the O two O CaMep2 B-protein structures B-evidence are O identical O to O each O other O and O very O similar O to O ScMep2 B-protein ( O Cα O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence ( O root B-evidence mean I-evidence square I-evidence deviation I-evidence )= O 0 O . O 7 O Å O for O 434 O residues O ), O with O the O main O differences O confined O to O the O N O terminus O and O the O CTR B-structure_element ( O Fig O . O 1 O ). O Electron B-evidence density I-evidence is O visible O for O the O entire O polypeptide O chains O , O with O the O exception O of O the O C O - O terminal O 43 B-residue_range ( O ScMep2 B-protein ) O and O 25 B-residue_range residues O ( O CaMep2 B-protein ), O which O are O poorly B-protein_state conserved I-protein_state and O presumably O disordered B-protein_state . O Both O Mep2 B-protein_type proteins I-protein_type show O the O archetypal O trimeric B-oligomeric_state assemblies O in O which O each O monomer B-oligomeric_state consists O of O 11 O TM B-structure_element helices I-structure_element surrounding O a O central B-structure_element pore I-structure_element . O Important O functional O features O such O as O the O extracellular O ammonium B-site binding I-site site I-site , O the O Phe B-site gate I-site and O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element within O the O hydrophobic B-site channel I-site are O all O very O similar O to O those O present O in O the O bacterial B-taxonomy_domain transporters B-protein_type and O RhCG B-protein . O In O the O remainder O of O the O manuscript O , O we O will O specifically O discuss O CaMep2 B-protein due O to O the O superior O resolution O of O the O structure B-evidence . O Unless O specifically O stated O , O the O drawn O conclusions O also O apply O to O ScMep2 B-protein . O While O the O overall O architecture O of O Mep2 B-protein is O similar O to O that O of O the O prokaryotic B-taxonomy_domain transporters B-protein_type ( O Cα O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence with O Amt B-protein - I-protein 1 I-protein = O 1 O . O 4 O Å O for O 361 O residues O ), O there O are O large O differences O within O the O N O terminus O , O intracellular B-structure_element loops I-structure_element ( O ICLs B-structure_element ) O ICL1 B-structure_element and O ICL3 B-structure_element , O and O the O CTR B-structure_element . O The O N O termini O of O the O Mep2 B-protein_type proteins I-protein_type are O ∼ O 20 B-residue_range – I-residue_range 25 I-residue_range residues O longer O compared O with O their O bacterial B-taxonomy_domain counterparts O ( O Figs O 1 O and O 2 O ), O substantially O increasing O the O size O of O the O extracellular B-structure_element domain I-structure_element . O Moreover O , O the O N O terminus O of O one O monomer B-oligomeric_state interacts O with O the O extended O extracellular B-structure_element loop I-structure_element ECL5 B-structure_element of O a O neighbouring O monomer B-oligomeric_state . O Together O with O additional O , O smaller O differences O in O other O extracellular B-structure_element loops I-structure_element , O these O changes O generate O a O distinct O vestibule B-structure_element leading O to O the O ammonium B-site binding I-site site I-site that O is O much O more O pronounced O than O in O the O bacterial B-taxonomy_domain proteins O . O The O N O - O terminal O vestibule B-structure_element and O the O resulting O inter O - O monomer O interactions O likely O increase O the O stability O of O the O Mep2 B-protein trimer B-oligomeric_state , O in O support O of O data O for O plant B-taxonomy_domain AMT B-protein_type proteins I-protein_type . O However O , O given O that O an O N O - O terminal O deletion B-protein_state mutant I-protein_state ( O 2 B-mutant - I-mutant 27Δ I-mutant ) O grows O as O well O as O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O Mep2 B-protein on O minimal O ammonium B-chemical medium O ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ), O the O importance O of O the O N O terminus O for O Mep2 B-protein activity O is O not O clear O . O Mep2 B-protein channels B-site are O closed B-protein_state by O a O two O - O tier O channel B-structure_element block I-structure_element The O largest O differences O between O the O Mep2 B-protein structures B-evidence and O the O other O known O ammonium B-protein_type transporter I-protein_type structures B-evidence are O located O on O the O intracellular O side O of O the O membrane O . O In O the O vicinity O of O the O Mep2 B-protein channel B-site exit I-site , O the O cytoplasmic O end O of O TM2 B-structure_element has O unwound O , O generating O a O longer O ICL1 B-structure_element even O though O there O are O no O insertions O in O this O region O compared O to O the O bacterial B-taxonomy_domain proteins O ( O Figs O 2 O and O 4 O ). O ICL1 B-structure_element has O also O moved O inwards O relative O to O its O position O in O the O bacterial B-taxonomy_domain Amts B-protein_type . O The O largest O backbone O movements O of O equivalent O residues O within O ICL1 B-structure_element are O ∼ O 10 O Å O , O markedly O affecting O the O conserved B-protein_state basic B-protein_state RxK B-structure_element motif I-structure_element ( O Fig O . O 4 O ). O The O head O group O of O Arg54 B-residue_name_number has O moved O ∼ O 11 O Å O relative O to O that O in O Amt B-protein - I-protein 1 I-protein , O whereas O the O shift O of O the O head O group O of O the O variable O Lys55 B-residue_name_number residue O is O almost O 20 O Å O . O The O side O chain O of O Lys56 B-residue_name_number in O the O basic B-protein_state motif B-structure_element points O in O an O opposite O direction O in O the O Mep2 B-protein structures B-evidence compared O with O that O of O , O for O example O , O Amt B-protein - I-protein 1 I-protein ( O Fig O . O 4 O ). O In O addition O to O changing O the O RxK B-structure_element motif I-structure_element , O the O movement O of O ICL1 B-structure_element has O another O , O crucial O functional O consequence O . O At O the O C O - O terminal O end O of O TM1 B-structure_element , O the O side O - O chain O hydroxyl O group O of O the O relatively B-protein_state conserved I-protein_state Tyr49 B-residue_name_number ( O Tyr53 B-residue_name_number in O ScMep2 B-protein ) O makes O a O strong O hydrogen O bond O with O the O ɛ2 O nitrogen O atom O of O the O absolutely B-protein_state conserved I-protein_state His342 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element ( O His348 B-residue_name_number in O ScMep2 B-protein ), O closing O the O channel B-site ( O Figs O 4 O and O 5 O ). O In O bacterial B-taxonomy_domain Amt B-protein_type proteins I-protein_type , O this O Tyr B-residue_name side O chain O is O rotated O ∼ O 4 O Å O away O as O a O result O of O the O different O conformation O of O TM1 B-structure_element , O leaving O the O channel B-site open B-protein_state and O the O histidine B-residue_name available O for O its O putative O role O in O substrate O transport O ( O Supplementary O Fig O . O 2 O ). O Compared O with O ICL1 B-structure_element , O the O backbone O conformational O changes O observed O for O the O neighbouring O ICL2 B-structure_element are O smaller O , O but O large O shifts O are O nevertheless O observed O for O the O conserved B-protein_state residues O Glu140 B-residue_name_number and O Arg141 B-residue_name_number ( O Fig O . O 4 O ). O Finally O , O the O important O ICL3 B-structure_element linking O the O pseudo B-structure_element - I-structure_element symmetrical I-structure_element halves I-structure_element ( O TM1 B-structure_element - I-structure_element 5 I-structure_element and O TM6 B-structure_element - I-structure_element 10 I-structure_element ) O of O the O transporter B-protein_type is O also O shifted O up O to O ∼ O 10 O Å O and O forms O an O additional O barrier O that O closes O the O channel B-site on O the O cytoplasmic O side O ( O Fig O . O 5 O ). O This O two O - O tier O channel B-structure_element block I-structure_element likely O ensures O that O very O little O ammonium B-chemical transport O will O take O place O under O nitrogen B-chemical - O sufficient O conditions O . O The O closed B-protein_state state O of O the O channel B-site might O also O explain O why O no B-evidence density I-evidence , O which O could O correspond O to O ammonium B-chemical ( O or O water B-chemical ), O is O observed O in O the O hydrophobic O part O of O the O Mep2 B-protein channel B-site close O to O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O Significantly O , O this O is O also O true O for O ScMep2 B-protein , O which O was O crystallized B-experimental_method in O the O presence O of O 0 O . O 2 O M O ammonium B-chemical ions O ( O see O Methods O section O ). O The O final O region O in O Mep2 B-protein that O shows O large O differences O compared O with O the O bacterial B-taxonomy_domain transporters B-protein_type is O the O CTR B-structure_element . O In O Mep2 B-protein , O the O CTR B-structure_element has O moved O away O and O makes O relatively O few O contacts O with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type , O generating O a O more O elongated B-protein_state protein O ( O Figs O 1 O and O 4 O ). O By O contrast O , O in O the O structures B-evidence of O bacterial B-taxonomy_domain proteins O , O the O CTR B-structure_element is O docked O tightly O onto O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O corresponding O to O TM1 B-structure_element - I-structure_element 5 I-structure_element ), O resulting O in O a O more O compact B-protein_state structure B-evidence . O This O is O illustrated O by O the O positions O of O the O five O universally B-protein_state conserved I-protein_state residues O within O the O CTR B-structure_element , O that O is O , O Arg415 B-residue_name_number ( O 370 B-residue_number ), O Glu421 B-residue_name_number ( O 376 B-residue_number ), O Gly424 B-residue_name_number ( O 379 B-residue_number ), O Asp426 B-residue_name_number ( O 381 B-residue_number ) O and O Tyr B-residue_name_number 435 I-residue_name_number ( O 390 B-residue_number ) O in O CaMep2 B-protein ( O Amt B-protein - I-protein 1 I-protein ) O ( O Fig O . O 2 O ). O These O residues O include O those O of O the O ‘ B-structure_element ExxGxD I-structure_element ' I-structure_element motif I-structure_element , O which O when O mutated B-experimental_method generate O inactive B-protein_state transporters B-protein_type . O In O Amt B-protein - I-protein 1 I-protein and O other O bacterial B-taxonomy_domain ammonium B-protein_type transporters I-protein_type , O these O CTR B-structure_element residues O interact O with O residues O within O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O protein O . O On O one O side O , O the O Tyr390 B-residue_name_number hydroxyl O in O Amt B-protein - I-protein 1 I-protein is O hydrogen O bonded O with O the O side O chain O of O the O conserved B-protein_state His185 B-residue_name_number at O the O C O - O terminal O end O of O loop B-structure_element ICL3 B-structure_element . O At O the O other O end O of O ICL3 B-structure_element , O the O backbone O carbonyl O groups O of O Gly172 B-residue_name_number and O Lys173 B-residue_name_number are O hydrogen O bonded O to O the O side O chain O of O Arg370 B-residue_name_number . O Similar O interactions O were O also O modelled B-experimental_method in O the O active B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state plant B-taxonomy_domain AtAmt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein structure B-evidence ( O for O example O , O Y467 B-residue_name_number - O H239 B-residue_name_number and O D458 B-residue_name_number - O K71 B-residue_name_number ). O The O result O of O these O interactions O is O that O the O CTR B-structure_element ‘ O hugs O ' O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O the O transporters B-protein_type ( O Fig O . O 4 O ). O Also O noteworthy O is O Asp381 B-residue_name_number , O the O side O chain O of O which O interacts O strongly O with O the O positive O dipole O on O the O N O - O terminal O end O of O TM2 B-structure_element . O This O interaction O in O the O centre O of O the O protein O may O be O particularly O important O to O stabilize O the O open B-protein_state conformations O of O ammonium B-protein_type transporters I-protein_type . O In O the O Mep2 B-protein structures B-evidence , O none O of O the O interactions O mentioned O above O are O present O . O Phosphorylation B-site target I-site site I-site is O at O the O periphery O of O Mep2 B-protein Recently O Boeckstaens O et O al O . O provided O evidence O that O Ser457 B-residue_name_number in O ScMep2 B-protein ( O corresponding O to O Ser453 B-residue_name_number in O CaMep2 B-protein ) O is O phosphorylated B-protein_state by O the O TORC1 B-protein_type effector I-protein_type kinase I-protein_type Npr1 B-protein under O nitrogen B-chemical - O limiting O conditions O . O In O the O absence B-protein_state of I-protein_state Npr1 B-protein , O plasmid B-experimental_method - I-experimental_method encoded I-experimental_method WT B-protein_state Mep2 B-protein in O a O S B-species . I-species cerevisiae I-species mep1 B-mutant - I-mutant 3Δ I-mutant strain O ( O triple B-mutant mepΔ I-mutant ) O does O not O allow O growth O on O low O concentrations O of O ammonium B-chemical , O suggesting O that O the O transporter B-protein_type is O inactive B-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ). O Conversely O , O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state S457D B-mutant variant O is O active B-protein_state both O in O the O triple B-mutant mepΔ I-mutant background O and O in O a O triple B-mutant mepΔ I-mutant npr1Δ I-mutant strain O ( O Fig O . O 3 O ). O Mutation B-experimental_method of O other O potential O phosphorylation B-site sites I-site in O the O CTR B-structure_element did O not O support O growth O in O the O npr1Δ B-mutant background O . O Collectively O , O these O data O suggest O that O phosphorylation B-ptm of O Ser457 B-residue_name_number opens O the O Mep2 B-protein channel B-site to O allow O ammonium B-chemical uptake O . O Ser457 B-residue_name_number is O located O in O a O part O of O the O CTR B-structure_element that O is O conserved B-protein_state in O a O subgroup O of O Mep2 B-protein_type proteins I-protein_type , O but O which O is O not O present O in O bacterial B-taxonomy_domain proteins O ( O Fig O . O 2 O ). O This O segment B-structure_element ( O residues O 450 B-residue_range – I-residue_range 457 I-residue_range in O ScMep2 B-protein and O 446 B-residue_range – I-residue_range 453 I-residue_range in O CaMep2 B-protein ) O was O dubbed O an O autoinhibitory B-structure_element ( I-structure_element AI I-structure_element ) I-structure_element region I-structure_element based O on O the O fact O that O its O removal B-experimental_method generates O an O active B-protein_state transporter B-protein_type in O the O absence B-protein_state of I-protein_state Npr1 B-protein ( O Fig O . O 3 O ). O Where O is O the O AI B-structure_element region I-structure_element and O the O Npr1 B-protein phosphorylation B-site site I-site located O ? O Our O structures B-evidence reveal O that O surprisingly O , O the O AI B-structure_element region I-structure_element is O folded O back O onto O the O CTR B-structure_element and O is O not O located O near O the O centre O of O the O trimer B-oligomeric_state as O expected O from O the O bacterial B-taxonomy_domain structures B-evidence ( O Fig O . O 4 O ). O The O AI B-structure_element region I-structure_element packs O against O the O cytoplasmic O ends O of O TM2 B-structure_element and O TM4 B-structure_element , O physically O linking O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type with O the O CTR B-structure_element via O main O chain O interactions O and O side O - O chain O interactions O of O Val447 B-residue_name_number , O Asp449 B-residue_name_number , O Pro450 B-residue_name_number and O Arg452 B-residue_name_number ( O Fig O . O 6 O ). O The O AI B-structure_element regions I-structure_element have O very O similar O conformations O in O CaMep2 B-protein and O ScMep2 B-protein , O despite O considerable O differences O in O the O rest O of O the O CTR B-structure_element ( O Fig O . O 6 O ). O Strikingly O , O the O Npr1 B-site target I-site serine I-site residue O is O located O at O the O periphery O of O the O trimer B-oligomeric_state , O far O away O (∼ O 30 O Å O ) O from O any O channel B-site exit I-site ( O Fig O . O 6 O ). O Despite O its O location O at O the O periphery O of O the O trimer B-oligomeric_state , O the O electron B-evidence density I-evidence for O the O serine B-residue_name is O well O defined O in O both O Mep2 B-protein structures B-evidence and O corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O Fig O . O 6 O ). O This O makes O sense O since O the O proteins O were O expressed O in O rich O medium O and O confirms O the O recent O suggestion O by O Boeckstaens O et O al O . O that O the O non B-protein_state - I-protein_state phosphorylated I-protein_state form O of O Mep2 B-protein corresponds O to O the O inactive B-protein_state state O . O For O ScMep2 B-protein , O Ser457 B-residue_name_number is O the O most O C O - O terminal O residue O for O which O electron B-evidence density I-evidence is O visible O , O indicating O that O the O region O beyond O Ser457 B-residue_name_number is O disordered B-protein_state . O In O CaMep2 B-protein , O the O visible O part O of O the O sequence O extends O for O two O residues O beyond O Ser453 B-residue_name_number ( O Fig O . O 6 O ). O The O peripheral O location O and O disorder B-protein_state of O the O CTR B-structure_element beyond O the O kinase B-site target I-site site I-site should O facilitate O the O phosphorylation B-ptm by O Npr1 B-protein . O The O disordered B-protein_state part O of O the O CTR B-structure_element is O not B-protein_state conserved I-protein_state in O ammonium B-protein_type transporters I-protein_type ( O Fig O . O 2 O ), O suggesting O that O it O is O not O important O for O transport O . O Interestingly O , O a O ScMep2 B-protein 457Δ B-mutant truncation B-protein_state mutant I-protein_state in O which O a O His O - O tag O directly O follows O Ser457 B-residue_name_number is O highly O expressed O but O has O low B-protein_state activity I-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1b O ), O suggesting O that O the O His O - O tag O interferes O with O phosphorylation B-ptm by O Npr1 B-protein . O The O same O mutant B-mutant lacking B-protein_state the I-protein_state His I-protein_state - I-protein_state tag I-protein_state has O WT B-protein_state properties O ( O Supplementary O Fig O . O 1b O ), O confirming O that O the O region O following O the O phosphorylation B-site site I-site is O dispensable O for O function O . O Mep2 B-protein lacking B-protein_state the O AI B-structure_element region I-structure_element is O conformationally B-protein_state heterogeneous I-protein_state Given O that O Ser457 B-residue_name_number / O 453 B-residue_number is O far O from O any O channel B-site exit I-site ( O Fig O . O 6 O ), O the O crucial O question O is O how O phosphorylation B-ptm opens O the O Mep2 B-protein channel B-site to O generate O an O active B-protein_state transporter B-protein_type . O Boeckstaens O et O al O . O proposed O that O phosphorylation B-ptm does O not O affect O channel O activity O directly O , O but O instead O relieves O inhibition O by O the O AI B-structure_element region I-structure_element . O The O data O behind O this O hypothesis O is O the O observation O that O a O ScMep2 B-protein 449 B-mutant - I-mutant 485Δ I-mutant deletion B-protein_state mutant I-protein_state lacking B-protein_state the O AI B-structure_element region I-structure_element is O highly B-protein_state active I-protein_state in O MA B-chemical uptake O both O in O the O triple B-mutant mepΔ I-mutant and O triple B-mutant mepΔ I-mutant npr1Δ I-mutant backgrounds O , O implying O that O this O Mep2 B-mutant variant I-mutant has O a O constitutively B-protein_state open I-protein_state channel B-site . O We O obtained O a O similar O result O for O ammonium O uptake O by O the O 446Δ B-mutant mutant B-protein_state ( O Fig O . O 3 O ), O supporting O the O data O from O Marini O et O al O . O We O then O constructed B-experimental_method and I-experimental_method purified I-experimental_method the O analogous O CaMep2 B-protein 442Δ B-mutant truncation B-protein_state mutant I-protein_state and O determined B-experimental_method the O crystal B-evidence structure I-evidence using O data O to O 3 O . O 4 O Å O resolution O . O The O structure B-evidence shows O that O removal B-experimental_method of I-experimental_method the O AI B-structure_element region I-structure_element markedly O increases O the O dynamics O of O the O cytoplasmic B-structure_element parts I-structure_element of O the O transporter B-protein_type . O This O is O not O unexpected O given O the O fact O that O the O AI B-structure_element region I-structure_element bridges O the O CTR B-structure_element and O the O main B-structure_element body I-structure_element of O Mep2 B-protein ( O Fig O . O 6 O ). O Density B-evidence for O ICL3 B-structure_element and O the O CTR B-structure_element beyond O residue O Arg415 B-residue_name_number is O missing O in O the O 442Δ B-mutant mutant B-protein_state , O and O the O density B-evidence for O the O other O ICLs B-structure_element including O ICL1 B-structure_element is O generally O poor O with O visible O parts O of O the O structure B-evidence having O high O B O - O factors O ( O Fig O . O 7 O ). O Interestingly O , O however O , O the O Tyr49 B-residue_name_number - O His342 B-residue_name_number hydrogen O bond O that O closes O the O channel O in O the O WT B-protein_state protein O is O still O present O ( O Fig O . O 7 O and O Supplementary O Fig O . O 2 O ). O Why O then O does O this O mutant O appear O to O be O constitutively O active B-protein_state ? O We O propose O two O possibilities O . O The O first O one O is O that O the O open B-protein_state state O is O disfavoured O by O crystallization B-experimental_method because O of O lower O stability O or O due O to O crystal O packing O constraints O . O The O second O possibility O is O that O the O Tyr B-site – I-site His I-site hydrogen I-site bond I-site has O to O be O disrupted O by O the O incoming O substrate O to O open B-protein_state the O channel O . O The O latter O model O would O fit O well O with O the O NH3 B-chemical / O H B-chemical + I-chemical symport O model O in O which O the O proton O is O relayed O by O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O importance O of O the O Tyr B-site – I-site His I-site hydrogen I-site bond I-site is O underscored O by O the O fact O that O its O removal B-experimental_method in O the O ScMep2 B-protein Y53A B-mutant mutant B-protein_state results O in O a O constitutively B-protein_state active I-protein_state transporter B-protein_type ( O Fig O . O 3 O ). O Phosphorylation B-ptm causes O a O conformational O change O in O the O CTR B-structure_element Do O the O Mep2 B-protein structures B-evidence provide O any O clues O regarding O the O potential O effect O of O phosphorylation B-ptm ? O The O side O - O chain O hydroxyl O of O Ser457 B-residue_name_number / O 453 B-residue_number is O located O in O a O well O - O defined O electronegative B-site pocket I-site that O is O solvent B-protein_state accessible I-protein_state ( O Fig O . O 6 O ). O The O closest O atoms O to O the O serine B-residue_name hydroxyl O group O are O the O backbone O carbonyl O atoms O of O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number , O which O are O 3 O – O 4 O Å O away O . O We O therefore O predict O that O phosphorylation B-ptm of O Ser453 B-residue_name_number will O result O in O steric O clashes O as O well O as O electrostatic O repulsion O , O which O in O turn O might O cause O substantial O conformational O changes O within O the O CTR B-structure_element . O To O test O this O hypothesis O , O we O determined B-experimental_method the O structure B-evidence of O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state R452D B-mutant / I-mutant S453D I-mutant protein O ( O hereafter O termed O ‘ O DD B-mutant mutant I-mutant '), O using O data O to O a O resolution O of O 2 O . O 4 O Å O . O The O additional B-experimental_method mutation I-experimental_method of I-experimental_method the O arginine B-residue_name preceding O the O phosphorylation B-site site I-site was O introduced O ( O i O ) O to O increase O the O negative O charge O density O and O make O it O more O comparable O to O a O phosphate B-chemical at O neutral O pH O , O and O ( O ii O ) O to O further O destabilize O the O interactions O of O the O AI B-structure_element region I-structure_element with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type ( O Fig O . O 6 O ). O The O ammonium B-chemical uptake O activity O of O the O S B-species . I-species cerevisiae I-species version O of O the O DD B-mutant mutant I-mutant is O the O same O as O that O of O WT B-protein_state Mep2 B-protein and O the O S453D B-mutant mutant B-protein_state , O indicating O that O the O mutations O do O not O affect O transporter O functionality O in O the O triple B-mutant mepΔ I-mutant background O ( O Fig O . O 3 O ). O Unexpectedly O , O the O AI B-structure_element segment I-structure_element containing O the O mutated O residues O has O only O undergone O a O slight O shift O compared O with O the O WT B-protein_state protein O ( O Fig O . O 8 O and O Supplementary O Fig O . O 3 O ). O By O contrast O , O the O conserved B-protein_state part O of O the O CTR B-structure_element has O undergone O a O large O conformational O change O involving O formation O of O a O 12 B-structure_element - I-structure_element residue I-structure_element - I-structure_element long I-structure_element α I-structure_element - I-structure_element helix I-structure_element from O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range . O In O addition O , O residues O Glu420 B-residue_range - I-residue_range Leu423 I-residue_range including O Glu421 B-residue_name_number of O the O ExxGxD B-structure_element motif I-structure_element are O now O disordered B-protein_state ( O Fig O . O 8 O and O Supplementary O Fig O . O 3 O ). O This O is O the O first O time O a O large O conformational O change O has O been O observed O in O an O ammonium B-protein_type transporter I-protein_type as O a O result O of O a O mutation B-experimental_method , O and O confirms O previous O hypotheses O that O phosphorylation B-ptm causes O structural O changes O in O the O CTR B-structure_element . O To O exclude O the O possibility O that O the O additional O R452D B-mutant mutation O is O responsible O for O the O observed O changes O , O we O also O determined B-experimental_method the O structure B-evidence of O the O ‘ O single B-mutant D I-mutant ' O S453D B-mutant mutant B-protein_state . O As O shown O in O Supplementary O Fig O . O 4 O , O the O consequence O of O the O single B-mutant D I-mutant mutation B-experimental_method is O very O similar O to O that O of O the O DD B-mutant substitution I-mutant , O with O conformational O changes O and O increased O dynamics O confined O to O the O conserved B-protein_state part O of O the O CTR B-structure_element ( O Supplementary O Fig O . O 4 O ). O To O supplement O the O crystal B-evidence structures I-evidence , O we O also O performed O modelling B-experimental_method and O MD B-experimental_method studies O of O WT B-protein_state CaMep2 B-protein , O the O DD B-mutant mutant I-mutant and O phosphorylated B-protein_state protein O ( O S453J B-mutant ). O In O the O WT B-protein_state structure B-evidence , O the O acidic O residues O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number are O within O hydrogen O bonding O distance O of O Ser453 B-residue_name_number . O After O 200 O ns O of O MD B-experimental_method simulation B-experimental_method , O the O interactions O between O these O residues O and O Ser453 B-residue_name_number remain O intact O . O The O protein O backbone O has O an O average O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence of O only O ∼ O 3 O Å O during O the O 200 O - O ns O simulation B-experimental_method , O indicating O that O the O protein O is O stable B-protein_state . O There O is O flexibility O in O the O side O chains O of O the O acidic O residues O so O that O they O are O able O to O form O stable B-protein_state hydrogen O bonds O with O Ser453 B-residue_name_number . O In O particular O , O persistent O hydrogen O bonds O are O observed O between O the O Ser453 B-residue_name_number hydroxyl O group O and O the O acidic O group O of O Glu420 B-residue_name_number , O and O also O between O the O amine O group O of O Ser453 B-residue_name_number and O the O backbone O carbonyl O of O Glu420 B-residue_name_number ( O Supplementary O Fig O . O 5 O ). O The O DD B-mutant mutant I-mutant is O also O stable B-protein_state during O the O simulations B-experimental_method , O but O the O average O backbone O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence of O ∼ O 3 O . O 6 O Å O suggests O slightly O more O conformational O flexibility O than O WT B-protein_state . O As O the O simulation B-experimental_method proceeds O , O the O side O chains O of O the O acidic O residues O move O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number , O presumably O to O avoid O electrostatic O repulsion O . O For O example O , O the O distance B-evidence between O the O Asp453 B-residue_name_number acidic O oxygens O and O the O Glu420 B-residue_name_number acidic O oxygens O increases O from O ∼ O 7 O to O > O 22 O Å O after O 200 O ns O simulations B-experimental_method , O and O thus O these O residues O are O not O interacting O . O The O protein O is O structurally B-protein_state stable I-protein_state throughout O the O simulation B-experimental_method with O little O deviation O in O the O other O parts O of O the O protein O . O Finally O , O the O S453J B-mutant mutant B-protein_state is O also O stable B-protein_state throughout O the O 200 O - O ns O simulation B-experimental_method and O has O an O average O backbone O deviation O of O ∼ O 3 O . O 8 O Å O , O which O is O similar O to O the O DD B-mutant mutant I-mutant . O The O movement O of O the O acidic O residues O away O from O Arg452 B-residue_name_number and O Sep453 B-residue_name_number is O more O pronounced O in O this O simulation B-experimental_method in O comparison O with O the O movement O away O from O Asp452 B-residue_name_number and O Asp453 B-residue_name_number in O the O DD B-mutant mutant I-mutant . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O The O short B-structure_element helix I-structure_element formed O by O residues O Leu427 B-residue_range to I-residue_range Asp438 I-residue_range unravels O during O the O simulations B-experimental_method to O a O disordered B-protein_state state O . O Thus O , O the O MD B-experimental_method simulations B-experimental_method support O the O notion O from O the O crystal B-evidence structures I-evidence that O phosphorylation B-ptm generates O conformational O changes O in O the O conserved B-protein_state part O of O the O CTR B-structure_element . O However O , O the O conformational O changes O for O the O phosphomimetic B-mutant mutants I-mutant in O the O crystals B-evidence are O confined O to O the O CTR B-structure_element ( O Fig O . O 8 O ), O and O the O channels B-site are O still O closed B-protein_state ( O Supplementary O Fig O . O 2 O ). O One O possible O explanation O is O that O the O mutants B-mutant do O not O accurately O mimic O a O phosphoserine B-residue_name , O but O the O observation O that O the O S453D B-mutant and O DD B-mutant mutants I-mutant are O fully B-protein_state active I-protein_state in O the O absence B-protein_state of I-protein_state Npr1 B-protein suggests O that O the O mutations B-experimental_method do O mimic O the O effect O of O phosphorylation B-ptm ( O Fig O . O 3 O ). O The O fact O that O the O S453D B-mutant structure B-evidence was O obtained O in O the O presence O of O 10 O mM O ammonium B-chemical ions O suggests O that O the O crystallization B-experimental_method process O favours O closed B-protein_state states O of O the O Mep2 B-protein channels B-site . O Knowledge O about O ammonium B-protein_type transporter I-protein_type structure B-evidence has O been O obtained O from O experimental O and O theoretical O studies O on O bacterial B-taxonomy_domain family O members O . O In O addition O , O a O number O of O biochemical B-experimental_method and I-experimental_method genetic I-experimental_method studies I-experimental_method are O available O for O bacterial B-taxonomy_domain , O fungal B-taxonomy_domain and O plant B-taxonomy_domain proteins O . O These O efforts O have O advanced O our O knowledge O considerably O but O have O not O yet O yielded O atomic O - O level O answers O to O several O important O mechanistic O questions O , O including O how O ammonium B-chemical transport O is O regulated O in O eukaryotes B-taxonomy_domain and O the O mechanism O of O ammonium B-chemical signalling O . O In O Arabidopsis B-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein , O phosphorylation B-ptm of O the O CTR B-structure_element residue O T460 B-residue_name_number under O conditions O of O high O ammonium B-chemical inhibits O transport O activity O , O that O is O , O the O default O ( O non B-protein_state - I-protein_state phosphorylated I-protein_state ) O state O of O the O plant B-taxonomy_domain transporter B-protein_type is O open B-protein_state . O Interestingly O , O phosphomimetic B-mutant mutations I-mutant introduced O into O one O monomer B-oligomeric_state inactivate O the O entire O trimer B-oligomeric_state , O indicating O that O ( O i O ) O heterotrimerization O occurs O and O ( O ii O ) O the O CTR B-structure_element mediates O allosteric O regulation O of O ammonium B-chemical transport O activity O via O phosphorylation B-ptm . O Owing O to O the O lack O of O structural O information O for O plant B-taxonomy_domain AMTs B-protein_type , O the O details O of O channel B-site closure O and O inter O - O monomer O crosstalk O are O not O yet O clear O . O Contrasting O with O the O plant B-taxonomy_domain transporters B-protein_type , O the O inactive B-protein_state states O of O Mep2 B-protein_type proteins I-protein_type under O conditions O of O high O ammonium B-chemical are O non B-protein_state - I-protein_state phosphorylated I-protein_state , O with O channels B-site that O are O closed B-protein_state on O the O cytoplasmic O side O . O The O reason O why O similar O transporters B-protein_type such O as O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein and O Mep2 B-protein are O regulated O in O opposite O ways O by O phosphorylation B-ptm ( O inactivation B-protein_state in O plants B-taxonomy_domain and O activation B-protein_state in O fungi B-taxonomy_domain ) O is O not O known O . O In O fungi B-taxonomy_domain , O preventing O ammonium B-chemical entry O via O channel O closure O in O ammonium B-protein_type transporters I-protein_type would O be O one O way O to O alleviate O ammonium B-chemical toxicity O , O in O addition O to O ammonium B-chemical excretion O via O Ato B-protein_type transporters B-protein_type and O amino O - O acid O secretion O . O By O determining O the O first O structures B-evidence of O closed B-protein_state ammonium B-protein_type transporters I-protein_type and O comparing B-experimental_method those O structures B-evidence with O the O permanently B-protein_state open I-protein_state bacterial B-taxonomy_domain proteins O , O we O demonstrate O that O Mep2 B-protein_type channel B-site closure O is O likely O due O to O movements O of O the O CTR B-structure_element and O ICL1 B-structure_element and O ICL3 B-structure_element . O More O specifically O , O the O close O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element present O in O open B-protein_state transporters B-protein_type are O disrupted O , O causing O ICL3 B-structure_element to O move O outwards O and O block O the O channel B-site ( O Figs O 4 O and O 9a O ). O In O addition O , O ICL1 B-structure_element has O shifted O inwards O to O contribute O to O the O channel B-site closure O by O engaging O His2 B-residue_name_number from O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element via O hydrogen O bonding O with O a O highly B-protein_state conserved I-protein_state tyrosine B-residue_name hydroxyl O group O . O Upon O phosphorylation B-ptm by O the O Npr1 B-protein kinase B-protein_type in O response O to O nitrogen B-chemical limitation O , O the O region O around O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O opens O the O channel B-site ( O Fig O . O 9 O ). O Importantly O , O the O structural B-evidence similarities I-evidence in O the O TM B-structure_element parts I-structure_element of O Mep2 B-protein and O AfAmt B-protein - I-protein 1 I-protein ( O Fig O . O 5a O ) O suggest O that O channel B-site opening O / O closure O does O not O require O substantial O changes O in O the O residues O lining O the O channel B-site . O How O exactly O the O channel B-site opens O and O whether O opening O is O intra O - O monomeric O are O still O open B-protein_state questions O ; O it O is O possible O that O the O change O in O the O CTR B-structure_element may O disrupt O its O interactions O with O ICL3 B-structure_element of O the O neighbouring O monomer B-oligomeric_state ( O Fig O . O 9b O ), O which O could O result O in O opening O of O the O neighbouring O channel B-site via O inward O movement O of O its O ICL3 B-structure_element . O Owing O to O the O crosstalk O between O monomers B-oligomeric_state , O a O single O phosphorylation B-ptm event O might O lead O to O opening O of O the O entire O trimer B-oligomeric_state , O although O this O has O not O yet O been O tested O ( O Fig O . O 9b O ). O Whether O or O not O Mep2 B-protein_type channel B-site opening O requires O , O in O addition O to O phosphorylation B-ptm , O disruption O of O the O Tyr B-site – I-site His2 I-site interaction I-site by O the O ammonium B-chemical substrate O is O not O yet O clear O . O Is O our O model O for O opening O and O closing O of O Mep2 B-protein channels B-site valid O for O other O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ? O Our O structural B-evidence data I-evidence support O previous O studies O and O clarify O the O central O role O of O the O CTR B-structure_element and O cytoplasmic B-structure_element loops I-structure_element in O the O transition O between O closed B-protein_state and O open B-protein_state states O . O However O , O even O the O otherwise O highly O similar O Mep2 B-protein_type proteins I-protein_type of O S B-species . I-species cerevisiae I-species and O C B-species . I-species albicans I-species have O different O structures B-evidence for O their O CTRs B-structure_element ( O Fig O . O 1 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O AI B-structure_element region I-structure_element of O the O CTR B-structure_element containing O the O Npr1 B-site kinase I-site site I-site is O conserved B-protein_state in O only O a O subset O of O fungal B-taxonomy_domain transporters B-protein_type , O suggesting O that O the O details O of O the O structural O changes O underpinning O regulation O vary O . O Nevertheless O , O given O the O central O role O of O absolutely B-protein_state conserved I-protein_state residues O within O the O ICL1 B-site - I-site ICL3 I-site - I-site CTR I-site interaction I-site network I-site ( O Fig O . O 4 O ), O we O propose O that O the O structural O basics O of O fungal B-taxonomy_domain ammonium B-chemical transporter O activation O are O conserved B-protein_state . O The O fact O that O Mep2 B-protein_type orthologues O of O distantly O related O fungi B-taxonomy_domain are O fully O functional O in O ammonium B-chemical transport O and O signalling O in O S B-species . I-species cerevisiae I-species supports O this O notion O . O It O should O also O be O noted O that O the O tyrosine B-residue_name residue O interacting O with O His2 B-residue_name_number is O highly B-protein_state conserved I-protein_state in O fungal B-taxonomy_domain Mep2 B-protein_type orthologues O , O suggesting O that O the O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site might O be O a O general O way O to O close B-protein_state Mep2 B-protein_type proteins I-protein_type . O With O regards O to O plant B-taxonomy_domain AMTs B-protein_type , O it O has O been O proposed O that O phosphorylation B-ptm at O T460 B-residue_name_number generates O conformational O changes O that O would O close O the O neighbouring O pore B-site via O the O C B-structure_element terminus I-structure_element . O This O assumption O was O based O partly O on O a O homology B-experimental_method model I-experimental_method for O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein based O on O the O ( O open B-protein_state ) O archaebacterial B-taxonomy_domain AfAmt B-protein - I-protein 1 I-protein structure B-evidence , O which O suggested O that O the O C B-structure_element terminus I-structure_element of O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein would O extend O further O to O the O neighbouring O monomer B-oligomeric_state . O Our O Mep2 B-protein structures B-evidence show O that O this O assumption O may O not O be O correct O ( O Fig O . O 4 O and O Supplementary O Fig O . O 6 O ). O In O addition O , O the O considerable O differences O between O structurally O resolved O CTR B-structure_element domains O means O that O the O exact O environment O of O T460 B-residue_name_number in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O also O not O known O ( O Supplementary O Fig O . O 6 O ). O Based O on O the O available O structural B-evidence information I-evidence , O we O consider O it O more O likely O that O phosphorylation O - O mediated O pore O closure O in O Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein is O intra O - O monomeric O , O via O disruption O of O the O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element ( O for O example O , O Y467 B-residue_name_number - O H239 B-residue_name_number and O D458 B-residue_name_number - O K71 B-residue_name_number ). O There O is O generally O no O equivalent O for O CaMep2 B-protein Tyr49 B-residue_name_number in O plant B-taxonomy_domain AMTs B-protein_type , O indicating O that O a O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site as O observed O in O Mep2 B-protein may O not O contribute O to O the O closed B-protein_state state O in O plant B-taxonomy_domain transporters B-protein_type . O We O propose O that O intra B-site - I-site monomeric I-site CTR I-site - I-site ICL1 I-site / I-site ICL3 I-site interactions I-site lie O at O the O basis O of O regulation O of O both O fungal B-taxonomy_domain and O plant B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ; O close O interactions O generate O open B-protein_state channels B-site , O whereas O the O lack B-protein_state of I-protein_state ‘ O intra O -' O interactions O leads O to O inactive B-protein_state states O . O The O need O to O regulate O in O opposite O ways O may O be O the O reason O why O the O phosphorylation B-site sites I-site are O in O different O parts O of O the O CTR B-structure_element , O that O is O , O centrally O located O close O to O the O ExxGxD B-structure_element motif I-structure_element in O AMTs B-protein_type and O peripherally O in O Mep2 B-protein . O In O this O way O , O phosphorylation B-ptm can O either O lead O to O channel B-site closing O ( O in O the O case O of O AMTs B-protein_type ) O or O channel B-site opening O in O the O case O of O Mep2 B-protein . O Our O model O also O provides O an O explanation O for O the O observation O that O certain B-mutant mutations I-mutant within O the O CTR B-structure_element completely O abolish O transport O activity O . O An O example O of O an O inactivating O residue O is O the O glycine B-residue_name of O the O ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element . O Mutation B-experimental_method of O this O residue O ( O G393 B-residue_name_number in O EcAmtB B-protein ; O G456 B-residue_name_number in O AtAmt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein ) O inactivates O transporters B-protein_type as O diverse O as O Escherichia B-species coli I-species AmtB B-protein and O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein ( O refs O ). O Such O mutations O likely O cause O structural O changes O in O the O CTR B-structure_element that O prevent O close O contacts O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element , O thereby O stabilizing O a O closed B-protein_state state O that O may O be O similar O to O that O observed O in O Mep2 B-protein . O Regulation O and O modulation O of O membrane O transport O by O phosphorylation B-ptm is O known O to O occur O in O , O for O example O , O aquaporins B-protein_type and O urea B-protein_type transporters I-protein_type , O and O is O likely O to O be O a O common O theme O for O eukaryotic B-taxonomy_domain channels B-protein_type and O transporters B-protein_type . O Recently O , O phosphorylation B-ptm was O also O shown O to O modulate O substrate O affinity O in O nitrate B-protein_type transporters I-protein_type . O With O respect O to O ammonium B-chemical transport O , O phosphorylation B-ptm has O thus O far O only O been O shown O for O A B-species . I-species thaliana I-species AMTs B-protein_type and O for O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O refs O ). O However O , O the O absence B-protein_state of I-protein_state GlnK B-protein_type proteins I-protein_type in O eukaryotes B-taxonomy_domain suggests O that O phosphorylation B-ptm - O based O regulation O of O ammonium B-chemical transport O may O be O widespread O . O With O respect O to O Mep2 B-protein_type - O mediated O signalling O to O induce O pseudohyphal O growth O , O two O models O have O been O put O forward O as O to O how O this O occurs O and O why O it O is O specific O to O Mep2 B-protein_type proteins I-protein_type . O In O one O model O , O signalling O is O proposed O to O depend O on O the O nature O of O the O transported O substrate O , O which O might O be O different O in O certain O subfamilies O of O ammonium B-protein_type transporters I-protein_type ( O for O example O , O Mep1 B-protein / O Mep3 B-protein versus O Mep2 B-protein ). O For O example O , O NH3 B-chemical uniport O or O symport O of O NH3 B-chemical / O H B-chemical + I-chemical might O result O in O changes O in O local O pH O , O but O NH4 B-chemical + I-chemical uniport O might O not O , O and O this O difference O might O determine O signalling O . O In O the O other O model O , O signalling O is O thought O to O require O a O distinct O conformation O of O the O Mep2 B-protein transporter B-protein_type occurring O during O the O transport O cycle O . O While O the O current O study O does O not O specifically O address O the O mechanism O of O signalling O underlying O pseudohyphal O growth O , O our O structures B-evidence do O show O that O Mep2 B-protein_type proteins I-protein_type can O assume O different O conformations O . O It O is O clear O that O ammonium B-chemical transport O across O biomembranes O remains O a O fascinating O and O challenging O field O in O large O part O due O to O the O unique O properties O of O the O substrate O . O Our O Mep2 B-protein structural O work O now O provides O a O foundation O for O future O studies O to O uncover O the O details O of O the O structural O changes O that O occur O during O eukaryotic B-taxonomy_domain ammonium B-chemical transport O and O signaling O , O and O to O assess O the O possibility O to O utilize O small O molecules O to O shut O down O ammonium B-chemical sensing O and O downstream O signalling O pathways O in O pathogenic O fungi B-taxonomy_domain . O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O Mep2 B-protein transceptors B-protein_type . O ( O a O ) O Monomer B-oligomeric_state cartoon O models O viewed O from O the O side O for O ( O left O ) O A O . O fulgidus O Amt B-protein - I-protein 1 I-protein ( O PDB O ID O 2B2H O ), O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O middle O ) O and O C B-species . I-species albicans I-species Mep2 B-protein ( O right O ). O The O region O showing O ICL1 B-structure_element ( O blue O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O is O boxed O for O comparison O . O ( O b O ) O CaMep2 B-protein trimer B-oligomeric_state viewed O from O the O intracellular O side O ( O right O ). O One O monomer B-oligomeric_state is O coloured O as O in O a O and O one O monomer B-oligomeric_state is O coloured O by O B O - O factor O ( O blue O , O low O ; O red O ; O high O ). O The O CTR B-structure_element is O boxed O . O ( O c O ) O Overlay B-experimental_method of O ScMep2 B-protein ( O grey O ) O and O CaMep2 B-protein ( O rainbow O ), O illustrating O the O differences O in O the O CTRs B-structure_element . O Sequence B-evidence conservation I-evidence in O ammonium B-protein_type transporters I-protein_type . O ClustalW B-experimental_method alignment I-experimental_method of O CaMep2 B-protein , O ScMep2 B-protein , O A B-species . I-species fulgidus I-species Amt B-protein - I-protein 1 I-protein , O E O . O coli O AmtB B-protein and O A B-species . I-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein . O The O secondary O structure O elements O observed O for O CaMep2 B-protein are O indicated O , O with O the O numbers O corresponding O to O the O centre O of O the O TM B-structure_element segment I-structure_element . O The O conserved B-protein_state RxK B-structure_element motif I-structure_element in O ICL1 B-structure_element is O boxed O in O blue O , O the O ER B-structure_element motif I-structure_element in O ICL2 B-structure_element in O cyan O , O the O conserved B-protein_state ExxGxD B-structure_element motif I-structure_element of O the O CTR B-structure_element in O red O and O the O AI B-structure_element region I-structure_element in O yellow O . O Coloured O residues O are O functionally O important O and O correspond O to O those O of O the O Phe B-site gate I-site ( O blue O ), O the O binding B-site site I-site Trp B-residue_name residue O ( O magenta O ) O and O the O twin O - O His O motif O ( O red O ). O The O Npr1 B-site kinase I-site site I-site in O the O AI B-structure_element region I-structure_element is O highlighted O pink O . O The O grey O sequences O at O the O C O termini O of O CaMep2 B-protein and O ScMep2 B-protein are O not O visible O in O the O structures B-evidence and O are O likely B-protein_state disordered I-protein_state . O Growth B-experimental_method of O ScMep2 B-mutant variants I-mutant on O low O ammonium O medium O . O ( O a O ) O The O triple B-mutant mepΔ I-mutant strain O ( O black O ) O and O triple O mepΔ O npr1Δ O strain O ( O grey O ) O containing O plasmids O expressing O WT B-protein_state and O variant B-mutant ScMep2 I-mutant were O grown B-experimental_method on I-experimental_method minimal I-experimental_method medium I-experimental_method containing O 1 O mM O ammonium B-chemical sulphate I-chemical . O The O quantified O cell B-evidence density I-evidence reflects O logarithmic O growth O after O 24 O h O . O Error O bars O are O the O s O . O d O . O for O three O replicates O of O each O strain O ( O b O ) O The O strains O used O in O a O were O also O serially O diluted O and O spotted O onto O minimal O agar O plates O containing O glutamate B-chemical ( O 0 O . O 1 O %) O or O ammonium B-chemical sulphate I-chemical ( O 1 O mM O ), O and O grown O for O 3 O days O at O 30 O ° O C O . O Structural O differences O between O Mep2 B-protein and O bacterial B-taxonomy_domain ammonium O transporters O . O ( O a O ) O ICL1 B-structure_element in O AfAmt B-protein - I-protein 1 I-protein ( O light O blue O ) O and O CaMep2 B-protein ( O dark O blue O ), O showing O unwinding O and O inward O movement O in O the O fungal B-taxonomy_domain protein O . O ( O b O ) O Stereo O diagram O viewed O from O the O cytosol O of O ICL1 B-structure_element , O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O in O AfAmt B-protein - I-protein 1 I-protein ( O light O colours O ) O and O CaMep2 B-protein ( O dark O colours O ). O The O side O chains O of O residues O in O the O RxK B-structure_element motif I-structure_element as O well O as O those O of O Tyr49 B-residue_name_number and O His342 B-residue_name_number are O labelled O . O The O numbering O is O for O CaMep2 B-protein . O ( O c O ) O Conserved B-protein_state residues O in O ICL1 B-structure_element - I-structure_element 3 I-structure_element and O the O CTR B-structure_element . O Views O from O the O cytosol O for O CaMep2 B-protein ( O left O ) O and O AfAmt B-protein - I-protein 1 I-protein , O highlighting O the O large O differences O in O conformation O of O the O conserved B-protein_state residues O in O ICL1 B-structure_element ( O RxK O motif O ; O blue O ), O ICL2 B-structure_element ( O ER B-structure_element motif I-structure_element ; O cyan O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ). O The O labelled O residues O are O analogous O within O both O structures B-evidence . O In O b O and O c O , O the O centre O of O the O trimer B-oligomeric_state is O at O top O . O Channel O closures O in O Mep2 B-protein . O ( O a O ) O Stereo O superposition B-experimental_method of O AfAmt B-protein - I-protein 1 I-protein and O CaMep2 B-protein showing O the O residues O of O the O Phe B-site gate I-site , O His2 B-residue_name_number of O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element and O the O tyrosine B-residue_name residue O Y49 B-residue_name_number in O TM1 B-structure_element that O forms O a O hydrogen O bond O with O His2 B-residue_name_number in O CaMep2 B-protein . O ( O b O ) O Surface O views O from O the O side O in O rainbow O colouring O , O showing O the O two O - O tier O channel B-structure_element block I-structure_element ( O indicated O by O the O arrows O ) O in O CaMep2 B-protein . O The O Npr1 B-protein kinase B-protein_type target O Ser453 B-residue_name_number is O dephosphorylated B-protein_state and O located O in O an O electronegative B-site pocket I-site . O ( O a O ) O Stereoviews O of O CaMep2 B-protein showing O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O CTR B-structure_element residues O Asp419 B-residue_range - I-residue_range Met422 I-residue_range and O for O Tyr446 B-residue_range - I-residue_range Thr455 I-residue_range of O the O AI B-structure_element region I-structure_element . O The O phosphorylation B-ptm target O residue O Ser453 B-residue_name_number is O labelled O in O bold O . O ( O b O ) O Overlay B-experimental_method of O the O CTRs B-structure_element of O ScMep2 B-protein ( O grey O ) O and O CaMep2 B-protein ( O green O ), O showing O the O similar O electronegative O environment O surrounding O the O phosphorylation B-site site I-site ( O P O ). O The O AI B-structure_element regions I-structure_element are O coloured O magenta O . O ( O c O ) O Cytoplasmic O view O of O the O Mep2 B-protein trimer B-oligomeric_state indicating O the O large O distance O between O Ser453 B-residue_name_number and O the O channel B-site exits I-site ( O circles O ; O Ile52 B-residue_name_number lining O the O channel B-site exit I-site is O shown O ). O Effect O of O removal B-experimental_method of O the O AI B-structure_element region I-structure_element on O Mep2 B-protein structure B-evidence . O ( O a O ) O Side O views O for O WT B-protein_state CaMep2 B-protein ( O left O ) O and O the O truncation B-protein_state mutant I-protein_state 442Δ B-mutant ( O right O ). O The O latter O is O shown O as O a O putty O model O according O to O B O - O factors O to O illustrate O the O disorder B-protein_state in O the O protein O on O the O cytoplasmic O side O . O Missing O regions O are O labelled O . O ( O b O ) O Stereo O superpositions B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O truncation B-protein_state mutant I-protein_state . O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O residues O Tyr49 B-residue_name_number and O His342 B-residue_name_number is O shown O for O the O truncation B-protein_state mutant I-protein_state . O Phosphorylation B-ptm causes O conformational O changes O in O the O CTR B-structure_element . O ( O a O ) O Cytoplasmic O view O of O the O DD B-mutant mutant I-mutant trimer B-oligomeric_state , O with O WT B-protein_state CaMep2 B-protein superposed B-experimental_method in O grey O for O one O of O the O monomers B-oligomeric_state . O The O arrow O indicates O the O phosphorylation B-site site I-site . O The O AI B-structure_element region I-structure_element is O coloured O magenta O . O ( O b O ) O Monomer B-oligomeric_state side O - O view O superposition B-experimental_method of O WT B-protein_state CaMep2 B-protein and O the O DD B-mutant mutant I-mutant , O showing O the O conformational O change O and O disorder O around O the O ExxGxD B-structure_element motif I-structure_element . O Side O chains O for O residues O 452 B-residue_number and O 453 B-residue_number are O shown O as O stick O models O . O Schematic O model O for O phosphorylation O - O based O regulation O of O Mep2 B-protein ammonium O transporters O . O ( O a O ) O In O the O closed B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O i O ), O the O CTR B-structure_element ( O magenta O ) O and O ICL3 B-structure_element ( O green O ) O are O far O apart O with O the O latter O blocking O the O intracellular O channel B-site exit I-site ( O indicated O with O a O hatched O circle O ). O Upon O phosphorylation B-ptm and O mimicked B-protein_state by O the O CaMep2 B-protein S453D B-mutant and O DD B-mutant mutants I-mutant ( O ii O ), O the O region O around O the O ExxGxD B-structure_element motif I-structure_element undergoes O a O conformational O change O that O results O in O the O CTR B-structure_element interacting O with O the O inward O - O moving O ICL3 B-structure_element , O opening O the O channel B-site ( O full O circle O ) O ( O iii O ). O The O open B-protein_state - O channel B-site Mep2 B-protein structure B-evidence is O represented O by O archaebacterial B-taxonomy_domain Amt B-protein - I-protein 1 I-protein and O shown O in O lighter O colours O consistent O with O Fig O . O 4 O . O As O discussed O in O the O text O , O similar O structural O arrangements O may O occur O in O plant B-taxonomy_domain AMTs B-protein_type . O In O this O case O however O , O the O open B-protein_state channel B-site corresponds O to O the O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ; O phosphorylation B-ptm breaks O the O CTR O – O ICL3 O interactions O leading O to O channel B-site closure O . O ( O b O ) O Model O based O on O AMT O transporter O analogy O showing O how O phosphorylation B-ptm of O a O Mep2 B-protein monomer B-oligomeric_state might O allosterically O open B-protein_state channels B-site in O the O entire O trimer B-oligomeric_state via O disruption O of O the O interactions O between O the O CTR B-structure_element and O ICL3 B-structure_element of O a O neighbouring O monomer B-oligomeric_state ( O arrow O ). O An O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element recognizes O the O 3 B-site ′ I-site splice I-site site I-site signal O How O the O essential O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O the O polypyrimidine B-chemical ( O Py B-chemical ) O signals O of O the O major O class O of O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O remains O incompletely O understood O . O We O determined B-experimental_method four I-experimental_method structures I-experimental_method of O an O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical at O resolutions O between O 2 O . O 0 O and O 1 O . O 5 O Å O . O These O structures B-evidence together O with O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method reveal O unforeseen O roles O for O U2AF65 B-protein inter B-site - I-site domain I-site residues I-site in O recognizing O a O contiguous B-structure_element , O nine O - O nucleotide B-chemical Py B-chemical tract I-chemical . O The O U2AF65 B-protein linker B-structure_element residues O between O the O dual O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRMs B-structure_element ) O recognize O the O central O nucleotide B-chemical , O whereas O the O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element recognize O the O 3 B-site ′ I-site terminus I-site and O third B-residue_number nucleotide B-chemical . O Single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method experiments O suggest O that O conformational O selection O and O induced O fit O of O the O U2AF65 B-protein RRMs B-structure_element are O complementary O mechanisms O for O Py B-chemical - I-chemical tract I-chemical association O . O Altogether O , O these O results O advance O the O mechanistic O understanding O of O molecular O recognition O for O a O major O class O of O splice B-site site I-site signals O . O The O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein recognizes O 3 B-site ′ I-site splice I-site sites I-site in O human B-species gene O transcripts O , O but O the O details O are O not O fully O understood O . O Here O , O the O authors O report O U2AF65 B-protein structures B-evidence and O single B-experimental_method molecule I-experimental_method FRET I-experimental_method that O reveal O mechanistic O insights O into O splice B-site site I-site recognition O . O The O differential O skipping O or O inclusion O of O alternatively O spliced O pre B-structure_element - I-structure_element mRNA I-structure_element regions I-structure_element is O a O major O source O of O diversity O for O nearly O all O human B-species gene O transcripts O . O The O splice B-site sites I-site are O marked O by O relatively O short B-structure_element consensus I-structure_element sequences I-structure_element and O are O regulated O by O additional O pre B-structure_element - I-structure_element mRNA I-structure_element motifs I-structure_element ( O reviewed O in O ref O .). O At O the O 3 B-site ′ I-site splice I-site site I-site of O the O major O intron O class O , O these O include O a O polypyrimidine B-chemical ( I-chemical Py I-chemical ) I-chemical tract I-chemical comprising O primarily O Us B-residue_name or O Cs B-residue_name , O which O is O preceded O by O a O branch B-site point I-site sequence I-site ( O BPS B-site ) O that O ultimately O serves O as O the O nucleophile O in O the O splicing O reaction O and O an O AG B-chemical - I-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site junction O . O Disease O - O causing O mutations O often O compromise O pre B-chemical - I-chemical mRNA I-chemical splicing O ( O reviewed O in O refs O ), O yet O a O priori O predictions O of O splice B-site sites I-site and O the O consequences O of O their O mutations O are O challenged O by O the O brevity O and O degeneracy O of O known O splice B-site site I-site sequences O . O High O - O resolution O structures B-evidence of O intact B-protein_state splicing B-complex_assembly factor I-complex_assembly – I-complex_assembly RNA I-complex_assembly complexes O would O offer O key O insights O regarding O the O juxtaposition O of O the O distinct O splice B-site site I-site consensus O sequences O and O their O relationship O to O disease O - O causing O point O mutations O . O The O early O - O stage O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein is O essential O for O viability O in O vertebrates B-taxonomy_domain and O other O model O organisms O ( O for O example O , O ref O .). O A O tightly O controlled O assembly B-complex_assembly among O U2AF65 B-protein , O the O pre B-chemical - I-chemical mRNA I-chemical , O and O partner O proteins O sequentially O identifies O the O 3 B-site ′ I-site splice I-site site I-site and O promotes O association O of O the O spliceosome B-complex_assembly , O which O ultimately O accomplishes O the O task O of O splicing O . O Initially O U2AF65 B-protein recognizes O the O Py B-chemical - I-chemical tract I-chemical splice B-site site I-site signal O . O In O turn O , O the O ternary B-complex_assembly complex I-complex_assembly of O U2AF65 B-protein with O SF1 B-protein and O U2AF35 B-protein identifies O the O surrounding O BPS B-site and O 3 B-site ′ I-site splice I-site site I-site junctions O . O Subsequently O U2AF65 B-protein recruits O the O U2 B-complex_assembly small I-complex_assembly nuclear I-complex_assembly ribonucleoprotein I-complex_assembly particle I-complex_assembly ( O snRNP B-complex_assembly ) O and O ultimately O dissociates O from O the O active B-protein_state spliceosome B-complex_assembly . O Biochemical B-experimental_method characterizations I-experimental_method of O U2AF65 B-protein demonstrated O that O tandem O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRM1 B-structure_element and O RRM2 B-structure_element ) O recognize O the O Py B-chemical tract I-chemical ( O Fig O . O 1a O ). O Milestone O crystal B-evidence structures I-evidence of O the O core B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O shortened B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O dU2AF651 B-mutant , I-mutant 2 I-mutant ) O detailed O a O subset O of O nucleotide O interactions O with O the O individual O U2AF65 B-protein RRMs B-structure_element . O A O subsequent O NMR B-experimental_method structure B-evidence characterized O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O of O the O minimal B-protein_state U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element connected O by O a O linker B-structure_element of O natural B-protein_state length I-protein_state ( O U2AF651 B-mutant , I-mutant 2 I-mutant ), O yet O depended O on O the O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structures I-evidence for O RNA B-chemical interactions O and O an O ab O initio O model O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element conformation O . O As O such O , O the O molecular O mechanisms O for O Py B-chemical - I-chemical tract I-chemical recognition O by O the O intact B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element remained O unknown O . O Here O , O we O use O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O biochemical B-experimental_method studies I-experimental_method to O reveal O new O roles O in O Py B-chemical - I-chemical tract I-chemical recognition O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O key O residues O surrounding O the O core B-protein_state U2AF65 B-protein RRMs B-structure_element . O We O use O single B-experimental_method - I-experimental_method molecule I-experimental_method Förster I-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method ( O smFRET B-experimental_method ) O to O characterize O the O conformational B-evidence dynamics I-evidence of O this O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element during O Py B-chemical - I-chemical tract I-chemical recognition O . O Cognate O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O requires O RRM B-structure_element extensions I-structure_element The O RNA B-evidence affinity I-evidence of O the O minimal B-protein_state U2AF651 B-mutant , I-mutant 2 I-mutant domain O comprising O the O core B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element folds B-structure_element ( O U2AF651 B-mutant , I-mutant 2 I-mutant , O residues O 148 B-residue_range – I-residue_range 336 I-residue_range ) O is O relatively O weak O compared O with O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1a O , O b O ; O Supplementary O Fig O . O 1 O ). O Historically O , O this O difference O was O attributed O to O the O U2AF65 B-protein arginine B-structure_element – I-structure_element serine I-structure_element rich I-structure_element domain I-structure_element , O which O contacts O pre B-complex_assembly - I-complex_assembly mRNA I-complex_assembly – I-complex_assembly U2 I-complex_assembly snRNA I-complex_assembly duplexes I-complex_assembly outside O of O the O Py B-chemical tract I-chemical . O We O noticed O that O the O RNA B-evidence - I-evidence binding I-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2 I-mutant domain O was O greatly O enhanced O by O the O addition B-experimental_method of I-experimental_method seven I-experimental_method and I-experimental_method six I-experimental_method residues I-experimental_method at O the O respective O N O and O C O termini O of O the O minimal B-protein_state RRM1 B-structure_element and O RRM2 B-structure_element ( O U2AF651 B-mutant , I-mutant 2L I-mutant , O residues O 141 B-residue_range – I-residue_range 342 I-residue_range ; O Fig O . O 1a O ). O In O a O fluorescence B-experimental_method anisotropy I-experimental_method assay I-experimental_method for O binding O a O representative O Py B-chemical tract I-chemical derived O from O the O well O - O characterized O splice B-site site I-site of O the O adenovirus B-gene major I-gene late I-gene promoter I-gene ( O AdML B-gene ), O the O RNA B-evidence affinity I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant increased O by O 100 O - O fold O relative O to O U2AF651 B-mutant , I-mutant 2 I-mutant to O comparable O levels O as O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O Fig O . O 1b O ; O Supplementary O Fig O . O 1a O – O d O ). O Likewise O , O both O U2AF651 B-mutant , I-mutant 2L I-mutant and O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein showed O similar O sequence B-evidence specificity I-evidence for O U B-structure_element - I-structure_element rich I-structure_element stretches I-structure_element in O the O 5 B-site ′- I-site region I-site of O the O Py B-chemical tract I-chemical and O promiscuity O for O C B-structure_element - I-structure_element rich I-structure_element regions I-structure_element in O the O 3 B-site ′- I-site region I-site ( O Fig O . O 1c O , O Supplementary O Fig O . O 1e O – O h O ). O U2AF65 B-protein_state - I-protein_state bound I-protein_state Py B-chemical tract I-chemical comprises O nine O contiguous B-structure_element nucleotides B-chemical To O investigate O the O structural O basis O for O cognate O U2AF65 B-protein recognition O of O a O contiguous B-structure_element Py B-chemical tract I-chemical , O we O determined B-experimental_method four O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical ( O Fig O . O 2a O ; O Table O 1 O ). O By O sequential B-experimental_method boot I-experimental_method strapping I-experimental_method ( O Methods O ), O we O optimized O the O oligonucleotide B-chemical length O , O the O position O of O a O Br B-chemical - I-chemical dU I-chemical , O and O the O identity O of O the O terminal O nucleotide B-chemical ( O rU B-residue_name , O dU B-residue_name and O rC B-residue_name ) O to O achieve O full O views O of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state contiguous B-structure_element Py B-chemical tracts I-chemical at O up O to O 1 O . O 5 O Å O resolution O . O The O protein O and O oligonucleotide B-chemical conformations O are O nearly O identical O among O the O four O new O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence ( O Supplementary O Fig O . O 2a O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element associate O with O the O Py B-chemical tract I-chemical in O a O parallel B-protein_state , O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state arrangement O ( O shown O for O representative O structure O iv O in O Fig O . O 2b O , O c O ; O Supplementary O Movie O 1 O ). O An O extended B-protein_state conformation I-protein_state of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element traverses O across O the O α B-structure_element - I-structure_element helical I-structure_element surface I-structure_element of O RRM1 B-structure_element and O the O central O β B-structure_element - I-structure_element strands I-structure_element of O RRM2 B-structure_element and O is O well O defined O in O the O electron B-evidence density I-evidence ( O Fig O . O 2b O ). O The O extensions B-structure_element at O the O N O terminus O of O RRM1 B-structure_element and O C O terminus O of O RRM2 B-structure_element adopt O well O - O ordered O α B-structure_element - I-structure_element helices I-structure_element . O Both O RRM1 B-structure_element / O RRM2 B-structure_element extensions B-structure_element and O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element of O U2AF651 B-mutant , I-mutant 2L I-mutant directly O recognize O the O bound B-protein_state oligonucleotide B-chemical . O We O compare O the O global O conformation O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence with O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structure I-evidence and O U2AF651 B-mutant , I-mutant 2 I-mutant NMR B-experimental_method structure B-evidence in O the O Supplementary O Discussion O and O Supplementary O Fig O . O 2 O . O The O discovery O of O nine O U2AF65 B-site - I-site binding I-site sites I-site for O contiguous B-structure_element Py B-chemical - I-chemical tract I-chemical nucleotides I-chemical was O unexpected O . O Based O on O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence , O we O originally O hypothesized O that O the O U2AF65 B-protein RRMs B-structure_element would O bind O the O minimal B-protein_state seven O nucleotides B-chemical observed O in O these O structures B-evidence . O Surprisingly O , O the O RRM2 B-structure_element extension I-structure_element / O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element contribute O new O central O nucleotide B-site - I-site binding I-site sites I-site near O the O RRM1 B-site / I-site RRM2 I-site junction I-site and O the O RRM1 B-structure_element extension I-structure_element recognizes O the O 3 O ′- O terminal O nucleotide B-chemical ( O Fig O . O 2c O ; O Supplementary O Movie O 1 O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence characterize O ribose B-chemical ( O r B-chemical ) O nucleotides B-chemical at O all O of O the O binding B-site sites I-site except O the O seventh B-residue_number and O eighth B-residue_number deoxy B-chemical -( I-chemical d I-chemical ) I-chemical U I-chemical , O which O are O likely O to O lack O 2 O ′- O hydroxyl O contacts O based O on O the O RNA B-protein_state - I-protein_state bound I-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence . O Qualitatively O , O a O subset O of O the O U2AF651 B-site , I-site 2L I-site - I-site nucleotide I-site - I-site binding I-site sites I-site ( O sites B-site 1 I-site – I-site 3 I-site and O 7 B-site – I-site 9 I-site ) O share O similar O locations O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Figs O 2c O , O d O and O 3 O ). O Yet O , O only O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O at O sites B-site 1 I-site and I-site 7 I-site are O nearly O identical O to O those O of O the O dU2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence ( O Supplementary O Fig O . O 3a O , O f O ). O In O striking O departures O from O prior O partial O views O , O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O three O unanticipated O nucleotide B-site - I-site binding I-site sites I-site at O the O centre O of O the O Py B-chemical tract I-chemical , O as O well O as O numerous O new O interactions O that O underlie O cognate O recognition O of O the O Py B-chemical tract I-chemical ( O Fig O . O 3a O – O h O ). O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element interacts O with O the O Py B-chemical tract I-chemical The O U2AF651 B-mutant , I-mutant 2L I-mutant RRM2 B-structure_element , O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element concomitantly O recognize O the O three O central O nucleotides B-chemical of O the O Py B-chemical tract I-chemical , O which O are O likely O to O coordinate O the O conformational O arrangement O of O these O disparate O portions O of O the O protein O . O Residues O in O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element comprise O a O centrally O located O binding B-site site I-site for O the O fifth B-residue_number nucleotide B-chemical on O the O RRM2 B-site surface I-site and O abutting O the O RRM1 B-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3d O ). O The O backbone O amide O of O the O linker B-structure_element V254 B-residue_name_number and O the O carbonyl O of O T252 B-residue_name_number engage O in O hydrogen O bonds O with O the O rU5 B-residue_name_number - O O4 O and O - O N3H O atoms O . O In O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM1 B-structure_element , O the O side O chains O of O K225 B-residue_name_number and O R227 B-residue_name_number donate O additional O hydrogen O bonds O to O the O rU5 B-residue_name_number - O O2 O lone O pair O electrons O . O The O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element also O participates O in O the O preceding O rU4 B-site - I-site binding I-site site I-site , O where O the O V254 B-residue_name_number backbone O carbonyl O and O D256 B-residue_name_number carboxylate O position O the O K260 B-residue_name_number side O chain O to O hydrogen O bond O with O the O rU4 B-residue_name_number - O O4 O ( O Fig O . O 3c O ). O Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O At O the O opposite O side O of O the O central O fifth B-residue_number nucleotide B-chemical , O the O sixth B-residue_number rU6 B-residue_name_number nucleotide B-chemical is O located O at O the O inter B-site - I-site RRM1 I-site / I-site RRM2 I-site interface I-site ( O Fig O . O 3e O ; O Supplementary O Movie O 1 O ). O This O nucleotide B-chemical twists O to O face O away O from O the O U2AF65 B-protein linker B-structure_element and O instead O inserts O the O rU6 B-residue_name_number - O uracil B-residue_name into O a O sandwich O between O the O β2 B-structure_element / I-structure_element β3 I-structure_element loops I-structure_element of O RRM1 B-structure_element and O RRM2 B-structure_element . O The O rU6 B-residue_name_number base O edge O is O relatively O solvent B-protein_state exposed I-protein_state ; O accordingly O , O the O rU6 B-residue_name_number hydrogen O bonds O with O U2AF65 B-protein are O water B-chemical mediated O apart O from O a O single O direct O interaction O by O the O RRM1 B-structure_element - O N196 B-residue_name_number side O chain O . O We O tested B-experimental_method the I-experimental_method contribution I-experimental_method of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O the O new O central O nucleotide B-chemical to O Py B-evidence - I-evidence tract I-evidence affinity I-evidence ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4a O , O b O ). O Mutagenesis B-experimental_method of O either O V254 B-residue_name_number in O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element to O proline B-residue_name or O RRM1 B-structure_element – O R227 B-residue_name_number to O alanine B-residue_name , O which O remove O the O hydrogen O bond O with O the O fifth B-residue_number uracil B-residue_name - O O4 O or O - O O2 O , O reduced O the O affinities B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant for O the O representative O AdML B-gene Py B-chemical tract I-chemical by O four O - O or O five O - O fold O , O respectively O . O The O energetic O penalties O due O to O these O mutations O ( O ΔΔG B-evidence 0 O . O 8 O – O 0 O . O 9 O kcal O mol O − O 1 O ) O are O consistent O with O the O loss O of O each O hydrogen O bond O with O the O rU5 B-residue_name_number base O and O support O the O relevance O of O the O central O nucleotide O interactions O observed O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence . O U2AF65 B-protein RRM B-structure_element extensions I-structure_element interact O with O the O Py B-chemical tract I-chemical The O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element of O the O U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element directly O contact O the O bound B-protein_state Py B-chemical tract I-chemical . O Rather O than O interacting O with O a O new O 5 O ′- O terminal O nucleotide B-chemical as O we O had O hypothesized O , O the O C O - O terminal O α B-structure_element - I-structure_element helix I-structure_element of O RRM2 B-structure_element instead O folds O across O one O surface O of O rU3 B-residue_name_number in O the O third B-site binding I-site site I-site ( O Fig O . O 3b O ). O There O , O a O salt O bridge O between O the O K340 B-residue_name_number side O chain O and O nucleotide B-chemical phosphate O , O as O well O as O G338 B-residue_name_number - O base O stacking O and O a O hydrogen O bond O between O the O backbone O amide O of O G338 B-residue_name_number and O the O rU3 B-residue_name_number - O O4 O , O secure O the O RRM2 B-structure_element extension I-structure_element . O Indirectly O , O the O additional O contacts O with O the O third B-residue_number nucleotide B-chemical shift O the O rU2 B-residue_name_number nucleotide B-chemical in O the O second B-site binding I-site site I-site closer O to O the O C O - O terminal O β B-structure_element - I-structure_element strand I-structure_element of O RRM2 B-structure_element . O Consequently O , O the O U2AF651 B-protein_state , I-protein_state 2L I-protein_state - I-protein_state bound I-protein_state rU2 B-residue_name_number - O O4 O and O - O N3H O form O dual O hydrogen O bonds O with O the O K329 B-residue_name_number backbone O atoms O ( O Fig O . O 3a O ), O rather O than O a O single O hydrogen O bond O with O the O K329 B-residue_name_number side O chain O as O in O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence ( O Supplementary O Fig O . O 3b O ). O At O the O N O terminus O , O the O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O U2AF65 B-protein RRM1 B-structure_element positions O the O Q147 B-residue_name_number side O chain O to O bridge O the O eighth B-residue_number and O ninth B-residue_number nucleotides B-chemical at O the O 3 B-site ′ I-site terminus I-site of O the O Py B-chemical tract I-chemical ( O Fig O . O 3f O – O h O ). O The O Q147 B-residue_name_number residue O participates O in O hydrogen O bonds O with O the O - O N3H O of O the O eighth B-residue_number uracil B-residue_name and O - O O2 O of O the O ninth B-residue_number pyrimidine B-chemical . O The O adjacent O R146 B-residue_name_number guanidinium O group O donates O hydrogen O bonds O to O the O 3 O ′- O terminal O ribose B-chemical - O O2 O ′ O and O O3 O ′ O atoms O , O where O it O could O form O a O salt O bridge O with O a O phospho O - O diester O group O in O the O context O of O a O longer O pre B-chemical - I-chemical mRNA I-chemical . O Consistent O with O loss O of O a O hydrogen O bond O with O the O ninth B-residue_number pyrimidine B-chemical - O O2 O ( O ΔΔG B-evidence 1 O . O 0 O kcal O mol O − O 1 O ), O mutation B-experimental_method of O the O Q147 B-residue_name_number to O an O alanine B-residue_name reduced O U2AF651 B-evidence , I-evidence 2L I-evidence affinity I-evidence for O the O AdML B-gene Py B-chemical tract I-chemical by O five O - O fold O ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4c O ). O We O compare B-experimental_method U2AF65 B-protein interactions O with O uracil B-residue_name relative O to O cytosine B-residue_name pyrimidines B-chemical at O the O ninth B-site binding I-site site I-site in O Fig O . O 3g O , O h O and O the O Supplementary O Discussion O . O Versatile O primary O sequence O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence reveal O that O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element mediates O an O extensive B-site interface I-site with O the O second O α B-structure_element - I-structure_element helix I-structure_element of O RRM1 B-structure_element , O the O β2 B-structure_element / I-structure_element β3 I-structure_element strands I-structure_element of O RRM2 B-structure_element and O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element extension I-structure_element of O RRM1 B-structure_element . O Altogether O , O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element residues O ( O R228 B-residue_range – I-residue_range K260 I-residue_range ) O bury O 2 O , O 800 O Å2 O of O surface O area O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant holo B-protein_state - I-protein_state protein I-protein_state , O suggestive O of O a O cognate B-site interface I-site compared O with O 1 O , O 900 O Å2 O for O a O typical O protein O – O protein O complex O . O The O path O of O the O linker B-structure_element initiates O at O P229 B-residue_name_number following O the O core B-protein_state RRM1 B-structure_element β B-structure_element - I-structure_element strand I-structure_element , O in O a O kink B-structure_element that O is O positioned O by O intra O - O molecular O stacking O among O the O consecutive O R228 B-residue_name_number , O Y232 B-residue_name_number and O P234 B-residue_name_number side O chains O ( O Fig O . O 4a O , O lower O right O ). O A O second B-structure_element kink I-structure_element at O P236 B-residue_name_number , O coupled O with O respective O packing O of O the O L235 B-residue_name_number and O M238 B-residue_name_number side O chains O on O the O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element RRM1 I-structure_element extension I-structure_element and O the O core B-protein_state RRM1 B-structure_element α2 B-structure_element - I-structure_element helix I-structure_element , O reverses O the O direction O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element towards O the O RRM1 B-site / I-site RRM2 I-site interface I-site and O away O from O the O RNA B-site - I-site binding I-site site I-site . O In O the O neighbouring O apical O region O of O the O linker B-structure_element , O the O V244 B-residue_name_number and O V246 B-residue_name_number side O chains O pack O in O a O hydrophobic B-site pocket I-site between O two O α B-structure_element - I-structure_element helices I-structure_element of O the O core B-protein_state RRM1 B-structure_element . O The O adjacent O V249 B-residue_name_number and O V250 B-residue_name_number are O notable O for O their O respective O interactions O that O connect O RRM1 B-structure_element and O RRM2 B-structure_element at O this O distal O interface B-site from O the O RNA B-site - I-site binding I-site site I-site ( O Fig O . O 4a O , O top O ). O A O third B-structure_element kink I-structure_element stacks O P247 B-residue_name_number and O G248 B-residue_name_number with O Y245 B-residue_name_number and O re O - O orients O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O linker B-structure_element towards O the O RRM2 B-structure_element and O bound B-protein_state RNA B-chemical . O At O the O RNA B-chemical surface O , O the O key O V254 B-residue_name_number that O recognizes O the O fifth B-residue_number uracil B-residue_name is O secured O via O hydrophobic O contacts O between O its O side O chain O and O the O β B-structure_element - I-structure_element sheet I-structure_element surface I-structure_element of O RRM2 B-structure_element , O chiefly O the O consensus O RNP1 B-structure_element - O F304 B-residue_name_number residue O that O stacks O with O the O fourth B-residue_number uracil B-residue_name ( O Fig O . O 4a O , O lower O left O ). O Few O direct O contacts O are O made O between O the O remaining O residues O of O the O linker B-structure_element and O the O U2AF65 B-protein RRM2 B-structure_element ; O instead O , O the O C O - O terminal O conformation O of O the O linker B-structure_element appears O primarily O RNA B-chemical mediated O ( O Fig O . O 3c O , O d O ). O We O investigated O whether O the O observed O contacts O between O the O RRMs B-structure_element and O linker B-structure_element were O critical O for O RNA O binding O by O structure B-experimental_method - I-experimental_method guided I-experimental_method mutagenesis I-experimental_method ( O Fig O . O 4b O ). O We O titrated B-experimental_method these O mutant B-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant proteins O into O fluorescein B-chemical - O labelled O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical and O fit O the O fluorescence B-evidence anisotropy I-evidence changes I-evidence to O obtain O the O apparent O equilibrium B-evidence affinities I-evidence ( O Supplementary O Fig O . O 4d O – O h O ). O We O introduced O glycine B-residue_name substitutions B-experimental_method to O maximally O reduce O the O buried O surface O area O without O directly O interfering O with O its O hydrogen O bonds O between O backbone O atoms O and O the O base O . O First O , O we O replaced B-experimental_method V249 B-residue_name_number and O V250 B-residue_name_number at O the O RRM1 B-site / I-site RRM2 I-site interface I-site and O V254 B-residue_name_number at O the O bound B-protein_state RNA B-chemical site O with O glycine B-residue_name ( O 3Gly B-mutant ). O However O , O the O resulting O decrease O in O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Gly I-mutant mutant B-protein_state relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein was O not O significant O ( O Fig O . O 4b O ). O In O parallel O , O we O replaced B-experimental_method five O linker B-structure_element residues I-structure_element ( O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number and O P255 B-residue_name_number ) O at O the O fifth B-site nucleotide I-site - I-site binding I-site site I-site with O glycines B-residue_name ( O 5Gly B-mutant ) O and O also O found O that O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 5Gly I-mutant mutant B-protein_state likewise O decreased O only O slightly O relative O to O wild B-protein_state - I-protein_state type I-protein_state protein B-protein . O A O more O conservative B-experimental_method substitution I-experimental_method of O these O five O residues O ( O 251 B-residue_range – I-residue_range 255 I-residue_range ) O with O an O unrelated O sequence O capable O of O backbone O - O mediated O hydrogen O bonds O ( O STVVP B-mutant > I-mutant NLALA I-mutant ) O confirmed O the O subtle O impact O of O this O versatile O inter B-structure_element - I-structure_element RRM I-structure_element sequence I-structure_element on O affinity B-evidence for O the O AdML B-gene Py B-chemical tract I-chemical . O Finally O , O to O ensure O that O these O selective O mutations O were O sufficient O to O disrupt O the O linker B-structure_element / O RRM B-structure_element contacts O , O we O substituted B-experimental_method glycine B-residue_name for O the O majority O of O buried O hydrophobic O residues O in O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element ( O including O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number , O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number ; O called O 12Gly B-mutant ). O Despite O 12 B-experimental_method concurrent I-experimental_method mutations I-experimental_method , O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 12Gly I-mutant variant B-protein_state was O reduced O by O only O three O - O fold O relative O to O the O unmodified B-protein_state protein B-protein ( O Fig O . O 4b O ), O which O is O less O than O the O penalty O of O the O V254P B-mutant mutation O that O disrupts O the O rU5 B-residue_name_number hydrogen O bond O ( O Fig O . O 3d O , O i O ). O To O test O the O interplay O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element with O its O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element , O we O constructed B-experimental_method an O internal O linker B-experimental_method deletion I-experimental_method of O 20 B-residue_range - I-residue_range residues I-residue_range within O the O extended B-protein_state RNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O dU2AF651 B-mutant , I-mutant 2L I-mutant ). O We O found O that O the O affinity B-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant for O the O AdML B-gene RNA B-chemical was O significantly O reduced O relative O to O U2AF651 B-mutant , I-mutant 2L I-mutant ( O four O - O fold O , O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4i O ). O Yet O , O it O is O well O known O that O the O linker B-experimental_method deletion I-experimental_method in O the O context O of O the O minimal B-protein_state RRM1 B-structure_element – O RRM2 B-structure_element boundaries O has O no O detectable O effect O on O the O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2 I-mutant ( O refs O ; O Figs O 1b O and O 4b O ; O Supplementary O Fig O . O 4j O ). O The O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence suggest O that O an O extended B-protein_state conformation I-protein_state of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2 I-mutant inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element would O suffice O to O connect O the O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element C O terminus O to O the O N O terminus O of O RRM2 B-structure_element ( O 24 O Å O distance O between O U2AF651 B-mutant , I-mutant 2L I-mutant R227 B-residue_name_number - O Cα O – O H259 B-residue_name_number - O Cα O atoms O ), O which O agrees O with O the O greater O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant dual B-protein_state RRMs B-structure_element compared O with O the O individual B-protein_state U2AF65 B-protein RRMs B-structure_element . O However O , O stretching O of O the O truncated B-protein_state dU2AF651 B-mutant , I-mutant 2L I-mutant linker B-structure_element to O connect O the O RRM B-structure_element termini I-structure_element is O expected O to O disrupt O its O nucleotide O interactions O . O Likewise O , O deletion B-experimental_method of O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element in O the O shortened B-protein_state constructs O would O remove O packing O interactions O that O position O the O linker B-structure_element in O a O kinked B-structure_element turn I-structure_element following O P229 B-residue_name_number ( O Fig O . O 4a O ), O consistent O with O the O lower O RNA B-evidence affinities I-evidence of O dU2AF651 B-mutant , I-mutant 2L I-mutant , O dU2AF651 B-mutant , I-mutant 2 I-mutant and O U2AF651 B-mutant , I-mutant 2 I-mutant compared O with O U2AF651 B-mutant , I-mutant 2L I-mutant . O To O further O test O cooperation O among O the O U2AF65 B-protein RRM B-structure_element extensions I-structure_element and O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element for O RNA O recognition O , O we O tested O the O impact O of O a O triple O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method ( O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant ) O for O RNA O binding O ( O Fig O . O 4b O ; O Supplementary O Fig O . O 4d O ). O Notably O , O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant mutation B-experimental_method reduced O the O RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 3Mut I-mutant protein O by O 30 O - O fold O more O than O would O be O expected O based O on O simple O addition O of O the O ΔΔG B-evidence ' O s O for O the O single O mutations O . O This O difference O indicates O that O the O linearly B-protein_state distant I-protein_state regions B-structure_element of O the O U2AF65 B-protein primary O sequence O , O including O Q147 B-residue_name_number in O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element and O R227 B-residue_name_number / O V254 B-residue_name_number in O the O N O -/ O C O - O terminal O linker B-structure_element regions I-structure_element at O the O fifth B-site nucleotide I-site site I-site , O cooperatively O recognize O the O Py B-chemical tract I-chemical . O Altogether O , O we O conclude O that O the O conformation O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element is O key O for O recognizing O RNA B-chemical and O is O positioned O by O the O RRM B-structure_element extension I-structure_element but O otherwise O relatively O independent O of O the O side O chain O composition O . O The O non O - O additive O effects O of O the O Q147A B-mutant / O V254P B-mutant / O R227A B-mutant triple B-experimental_method mutation I-experimental_method , O coupled O with O the O context O - O dependent O penalties O of O an O internal O U2AF65 B-protein linker B-experimental_method deletion I-experimental_method , O highlights O the O importance O of O the O structural O interplay O among O the O U2AF65 B-protein linker B-structure_element and O the O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element flanking O the O core B-protein_state RRMs B-structure_element . O Importance O of O U2AF65 B-complex_assembly – I-complex_assembly RNA I-complex_assembly contacts O for O pre B-chemical - I-chemical mRNA I-chemical splicing O We O proceeded O to O test O the O importance O of O new O U2AF65 B-complex_assembly – I-complex_assembly Py I-complex_assembly - I-complex_assembly tract I-complex_assembly interactions O for O splicing O of O a O model O pre B-chemical - I-chemical mRNA I-chemical substrate O in O a O human B-species cell O line O ( O Fig O . O 5 O ; O Supplementary O Fig O . O 5 O ). O As O a O representative O splicing O substrate O , O we O utilized O a O well O - O characterized O minigene B-chemical splicing I-chemical reporter I-chemical ( O called O pyPY B-chemical ) O comprising O a O weak O ( O that O is O , O degenerate O , O py B-chemical ) O and O strong O ( O that O is O , O U B-structure_element - I-structure_element rich I-structure_element , O PY B-chemical ) O polypyrimidine B-chemical tracts I-chemical preceding O two O alternative O splice B-site sites I-site ( O Fig O . O 5a O ). O When O transfected B-experimental_method into O HEK293T O cells O containing O only O endogenous B-protein_state U2AF65 B-protein , O the O PY B-site splice I-site site I-site is O used O and O the O remaining O transcript O remains O unspliced O . O When O co B-experimental_method - I-experimental_method transfected I-experimental_method with O an O expression B-experimental_method plasmid I-experimental_method for O wild B-protein_state - I-protein_state type I-protein_state U2AF65 B-protein , O use O of O the O py B-site splice I-site site I-site significantly O increases O ( O by O more O than O five O - O fold O ) O and O as O documented O converts O a O fraction O of O the O unspliced O to O spliced O transcript O . O The O strong O PY B-site splice I-site site I-site is O insensitive O to O added O U2AF65 B-protein , O suggesting O that O endogenous B-protein_state U2AF65 B-protein levels O are O sufficient O to O saturate O this O site O ( O Supplementary O Fig O . O 5b O ). O We O introduced O the O triple B-experimental_method mutation I-experimental_method ( O V254P B-mutant / O R227A B-mutant / O Q147A B-mutant ) O that O significantly O reduced O U2AF651 B-mutant , I-mutant 2L I-mutant association O with O the O Py B-chemical tract I-chemical ( O Fig O . O 4b O ) O in O the O context O of O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein ( O U2AF65 B-mutant - I-mutant 3Mut I-mutant ). O Co B-experimental_method - I-experimental_method transfection I-experimental_method of O the O U2AF65 B-mutant - I-mutant 3Mut I-mutant with O the O pyPY B-chemical splicing O substrate O significantly O reduced O splicing O of O the O weak O ‘ B-site py I-site ' I-site splice I-site site I-site relative O to O wild B-protein_state - I-protein_state type I-protein_state U2AF65 B-protein ( O Fig O . O 5b O , O c O ). O We O conclude O that O the O Py B-chemical - I-chemical tract I-chemical interactions O with O these O residues O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM B-structure_element extensions I-structure_element are O important O for O splicing O as O well O as O for O binding O a O representative O of O the O major B-structure_element U2 I-structure_element - I-structure_element class I-structure_element of I-structure_element splice I-structure_element sites I-structure_element . O Sparse O inter B-structure_element - I-structure_element RRM I-structure_element contacts O underlie O apo B-protein_state - O U2AF65 B-protein dynamics O The O direct O interface B-site between O U2AF651 B-mutant , I-mutant 2L I-mutant RRM1 B-structure_element and O RRM2 B-structure_element is O minor O , O burying O 265 O Å2 O of O solvent O accessible O surface O area O compared O with O 570 O Å2 O on O average O for O a O crystal O packing O interface O . O A O handful O of O inter B-structure_element - I-structure_element RRM I-structure_element hydrogen O bonds O are O apparent O between O the O side O chains O of O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O K292 B-residue_name_number , O RRM1 B-structure_element - O N155 B-residue_name_number and O RRM2 B-structure_element - O D272 B-residue_name_number as O well O as O the O backbone O atoms O of O RRM1 B-structure_element - O G221 B-residue_name_number and O RRM2 B-structure_element - O D273 B-residue_name_number ( O Fig O . O 4c O ). O This O minor O U2AF65 B-protein RRM1 B-site / I-site RRM2 I-site interface I-site , O coupled O with O the O versatile O sequence O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O highlighted O the O potential O role O for O inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O U2AF65 B-protein - O splice O site O recognition O . O Paramagnetic B-experimental_method resonance I-experimental_method enhancement I-experimental_method ( O PRE B-experimental_method ) O measurements O previously O had O suggested O a O predominant O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state , O or O ‘ O closed B-protein_state ' O conformation O of O the O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant RRM1 B-structure_element and O RRM2 B-structure_element in O equilibrium O with O a O minor O ‘ O open B-protein_state ' O conformation O resembling O the O RNA B-protein_state - I-protein_state bound I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element arrangement O . O Yet O , O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method ( O SAXS B-experimental_method ) O data O indicated O that O both O the O minimal B-protein_state U2AF651 B-mutant , I-mutant 2 I-mutant and O longer O constructs O comprise O a O highly B-protein_state diverse I-protein_state continuum I-protein_state of I-protein_state conformations I-protein_state in O the O absence B-protein_state of I-protein_state RNA B-chemical that O includes O the O ‘ O closed B-protein_state ' O and O ‘ O open B-protein_state ' O conformations O . O To O complement O the O static O portraits O of O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence that O we O had O determined O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O we O used O smFRET B-experimental_method to O characterize O the O probability B-evidence distribution I-evidence functions I-evidence and O time O dependence O of O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O solution O . O The O inter B-structure_element - I-structure_element RRM I-structure_element dynamics O of O U2AF65 B-protein were O followed O using O FRET B-experimental_method between O fluorophores B-chemical attached O to O RRM1 B-structure_element and O RRM2 B-structure_element ( O Fig O . O 6a O , O b O , O Methods O ). O The O positions O of O single O cysteine B-residue_name mutations B-experimental_method for O fluorophore B-chemical attachment O ( O A181C B-mutant in O RRM1 B-structure_element and O Q324C B-mutant in O RRM2 B-structure_element ) O were O chosen O based O on O inspection O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence and O the O ‘ O closed B-protein_state ' O model O of O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant . O Criteria O included O ( O i O ) O residue O locations O that O are O distant O from O and O hence O not O expected O to O interfere O with O the O RRM B-complex_assembly / I-complex_assembly RNA I-complex_assembly or O inter B-site - I-site RRM I-site interfaces I-site , O ( O ii O ) O inter O - O dye O distances O ( O 50 O Å O for O U2AF651 B-complex_assembly , I-complex_assembly 2L I-complex_assembly – I-complex_assembly Py I-complex_assembly tract I-complex_assembly and O 30 O Å O for O the O closed B-protein_state apo B-protein_state - O model O ) O that O are O expected O to O be O near O the O Förster B-experimental_method radius I-experimental_method ( I-experimental_method Ro I-experimental_method ) I-experimental_method for O the O Cy3 B-chemical / O Cy5 B-chemical pair O ( O 56 O Å O ), O where O changes O in O the O efficiency O of O energy O transfer O are O most O sensitive O to O distance O , O and O ( O iii O ) O FRET B-evidence efficiencies I-evidence that O are O calculated O to O be O significantly O greater O for O the O ‘ O closed B-protein_state ' O apo B-protein_state - O model O as O opposed O to O the O ‘ O open B-protein_state ' O RNA B-protein_state - I-protein_state bound I-protein_state structures B-evidence ( O by O ∼ O 30 O %). O The O FRET B-evidence efficiencies I-evidence of O either O of O these O structurally O characterized O conformations O also O are O expected O to O be O significantly O greater O than O elongated B-protein_state U2AF65 B-protein conformations O that O lack B-protein_state inter O - O RRM B-structure_element contacts O . O Double O - O cysteine B-residue_name variant B-protein_state of O U2AF651 B-mutant , I-mutant 2 I-mutant was O modified B-experimental_method with O equimolar O amount O of O Cy3 B-chemical and O Cy5 B-chemical . O Only O traces B-evidence that O showed O single O photobleaching O events O for O both O donor O and O acceptor O dyes O and O anti O - O correlated O changes O in O acceptor O and O donor O fluorescence O were O included O in O smFRET B-experimental_method data O analysis O . O We O first O characterized O the O conformational O dynamics O spectrum O of O U2AF65 B-protein in O the O absence B-protein_state of I-protein_state RNA B-chemical ( O Fig O . O 6c O , O d O ; O Supplementary O Fig O . O 7a O , O b O ). O The O double O - O labelled O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O tethered B-protein_state to O a O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical resin I-chemical . O Virtually O no O fluorescent O molecules O were O detected O in O the O absence B-protein_state of I-protein_state biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical , O which O demonstrates O the O absence B-protein_state of I-protein_state detectable O non O - O specific O binding O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant to O the O slide O . O The O FRET B-evidence distribution I-evidence histogram I-evidence built O from O more O than O a O thousand O traces B-evidence of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state ligand B-chemical showed O an O extremely O broad O distribution O centred O at O a O FRET B-evidence efficiency I-evidence of O ∼ O 0 O . O 4 O ( O Fig O . O 6d O ). O Approximately O 40 O % O of O the O smFRET B-experimental_method traces B-evidence showed O apparent O transitions O between O multiple O FRET B-evidence values I-evidence ( O for O example O , O Fig O . O 6c O ). O Despite O the O large O width O of O the O FRET B-evidence - I-evidence distribution I-evidence histogram I-evidence , O the O majority O ( O 80 O %) O of O traces B-evidence that O showed O fluctuations O sampled O only O two O distinct O FRET B-evidence states I-evidence ( O for O example O , O Supplementary O Fig O . O 7a O ). O Approximately O 70 O % O of O observed O fluctuations O were O interchanges O between O the O ∼ O 0 O . O 65 O and O ∼ O 0 O . O 45 O FRET B-evidence values I-evidence ( O Supplementary O Fig O . O 7b O ). O We O cannot O exclude O a O possibility O that O tethering O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O microscope O slide O introduces O structural O heterogeneity O into O the O protein O and O , O thus O , O contributes O to O the O breadth O of O the O FRET B-evidence distribution I-evidence histogram I-evidence . O However O , O the O presence O of O repetitive O fluctuations O between O particular O FRET B-evidence values I-evidence supports O the O hypothesis O that O RNA B-protein_state - I-protein_state free I-protein_state U2AF65 B-protein samples O several O distinct O conformations O . O This O result O is O consistent O with O the O broad O ensembles O of O extended B-protein_state solution O conformations O that O best O fit O the O SAXS B-experimental_method data O collected O for O U2AF651 B-mutant , I-mutant 2 I-mutant as O well O as O for O a O longer O construct O ( O residues O 136 B-residue_range – I-residue_range 347 I-residue_range ). O We O conclude O that O weak O contacts O between O the O U2AF65 B-protein RRM1 B-structure_element and O RRM2 B-structure_element permit O dissociation O of O these O RRMs B-structure_element in O the O absence B-protein_state of I-protein_state RNA B-chemical . O U2AF65 B-protein conformational O selection O and O induced O fit O by O bound B-protein_state RNA B-chemical We O next O used O smFRET B-experimental_method to O probe O the O conformational O selection O of O distinct O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O following O association O of O U2AF65 B-protein with O the O AdML B-gene Py B-chemical - I-chemical tract I-chemical prototype O . O Addition O of O the O AdML B-gene RNA B-chemical to O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O selectively O increases O a O fraction O of O molecules O showing O an O ∼ O 0 O . O 45 O apparent O FRET B-evidence efficiency I-evidence , O suggesting O that O RNA O binding O stabilizes O a O single O conformation O , O which O corresponds O to O the O 0 O . O 45 O FRET B-evidence state I-evidence ( O Fig O . O 6e O , O f O ). O To O assess O the O possible O contributions O of O RNA B-protein_state - I-protein_state free I-protein_state conformations O of O U2AF65 B-protein and O / O or O structural O heterogeneity O introduced O by O tethering B-experimental_method of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O to O the O slide O to O the O observed O distribution B-evidence of I-evidence FRET I-evidence values I-evidence , O we O reversed B-experimental_method the I-experimental_method immobilization I-experimental_method scheme I-experimental_method . O We O tethered B-protein_state the O AdML B-gene RNA B-chemical to O the O slide O via O a O biotinylated B-chemical oligonucleotide I-chemical DNA I-chemical handle O and O added B-experimental_method U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O in O the O absence B-protein_state of I-protein_state biotin B-chemical - I-chemical NTA I-chemical resin I-chemical ( O Fig O . O 6g O , O h O ; O Supplementary O Fig O . O 7c O – O g O ). O A O 0 O . O 45 O FRET B-evidence value I-evidence was O again O predominant O , O indicating O a O similar O RNA B-protein_state - I-protein_state bound I-protein_state conformation O and O structural O dynamics O for O the O untethered B-protein_state and O tethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ). O We O examined O the O effect O on O U2AF651 B-mutant , I-mutant 2L I-mutant conformations O of O purine B-experimental_method interruptions I-experimental_method that O often O occur O in O relatively O degenerate O human B-species Py B-chemical tracts I-chemical . O We O introduced B-experimental_method an O rArA B-chemical purine B-chemical dinucleotide I-chemical within O a O variant O of O the O AdML B-gene Py B-chemical tract I-chemical ( O detailed O in O Methods O ). O Insertion B-experimental_method of O adenine B-chemical nucleotides I-chemical decreased O binding B-evidence affinity I-evidence of O U2AF65 B-protein to O RNA B-chemical by O approximately O five O - O fold O . O Nevertheless O , O in O the O presence O of O saturating O concentrations O of O rArA B-chemical - O interrupted O RNA B-chemical slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O showed O a O prevalent O ∼ O 0 O . O 45 O apparent O FRET B-evidence value I-evidence ( O Fig O . O 6i O , O j O ), O which O was O also O predominant O in O the O presence O of O continuous O Py B-chemical tract I-chemical . O Therefore O , O RRM1 B-structure_element - O to O - O RRM2 B-structure_element distance O remains O similar O regardless O of O whether O U2AF65 B-protein is O bound B-protein_state to I-protein_state interrupted O or O continuous O Py B-chemical tract I-chemical . O The O inter B-evidence - I-evidence fluorophore I-evidence distances I-evidence derived O from O the O observed O 0 O . O 45 O FRET B-evidence state I-evidence agree O with O the O distances O between O the O α O - O carbon O atoms O of O the O respective O residues O in O the O crystal B-evidence structures I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant bound B-protein_state to I-protein_state Py B-chemical - I-chemical tract I-chemical oligonucleotides I-chemical . O It O should O be O noted O that O inferring O distances O from O FRET B-evidence values I-evidence is O prone O to O significant O error O because O of O uncertainties O in O the O determination O of O fluorophore O orientation O factor O κ2 O and O Förster O radius O R0 O , O the O parameters O used O in O distance O calculations O . O Nevertheless O , O the O predominant O 0 O . O 45 O FRET B-evidence state I-evidence in O the O presence O of O RNA B-chemical agrees O with O the O Py B-protein_state - I-protein_state tract I-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant . O Importantly O , O the O majority O of O traces B-evidence (∼ O 70 O %) O of O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical lacked O FRET O fluctuations O and O predominately O exhibited O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O for O example O , O Fig O . O 6g O ). O The O remaining O ∼ O 30 O % O of O traces B-evidence for O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state the O slide O - O tethered O RNA B-chemical showed O fluctuations O between O distinct O FRET B-evidence values I-evidence . O The O majority O of O traces B-evidence that O show O fluctuations O began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transitioned O to O a O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O Hidden B-experimental_method Markov I-experimental_method modelling I-experimental_method analysis I-experimental_method of O smFRET B-experimental_method traces B-evidence suggests O that O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant can O sample O at O least O two O other O conformations O corresponding O to O ∼ O 0 O . O 7 O – O 0 O . O 8 O and O ∼ O 0 O . O 3 O FRET B-evidence values I-evidence in O addition O to O the O predominant O conformation O corresponding O to O the O 0 O . O 45 O FRET B-evidence state I-evidence . O Although O a O compact O conformation O ( O or O multiple O conformations O ) O of O U2AF651 B-mutant , I-mutant 2L I-mutant corresponding O to O ∼ O 0 O . O 7 O – O 0 O . O 8 O FRET B-evidence values I-evidence can O bind O RNA B-chemical , O on O RNA B-chemical binding O , O these O compact B-protein_state conformations O of O U2AF651 B-mutant , I-mutant 2L I-mutant transition O into O a O more O stable O structural O state O that O corresponds O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence and O is O likely O similar O to O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element - O arrangement O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Thus O , O the O sequence O of O structural O rearrangements O of O U2AF65 B-protein observed O in O smFRET B-experimental_method traces B-evidence ( O Supplementary O Fig O . O 7c O – O g O ) O suggests O that O a O ‘ O conformational O selection O ' O mechanism O of O Py B-chemical - I-chemical tract I-chemical recognition O ( O that O is O , O RNA O ligand O stabilization O of O a O pre B-protein_state - I-protein_state configured I-protein_state U2AF65 B-protein conformation O ) O is O complemented O by O ‘ O induced O fit O ' O ( O that O is O , O RNA O - O induced O rearrangement O of O the O U2AF65 B-protein RRMs B-structure_element to O achieve O the O final O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O conformation O ), O as O discussed O below O . O The O U2AF65 B-protein structures B-evidence and O analyses B-evidence presented O here O represent O a O successful O step O towards O defining O a O molecular O map O of O the O 3 B-site ′ I-site splice I-site site I-site . O Several O observations O indicate O that O the O numerous O intramolecular O contacts O , O here O revealed O among O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element and O RRM1 B-structure_element , O RRM2 B-structure_element , O and O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element , O synergistically O coordinate O U2AF65 B-protein – O Py O - O tract O recognition O . O Truncation B-experimental_method of O U2AF65 B-protein to O the O core B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element reduces O its O RNA B-evidence affinity I-evidence by O 100 O - O fold O . O Likewise O , O deletion B-experimental_method of O 20 B-residue_range inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element residues I-structure_element significantly O reduces O U2AF65 B-protein – O RNA B-chemical binding O only O when O introduced O in O the O context O of O the O longer B-protein_state U2AF651 B-mutant , I-mutant 2L I-mutant construct O comprising O the O RRM B-structure_element extensions I-structure_element , O which O in O turn O position O the O linker B-structure_element for O RNA B-chemical interactions O . O Notably O , O a O triple B-protein_state mutation I-protein_state of O three O residues O ( O V254P B-mutant , O Q147A B-mutant and O R227A B-mutant ) O in O the O respective O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element non O - O additively O reduce O RNA B-evidence binding I-evidence by O 150 O - O fold O . O Altogether O , O these O data O indicate O that O interactions O among O the O U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element , O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element are O mutually O inter O - O dependent O for O cognate O Py B-chemical - I-chemical tract I-chemical recognition O . O The O implications O of O this O finding O for O U2AF65 B-protein conservation O and O Py B-chemical - I-chemical tract I-chemical recognition O are O detailed O in O the O Supplementary O Discussion O . O Recently O , O high B-experimental_method - I-experimental_method throughput I-experimental_method sequencing I-experimental_method studies I-experimental_method have O shown O that O somatic O mutations O in O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factors I-protein_type occur O in O the O majority O of O patients O with O myelodysplastic O syndrome O ( O MDS O ). O MDS O - O relevant O mutations O are O common O in O the O small B-protein_state U2AF B-protein_type subunit I-protein_type ( O U2AF35 B-protein , O or O U2AF1 B-protein ), O yet O such O mutations O are O rare O in O the O large B-protein_state U2AF65 B-protein subunit O ( O also O called O U2AF2 B-protein )— O possibly O due O to O the O selective O versus O nearly O universal O requirements O of O these O factors O for O splicing O . O A O confirmed O somatic O mutation O of O U2AF65 B-protein in O patients O with O MDS O , O L187V B-mutant , O is O located O on O a O solvent B-site - I-site exposed I-site surface I-site of O RRM1 B-structure_element that O is O distinct O from O the O RNA B-site interface I-site ( O Fig O . O 7a O ). O This O L187 B-residue_name_number surface O is O oriented O towards O the O N O terminus O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant construct O , O where O it O is O expected O to O abut O the O U2AF35 B-site - I-site binding I-site site I-site in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state U2AF B-protein heterodimer B-oligomeric_state . O Likewise O , O an O unconfirmed O M144I B-mutant mutation O reported O by O the O same O group O corresponds O to O the O N O - O terminal O residue O of O U2AF651 B-mutant , I-mutant 2L I-mutant , O which O is O separated O by O only O ∼ O 20 O residues O from O the O U2AF35 B-site - I-site binding I-site site I-site . O As O such O , O we O suggest O that O the O MDS O - O relevant O U2AF65 B-protein mutations O contribute O to O MDS O progression O indirectly O , O by O destabilizing O a O relevant O conformation O of O the O conjoined O U2AF35 B-protein subunit O rather O than O affecting O U2AF65 B-protein functions O in O RNA B-chemical binding O or O spliceosome B-complex_assembly recruitment O per O se O . O Our O smFRET B-experimental_method results O agree O with O prior O NMR B-experimental_method / O PRE B-experimental_method evidence O for O multi O - O domain O conformational O selection O as O one O mechanistic O basis O for O U2AF65 B-protein – O RNA B-chemical association O ( O Fig O . O 7b O ). O An O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence is O likely O to O correspond O to O the O U2AF65 B-protein conformation O visualized O in O our O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence , O in O which O the O RRM1 B-structure_element and O RRM2 B-structure_element bind O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state to O the O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical . O The O lesser O 0 O . O 65 O – O 0 O . O 8 O and O 0 O . O 2 O – O 0 O . O 3 O FRET B-evidence values I-evidence in O the O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O experiment O could O correspond O to O respective O variants O of O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state U2AF65 B-protein conformations O characterized O by O NMR B-experimental_method / O PRE B-experimental_method data O , O or O to O extended B-protein_state U2AF65 B-protein conformations O , O in O which O the O intramolecular O RRM1 B-structure_element / O RRM2 B-structure_element interactions O have O dissociated O the O protein B-protein is O bound B-protein_state to I-protein_state RNA B-chemical via O single B-protein_state RRMs B-structure_element . O An O increased O prevalence O of O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence following O U2AF65 B-protein – O RNA B-chemical binding O , O coupled O with O the O apparent O absence B-protein_state of I-protein_state transitions O in O many O ∼ O 0 O . O 45 O - O value O single O molecule O traces B-evidence ( O for O example O , O Fig O . O 6e O ), O suggests O a O population O shift O in O which O RNA B-chemical binds O to O ( O and O draws O the O equilibrium O towards O ) O a O pre B-protein_state - I-protein_state configured I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element proximity O that O most O often O corresponds O to O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O Notably O , O our O smFRET B-experimental_method results O reveal O that O U2AF65 B-protein – O Py B-chemical - I-chemical tract I-chemical recognition O can O be O characterized O by O an O ‘ O extended O conformational O selection O ' O model O ( O Fig O . O 7b O ). O Examples O of O ‘ O extended B-protein_state conformational O selection O ' O during O ligand O binding O have O been O characterized O for O a O growing O number O of O macromolecules O ( O for O example O , O adenylate B-protein_type kinase I-protein_type , O LAO B-protein_type - I-protein_type binding I-protein_type protein I-protein_type , O poly B-protein_type - I-protein_type ubiquitin I-protein_type , O maltose B-protein_type - I-protein_type binding I-protein_type protein I-protein_type and O the O preQ1 B-protein_type riboswitch I-protein_type , O among O others O ). O Here O , O the O majority O of O changes O in O smFRET B-experimental_method traces B-evidence for O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O bound B-protein_state to I-protein_state slide O - O tethered O RNA B-chemical began O at O high O ( O 0 O . O 65 O – O 0 O . O 8 O ) O FRET B-evidence value I-evidence and O transition O to O the O predominant O 0 O . O 45 O FRET B-evidence value I-evidence ( O Supplementary O Fig O . O 7c O – O g O ). O These O transitions O could O correspond O to O rearrangement O from O the O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O U2AF65 B-protein conformation O in O which O the O RNA B-site - I-site binding I-site surface I-site of O only O a O single B-protein_state RRM B-structure_element is O exposed O and O available O for O RNA O binding O , O to O the O structural O state O seen O in O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state crystal B-evidence structure I-evidence . O As O such O , O the O smFRET B-experimental_method approach O reconciles O prior O inconsistencies O between O two O major O conformations O that O were O detected O by O NMR B-experimental_method / O PRE B-experimental_method experiments O and O a O broad O ensemble O of O diverse O inter B-structure_element - I-structure_element RRM I-structure_element arrangements O that O fit O the O SAXS B-experimental_method data O for O the O apo B-protein_state - O protein B-protein . O Similar O interdisciplinary O structural O approaches O are O likely O to O illuminate O whether O similar O mechanistic O bases O for O RNA O binding O are O widespread O among O other O members O of O the O vast O multi O - O RRM B-structure_element family O . O The O finding O that O U2AF65 B-protein recognizes O a O nine O base O pair O Py B-chemical tract I-chemical contributes O to O an O elusive O ‘ O code O ' O for O predicting O splicing O patterns O from O primary O sequences O in O the O post O - O genomic O era O ( O reviewed O in O ref O .). O Based O on O ( O i O ) O similar O RNA B-evidence affinities I-evidence of O U2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant , O ( O ii O ) O indistinguishable O conformations O among O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence in O two O different O crystal O packing O arrangements O and O ( O iii O ) O penalties B-evidence of O structure B-experimental_method - I-experimental_method guided I-experimental_method mutations I-experimental_method in O RNA B-experimental_method binding I-experimental_method and I-experimental_method splicing I-experimental_method assays I-experimental_method , O we O suggest O that O the O extended B-protein_state inter B-structure_element - I-structure_element RRM I-structure_element regions I-structure_element of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence underlie O cognate O Py B-chemical - I-chemical tract I-chemical recognition O by O the O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein protein O . O Further O research O will O be O needed O to O understand O the O roles O of O SF1 B-protein and O U2AF35 B-protein subunits O in O the O conformational O equilibria O underlying O U2AF65 B-protein association O with O Py B-chemical tracts I-chemical . O Moreover O , O structural O differences O among O U2AF65 B-protein homologues O and O paralogues O may O regulate O splice B-site site I-site selection O . O Ultimately O , O these O guidelines O will O assist O the O identification O of O 3 B-site ′ I-site splice I-site sites I-site and O the O relationship O of O disease O - O causing O mutations O to O penalties O for O U2AF65 B-protein association O . O The O intact B-protein_state U2AF65 B-protein RRM1 B-structure_element / O RRM2 B-structure_element - O containing O domain O and O flanking O residues O are O required O for O binding O contiguous B-structure_element Py B-chemical tracts I-chemical . O ( O a O ) O Domain O organization O of O full B-protein_state - I-protein_state length I-protein_state ( O fl B-protein_state ) O U2AF65 B-protein and O constructs O used O for O RNA B-chemical binding O and O structural O experiments O . O An O internal O deletion O ( O d B-mutant , O Δ B-mutant ) O of O residues O 238 B-residue_range – I-residue_range 257 I-residue_range removes O a O portion O of O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element from O the O dU2AF651 B-mutant , I-mutant 2 I-mutant and O dU2AF651 B-mutant , I-mutant 2L I-mutant constructs O . O ( O b O ) O Comparison O of O the O apparent O equilibrium B-evidence affinities I-evidence of O various O U2AF65 B-protein constructs O for O binding O the O prototypical O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O flU2AF65 B-protein protein O includes O a O heterodimerization B-structure_element domain I-structure_element of O the O U2AF35 B-protein subunit O to O promote O solubility O and O folding O . O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O for O binding O the O AdML B-gene 13mer O are O as O follows O : O flU2AF65 B-protein , O 30 O ± O 3 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 35 O ± O 6 O nM O ; O U2AF651 B-mutant , I-mutant 2 I-mutant , O 3 O , O 600 O ± O 300 O nM O . O ( O c O ) O Comparison O of O the O RNA B-evidence sequence I-evidence specificities I-evidence of O flU2AF65 B-protein and O U2AF651 B-mutant , I-mutant 2L I-mutant constructs O binding O C B-structure_element - I-structure_element rich I-structure_element Py B-chemical tracts I-chemical with O 4U O ' O s O embedded O in O either O the O 5 O ′- O ( O light O grey O fill O ) O or O 3 O ′- O ( O dark O grey O fill O ) O regions O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCUUUUCCCCCCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 41 O ± O 2 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 31 O ± O 3 O nM O . O The O KD B-evidence ' O s O for O binding O 5 B-chemical ′- I-chemical CCCCCCCUUUUCC I-chemical - I-chemical 3 I-chemical ′ I-chemical are O : O flU2AF65 B-protein , O 414 O ± O 12 O nM O ; O U2AF651 B-mutant , I-mutant 2L I-mutant , O 417 O ± O 10 O nM O . O Bar O graphs O are O hatched O to O match O the O constructs O shown O in O a O . O The O average B-evidence apparent I-evidence equilibrium I-evidence affinity I-evidence ( O KA B-evidence ) O and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O purified O protein O and O average B-evidence fitted I-evidence fluorescence I-evidence anisotropy I-evidence RNA I-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 1 O . O RRM B-structure_element , O RNA B-structure_element recognition I-structure_element motif I-structure_element ; O RS B-structure_element , O arginine B-structure_element - I-structure_element serine I-structure_element rich I-structure_element ; O UHM B-structure_element , O U2AF B-structure_element homology I-structure_element motif I-structure_element ; O ULM B-structure_element , O U2AF B-structure_element ligand I-structure_element motif I-structure_element . O Structures B-evidence of O U2AF651 B-mutant , I-mutant 2L I-mutant recognizing O a O contiguous B-structure_element Py B-chemical tract I-chemical . O ( O a O ) O Alignment B-experimental_method of O oligonucleotide B-chemical sequences O that O were O co B-experimental_method - I-experimental_method crystallized I-experimental_method in O the O indicated O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence . O The O regions O of O RRM1 B-structure_element , O RRM2 B-structure_element and O linker B-structure_element contacts O are O indicated O above O by O respective O black O and O blue O arrows O from O N O - O to O C O - O terminus O . O For O clarity O , O we O consistently O number O the O U2AF651 B-mutant , I-mutant 2L I-mutant nucleotide B-site - I-site binding I-site sites I-site from O one O to O nine O , O although O in O some O cases O the O co B-experimental_method - I-experimental_method crystallized I-experimental_method oligonucleotide B-chemical comprises O eight O nucleotides B-chemical and O as O such O leaves O the O first B-site binding I-site site I-site empty O . O The O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant nucleotide B-site - I-site binding I-site sites I-site are O given O in O parentheses O ( O site O 4 O ' O interacts O with O dU2AF65 B-mutant RRM1 B-structure_element and O RRM2 B-structure_element by O crystallographic O symmetry O ). O ( O b O ) O Stereo O views O of O a O ‘ O kicked O ' O 2 B-evidence | I-evidence Fo I-evidence |−| I-evidence Fc I-evidence | I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O for O the O inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element , O N O - O and O C O - O terminal O residues O ( O blue O ) O or O bound O oligonucleotide B-chemical of O a O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure O ( O structure O iv O , O bound B-protein_state to I-protein_state 5 O ′-( O P O ) O rUrUrUdUrUrU O ( O BrdU O ) O dUrC O ) O ( O magenta O ). O Crystallographic O statistics O are O given O in O Table O 1 O and O the O overall O conformations O of O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant / O U2AF651 B-mutant , I-mutant 2 I-mutant structures B-evidence are O compared O in O Supplementary O Fig O . O 2 O . O BrdU B-chemical , O 5 B-chemical - I-chemical bromo I-chemical - I-chemical deoxy I-chemical - I-chemical uridine I-chemical ; O d B-chemical , O deoxy B-chemical - I-chemical ribose I-chemical ; O P B-chemical -, I-chemical 5 B-chemical ′- I-chemical phosphorylation I-chemical ; O r B-chemical , O ribose B-chemical . O Representative O views O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant interactions O with O each O new O nucleotide B-chemical of O the O bound B-protein_state Py B-chemical tract I-chemical . O New O residues O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O coloured O a O darker O shade O of O blue O , O apart O from O residues O that O were O tested O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method , O which O are O coloured O yellow O . O The O nucleotide B-site - I-site binding I-site sites I-site of O the O U2AF651 B-mutant , I-mutant 2L I-mutant and O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant structure B-evidence are O compared O in O Supplementary O Fig O . O 3a O – O h O . O The O first B-site and I-site seventh I-site U2AF651 I-site , I-site 2L I-site - I-site binding I-site sites I-site are O unchanged O from O the O prior O dU2AF651 B-complex_assembly , I-complex_assembly 2 I-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence and O are O portrayed O in O Supplementary O Fig O . O 3a O , O f O . O The O four O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence are O similar O with O the O exception O of O pH O - O dependent O variations O at O the O ninth B-site site I-site that O are O detailed O in O Supplementary O Fig O . O 3i O , O j O . O The O representative O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence shown O has O the O highest O resolution O and O / O or O ribose B-chemical nucleotide I-chemical at O the O given O site O : O ( O a O ) O rU2 B-residue_name_number of O structure O iv O ; O ( O b O ) O rU3 B-residue_name_number of O structure O iii O ; O ( O c O ) O rU4 B-residue_name_number of O structure O i O ; O ( O d O ) O rU5 B-residue_name_number of O structure O iii O ; O ( O e O ) O rU6 B-residue_name_number of O structure O ii O ; O ( O f O ) O dU8 B-residue_name_number of O structure O iii O ; O ( O g O ) O dU9 B-residue_name_number of O structure O iii O ; O ( O h O ) O rC9 B-residue_name_number of O structure O iv O . O ( O i O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O of O the O wild B-protein_state type I-protein_state ( O blue O ) O and O the O indicated O mutant B-protein_state ( O yellow O ) O U2AF651 B-mutant , I-mutant 2L I-mutant proteins O binding O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′). I-chemical The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O R227A B-mutant , O 166 O ± O 2 O nM O ; O V254P B-mutant , O 137 O ± O 10 O nM O ; O Q147A B-mutant , O 171 O ± O 21 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O average O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4a O – O c O . O The O U2AF65 B-protein linker B-structure_element / O RRM B-structure_element and O inter O - O RRM B-structure_element interactions O . O ( O a O ) O Contacts O of O the O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element linker I-structure_element with O the O RRMs B-structure_element . O A O semi O - O transparent O space O - O filling O surface O is O shown O for O the O RRM1 B-structure_element ( O green O ) O and O RRM2 B-structure_element ( O light O blue O ). O Residues O V249 B-residue_name_number , O V250 B-residue_name_number , O V254 B-residue_name_number ( O yellow O ) O are O mutated B-experimental_method to O V249G B-mutant / O V250G B-mutant / O V254G B-mutant in O the O 3Gly B-mutant mutant I-mutant ; O residues O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O P255 B-residue_name_number ( O red O ) O along O with O V254 B-residue_name_number are O mutated B-experimental_method to O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 5Gly B-mutant mutant I-mutant or O to O S251N B-mutant / O T252L B-mutant / O V253A B-mutant / O V254L B-mutant / O P255A B-mutant in O the O NLALA B-mutant mutant I-mutant ; O residues O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number ( O orange O ) O along O with O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number are O mutated B-experimental_method to O M144G B-mutant / O L235G B-mutant / O M238G B-mutant / O V244G B-mutant / O V246G B-mutant / O V249G B-mutant / O V250G B-mutant / O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 12Gly B-mutant mutant I-mutant . O Other O linker B-structure_element residues O are O coloured O either O dark O blue O for O new O residues O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structure O or O light O blue O for O the O remaining O inter B-structure_element - I-structure_element RRM I-structure_element residues O . O The O central O panel O shows O an O overall O view O with O stick O diagrams O for O mutated O residues O ; O boxed O regions O are O expanded O to O show O the O C O - O terminal O ( O bottom O left O ) O and O central B-structure_element linker I-structure_element regions I-structure_element ( O top O ) O at O the O inter B-structure_element - I-structure_element RRM I-structure_element interfaces I-structure_element , O and O N O - O terminal O linker O region O contacts O with O RRM1 B-structure_element ( O bottom O right O ). O ( O b O ) O Bar O graph O of O apparent O equilibrium B-evidence affinities I-evidence ( O KA B-evidence ) O for O the O AdML B-gene Py B-chemical tract I-chemical ( O 5 B-chemical ′- I-chemical CCCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical of O the O wild B-protein_state - I-protein_state type I-protein_state ( O blue O ) O U2AF651 B-mutant , I-mutant 2L I-mutant protein O compared O with O mutations O of O the O residues O shown O in O a O : O 3Gly B-mutant ( O yellow O ), O 5Gly B-mutant ( O red O ), O NLALA B-mutant ( O hatched O red O ), O 12Gly B-mutant ( O orange O ) O and O the O linker B-experimental_method deletions I-experimental_method dU2AF651 B-mutant , I-mutant 2 I-mutant in O the O minimal B-protein_state RRM1 B-structure_element – I-structure_element RRM2 I-structure_element region I-structure_element ( O residues O 148 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 336 I-residue_range ) O or O dU2AF651 B-mutant , I-mutant 2L I-mutant ( O residues O 141 B-residue_range – I-residue_range 237 I-residue_range , O 258 B-residue_range – I-residue_range 342 I-residue_range ). O The O apparent O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O KD B-evidence ) O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant mutant B-protein_state proteins O are O : O wild B-protein_state type I-protein_state ( O WT B-protein_state ), O 35 O ± O 6 O nM O ; O 3Gly B-mutant , O 47 O ± O 4 O nM O ; O 5Gly B-mutant , O 61 O ± O 3 O nM O ; O 12Gly B-mutant , O 88 O ± O 21 O nM O ; O NLALA B-mutant , O 45 O ± O 3 O nM O ; O dU2AF651 B-mutant , I-mutant 2L I-mutant , O 123 O ± O 5 O nM O ; O dU2AF651 B-mutant , I-mutant 2 I-mutant , O 5000 O ± O 100 O nM O ; O 3Mut B-mutant , O 5630 O ± O 70 O nM O . O The O average O KA B-evidence and O s O . O e O . O m O . O for O three O independent O titrations O are O plotted O . O The O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4d O – O j O . O ( O c O ) O Close O view O of O the O U2AF65 B-protein RRM1 B-site / I-site RRM2 I-site interface I-site following O a O two O - O fold O rotation O about O the O x O - O axis O relative O to O a O . O U2AF65 B-protein inter O - O domain O residues O are O important O for O splicing O a O representative O pre B-chemical - I-chemical mRNA I-chemical substrate O in O human B-species cells O . O ( O a O ) O Schematic O diagram O of O the O pyPY B-chemical reporter O minigene O construct O comprising O two O alternative O splice B-site sites I-site preceded O by O either O the O weak O IgM O Py B-chemical tract I-chemical ( O py B-chemical ) O or O the O strong O AdML B-gene Py B-chemical tract I-chemical ( O PY B-chemical ) O ( O sequences O inset O ). O ( O b O ) O Representative O RT B-experimental_method - I-experimental_method PCR I-experimental_method of O pyPY B-chemical transcripts O from O HEK293T O cells O co B-experimental_method - I-experimental_method transfected I-experimental_method with O constructs O encoding O the O pyPY B-chemical minigene O and O either O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O U2AF65 B-protein or O a O triple O U2AF65 B-protein mutant B-protein_state ( O 3Mut B-mutant ) O of O Q147A B-mutant , O R227A B-mutant and O V254P B-mutant residues O . O ( O c O ) O A O bar O graph O of O the O average O percentage O of O the O py B-chemical - O spliced O mRNA B-chemical relative O to O total O detected O pyPY B-chemical transcripts O ( O spliced O and O unspliced O ) O for O the O corresponding O gel O lanes O ( O black O , O no O U2AF65 B-protein added O ; O white O , O WT B-protein_state U2AF65 B-protein ; O grey O , O 3Mut B-mutant U2AF65 B-protein ). O Protein B-experimental_method overexpression I-experimental_method and O qRT B-experimental_method - I-experimental_method PCR I-experimental_method results O are O shown O in O Supplementary O Fig O . O 5 O . O RNA O binding O stabilizes O the O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O of O U2AF65 B-protein RRMs B-structure_element . O ( O a O , O b O ) O Views O of O FRET B-experimental_method pairs O chosen O to O follow O the O relative O movement O of O RRM1 B-structure_element and O RRM2 B-structure_element on O the O crystal B-evidence structure I-evidence of O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O U2AF651 B-mutant , I-mutant 2L I-mutant RRMs B-structure_element bound B-protein_state to I-protein_state a O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical ( O a O , O representative O structure O iv O ) O or O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O model O of O U2AF651 B-mutant , I-mutant 2 I-mutant ( O b O , O PDB O ID O 2YH0 O ) O in O identical O orientations O of O RRM2 B-structure_element . O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant proteins O were O doubly O labelled O at O A181C B-mutant / O Q324C B-mutant such O that O a O mixture O of O Cy3 B-chemical / O Cy5 B-chemical fluorophores B-chemical are O expected O to O be O present O at O each O site O . O ( O c O – O f O , O i O , O j O ) O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O immobilized O on O the O microscope O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical ( O orange O line O ) O on O a O neutravidin O ( O black O X O )- O biotin O - O PEG O ( O orange O triangle O )- O treated O surface O and O imaged O either O in O the O absence B-protein_state of I-protein_state ligands B-chemical ( O c O , O d O ), O in O the O presence O of O 5 O μM O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical ( O 5 B-chemical ′- I-chemical CCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O e O , O f O ), O or O in O the O presence O of O 10 O μM O adenosine B-residue_name - O interrupted O variant O RNA B-chemical ( O 5 B-chemical ′- I-chemical CUUUUUAAUUUCCA I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O i O , O j O ). O The O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O ( O 1 O nM O ) O was O added O to O AdML B-gene RNA B-chemical – I-chemical polyethylene I-chemical - I-chemical glycol I-chemical - I-chemical linker I-chemical – I-chemical DNA I-chemical oligonucleotide I-chemical ( O 10 O nM O ), O which O was O immobilized O on O the O microscope O slide O by O annealing O with O a O complementary O biotinyl B-chemical - I-chemical DNA I-chemical oligonucleotide I-chemical ( O black O vertical O line O ). O Typical O single B-experimental_method - I-experimental_method molecule I-experimental_method FRET I-experimental_method traces B-evidence ( O c O , O e O , O g O , O i O ) O show O fluorescence O intensities O from O Cy3 B-chemical ( O green O ) O and O Cy5 B-chemical ( O red O ) O and O the O calculated B-evidence apparent I-evidence FRET I-evidence efficiency I-evidence ( O blue O ). O Additional O traces B-evidence for O untethered B-protein_state , O RNA B-protein_state - I-protein_state bound I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O are O shown O in O Supplementary O Fig O . O 7c O , O d O . O Histograms B-evidence ( O d O , O f O , O h O , O j O ) O show O the O distribution B-evidence of I-evidence FRET I-evidence values I-evidence in O RNA B-protein_state - I-protein_state free I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O d O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O f O ); O AdML B-gene RNA B-protein_state - I-protein_state bound I-protein_state , O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O h O ) O and O adenosine O - O interrupted O RNA B-protein_state - I-protein_state bound I-protein_state , O slide B-protein_state - I-protein_state tethered I-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O ( O j O ). O N O is O the O number O of O single O - O molecule O traces B-evidence compiled O for O each O histogram B-evidence . O Schematic O models O of O U2AF65 B-protein recognizing O the O Py B-chemical tract I-chemical . O ( O a O ) O Diagram O of O the O U2AF65 B-protein , O SF1 B-protein and O U2AF35 B-protein splicing O factors O bound B-protein_state to I-protein_state the O consensus O elements O of O the O 3 B-site ′ I-site splice I-site site I-site . O A O surface O representation O of O U2AF651 B-mutant , I-mutant 2L I-mutant is O shown O bound B-protein_state to I-protein_state nine O nucleotides B-chemical ( O nt O ); O the O relative O distances O and O juxtaposition O of O the O branch B-site point I-site sequence I-site ( O BPS B-site ) O and O consensus O AG B-chemical dinucleotide I-chemical at O the O 3 B-site ′ I-site splice I-site site I-site are O unknown O . O MDS O - O relevant O mutated O residues O of O U2AF65 B-protein are O shown O as O yellow O spheres O ( O L187 B-residue_name_number and O M144 B-residue_name_number ). O ( O b O ) O Following O binding O to O the O Py B-chemical - I-chemical tract I-chemical RNA I-chemical , O a O conformation O corresponding O to O high B-evidence FRET I-evidence and O consistent O with O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state apo B-protein_state - O U2AF65 B-protein model O resulting O from O PRE B-experimental_method / O NMR B-experimental_method characterization O ( O PDB O ID O 2YH0 O ) O often O transitions O to O a O conformation O corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence , O which O is O consistent O with O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state RRMs B-structure_element such O as O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O Alternatively O , O a O conformation O of O U2AF65 B-protein corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence can O directly O bind O to O RNA B-chemical ; O RNA B-chemical binding O stabilizes O the O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state conformation O and O thus O shifts O the O U2AF65 B-protein population O towards O the O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence . O RRM1 B-structure_element , O green O ; O RRM2 B-structure_element , O pale O blue O ; O RRM B-structure_element extensions I-structure_element / O linker B-structure_element , O blue O . O Mechanistic O insight O into O a O peptide B-protein_type hormone I-protein_type signaling O complex O mediating O floral O organ O abscission O Plants B-taxonomy_domain constantly O renew O during O their O life O cycle O and O thus O require O to O shed O senescent O and O damaged O organs O . O Floral O abscission O is O controlled O by O the O leucine B-protein_type - I-protein_type rich I-protein_type repeat I-protein_type receptor I-protein_type kinase I-protein_type ( O LRR B-protein_type - I-protein_type RK I-protein_type ) O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O It O is O unknown O how O expression O of O IDA B-protein in O the O abscission O zone O leads O to O HAESA B-protein activation O . O Here O we O show O that O IDA B-protein is O sensed O directly O by O the O HAESA B-protein ectodomain B-structure_element . O Crystal B-evidence structures I-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state IDA B-protein reveal O a O hormone B-site binding I-site pocket I-site that O accommodates O an O active B-protein_state dodecamer B-structure_element peptide B-chemical . O A O central O hydroxyproline B-residue_name residue O anchors O IDA B-protein to O the O receptor O . O The O HAESA B-protein co B-protein_type - I-protein_type receptor I-protein_type SERK1 B-protein , O a O positive O regulator O of O the O floral O abscission O pathway O , O allows O for O high O - O affinity O sensing O of O the O peptide B-protein_type hormone I-protein_type by O binding O to O an O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O This O sequence O pattern O is O conserved B-protein_state among O diverse O plant B-taxonomy_domain peptides B-chemical , O suggesting O that O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type receptors I-protein_type may O share O a O common O ligand O binding O mode O and O activation O mechanism O . O Plants B-taxonomy_domain can O shed O their O leaves O , O flowers O or O other O organs O when O they O no O longer O need O them O . O But O how O does O a O leaf O or O a O flower O know O when O to O let O go O ? O A O receptor B-protein_type protein I-protein_type called O HAESA B-protein is O found O on O the O surface O of O the O cells O that O surround O a O future O break O point O on O the O plant O . O When O its O time O to O shed O an O organ O , O a O hormone B-chemical called O IDA B-protein instructs O HAESA B-protein to O trigger O the O shedding O process O . O However O , O the O molecular O details O of O how O IDA B-protein triggers O organ O shedding O are O not O clear O . O The O shedding O of O floral O organs O ( O or O leaves O ) O can O be O easily O studied O in O a O model O plant B-taxonomy_domain called O Arabidopsis B-taxonomy_domain . O Santiago O et O al O . O used O protein B-experimental_method biochemistry I-experimental_method , O structural B-experimental_method biology I-experimental_method and O genetics B-experimental_method to O uncover O how O the O IDA B-protein hormone B-chemical activates O HAESA B-protein . O The O experiments O show O that O IDA B-protein binds B-protein_state directly I-protein_state to I-protein_state a O canyon B-protein_state shaped I-protein_state pocket B-site in O HAESA B-protein that O extends O out O from O the O surface O of O the O cell O . O IDA B-protein binding O to O HAESA B-protein allows O another O receptor B-protein_type protein I-protein_type called O SERK1 B-protein to B-protein_state bind I-protein_state to I-protein_state HAESA B-protein , O which O results O in O the O release O of O signals O inside O the O cell O that O trigger O the O shedding O of O organs O . O The O next O step O following O on O from O this O work O is O to O understand O what O signals O are O produced O when O IDA B-protein activates O HAESA B-protein . O Another O challenge O will O be O to O find O out O where O IDA B-protein is O produced O in O the O plant B-taxonomy_domain and O what O causes O it O to O accumulate O in O specific O places O in O preparation O for O organ O shedding O . O The O HAESA B-protein ectodomain B-structure_element folds O into O a O superhelical B-structure_element assembly I-structure_element of O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element . O ( O A O ) O SDS B-experimental_method PAGE I-experimental_method analysis O of O the O purified O Arabidopsis B-species thaliana I-species HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O obtained O by O secreted B-experimental_method expression I-experimental_method in I-experimental_method insect I-experimental_method cells I-experimental_method . O The O calculated O molecular O mass O is O 65 O . O 7 O kDa O , O the O actual O molecular O mass O obtained O by O mass B-experimental_method spectrometry I-experimental_method is O 74 O , O 896 O Da O , O accounting O for O the O N B-chemical - I-chemical glycans I-chemical . O ( O B O ) O Ribbon O diagrams O showing O front O ( O left O panel O ) O and O side O views O ( O right O panel O ) O of O the O isolated O HAESA B-protein LRR B-structure_element domain I-structure_element . O The O N O - O ( O residues O 20 B-residue_range – I-residue_range 88 I-residue_range ) O and O C O - O terminal O ( O residues O 593 B-residue_range – I-residue_range 615 I-residue_range ) O capping B-structure_element domains I-structure_element are O shown O in O yellow O , O the O central O 21 O LRR B-structure_element motifs I-structure_element are O in O blue O and O disulphide B-ptm bonds I-ptm are O highlighted O in O green O ( O in O bonds O representation O ). O ( O C O ) O Structure B-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element in O HAESA B-protein with O the O plant B-taxonomy_domain LRR B-structure_element consensus O sequence O shown O for O comparison O . O Conserved B-protein_state hydrophobic B-protein_state residues B-structure_element are O shaded O in O gray O , O N B-site - I-site glycosylation I-site sites I-site visible O in O our O structures B-evidence are O highlighted O in O blue O , O cysteine B-residue_name residues O involved O in O disulphide B-ptm bridge I-ptm formation O in O green O . O ( O D O ) O Asn B-ptm - I-ptm linked I-ptm glycans I-ptm mask O the O N O - O terminal O portion O of O the O HAESA B-protein ectodomain B-structure_element . O Oligomannose B-chemical core O structures O ( O containing O two O N B-chemical - I-chemical actylglucosamines I-chemical and O three O terminal O mannose B-chemical units O ) O as O found O in O Trichoplusia B-species ni I-species cells O and O in O plants B-taxonomy_domain were O modeled O onto O the O seven O glycosylation B-site sites I-site observed O in O our O HAESA B-protein structures B-evidence , O to O visualize O the O surface O areas O potentially O not O masked O by O carbohydrate B-chemical . O The O HAESA B-protein ectodomain B-structure_element is O shown O in O blue O ( O in O surface O representation O ), O the O glycan B-chemical structures O are O shown O in O yellow O . O Hydrophobic O contacts O and O a O hydrogen B-site - I-site bond I-site network I-site mediate O the O interaction O between O HAESA B-protein and O the O peptide B-protein_type hormone I-protein_type IDA B-protein . O ( O A O ) O Details O of O the O IDA B-site binding I-site pocket I-site . O HAESA B-protein is O shown O in O blue O ( O ribbon O diagram O ), O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element ( O left O panel O ), O the O central O Hyp B-structure_element anchor I-structure_element ( O center O ) O and O the O N O - O terminal O Pro B-structure_element - I-structure_element rich I-structure_element motif I-structure_element in O IDA B-protein ( O right O panel O ) O are O shown O in O yellow O ( O in O bonds O representation O ). O HAESA B-site interface I-site residues I-site are O shown O as O sticks O , O selected O hydrogen O bond O interactions O are O denoted O as O dotted O lines O ( O in O magenta O ). O ( O B O ) O View O of O the O complete O IDA B-protein ( O in O bonds O representation O , O in O yellow O ) O binding B-site pocket I-site in O HAESA B-protein ( O surface O view O , O in O blue O ). O Orientation O as O in O ( O A O ). O ( O C O ) O Structure B-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element in O HAESA B-protein with O the O plant B-taxonomy_domain LRR B-structure_element consensus B-evidence sequence I-evidence shown O for O comparison O . O Residues O mediating O hydrophobic O interactions O with O the O IDA B-chemical peptide I-chemical are O highlighted O in O blue O , O residues O contributing O to O hydrogen O bond O interactions O and O / O or O salt O bridges O are O shown O in O red O . O The O IDA B-site binding I-site pocket I-site covers O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element and O all O residues O originate O from O the O inner O surface O of O the O HAESA B-protein superhelix B-structure_element . O The O IDA B-complex_assembly - I-complex_assembly HAESA I-complex_assembly and O SERK1 B-complex_assembly - I-complex_assembly HAESA I-complex_assembly complex O interfaces B-site are O conserved B-protein_state among O HAESA B-protein and O HAESA B-protein_type - I-protein_type like I-protein_type proteins I-protein_type from O different O plant B-taxonomy_domain species O . O Structure B-experimental_method - I-experimental_method based I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O HAESA B-protein_type family I-protein_type members I-protein_type : O Arabidopsis B-species thaliana I-species HAESA B-protein ( O Uniprot O ( O http O :// O www O . O uniprot O . O org O ) O ID O P47735 O ), O Arabidopsis B-species thaliana I-species HSL2 B-protein ( O Uniprot O ID O C0LGX3 O ), O Capsella B-species rubella I-species HAESA B-protein ( O Uniprot O ID O R0F2U6 O ), O Citrus B-species clementina I-species HSL2 B-protein ( O Uniprot O ID O V4U227 O ), O Vitis B-species vinifera I-species HAESA B-protein ( O Uniprot O ID O F6HM39 O ). O The O alignment O includes O a O secondary O structure O assignment O calculated O with O the O program O DSSP O and O colored O according O to O Figure O 1 O , O with O the O N O - O and O C O - O terminal O caps B-structure_element and O the O 21 O LRR B-structure_element motifs I-structure_element indicated O in O orange O and O blue O , O respectively O . O Cysteine B-residue_name residues O engaged O in O disulphide B-ptm bonds I-ptm are O depicted O in O green O . O HAESA B-protein residues O interacting O with O the O IDA B-chemical peptide I-chemical and O / O or O the O SERK1 B-protein co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type ectodomain B-structure_element are O highlighted O in O blue O and O orange O , O respectively O . O The O peptide B-protein_type hormone I-protein_type IDA B-protein binds O to O the O HAESA B-protein LRR B-structure_element ectodomain I-structure_element . O ( O A O ) O Multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method of O selected O IDA B-protein_type family I-protein_type members I-protein_type . O The O conserved B-protein_state PIP B-structure_element motif I-structure_element is O highlighted O in O yellow O , O the O central O Hyp B-residue_name in O blue O . O The O PKGV B-structure_element motif I-structure_element present O in O our O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-chemical peptide I-chemical is O highlighted O in O red O . O ( O B O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O the O HAESA B-protein ectodomain B-structure_element vs O . O IDA B-protein and O including O the O synthetic B-protein_state peptide B-chemical sequence O . O ( O C O ) O Structure O of O the O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly complex O with O HAESA B-protein shown O in O blue O ( O ribbon O diagram O ). O IDA B-protein ( O in O bonds O representation O , O surface O view O included O ) O is O depicted O in O yellow O . O The O peptide B-site binding I-site pocket I-site covers O HAESA B-protein LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element . O ( O D O ) O Close O - O up O view O of O the O entire O IDA B-protein ( O in O yellow O ) O peptide B-site binding I-site site I-site in O HAESA B-protein ( O in O blue O ). O Details O of O the O interactions O between O the O central O Hyp B-structure_element anchor I-structure_element in O IDA B-protein and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element with O HAESA B-protein are O highlighted O in O ( O E O ) O and O ( O F O ), O respectively O . O Hydrogren O bonds O are O depicted O as O dotted O lines O ( O in O magenta O ), O a O water B-chemical molecule O is O shown O as O a O red O sphere O . O During O their O growth O , O development O and O reproduction O plants B-taxonomy_domain use O cell O separation O processes O to O detach O no O - O longer O required O , O damaged O or O senescent O organs O . O Abscission O of O floral O organs O in O Arabidopsis B-taxonomy_domain is O a O model O system O to O study O these O cell O separation O processes O in O molecular O detail O . O The O LRR B-structure_element - I-structure_element RKs I-structure_element HAESA B-protein ( O greek O : O to O adhere O to O ) O and O HAESA B-protein - I-protein LIKE I-protein 2 I-protein ( O HSL2 B-protein ) O redundantly O control O floral O abscission O . O Loss O - O of O - O function O of O the O secreted O small O protein O INFLORESCENCE B-protein DEFICIENT I-protein IN I-protein ABSCISSION I-protein ( O IDA B-protein ) O causes O floral O organs O to O remain O attached O while O its O over O - O expression O leads O to O premature O shedding O . O Full B-protein_state - I-protein_state length I-protein_state IDA B-protein is O proteolytically B-ptm processed I-ptm and O a O conserved B-protein_state stretch B-residue_range of I-residue_range 20 I-residue_range amino I-residue_range - I-residue_range acids I-residue_range ( O termed O EPIP B-structure_element ) O can O rescue O the O IDA B-protein loss O - O of O - O function O phenotype O ( O Figure O 1A O ). O It O has O been O demonstrated O that O a O dodecamer B-structure_element peptide B-chemical within O EPIP B-structure_element is O able O to O activate O HAESA B-protein and O HSL2 B-protein in O transient B-experimental_method assays I-experimental_method in O tobacco B-taxonomy_domain cells O . O This B-structure_element sequence I-structure_element motif I-structure_element is O highly B-protein_state conserved I-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type ( O IDA B-protein_type - I-protein_type LIKE I-protein_type PROTEINS I-protein_type , O IDLs B-protein_type ) O and O contains O a O central O Pro B-residue_name residue O , O presumed O to O be O post B-protein_state - I-protein_state translationally I-protein_state modified I-protein_state to O hydroxyproline B-residue_name ( O Hyp B-residue_name ; O Figure O 1A O ). O The O available O genetic O and O biochemical O evidence O suggests O that O IDA B-protein and O HAESA B-protein together O control O floral O abscission O , O but O it O is O poorly O understood O if O IDA B-protein is O directly O sensed O by O the O receptor B-protein_type kinase I-protein_type HAESA B-protein and O how O IDA B-protein binding O at O the O cell O surface O would O activate O the O receptor O . O IDA B-protein directly O binds O to O the O LRR B-structure_element domain I-structure_element of O HAESA B-protein Active B-protein_state IDA B-protein_type - I-protein_type family I-protein_type peptide I-protein_type hormones I-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O Close O - O up O views O of O ( O A O ) O IDA B-protein , O ( O B O ) O the O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state PKGV B-mutant - I-mutant IDA I-mutant and O ( O C O ) O IDL1 B-protein bound B-protein_state to I-protein_state the O HAESA B-protein hormone B-site binding I-site pocket I-site ( O in O bonds O representation O , O in O yellow O ) O and O including O simulated B-experimental_method annealing I-experimental_method 2Fo B-evidence – I-evidence Fc I-evidence omit I-evidence electron I-evidence density I-evidence maps I-evidence contoured O at O 1 O . O 0 O σ O . O Note O that O Pro58IDA B-residue_name_number and O Leu67IDA B-residue_name_number are O the O first O residues O defined O by O electron B-evidence density I-evidence when O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O ( O D O ) O Table O summaries O for O equilibrium B-evidence dissociation I-evidence constants I-evidence ( O Kd B-evidence ), O binding B-evidence enthalpies I-evidence ( O ΔH B-evidence ), O binding B-evidence entropies I-evidence ( O ΔS B-evidence ) O and O stoichoimetries O ( O N O ) O for O different O IDA B-chemical peptides I-chemical binding O to O the O HAESA B-protein ectodomain B-structure_element ( O ± O fitting O errors O ; O n O . O d O . O no O detectable O binding O ). O ( O E O ) O Structural B-experimental_method superposition I-experimental_method of O the O active B-protein_state IDA B-protein ( O in O bonds O representation O , O in O gray O ) O and O IDL1 B-chemical peptide I-chemical ( O in O yellow O ) O hormones O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O Root B-evidence mean I-evidence square I-evidence deviation I-evidence ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence .) I-evidence is O 1 O . O 0 O Å O comparing O 100 O corresponding O atoms O . O The O receptor B-protein_type kinase I-protein_type SERK1 B-protein acts O as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type and O promotes O high O - O affinity O IDA B-protein sensing O . O ( O A O ) O Petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assays I-experimental_method measure O the O force O ( O expressed O in O gram O equivalents O ) O required O to O remove O the O petals O from O the O flower O of O serk B-gene mutant B-protein_state plants B-taxonomy_domain compared O to O haesa B-gene / O hsl2 B-gene mutant B-protein_state and O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state flowers O . O Petal O break O - O strength O was O found O significantly O increased O in O almost O all O positions O ( O indicated O with O a O *) O for O haesa B-gene / O hsl2 B-gene and O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain with O respect O to O the O Col O - O 0 O control O . O ( O B O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O The O HAESA B-protein LRR B-structure_element domain I-structure_element elutes O as O a O monomer B-oligomeric_state ( O black O dotted O line O ), O as O does O the O isolated O SERK1 B-protein ectodomain B-structure_element ( O blue O dotted O line O ). O A O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O elutes O as O an O apparent O heterodimer B-oligomeric_state ( O red O line O ), O while O a O mixture O of O HAESA B-protein and O SERK1 B-protein yields O two O isolated O peaks O that O correspond O to O monomeric B-oligomeric_state HAESA B-protein and O SERK1 B-protein , O respectively O ( O black O line O ). O Void O ( O V0 O ) O volume O and O total O volume O ( O Vt O ) O are O shown O , O together O with O elution O volumes O for O molecular O mass O standards O ( O A O , O Thyroglobulin B-protein , O 669 O , O 000 O Da O ; O B O , O Ferritin B-protein , O 440 O , O 00 O Da O , O C O , O Aldolase B-protein , O 158 O , O 000 O Da O ; O D O , O Conalbumin B-protein , O 75 O , O 000 O Da O ; O E O , O Ovalbumin B-protein , O 44 O , O 000 O Da O ; O F O , O Carbonic B-protein anhydrase I-protein , O 29 O , O 000 O Da O ). O A O SDS B-experimental_method PAGE I-experimental_method of O the O peak O fractions O is O shown O alongside O . O Purified O HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O ( O C O ) O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state and O Hyp64 B-mutant → I-mutant Pro I-mutant IDA I-mutant versus O the O HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element . O The O titration B-experimental_method of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state versus O the O isolated O HAESA B-protein ectodomain B-structure_element from O Figure O 1B O is O shown O for O comparison O ( O red O line O ; O n O . O d O . O no O detectable O binding O ) O ( O D O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method in O the O presence B-protein_state of I-protein_state the O IDA B-mutant Hyp64 I-mutant → I-mutant Pro I-mutant mutant B-protein_state peptide B-chemical reveals O no O complex O formation O between O HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element . O ( O E O ) O In B-experimental_method vitro I-experimental_method kinase I-experimental_method assays I-experimental_method of O the O HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element . O Wild B-protein_state - I-protein_state type I-protein_state HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element ( O KDs B-structure_element ) O exhibit O auto O - O phosphorylation O activities O ( O lanes O 1 O + O 3 O ). O Mutant B-protein_state ( O m O ) O versions O , O which O carry O point B-experimental_method mutations I-experimental_method in O their O active B-site sites I-site ( O Asp837HAESA B-mutant → I-mutant Asn I-mutant , O Asp447SERK1 B-mutant → I-mutant Asn I-mutant ) O possess O no O autophosphorylation O activity O ( O lanes O 2 O + O 4 O ). O Transphosphorylation O activity O from O the O active B-protein_state kinase O to O the O mutated B-protein_state form O can O be O observed O in O both O directions O ( O lanes O 5 O + O 6 O ). O We O purified B-experimental_method the O HAESA B-protein ectodomain B-structure_element ( O residues O 20 B-residue_range – I-residue_range 620 I-residue_range ) O from O baculovirus B-experimental_method - I-experimental_method infected I-experimental_method insect I-experimental_method cells I-experimental_method ( O Figure O 1 O — O figure O supplement O 1A O , O see O Materials O and O methods O ) O and O quantified O the O interaction O of O the O ~ O 75 O kDa O glycoprotein B-protein_type with O synthetic B-protein_state IDA B-chemical peptides I-chemical using O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ). O A O Hyp B-protein_state - I-protein_state modified I-protein_state dodecamer B-structure_element comprising O the O highly B-protein_state conserved I-protein_state PIP B-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 1A O ) O interacts O with O HAESA B-protein with O 1 O : O 1 O stoichiometry O ( O N O ) O and O with O a O dissociation B-evidence constant I-evidence ( O Kd B-evidence ) O of O ~ O 20 O μM O ( O Figure O 1B O ). O We O next O determined O crystal B-evidence structures I-evidence of O the O apo B-protein_state HAESA B-protein ectodomain B-structure_element and O of O a O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O , O at O 1 O . O 74 O and O 1 O . O 86 O Å O resolution O , O respectively O ( O Figure O 1C O ; O Figure O 1 O — O figure O supplement O 1B O – O D O ; O Tables O 1 O , O 2 O ). O IDA B-protein binds O in O a O completely B-protein_state extended I-protein_state conformation I-protein_state along O the O inner O surface O of O the O HAESA B-protein ectodomain B-structure_element , O covering O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ( O Figure O 1C O , O D O , O Figure O 1 O — O figure O supplement O 2 O ). O The O central O Hyp64IDA B-residue_name_number is O buried O in O a O specific O pocket B-site formed O by O HAESA B-protein LRRs B-structure_element 8 I-structure_element – I-structure_element 10 I-structure_element , O with O its O hydroxyl O group O establishing O hydrogen O bonds O with O the O strictly B-protein_state conserved I-protein_state Glu266HAESA B-residue_name_number and O with O a O water B-chemical molecule O , O which O in O turn O is O coordinated O by O the O main O chain O oxygens O of O Phe289HAESA B-residue_name_number and O Ser311HAESA B-residue_name_number ( O Figure O 1E O ; O Figure O 1 O — O figure O supplement O 3 O ). O The O restricted O size O of O the O Hyp B-site pocket I-site suggests O that O IDA B-protein does O not O require O arabinosylation B-ptm of O Hyp64IDA B-residue_name_number for O activity O in O vivo O , O a O modification O that O has O been O reported O for O Hyp B-residue_name residues O in O plant B-taxonomy_domain CLE B-protein_type peptide I-protein_type hormones I-protein_type . O The O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein maps O to O a O cavity B-site formed O by O HAESA B-protein LRRs B-structure_element 11 I-structure_element – I-structure_element 14 I-structure_element ( O Figure O 1D O , O F O ). O The O COO O - O group O of O Asn69IDA B-residue_name_number is O in O direct O contact O with O Arg407HAESA B-residue_name_number and O Arg409HAESA B-residue_name_number and O HAESA B-protein cannot O bind O a O C B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state IDA B-mutant - I-mutant SFVN I-mutant peptide O ( O Figures O 1D O , O F O , O 2D O ). O This O suggests O that O the O conserved B-protein_state Asn69IDA B-residue_name_number may O constitute O the O very O C O - O terminus O of O the O mature B-protein_state IDA B-chemical peptide I-chemical in O planta B-taxonomy_domain and O that O active B-protein_state IDA B-protein is O generated O by O proteolytic O processing O from O a O longer O pre O - O protein O . O Mutation B-experimental_method of O Arg417HSL2 B-residue_name_number ( O which O corresponds O to O Arg409HAESA B-residue_name_number ) O causes O a O loss O - O of O - O function O phenotype O in O HSL2 B-protein , O which O indicates O that O the O peptide B-site binding I-site pockets I-site in O different O HAESA B-protein_type receptors I-protein_type have O common O structural O and O sequence O features O . O Indeed O , O we O find O many O of O the O residues O contributing O to O the O formation O of O the O IDA B-site binding I-site surface I-site in O HAESA B-protein to O be O conserved B-protein_state in O HSL2 B-protein and O in O other O HAESA B-protein_type - I-protein_type type I-protein_type receptors I-protein_type in O different O plant B-taxonomy_domain species O ( O Figure O 1 O — O figure O supplement O 3 O ). O A O N O - O terminal O Pro B-structure_element - I-structure_element rich I-structure_element motif I-structure_element in O IDA B-protein makes O contacts O with O LRRs B-structure_element 2 I-structure_element – I-structure_element 6 I-structure_element of O the O receptor O ( O Figure O 1D O , O Figure O 1 O — O figure O supplement O 2A O – O C O ). O Other O hydrophobic O and O polar O interactions O are O mediated O by O Ser62IDA B-residue_name_number , O Ser65IDA B-residue_name_number and O by O backbone O atoms O along O the O IDA B-chemical peptide I-chemical ( O Figure O 1D O , O Figure O 1 O — O figure O supplement O 2A O – O C O ). O HAESA B-protein specifically O senses O IDA B-protein_type - I-protein_type family I-protein_type dodecamer B-structure_element peptides B-chemical We O next O investigated O whether O HAESA B-protein binds O N B-protein_state - I-protein_state terminally I-protein_state extended I-protein_state versions O of O IDA B-protein . O We O obtained O a O structure B-evidence of O HAESA B-protein in B-protein_state complex I-protein_state with I-protein_state a O PKGV B-mutant - I-mutant IDA I-mutant peptide B-chemical at O 1 O . O 94 O Å O resolution O ( O Table O 2 O ). O In O this O structure B-evidence , O no O additional O electron B-evidence density I-evidence accounts O for O the O PKGV B-structure_element motif I-structure_element at O the O IDA B-protein N O - O terminus O ( O Figure O 2A O , O B O ). O Consistently O , O PKGV B-mutant - I-mutant IDA I-mutant and O IDA B-protein have O similar O binding B-evidence affinities I-evidence in O our O ITC B-experimental_method assays I-experimental_method , O further O indicating O that O HAESA B-protein senses O a O dodecamer B-structure_element peptide B-chemical comprising O residues O 58 B-residue_range - I-residue_range 69IDA I-residue_range ( O Figure O 2D O ). O We O next O tested O if O HAESA B-protein binds O other O IDA B-chemical peptide I-chemical family I-chemical members I-chemical . O IDL1 B-protein , O which O can O rescue O IDA B-protein loss O - O of O - O function O mutants O when O introduced O in O abscission O zone O cells O , O can O also O be O sensed O by O HAESA B-protein , O albeit O with O lower O affinity B-evidence ( O Figure O 2D O ). O A O 2 O . O 56 O Å O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O IDL1 B-protein reveals O that O different O IDA B-protein_type family I-protein_type members I-protein_type use O a O common O binding O mode O to O interact O with O HAESA B-protein_type - I-protein_type type I-protein_type receptors I-protein_type ( O Figure O 2A O – O C O , O E O , O Table O 2 O ). O We O do O not O detect O interaction O between O HAESA B-protein and O a O synthetic B-protein_state peptide B-chemical missing B-protein_state the I-protein_state C I-protein_state - I-protein_state terminal I-protein_state Asn69IDA B-residue_name_number ( O ΔN69 B-mutant ), O highlighting O the O importance O of O the O polar O interactions O between O the O IDA B-protein carboxy O - O terminus O and O Arg407HAESA B-residue_name_number / O Arg409HAESA B-residue_name_number ( O Figures O 1F O , O 2D O ). O Replacing B-experimental_method Hyp64IDA B-residue_name_number , O which O is O common O to O all O IDLs B-protein_type , O with O proline B-residue_name impairs O the O interaction O with O the O receptor O , O as O does O the O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state discussed O below O ( O Figure O 1A O , O 2D O ). O Notably O , O HAESA B-protein can O discriminate O between O IDLs B-protein_type and O functionally B-protein_state unrelated I-protein_state dodecamer B-structure_element peptides B-chemical with O Hyp B-ptm modifications I-ptm , O such O as O CLV3 B-protein ( O Figures O 2D O , O 7 O ). O The O co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type SERK1 B-protein allows O for O high O - O affinity O IDA O sensing O Our O binding B-experimental_method assays I-experimental_method reveal O that O IDA B-chemical family I-chemical peptides I-chemical are O sensed O by O the O isolated B-protein_state HAESA B-protein ectodomain B-structure_element with O relatively O weak O binding B-evidence affinities I-evidence ( O Figures O 1B O , O 2A O – O D O ). O It O has O been O recently O reported O that O SOMATIC B-protein_type EMBRYOGENESIS I-protein_type RECEPTOR I-protein_type KINASES I-protein_type ( O SERKs B-protein_type ) O are O positive O regulators O of O floral O abscission O and O can O interact O with O HAESA B-protein and O HSL2 B-protein in O an O IDA O - O dependent O manner O . O As O all O five O SERK B-protein_type family I-protein_type members I-protein_type appear O to O be O expressed O in O the O Arabidopsis B-taxonomy_domain abscission O zone O , O we O quantified O their O relative O contribution O to O floral O abscission O in O Arabidopsis B-taxonomy_domain using O a O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method . O Our O experiments O suggest O that O among O the O SERK B-protein_type family I-protein_type members I-protein_type , O SERK1 B-protein is O a O positive O regulator O of O floral O abscission O . O We O found O that O the O force O required O to O remove O the O petals O of O serk1 B-gene - I-gene 1 I-gene mutants B-protein_state is O significantly O higher O than O that O needed O for O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain , O as O previously O observed O for O haesa B-gene / O hsl2 B-gene mutants B-protein_state , O and O that O floral O abscission O is O delayed O in O serk1 B-gene - I-gene 1 I-gene ( O Figure O 3A O ). O The O serk2 B-gene - I-gene 2 I-gene , O serk3 B-gene - I-gene 1 I-gene , O serk4 B-gene - I-gene 1 I-gene and O serk5 B-gene - I-gene 1 I-gene mutant B-protein_state lines O showed O a O petal O break O - O strength O profile O not O significantly O different O from O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain . O Possibly O because O SERKs B-protein_type have O additional O roles O in O plant O development O such O as O in O pollen O formation O and O brassinosteroid O signaling O , O we O found O that O higher O - O order O SERK O mutants O exhibit O pleiotropic O phenotypes O in O the O flower O , O rendering O their O analysis O and O comparison O by O quantitative B-experimental_method petal I-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assays I-experimental_method difficult O . O We O thus O focused O on O analyzing O the O contribution O of O SERK1 B-protein to O HAESA B-protein ligand O sensing O and O receptor O activation O . O In O vitro O , O the O LRR B-structure_element ectodomain I-structure_element of O SERK1 B-protein ( O residues O 24 B-residue_range – I-residue_range 213 I-residue_range ) O forms O stable B-protein_state , O IDA B-protein_state - I-protein_state dependent I-protein_state heterodimeric B-oligomeric_state complexes B-protein_state with I-protein_state HAESA B-protein in O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O ( O Figure O 3B O ). O We O next O quantified O the O contribution O of O SERK1 B-protein to O IDA B-protein recognition O by O HAESA B-protein . O We O found O that O HAESA B-protein senses O IDA B-protein with O a O ~ O 60 O fold O higher O binding B-evidence affinity I-evidence in O the O presence B-protein_state of I-protein_state SERK1 B-protein , O suggesting O that O SERK1 B-protein is O involved O in O the O specific O recognition O of O the O peptide B-protein_type hormone I-protein_type ( O Figure O 3C O ). O We O next O titrated B-experimental_method SERK1 B-protein into O a O solution O containing O only O the O HAESA B-protein ectodomain B-structure_element . O In O this O case O , O there O was O no O detectable O interaction O between O receptor O and O co O - O receptor O , O while O in O the O presence B-protein_state of I-protein_state IDA B-protein , O SERK1 B-protein strongly O binds O HAESA B-protein with O a O dissociation B-evidence constant I-evidence in O the O mid O - O nanomolar O range O ( O Figure O 3C O ). O This O suggests O that O IDA B-protein itself O promotes O receptor O – O co O - O receptor O association O , O as O previously O described O for O the O steroid B-chemical hormone I-chemical brassinolide B-chemical and O for O other O LRR B-complex_assembly - I-complex_assembly RK I-complex_assembly complexes O . O Importantly O , O hydroxyprolination B-ptm of O IDA B-protein is O critical O for O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O ( O Figure O 3C O , O D O ). O Our O calorimetry B-experimental_method experiments O now O reveal O that O SERKs B-protein_type may O render O HAESA B-protein , O and O potentially O other O receptor B-protein_type kinases I-protein_type , O competent O for O high O - O affinity O sensing O of O their O cognate O ligands O . O Upon O IDA B-protein binding O at O the O cell O surface O , O the O kinase B-structure_element domains I-structure_element of O HAESA B-protein and O SERK1 B-protein , O which O have O been O shown O to O be O active B-protein_state protein B-protein_type kinases I-protein_type , O may O interact O in O the O cytoplasm O to O activate O each O other O . O Consistently O , O the O HAESA B-protein kinase B-structure_element domain I-structure_element can O transphosphorylate O SERK1 B-protein and O vice O versa O in O in O vitro O transphosphorylation B-experimental_method assays I-experimental_method ( O Figure O 3E O ). O Together O , O our O genetic B-experimental_method and I-experimental_method biochemical I-experimental_method experiments I-experimental_method implicate O SERK1 B-protein as O a O HAESA B-protein_type co I-protein_type - I-protein_type receptor I-protein_type in O the O Arabidopsis B-taxonomy_domain abscission O zone O . O SERK1 B-protein senses O a O conserved B-protein_state motif B-structure_element in O IDA B-chemical family I-chemical peptides I-chemical Crystal B-evidence structure I-evidence of O a O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly signaling O complex O . O ( O A O ) O Overview O of O the O ternary O complex O with O HAESA B-protein in O blue O ( O surface O representation O ), O IDA B-protein in O yellow O ( O bonds O representation O ) O and O SERK1 B-protein in O orange O ( O surface O view O ). O ( O B O ) O The O HAESA B-protein ectodomain B-structure_element undergoes O a O conformational O change O upon O SERK1 B-protein co O - O receptor O binding O . O Shown O are O Cα O traces O of O a O structural B-experimental_method superposition I-experimental_method of O the O unbound B-protein_state ( O yellow O ) O and O SERK1 B-protein_state - I-protein_state bound I-protein_state ( O blue O ) O HAESA B-protein ectodomains B-structure_element ( O r B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence . I-evidence is O 1 O . O 5 O Å O between O 572 O corresponding O Cα O atoms O ). O SERK1 B-protein ( O in O orange O ) O and O IDA B-protein ( O in O red O ) O are O shown O alongside O . O The O conformational O change O in O the O C O - O terminal O LRRs B-structure_element and O capping B-structure_element domain I-structure_element is O indicated O by O an O arrow O . O ( O C O ) O SERK1 B-protein forms O an O integral O part O of O the O receptor O ' O s O peptide B-site binding I-site pocket I-site . O The O N O - O terminal O capping B-structure_element domain I-structure_element of O SERK1 B-protein ( O in O orange O ) O directly O contacts O the O C O - O terminal O part O of O IDA B-protein ( O in O yellow O , O in O bonds O representation O ) O and O the O receptor B-protein_type HAESA B-protein ( O in O blue O ). O Polar O contacts O of O SERK1 B-protein with O IDA B-protein are O shown O in O magenta O , O with O the O HAESA B-protein LRR B-structure_element domain I-structure_element in O gray O . O ( O D O ) O Details O of O the O zipper B-structure_element - I-structure_element like I-structure_element SERK1 B-site - I-site HAESA I-site interface I-site . O Ribbon O diagrams O of O HAESA B-protein ( O in O blue O ) O and O SERK1 B-protein ( O in O orange O ) O are O shown O with O selected O interface B-site residues I-site ( O in O bonds O representation O ). O To O understand O in O molecular O terms O how O SERK1 B-protein contributes O to O high O - O affinity O IDA B-protein recognition O , O we O solved O a O 2 O . O 43 O Å O crystal B-evidence structure I-evidence of O the O ternary O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O ( O Figure O 4A O , O Table O 2 O ). O HAESA B-protein LRRs B-structure_element 16 I-structure_element – I-structure_element 21 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element undergo O a O conformational O change O upon O SERK1 B-protein binding O ( O Figure O 4B O ). O The O SERK1 B-protein ectodomain B-structure_element interacts O with O the O IDA B-site peptide I-site binding I-site site I-site using O a O loop B-structure_element region I-structure_element ( O residues O 51 B-residue_range - I-residue_range 59SERK1 I-residue_range ) O from O its O N O - O terminal O cap B-structure_element ( O Figure O 4A O , O C O ). O SERK1 B-protein loop B-structure_element residues O establish O multiple O hydrophobic O and O polar O contacts O with O Lys66IDA B-residue_name_number and O the O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein ( O Figure O 4C O ). O SERK1 B-protein LRRs B-structure_element 1 I-structure_element – I-structure_element 5 I-structure_element and O its O C O - O terminal O capping B-structure_element domain I-structure_element form O an O additional O zipper B-structure_element - I-structure_element like I-structure_element interface B-site with O residues O originating O from O HAESA B-protein LRRs B-structure_element 15 I-structure_element – I-structure_element 21 I-structure_element and O from O the O HAESA B-protein C O - O terminal O cap B-structure_element ( O Figure O 4D O ). O SERK1 B-protein binds O HAESA B-protein using O these O two O distinct O interaction B-site surfaces I-site ( O Figure O 1 O — O figure O supplement O 3 O ), O with O the O N B-structure_element - I-structure_element cap I-structure_element of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element partially O covering O the O IDA B-site peptide I-site binding I-site cleft I-site . O The O IDA B-protein C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element is O required O for O HAESA B-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complex O formation O and O for O IDA O bioactivity O . O ( O A O ) O Size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O similar O to O Figure O 3B O , O D O reveal O that O IDA B-protein mutant B-protein_state peptides B-chemical targeting O the O C B-structure_element - I-structure_element terminal I-structure_element motif I-structure_element do O not O form O biochemically B-protein_state stable I-protein_state HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly - I-complex_assembly SERK1 I-complex_assembly complexes O . O Deletion B-experimental_method of O the O C O - O terminal O Asn69IDA B-residue_name_number completely O inhibits B-protein_state complex O formation O . O Purified B-experimental_method HAESA B-protein and O SERK1 B-protein are O ~ O 75 O and O ~ O 28 O kDa O , O respectively O . O Left O panel O : O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant ; O center O : O IDA B-mutant ΔN69 I-mutant , O right O panel O : O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method of O peak O fractions O . O Note O that O the O HAESA B-protein and O SERK1 B-protein input O lanes O have O already O been O shown O in O Figure O 3D O . O ( O B O ) O Isothermal B-evidence titration I-evidence thermographs I-evidence of O wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state IDA B-chemical peptides I-chemical titrated B-experimental_method into O a O HAESA B-protein - O SERK1 B-protein mixture O in O the O cell O . O Table O summaries O for O calorimetric B-evidence binding I-evidence constants I-evidence and O stoichoimetries O for O different O IDA B-chemical peptides I-chemical binding O to O the O HAESA B-protein – O SERK1 B-protein ectodomain B-structure_element mixture O ( O ± O fitting O errors O ; O n O . O d O . O ( O C O ) O Quantitative O petal B-experimental_method break I-experimental_method - I-experimental_method strength I-experimental_method assay I-experimental_method for O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state flowers O and O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state flowers O . O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain showed O significantly O increased O abscission O compared O to O Col O - O 0 O controls O in O inflorescence O positions O 2 O and O 3 O ( O a O ). O Up O to O inflorescence O position O 4 O , O petal O break O in O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant mutant B-protein_state plants B-taxonomy_domain was O significantly O increased O compared O to O both O Col O - O 0 O control O plants B-taxonomy_domain ( O b O ) O and O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain ( O c O ) O ( O D O ) O Normalized O expression O levels O ( O relative O expression O ± O standard O error O ; O ida O : O - O 0 O . O 02 O ± O 0 O . O 001 O ; O Col O - O 0 O : O 1 O ± O 0 O . O 11 O ; O 35S B-gene :: O IDA B-protein 124 O ± O 0 O . O 75 O ; O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant : O 159 O ± O 0 O . O 58 O ) O of O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state transcripts O in O the O 35S B-experimental_method promoter I-experimental_method over I-experimental_method - I-experimental_method expression I-experimental_method lines I-experimental_method analyzed O in O ( O C O ). O ( O E O ) O Magnified O view O of O representative O abscission O zones O from O 35S B-gene :: O IDA B-protein , O Col O - O 0 O wild B-protein_state - I-protein_state type I-protein_state and O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state T3 B-experimental_method transgenic I-experimental_method lines I-experimental_method . O 15 O out O of O 15 O 35S B-gene :: O IDA B-protein plants B-taxonomy_domain , O 0 O out O of O 15 O Col O - O 0 O plants B-taxonomy_domain and O 0 O out O of O 15 O 35S B-gene :: O IDA B-mutant K66A I-mutant / I-mutant R67A I-mutant double B-protein_state - I-protein_state mutant I-protein_state plants B-taxonomy_domain , O showed O an O enlarged O abscission O zone O , O respectively O ( O 3 O independent O lines O were O analyzed O ). O The O four O C O - O terminal O residues O in O IDA B-protein ( O Lys66IDA B-residue_range - I-residue_range Asn69IDA I-residue_range ) O are O conserved B-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type and O are O in O direct O contact O with O SERK1 B-protein ( O Figures O 1A O , O 4C O ). O We O thus O assessed O their O contribution O to O HAESA B-complex_assembly – I-complex_assembly SERK1 I-complex_assembly complex O formation O . O Deletion B-experimental_method of O the O buried O Asn69IDA B-residue_name_number completely B-protein_state inhibits I-protein_state receptor O – O co O - O receptor O complex O formation O and O HSL2 O activation O ( O Figure O 5A O , O B O ). O A O synthetic B-protein_state Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant mutant B-protein_state peptide B-chemical ( O IDA B-mutant K66A I-mutant / I-mutant R66A I-mutant ) O showed O a O 10 O fold O reduced O binding B-evidence affinity I-evidence when O titrated B-experimental_method in O a O HAESA B-protein / O SERK1 B-protein protein O solution O ( O Figures O 5A O , O B O , O 2D O ). O We O over B-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state wild B-protein_state - I-protein_state type I-protein_state IDA B-protein or O this O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state - I-protein_state mutant I-protein_state to O similar O levels O in O Col O - O 0 O Arabidopsis B-taxonomy_domain plants B-taxonomy_domain ( O Figure O 5D O ). O We O found O that O over B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state IDA B-protein leads O to O early O floral O abscission O and O an O enlargement O of O the O abscission O zone O ( O Figure O 5C O – O E O ). O In O contrast O , O over B-experimental_method - I-experimental_method expression I-experimental_method of O the O IDA B-mutant Lys66IDA I-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant double B-protein_state mutant I-protein_state significantly O delays O floral O abscission O when O compared O to O wild B-protein_state - I-protein_state type I-protein_state control O plants B-taxonomy_domain , O suggesting O that O the O mutant B-protein_state IDA B-chemical peptide I-chemical has O reduced O activity O in O planta B-taxonomy_domain ( O Figure O 5C O – O E O ). O Comparison O of O 35S B-gene :: O IDA B-protein wild B-protein_state - I-protein_state type I-protein_state and O mutant B-protein_state plants B-taxonomy_domain further O indicates O that O mutation B-experimental_method of O Lys66IDA B-mutant / I-mutant Arg67IDA I-mutant → I-mutant Ala I-mutant may O cause O a O weak O dominant O negative O effect O ( O Figure O 5C O – O E O ). O In O agreement O with O our O structures B-evidence and O biochemical B-experimental_method assays I-experimental_method , O this O experiment O suggests O a O role O of O the O conserved B-protein_state IDA B-protein C O - O terminus O in O the O control O of O floral O abscission O . O In O contrast O to O animal B-taxonomy_domain LRR B-protein_type receptors I-protein_type , O plant B-taxonomy_domain LRR B-structure_element - I-structure_element RKs I-structure_element harbor O spiral B-protein_state - I-protein_state shaped I-protein_state ectodomains B-structure_element and O thus O they O require O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptor I-protein_type proteins I-protein_type for O receptor O activation O . O For O a O rapidly O growing O number O of O plant B-taxonomy_domain signaling O pathways O , O SERK B-protein_type proteins I-protein_type act O as O these O essential O co B-protein_type - I-protein_type receptors I-protein_type (; O ). O SERK1 O has O been O previously O reported O as O a O positive O regulator O in O plant B-taxonomy_domain embryogenesis O , O male O sporogenesis O , O brassinosteroid O signaling O and O in O phytosulfokine O perception O . O Recent O findings O by O and O our O mechanistic O studies O now O also O support O a O positive O role O for O SERK1 B-protein in O floral O abscission O . O As O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain show O intermediate O abscission O phenotypes O when O compared O to O haesa B-gene / O hsl2 O mutants B-protein_state , O SERK1 B-protein likely O acts O redundantly O with O other O SERKs B-protein_type in O the O abscission O zone O ( O Figure O 3A O ). O It O has O been O previously O suggested O that O SERK1 B-protein can O inhibit O cell O separation O . O However O our O results O show O that O SERK1 B-protein also O can O activate O this O process O upon O IDA B-protein sensing O , O indicating O that O SERKs B-protein_type may O fulfill O several O different O functions O in O the O course O of O the O abscission O process O . O While O the O sequence O of O the O mature B-protein_state IDA B-chemical peptide I-chemical has O not O been O experimentally O determined O in O planta B-taxonomy_domain , O our O HAESA B-complex_assembly - I-complex_assembly IDA I-complex_assembly complex O structures B-evidence and O calorimetry B-evidence assays I-evidence suggest O that O active B-protein_state IDLs B-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O It O will O be O thus O interesting O to O see O if O proteolytic O processing O of O full B-protein_state - I-protein_state length I-protein_state IDA B-protein in O vivo O is O regulated O in O a O cell O - O type O or O tissue O - O specific O manner O . O The O central O Hyp B-residue_name residue O in O IDA B-protein is O found O buried O in O the O HAESA B-protein peptide B-site binding I-site surface I-site and O thus O this O post O - O translational O modification O may O regulate O IDA B-protein bioactivity O . O Our O comparative B-experimental_method structural I-experimental_method and I-experimental_method biochemical I-experimental_method analysis I-experimental_method further O suggests O that O IDLs B-protein_type share O a O common O receptor O binding O mode O , O but O may O preferably O bind O to O HAESA B-protein , O HSL1 B-protein or O HSL2 B-protein in O different O plant B-taxonomy_domain tissues O and O organs O . O In O our O quantitative B-experimental_method biochemical I-experimental_method assays I-experimental_method , O the O presence B-protein_state of I-protein_state SERK1 B-protein dramatically O increases O the O HAESA B-protein binding O specificity O and O affinity O for O IDA B-protein . O This O observation O is O consistent O with O our O complex O structure B-evidence in O which O receptor O and O co O - O receptor O together O form O the O IDA B-site binding I-site pocket I-site . O The O fact O that O SERK1 B-protein specifically O interacts O with O the O very O C O - O terminus O of O IDLs B-protein_type may O allow O for O the O rational O design O of O peptide B-chemical hormone I-chemical antagonists I-chemical , O as O previously O demonstrated O for O the O brassinosteroid O pathway O . O Importantly O , O our O calorimetry B-experimental_method assays I-experimental_method reveal O that O the O SERK1 B-protein ectodomain B-structure_element binds B-protein_state HAESA B-protein with O nanomolar O affinity O , O but O only O in O the O presence B-protein_state of I-protein_state IDA B-protein ( O Figure O 3C O ). O This O ligand O - O induced O formation O of O a O receptor O – O co O - O receptor O complex O may O allow O the O HAESA B-protein and O SERK1 B-protein kinase B-structure_element domains I-structure_element to O efficiently O trans O - O phosphorylate O and O activate O each O other O in O the O cytoplasm O . O It O is O of O note O that O our O reported O binding B-evidence affinities I-evidence for O IDA B-protein and O SERK1 B-protein have O been O measured O using O synthetic B-protein_state peptides B-chemical and O the O isolated B-experimental_method HAESA B-protein and O SERK1 B-protein ectodomains B-structure_element , O and O thus O might O differ O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state , O membrane B-protein_state - I-protein_state embedded I-protein_state signaling O complex O . O SERK1 B-protein uses O partially O overlapping O surface O areas O to O activate O different O plant B-taxonomy_domain signaling B-protein_type receptors I-protein_type . O ( O A O ) O Structural B-experimental_method comparison I-experimental_method of O plant B-taxonomy_domain steroid B-chemical and O peptide B-protein_type hormone I-protein_type membrane B-protein_type signaling I-protein_type complexes I-protein_type . O Left O panel O : O Ribbon O diagram O of O HAESA B-protein ( O in O blue O ), O SERK1 B-protein ( O in O orange O ) O and O IDA B-protein ( O in O bonds O and O surface O represention O ). O Right O panel O : O Ribbon O diagram O of O the O plant B-taxonomy_domain steroid B-protein_type receptor I-protein_type BRI1 B-protein ( O in O blue O ) O bound B-protein_state to I-protein_state brassinolide B-chemical ( O in O gray O , O in O bonds O representation O ) O and O to O SERK1 B-protein , O shown O in O the O same O orientation O ( O PDB O - O ID O . O 4lsx O ). O ( O B O ) O View O of O the O inner O surface O of O the O SERK1 B-protein LRR B-structure_element domain I-structure_element ( O PDB O - O ID O 4lsc O , O surface O representation O , O in O gray O ). O A O ribbon O diagram O of O SERK1 B-protein in O the O same O orientation O is O shown O alongside O . O Residues O interacting O with O the O HAESA B-protein or O BRI1 B-protein LRR B-structure_element domains I-structure_element are O shown O in O orange O or O magenta O , O respectively O . O Comparison B-experimental_method of O our O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly structure B-evidence with O the O brassinosteroid O receptor O signaling O complex O , O where O SERK1 B-protein also O acts O as O co B-protein_type - I-protein_type receptor I-protein_type , O reveals O an O overall O conserved B-protein_state mode O of O SERK1 B-protein binding O , O while O the O ligand B-site binding I-site pockets I-site map O to O very O different O areas O in O the O corresponding O receptors O ( O LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element ; O HAESA B-protein ; O LRRs B-structure_element 21 I-structure_element – I-structure_element 25 I-structure_element , O BRI1 B-protein ) O and O may O involve O an O island O domain O ( O BRI1 B-protein ) O or O not O ( O HAESA B-protein ) O ( O Figure O 6A O ). O Several O residues O in O the O SERK1 B-protein N O - O terminal O capping B-structure_element domain I-structure_element ( O Thr59SERK1 B-residue_name_number , O Phe61SERK1 B-residue_name_number ) O and O the O LRR B-site inner I-site surface I-site ( O Asp75SERK1 B-residue_name_number , O Tyr101SERK1 B-residue_name_number , O SER121SERK1 B-residue_name_number , O Phe145SERK1 B-residue_name_number ) O contribute O to O the O formation O of O both O complexes O ( O Figures O 4C O , O D O , O 6B O ). O In O addition O , O residues O 53 B-residue_range - I-residue_range 55SERK1 I-residue_range from O the O SERK1 B-protein N O - O terminal O cap B-structure_element mediate O specific O interactions O with O the O IDA B-chemical peptide I-chemical ( O Figures O 4C O , O 6B O ). O These O residues O are O not O involved O in O the O sensing O of O the O steroid B-chemical hormone I-chemical brassinolide B-chemical . O In O both O cases O however O , O the O co O - O receptor O completes O the O hormone B-site binding I-site pocket I-site . O This O fact O together O with O the O largely O overlapping O SERK1 B-site binding I-site surfaces I-site in O HAESA B-protein and O BRI1 B-protein allows O us O to O speculate O that O SERK1 B-protein may O promote O high O - O affinity O peptide B-protein_type hormone I-protein_type and O brassinosteroid O sensing O by O simply O slowing O down O dissociation O of O the O ligand O from O its O cognate O receptor O . O Different O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type contain O a O C O - O terminal O ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element , O which O in O IDA B-protein represents O the O co B-site - I-site receptor I-site recognition I-site site I-site . O Structure B-experimental_method - I-experimental_method guided I-experimental_method multiple I-experimental_method sequence I-experimental_method alignment I-experimental_method of O IDA B-protein and O IDA B-chemical - I-chemical like I-chemical peptides I-chemical with O other O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type , O including O CLAVATA3 B-protein_type – I-protein_type EMBRYO I-protein_type SURROUNDING I-protein_type REGION I-protein_type - I-protein_type RELATED I-protein_type ( O CLV3 B-protein_type / I-protein_type CLE I-protein_type ), O ROOT B-protein_type GROWTH I-protein_type FACTOR I-protein_type – I-protein_type GOLVEN I-protein_type ( O RGF B-protein_type / I-protein_type GLV I-protein_type ), O PRECURSOR B-protein_type GENE I-protein_type PROPEP1 I-protein_type ( O PEP1 B-protein_type ) O from O Arabidopsis B-species thaliana I-species . O The O conserved B-protein_state ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element is O highlighted O in O red O , O the O central O Hyp B-residue_name residue O in O IDLs B-protein_type and O CLEs B-protein_type is O marked O in O blue O . O Our O experiments O reveal O that O SERK1 B-protein recognizes O a O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O Importantly O , O this B-structure_element motif I-structure_element can O also O be O found O in O other O peptide B-protein_type hormone I-protein_type families I-protein_type ( O Figure O 7 O ). O Among O these O are O the O CLE B-chemical peptides I-chemical regulating O stem O cell O maintenance O in O the O shoot O and O the O root O . O It O is O interesting O to O note O , O that O CLEs B-protein_type in O their O mature B-protein_state form I-protein_state are O also O hydroxyprolinated B-protein_state dodecamers B-structure_element , O which O bind O to O a O surface B-site area I-site in O the O BARELY B-protein_type ANY I-protein_type MERISTEM I-protein_type 1 I-protein_type receptor I-protein_type that O would O correspond O to O part O of O the O IDA B-site binding I-site cleft I-site in O HAESA B-protein . O Diverse O plant B-taxonomy_domain peptide B-protein_type hormones I-protein_type may O thus O also O bind O their O LRR B-protein_type - I-protein_type RK I-protein_type receptors I-protein_type in O an O extended B-protein_state conformation I-protein_state along O the O inner O surface O of O the O LRR B-structure_element domain I-structure_element and O may O also O use O small B-protein_state , O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptors I-protein_type for O high O - O affinity O ligand O binding O and O receptor O activation O . O A O unified O mechanism O for O proteolysis O and O autocatalytic B-ptm activation I-ptm in O the O 20S B-complex_assembly proteasome I-complex_assembly Biogenesis O of O the O 20S B-complex_assembly proteasome I-complex_assembly is O tightly O regulated O . O The O N O - O terminal O propeptides B-structure_element protecting O the O active B-site - I-site site I-site threonines B-residue_name are O autocatalytically B-ptm released O only O on O completion O of O assembly O . O However O , O the O trigger O for O the O self O - O activation O and O the O reason O for O the O strict B-protein_state conservation I-protein_state of O threonine B-residue_name as O the O active O site O nucleophile O remain O enigmatic O . O Here O we O use O mutagenesis B-experimental_method , O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O biochemical B-experimental_method assays I-experimental_method to O suggest O that O Lys33 B-residue_name_number initiates O nucleophilic O attack O of O the O propeptide B-structure_element by O deprotonating O the O Thr1 B-residue_name_number hydroxyl O group O and O that O both O residues O together O with O Asp17 B-residue_name_number are O part O of O a O catalytic B-site triad I-site . O Substitution B-experimental_method of O Thr1 B-residue_name_number by O Cys B-residue_name disrupts O the O interaction O with O Lys33 B-residue_name_number and O inactivates B-protein_state the O proteasome B-complex_assembly . O Although O a O Thr1Ser B-mutant mutant B-protein_state is O active B-protein_state , O it O is O less O efficient O compared O with O wild B-protein_state type I-protein_state because O of O the O unfavourable O orientation O of O Ser1 B-residue_name_number towards O incoming O substrates O . O This O work O provides O insights O into O the O basic O mechanism O of O proteolysis O and O propeptide B-ptm autolysis I-ptm , O as O well O as O the O evolutionary O pressures O that O drove O the O proteasome B-complex_assembly to O become O a O threonine B-protein_type protease I-protein_type . O The O proteasome B-complex_assembly , O an O essential O molecular O machine O , O is O a O threonine B-protein_type protease I-protein_type , O but O the O evolution O and O the O components O of O its O proteolytic O centre O are O unclear O . O Here O , O the O authors O use O structural O biology O and O biochemistry O to O investigate O the O role O of O proteasome B-complex_assembly active B-site site I-site residues O on O maturation O and O activity O . O The O 20S B-complex_assembly proteasome I-complex_assembly core I-complex_assembly particle I-complex_assembly ( O CP B-complex_assembly ) O is O the O key O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type of O eukaryotic B-taxonomy_domain cells O . O Its O seven O different O α B-protein and O seven O different O β B-protein subunits I-protein assemble O into O four O heptameric B-oligomeric_state rings B-structure_element that O are O stacked O on O each O other O to O form O a O hollow B-structure_element cylinder I-structure_element . O While O the O inactive B-protein_state α B-protein subunits I-protein build O the O two O outer O rings B-structure_element , O the O β B-protein subunits I-protein form O the O inner O rings B-structure_element . O Only O three O out O of O the O seven O different O β B-protein subunits I-protein , O namely O β1 B-protein , O β2 B-protein and O β5 B-protein , O bear O N O - O terminal O proteolytic B-site active I-site centres I-site , O and O before O CP B-complex_assembly maturation O these O are O protected O by O propeptides B-structure_element . O In O the O last O stage O of O CP B-complex_assembly biogenesis O , O the O prosegments B-structure_element are O autocatalytically B-ptm removed I-ptm through O nucleophilic O attack O by O the O active B-site site I-site residue I-site Thr1 B-residue_name_number on O the O preceding O peptide O bond O involving O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Release O of O the O propeptides B-structure_element creates O a O functionally O active B-protein_state CP B-complex_assembly that O cleaves O proteins O into O short O peptides O . O Although O the O chemical O nature O of O the O substrate B-site - I-site binding I-site channel I-site and O hence O substrate O preferences O are O unique O to O each O of O the O distinct O active B-protein_state β B-protein subunits I-protein , O all O active B-site sites I-site employ O an O identical O reaction O mechanism O to O hydrolyse O peptide O bonds O . O Nucleophilic O attack O of O Thr1Oγ B-residue_name_number on O the O carbonyl O carbon O atom O of O the O scissile O peptide O bond O creates O a O first O cleavage O product O and O a O covalent O acyl O - O enzyme O intermediate O . O Hydrolysis O of O this O complex B-complex_assembly by O the O addition O of O a O nucleophilic O water B-chemical molecule O regenerates O the O enzyme B-complex_assembly and O releases O the O second O peptide B-chemical fragment O . O The O proteasome B-complex_assembly belongs O to O the O family O of O N B-protein_type - I-protein_type terminal I-protein_type nucleophilic I-protein_type ( I-protein_type Ntn I-protein_type ) I-protein_type hydrolases I-protein_type , O and O the O free B-protein_state N O - O terminal O amine O group O of O Thr1 B-residue_name_number was O proposed O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O group O to O generate O a O nucleophilic O Thr1Oγ B-residue_name_number for O peptide O - O bond O cleavage O . O This O mechanism O , O however O , O cannot O explain O autocatalytic B-ptm precursor I-ptm processing I-ptm because O in O the O immature B-protein_state active B-site sites I-site , O Thr1N B-residue_name_number is O part O of O the O peptide O bond O with O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number the O bond O that O needs O to O be O hydrolysed O . O An O alternative O candidate O for O deprotonating O the O Thr1 B-residue_name_number hydroxyl O group O is O the O side O chain O of O Lys33 B-residue_name_number as O it O is O within O hydrogen O - O bonding O distance O to O Thr1OH B-residue_name_number ( O 2 O . O 7 O Å O ). O In O principle O it O could O function O as O the O general O base O during O both O autocatalytic B-ptm removal I-ptm of O the O propeptide B-structure_element and O protein O substrate O cleavage O . O Here O we O provide O experimental O evidences O for O this O distinct O view O of O the O proteasome B-complex_assembly active B-site - I-site site I-site mechanism O . O Data O from O biochemical B-experimental_method and I-experimental_method structural I-experimental_method analyses I-experimental_method of O proteasome O variants O with O mutations O in O the O β5 B-protein propeptide B-structure_element and O the O active B-site site I-site strongly O support O the O model O and O deliver O novel O insights O into O the O structural O constraints O required O for O the O autocatalytic B-ptm activation I-ptm of O the O proteasome B-complex_assembly . O Furthermore O , O we O determine O the O advantages O of O Thr B-residue_name over O Cys B-residue_name or O Ser B-residue_name as O the O active O - O site O nucleophile O using O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method together O with O activity B-experimental_method and I-experimental_method inhibition I-experimental_method assays I-experimental_method . O Inactivation O of O proteasome B-complex_assembly subunits B-protein by O T1A B-mutant mutations B-experimental_method Proteasome B-complex_assembly - O mediated O degradation O of O cell O - O cycle O regulators O and O potentially O toxic O misfolded O proteins O is O required O for O the O viability O of O eukaryotic B-taxonomy_domain cells O . O Inactivation O of O the O active B-site site I-site Thr1 B-residue_name_number by O mutation B-experimental_method to I-experimental_method Ala B-residue_name has O been O used O to O study O substrate O specificity O and O the O hierarchy O of O the O proteasome B-complex_assembly active B-site sites I-site . O Yeast B-taxonomy_domain strains O carrying O the O single O mutations O β1 B-mutant - I-mutant T1A I-mutant or O β2 B-mutant - I-mutant T1A I-mutant , O or O both O , O are O viable O , O even O though O one O or O two O of O the O three O distinct O catalytic B-protein_state β B-protein subunits I-protein are O disabled B-protein_state and O carry B-protein_state remnants I-protein_state of I-protein_state their O N O - O terminal O propeptides B-structure_element ( O Table O 1 O ). O These O results O indicate O that O the O β1 B-protein and O β2 B-protein proteolytic O activities O are O not O essential O for O cell O survival O . O By O contrast O , O the O T1A B-mutant mutation O in O subunit O β5 B-protein has O been O reported O to O be O lethal O or O nearly O so O . O Viability O is O restored O if O the O β5 B-mutant - I-mutant T1A I-mutant subunit O has O its O propeptide B-structure_element ( O pp B-chemical ) O deleted B-experimental_method but I-experimental_method expressed I-experimental_method separately I-experimental_method in O trans B-protein_state ( O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state ), O although O substantial O phenotypic O impairment O remains O ( O Table O 1 O ). O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O The O extremely O weak O growth O of O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state described O by O Chen O and O Hochstrasser O compared O with O the O inviability O reported O by O Heinemeyer O et O al O . O prompted O us O to O analyse O this O discrepancy O . O Sequencing B-experimental_method of I-experimental_method the I-experimental_method plasmids I-experimental_method , O testing O them O in O both O published O yeast B-taxonomy_domain strain O backgrounds O and O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method revealed O that O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state is O viable O , O but O suffers O from O a O marked O growth O defect O that O requires O extended O incubation O of O 4 O – O 5 O days O for O initial O colony O formation O ( O Table O 1 O and O Supplementary O Methods O ). O We O also O identified O an O additional O point O mutation O K81R B-mutant in O subunit O β5 B-protein that O was O present O in O the O allele O used O in O ref O .. O This B-experimental_method single I-experimental_method amino I-experimental_method - I-experimental_method acid I-experimental_method exchange I-experimental_method is O located O at O the O interface B-site of O the O subunits O α4 B-protein , O β4 B-protein and O β5 B-protein ( O Supplementary O Fig O . O 1b O ) O and O might O weakly O promote O CP B-complex_assembly assembly O by O enhancing O inter O - O subunit O contacts O . O The O slightly O better O growth O of O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state allowed O us O to O solve O the O crystal B-evidence structure I-evidence of O a O yeast B-taxonomy_domain proteasome B-complex_assembly ( O yCP B-complex_assembly ) O with O the O β5 B-mutant - I-mutant T1A I-mutant mutation O , O which O is O discussed O in O the O following O section O ( O for O details O see O Supplementary O Note O 1 O ). O Propeptide B-structure_element conformation O and O triggering O of O autolysis B-ptm In O the O final O steps O of O proteasome B-complex_assembly biogenesis O , O the O propeptides B-structure_element are O autocatalytically B-ptm cleaved I-ptm from O the O mature B-protein_state β B-protein - I-protein subunit I-protein domains I-protein . O For O subunit O β1 B-protein , O this O process O was O previously O inferred O to O require O that O the O propeptide B-structure_element residue O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O subunit O precursor O occupies O the O S1 B-site specificity I-site pocket I-site of O the O substrate B-site - I-site binding I-site channel I-site formed O by O amino O acid O 45 B-residue_number ( O for O details O see O Supplementary O Note O 2 O ). O Furthermore O , O it O was O observed O that O the O prosegment B-structure_element forms O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element in O the O active B-site site I-site , O and O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number adopts O a O γ B-structure_element - I-structure_element turn I-structure_element conformation I-structure_element , O which O by O definition O is O characterized O by O a O hydrogen O bond O between O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number O O and O Thr1NH B-residue_name_number ( O ref O .). O Here O we O again O analysed O the O β1 B-mutant - I-mutant T1A I-mutant mutant B-protein_state crystallographically B-experimental_method but O in O addition O determined O the O structures B-evidence of O the O β2 B-mutant - I-mutant T1A I-mutant single O and O β1 B-mutant - I-mutant T1A I-mutant - I-mutant β2 I-mutant - I-mutant T1A I-mutant double O mutants O ( O Protein O Data O Bank O ( O PDB O ) O entry O codes O are O provided O in O Supplementary O Table O 1 O ). O In O subunit O β1 B-protein , O we O found O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number indeed O forms O a O sharp B-structure_element turn I-structure_element , O which O relaxes O on O prosegment B-ptm cleavage I-ptm ( O Fig O . O 1a O and O Supplementary O Fig O . O 2a O ). O However O , O the O γ B-structure_element - I-structure_element turn I-structure_element conformation I-structure_element and O the O associated O hydrogen O bond O initially O proposed O is O for O geometric O and O chemical O reasons O inappropriate O and O would O not O perfectly O position O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number for O nucleophilic O attack O by O Thr1 B-residue_name_number . O Regarding O the O β2 B-protein propeptide B-structure_element , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S1 B-site pocket I-site but O is O less O deeply O anchored O compared O with O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β1 B-protein , O which O might O be O due O to O the O rather O large O β2 B-protein - O S1 B-site pocket I-site created O by O Gly45 B-residue_name_number . O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number positions O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O via O hydrogen O bonding O (∼ O 2 O . O 8 O Å O ) O in O a O perfect O trajectory O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1b O and O Supplementary O Fig O . O 2b O ). O Next O , O we O examined O the O position O of O the O β5 B-protein propeptide B-structure_element in O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O Surprisingly O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O completely O extended O and O forces O the O histidine B-residue_name side O chain O at O position O (- B-residue_number 2 I-residue_number ) I-residue_number to O occupy O the O S2 B-site instead O of O the O S1 B-site pocket I-site , O thereby O disrupting O the O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element . O Nonetheless O , O the O carbonyl O carbon O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number would O be O ideally O placed O for O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 1c O and O Supplementary O Fig O . O 2c O , O d O ). O As O the O K81R B-mutant mutation O is O located O far O from O the O active B-site site I-site ( O Thr1Cα B-residue_name_number – O Arg81Cα B-residue_name_number : O 24 O Å O ), O any O influence O on O propeptide B-structure_element conformation O can O be O excluded O . O Instead O , O the O plasticity O of O the O β5 B-protein S1 B-site pocket I-site caused O by O the O rotational O flexibility O of O Met45 B-residue_name_number might O prevent O stable O accommodation O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O the O S1 B-site site I-site and O thus O also O promote O its O immediate O release O after O autolysis B-ptm . O Processing O of O β O - O subunit O precursors O requires O deprotonation O of O Thr1OH B-residue_name_number ; O however O , O the O general O base O initiating O autolysis B-ptm is O unknown O . O Remarkably O , O eukaryotic B-taxonomy_domain proteasomal O β5 B-protein subunits O bear O a O His B-residue_name residue O in O position O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O propeptide B-structure_element ( O Supplementary O Fig O . O 3a O ). O As O histidine B-residue_name commonly O functions O as O a O proton O shuttle O in O the O catalytic B-site triads I-site of O serine B-protein_type proteases I-protein_type , O we O investigated O the O role O of O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O processing O of O the O β5 B-protein propeptide B-structure_element by O exchanging B-experimental_method it I-experimental_method for I-experimental_method Asn B-residue_name , O Lys B-residue_name , O Phe B-residue_name and O Ala B-residue_name . O All O yeast B-taxonomy_domain mutants O were O viable O at O 30 O ° O C O , O but O suffered O from O growth O defects O at O 37 O ° O C O with O the O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutants O being O most O affected O ( O Supplementary O Fig O . O 3b O and O Table O 1 O ). O In O agreement O , O the O chymotrypsin O - O like O ( O ChT O - O L O ) O activity O of O H B-mutant (- I-mutant 2 I-mutant ) I-mutant N I-mutant and O H B-mutant (- I-mutant 2 I-mutant ) I-mutant F I-mutant mutant B-protein_state yCPs B-complex_assembly was O impaired O in O situ O and O in O vitro O ( O Supplementary O Fig O . O 3c O ). O Structural B-experimental_method analyses I-experimental_method revealed O that O the O propeptides B-structure_element of O all O mutant B-protein_state yCPs B-complex_assembly shared O residual O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence densities I-evidence . O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Phe B-residue_name / O Lys B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O visualized O at O low O occupancy O , O while O Ala B-residue_name / O Asn B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number could O not O be O assigned O . O This O observation O indicates O a O mixture O of O processed B-protein_state and O unprocessed B-protein_state β5 B-protein subunits O and O partially O impaired O autolysis B-ptm , O thereby O excluding O any O essential O role O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number as O the O general O base O . O Next O , O we O examined O the O effect O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number on O the O orientation O of O the O propeptide B-structure_element by O creating B-experimental_method mutants I-experimental_method that I-experimental_method combine I-experimental_method the O T1A B-mutant ( O K81R B-mutant ) O mutation B-experimental_method ( I-experimental_method s I-experimental_method ) I-experimental_method with O H B-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant , O H B-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant or O H B-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant substitutions B-experimental_method . O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O encoded O in O the O yeast B-taxonomy_domain β1 B-protein subunit O precursor O ( O Supplementary O Fig O . O 3a O ); O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O generally O part O of O β2 B-protein - O propeptides B-structure_element ( O Supplementary O Fig O . O 3a O ); O and O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number was O expected O to O fit O the O β5 B-protein - O S1 B-site pocket I-site without O inducing O conformational O changes O of O Met45 B-residue_name_number , O allowing O it O to O accommodate O ‘ O β1 O - O like O ' O propeptide O positioning O . O As O expected O from O β5 B-mutant - I-mutant T1A I-mutant mutants O , O the O yeasts B-taxonomy_domain show O severe O growth O phenotypes O , O with O minor O variations O ( O Supplementary O Fig O . O 4a O and O Table O 1 O ). O We O determined O crystal B-evidence structures I-evidence of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutants O ( O Supplementary O Table O 1 O ). O For O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant variant O , O only O the O residues O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number could O be O visualized O , O indicating O that O Ala B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number leads O to O insufficient O stabilization O of O the O propeptide B-structure_element in O the O substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 4d O ). O By O contrast O , O the O prosegments B-structure_element of O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutants O were O significantly O better O resolved O in O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence yet O not O at O full O occupancy O ( O Supplementary O Fig O . O 4b O , O c O and O Supplementary O Table O 1 O ), O suggesting O that O the O natural O propeptide B-structure_element bearing O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O most O favourable O . O Nevertheless O , O both O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number and O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O found O to O occupy O the O S1 B-site specificity I-site pocket I-site formed O by O Met45 B-residue_name_number ( O Fig O . O 2a O , O b O and O Supplementary O Fig O . O 4f O – O h O ). O This O result O proves O that O the O naturally O occurring O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element does O not O stably O fit O into O the O S1 B-site site I-site . O Since O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number adopts O the O same O position O in O both O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O and O mutant B-protein_state β5 B-protein propeptides B-structure_element , O and O since O in O all O cases O its O carbonyl O carbon O is O perfectly O placed O for O nucleophilic O attack O by O Thr1Oγ B-residue_name_number ( O Fig O . O 2b O ), O we O propose O that O neither O binding O of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number to O the O S1 B-site pocket I-site nor O formation O of O the O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element is O essential O for O autolysis B-ptm of O the O propeptide B-structure_element . O Next O , O we O determined O the O crystal B-evidence structure I-evidence of O a O chimeric B-protein_state yCP B-complex_assembly having O the O yeast B-taxonomy_domain β1 B-protein - O propeptide B-structure_element replaced B-experimental_method by I-experimental_method its O β5 B-protein counterpart B-structure_element . O Although O we O observed O fragments O of O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence density I-evidence in O the O β1 B-protein active B-site site I-site , O the O data O were O not O interpretable O . O Bearing O in O mind O that O in O contrast O to O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β2 B-protein , O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O subunit O β1 B-protein is O not B-protein_state conserved I-protein_state among O species O ( O Supplementary O Fig O . O 3a O ), O we O created B-experimental_method a O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant proteasome B-complex_assembly mutant B-protein_state . O As O proven O by O the O β2 B-mutant - I-mutant T1A I-mutant crystal B-evidence structures I-evidence , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number hydrogen O bonds O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O . O Although O this O interaction O was O not O observed O for O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutant B-protein_state ( O Fig O . O 2c O and O Supplementary O Fig O . O 4c O , O i O ), O exchange B-experimental_method of O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number by O Val B-residue_name in O β2 B-protein , O a O conservative O mutation O regarding O size O but O drastic O with O respect O to O polarity O , O was O found O to O inhibit O maturation O of O this O subunit O ( O Fig O . O 2d O and O Supplementary O Fig O . O 4e O , O j O ). O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence displays O a O different O orientation O for O the O β2 B-protein propeptide B-structure_element than O has O been O observed O for O the O β2 B-mutant - I-mutant T1A I-mutant proteasome B-complex_assembly . O In O particular O , O Val B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number is O displaced O from O the O S1 B-site site I-site and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O severely O shifted O ( O movement O of O the O carbonyl O oxygen O atom O of O 3 O . O 8 O Å O ), O thereby O preventing O nucleophilic O attack O of O Thr1 B-residue_name_number ( O Fig O . O 2d O and O Supplementary O Fig O . O 4j O , O k O ). O These O results O further O confirm O that O correct O positioning O of O the O active B-site - I-site site I-site residues I-site and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O decisive O for O the O maturation O of O the O proteasome B-complex_assembly . O The O active B-site site I-site of O the O proteasome B-complex_assembly Proton O shuttling O from O the O proteasomal O active B-site site I-site Thr1OH B-residue_name_number to O Thr1NH2 B-residue_name_number via O a O nucleophilic O water B-chemical molecule O was O suggested O to O initiate O peptide O - O bond O hydrolysis O . O However O , O in O the O immature B-protein_state particle B-complex_assembly Thr1NH2 B-residue_name_number is O blocked O by O the O propeptide B-structure_element and O cannot O activate O Thr1Oγ B-residue_name_number . O Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen O - O bonding O distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O A O proposed O catalytic B-site tetrad I-site model O involving O Thr1OH B-residue_name_number , O Thr1NH2 B-residue_name_number , O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number , O as O well O as O a O nucleophilic O water B-chemical molecule O as O the O proton O shuttle O appeared O to O accommodate O all O possible O views O of O the O proteasomal O active B-site site I-site . O Twenty O years O later O , O with O a O plethora O of O yCP B-complex_assembly X B-evidence - I-evidence ray I-evidence structures I-evidence in O hand O , O we O decided O to O re O - O analyse O the O active B-site site I-site of O the O proteasome B-complex_assembly and O to O resolve O the O uncertainty O regarding O the O nature O of O the O general O base O . O Mutation B-experimental_method of O β5 B-protein - O Lys33 B-residue_name_number to O Ala B-residue_name causes O a O strongly O deleterious O phenotype O , O and O previous O structural B-experimental_method and I-experimental_method biochemical I-experimental_method analyses I-experimental_method confirmed O that O this O is O caused O by O failure O of O propeptide B-ptm cleavage I-ptm , O and O consequently O , O lack O of O ChT O - O L O activity O ( O Fig O . O 4a O , O Supplementary O Fig O . O 3b O and O Table O 1 O ; O for O details O see O Supplementary O Note O 1 O ). O The O phenotype O of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state was O however O less O pronounced O than O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant yeast B-taxonomy_domain ( O Fig O . O 4a O ). O This O discrepancy O in O growth O was O traced O to O an O additional O point O mutation O L B-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant in O the O β5 B-protein - O propeptide B-structure_element of O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state ( O see O also O Supplementary O Note O 1 O ). O Structural B-experimental_method comparison I-experimental_method of O the O β5 B-mutant - I-mutant L I-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant - I-mutant K33A I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant active B-site sites I-site revealed O that O mutation B-experimental_method of O Lys33 B-residue_name_number to O Ala B-residue_name creates O a O cavity O that O is O filled O with O Thr1 B-residue_name_number and O the O remnant O propeptide B-structure_element . O This O structural O alteration O destroys O active B-site - I-site site I-site integrity O and O abolishes O catalytic O activity O of O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 5a O ). O Additional O proof O for O the O key O function O of O Lys33 B-residue_name_number was O obtained O from O the O β5 B-mutant - I-mutant K33A I-mutant mutant B-protein_state , O with O the O propeptide B-structure_element expressed B-experimental_method separately I-experimental_method from O the O main O subunit O ( O pp B-chemical trans B-protein_state ). O The O Thr1 B-residue_name_number N O terminus O of O this O mutant B-protein_state is O not O blocked O by O the O propeptide B-structure_element , O yet O its O catalytic O activity O is O reduced O by O ∼ O 83 O % O ( O Supplementary O Fig O . O 6b O ). O Consistent O with O this O , O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical only O showed O partial O occupancy O of O the O ligand O at O the O β5 B-protein active B-site sites I-site ( O Supplementary O Fig O . O 5b O and O Supplementary O Table O 1 O ). O Since O no O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O was O observed O for O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state apo B-protein_state crystal B-evidence structure I-evidence , O the O reduced O reactivity O towards O substrates O and O inhibitors O indicates O that O Lys33NH2 B-residue_name_number , O rather O than O Thr1NH2 B-residue_name_number , O deprotonates O and O activates O Thr1OH B-residue_name_number . O Furthermore O , O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state without B-protein_state inhibitor I-protein_state revealed O that O Thr1Oγ B-residue_name_number strongly O coordinates O a O well O - O defined O water B-chemical molecule O (∼ O 2 O Å O ; O Fig O . O 3c O and O Supplementary O Fig O . O 5c O , O d O ). O This O water B-chemical hydrogen O bonds O also O to O Arg19O B-residue_name_number (∼ O 3 O . O 0 O Å O ) O and O Asp17Oδ B-residue_name_number (∼ O 3 O . O 0 O Å O ), O and O thereby O presumably O enables O residual O activity O of O the O mutant B-protein_state . O Remarkably O , O the O solvent O molecule O occupies O the O position O normally O taken O by O Lys33NH2 B-residue_name_number in O the O WT B-protein_state proteasome B-complex_assembly structure B-evidence ( O Fig O . O 3c O ), O further O corroborating O the O essential O role O of O Lys33 B-residue_name_number as O the O general O base O for O autolysis B-ptm and O proteolysis O . O Conservative B-experimental_method substitution I-experimental_method of O Lys33 B-residue_name_number by O Arg B-residue_name delays O autolysis B-ptm of O the O β5 B-protein precursor O and O impairs O yeast B-taxonomy_domain growth O ( O for O details O see O Supplementary O Note O 1 O ). O While O Thr1 B-residue_name_number occupies O the O same O position O as O in O WT B-protein_state yCPs B-complex_assembly , O Arg33 B-residue_name_number is O unable O to O hydrogen O bond O to O Asp17 B-residue_name_number , O thereby O inactivating O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 5e O ). O The O conservative B-experimental_method mutation I-experimental_method of O Asp17 B-residue_name_number to O Asn B-residue_name in O subunit O β5 B-protein of O the O yCP B-complex_assembly also O provokes O a O severe O growth O defect O ( O Supplementary O Note O 1 O , O Supplementary O Fig O . O 6a O and O Table O 1 O ). O Notably O , O only O with O the O additional O point O mutation O L B-mutant (- I-mutant 49 I-mutant ) I-mutant S I-mutant present O in O the O β5 B-protein propeptide B-structure_element could O we O purify O a O small O amount O of O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state yCP B-complex_assembly . O As O determined O by O crystallographic B-experimental_method analysis I-experimental_method , O this O mutant B-protein_state β5 B-protein subunit O was O partially B-protein_state processed I-protein_state ( O Table O 1 O ) O but O displayed O impaired O reactivity O towards O the O proteasome B-complex_assembly inhibitor O carfilzomib B-chemical compared O with O the O subunits O β1 B-protein and O β2 B-protein , O and O with O WT B-protein_state β5 B-protein ( O Supplementary O Fig O . O 7a O ). O In O contrast O to O the O cis B-protein_state - O construct O , O expression B-experimental_method of O the O β5 B-protein propeptide B-structure_element in O trans B-protein_state allowed O straightforward O isolation B-experimental_method and O crystallization B-experimental_method of O the O D17N B-mutant mutant B-protein_state proteasome B-complex_assembly . O The O ChT O - O L O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical in O trans B-protein_state CP B-complex_assembly towards O the O canonical O β5 B-protein model O substrates O N B-chemical - I-chemical succinyl I-chemical - I-chemical Leu I-chemical - I-chemical Leu I-chemical - I-chemical Val I-chemical - I-chemical Tyr I-chemical - I-chemical 7 I-chemical - I-chemical amino I-chemical - I-chemical 4 I-chemical - I-chemical methylcoumarin I-chemical ( O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical ) O and O carboxybenzyl B-chemical - I-chemical Gly I-chemical - I-chemical Gly I-chemical - I-chemical Leu I-chemical - I-chemical para I-chemical - I-chemical nitroanilide I-chemical ( O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical ) O was O severely O reduced O ( O Supplementary O Fig O . O 6b O ), O confirming O that O Asp17 B-residue_name_number is O of O fundamental O importance O for O the O catalytic O activity O of O the O mature B-protein_state proteasome B-complex_assembly . O Even O though O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical trans B-protein_state yCP B-complex_assembly crystal B-evidence structure I-evidence appeared O identical O to O the O WT B-protein_state yCP B-complex_assembly ( O Supplementary O Fig O . O 7b O ), O the O co B-evidence - I-evidence crystal I-evidence structure I-evidence with O the O α B-chemical ′, I-chemical β I-chemical ′ I-chemical epoxyketone I-chemical inhibitor O carfilzomib B-chemical visualized O only O partial O occupancy O of O the O ligand O in O the O β5 B-protein active B-site site I-site ( O Supplementary O Fig O . O 7a O ). O This O observation O is O consistent O with O a O strongly O reduced O reactivity O of O β5 B-protein - O Thr1 B-residue_name_number and O the O crystal B-evidence structure I-evidence of O the O β5 B-mutant - I-mutant D17N I-mutant pp B-chemical cis B-protein_state mutant B-protein_state in B-protein_state complex I-protein_state with I-protein_state carfilzomib B-chemical . O Autolysis B-ptm and O residual O catalytic O activity O of O the O β5 B-mutant - I-mutant D17N I-mutant mutants O may O originate O from O the O carbonyl O group O of O Asn17 B-residue_name_number , O which O albeit O to O a O lower O degree O still O can O polarize O Lys33 B-residue_name_number for O the O activation O of O Thr1 B-residue_name_number . O In O agreement O , O an O E17A B-mutant mutant B-protein_state in O the O proteasomal O β B-protein - I-protein subunit I-protein of O the O archaeon B-taxonomy_domain Thermoplasma B-species acidophilum I-species prevents O autolysis B-ptm and O catalysis O . O Strikingly O , O although O the O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state with O the O propeptide B-structure_element expressed B-experimental_method in O cis B-protein_state and O in O trans B-protein_state looked O similar O , O there O was O a O pronounced O difference O in O their O growth O phenotypes O observed O ( O Supplementary O Fig O . O 6a O and O Supplementary O Fig O . O 7b O ). O On O the O basis O of O these O results O , O we O propose O that O CPs B-complex_assembly from O all O domains O of O life O use O a O catalytic B-site triad I-site consisting O of O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number for O both O autocatalytic B-ptm precursor I-ptm processing I-ptm and O proteolysis O ( O Fig O . O 3d O ). O This O model O is O also O consistent O with O the O fact O that O no O defined O water B-chemical molecule O is O observed O in O the O mature B-protein_state WT B-protein_state proteasomal O active B-site site I-site that O could O shuttle O the O proton O from O Thr1Oγ B-residue_name_number to O Thr1NH2 B-residue_name_number . O To O explore O this O active B-site - I-site site I-site model O further O , O we O exchanged B-experimental_method the I-experimental_method conserved I-experimental_method Asp166 B-residue_name_number residue O for O Asn B-residue_name in O the O yeast B-taxonomy_domain β5 B-protein subunit O . O Asp166Oδ B-residue_name_number is O hydrogen O - O bonded O to O Thr1NH2 B-residue_name_number via O Ser129OH B-residue_name_number and O Ser169OH B-residue_name_number , O and O therefore O was O proposed O to O be O involved O in O catalysis O . O The O β5 B-mutant - I-mutant D166N I-mutant pp B-chemical cis B-protein_state yeast B-taxonomy_domain mutant B-protein_state is O significantly O impaired O in O growth O and O its O ChT O - O L O activity O is O drastically O reduced O ( O Supplementary O Fig O . O 6a O , O b O and O Table O 1 O ). O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state indicate O that O the O β5 B-protein propeptide B-structure_element is O hydrolysed O , O but O due O to O reorientation O of O Ser129OH B-residue_name_number , O the O interaction O with O Asn166Oδ B-residue_name_number is O disrupted O ( O Supplementary O Fig O . O 8a O ). O Instead O , O a O water B-chemical molecule O is O bound B-protein_state to I-protein_state Ser129OH B-residue_name_number and O Thr1NH2 B-residue_name_number ( O Supplementary O Fig O . O 8b O ), O which O may O enable O precursor B-ptm processing I-ptm . O The O hydrogen O bonds O involving O Ser169OH B-residue_name_number are O intact O and O may O account O for O residual O substrate O turnover O . O Soaking B-experimental_method the O β5 B-mutant - I-mutant D166N I-mutant crystals B-experimental_method with O carfilzomib B-chemical and O MG132 B-chemical resulted O in O covalent O modification O of O Thr1 B-residue_name_number at O high O occupancy O ( O Supplementary O Fig O . O 8c O ). O In O the O carfilzomib B-complex_assembly complex I-complex_assembly structure B-evidence , O Thr1Oγ B-residue_name_number and O Thr1N B-residue_name_number incorporate O into O a O morpholine O ring O structure O and O Ser129 B-residue_name_number adopts O its O WT B-protein_state - O like O orientation O . O In O the O MG132 B-protein_state - I-protein_state bound I-protein_state state I-protein_state , O Thr1N B-residue_name_number is O unmodified B-protein_state , O and O we O again O observe O that O Ser129 B-residue_name_number is O hydrogen O - O bonded O to O a O water B-chemical molecule O instead O of O Asn166 B-residue_name_number . O Whereas O Asn B-residue_name can O to O some O degree O replace O Asp166 B-residue_name_number due O to O its O carbonyl O group O in O the O side O chain O , O Ala B-residue_name at O this O position O was O found O to O prevent O both O autolysis B-ptm and O catalysis O . O These O results O suggest O that O Asp166 B-residue_name_number and O Ser129 B-residue_name_number function O as O a O proton O shuttle O and O affect O the O protonation O state O of O Thr1N B-residue_name_number during O autolysis B-ptm and O catalysis O . O Substitution B-experimental_method of O the O active B-site - I-site site I-site Thr1 B-residue_name_number by O Cys B-residue_name Mutation B-experimental_method of O Thr1 B-residue_name_number to O Cys B-residue_name inactivates O the O 20S B-complex_assembly proteasome I-complex_assembly from O the O archaeon B-taxonomy_domain T B-species . I-species acidophilum I-species . O In O yeast B-taxonomy_domain , O this O mutation B-experimental_method causes O a O strong O growth O defect O ( O Fig O . O 4a O and O Table O 1 O ), O although O the O propeptide B-structure_element is O hydrolysed O , O as O shown O here O by O its O X B-evidence - I-evidence ray I-evidence structure I-evidence . O In O one O of O the O two O β5 B-protein subunits O , O however O , O we O found O the O cleaved B-protein_state propeptide B-structure_element still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4c O ). O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S2 B-site pocket I-site like O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state , O but O in O contrast O to O the O latter O , O the O propeptide B-structure_element in O the O T1C B-mutant mutant B-protein_state adopts O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element conformation O as O known O from O inhibitors O like O MG132 B-chemical ( O Fig O . O 4c O – O e O and O Supplementary O Fig O . O 9b O ). O On O the O basis O of O the O phenotype O of O the O T1C B-mutant mutant B-protein_state and O the O propeptide B-structure_element remnant O identified O in O its O active B-site site I-site , O we O suppose O that O autolysis B-ptm is O retarded O and O may O not O have O been O completed O before O crystallization B-experimental_method . O Owing O to O the O unequal O positions O of O the O two O β5 B-protein subunits O within O the O CP B-complex_assembly in O the O crystal O lattice O , O maturation O and O propeptide B-structure_element displacement O may O occur O at O different O timescales O in O the O two O subunits O . O Despite O propeptide B-ptm hydrolysis I-ptm , O the O β5 B-mutant - I-mutant T1C I-mutant active B-site site I-site is O catalytically B-protein_state inactive I-protein_state ( O Fig O . O 4b O and O Supplementary O Fig O . O 9a O ). O In O agreement O , O soaking B-experimental_method crystals I-experimental_method with O the O CP B-complex_assembly inhibitors O bortezomib B-chemical or O carfilzomib B-chemical modifies O only O the O β1 B-protein and O β2 B-protein active B-site sites I-site , O while O leaving O the O β5 B-mutant - I-mutant T1C I-mutant proteolytic B-site centres I-site unmodified B-protein_state even O though O they O are O only O partially O occupied O by O the O cleaved B-protein_state propeptide B-structure_element remnant O . O Moreover O , O the O structural B-evidence data I-evidence reveal O that O the O thiol O group O of O Cys1 B-residue_name_number is O rotated O by O 74 O ° O with O respect O to O the O hydroxyl O side O chain O of O Thr1 B-residue_name_number ( O Fig O . O 4f O and O Supplementary O Fig O . O 9b O ). O Consequently O , O the O hydrogen O bond O bridging O the O active O - O site O nucleophile O and O Lys33 B-residue_name_number in O WT B-protein_state CPs B-complex_assembly is O broken O with O Cys1 B-residue_name_number . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence of O the O T1C B-mutant mutant B-protein_state also O indicates O that O Lys33NH2 B-residue_name_number is O disordered B-protein_state . O Together O , O these O observations O suggest O that O efficient O peptide O - O bond O hydrolysis O requires O that O Lys33NH2 B-residue_name_number hydrogen O bonds O to O the O active O site O nucleophile O . O The O benefit O of O Thr B-residue_name over O Ser B-residue_name as O the O active O - O site O nucleophile O All O proteasomes B-complex_assembly strictly B-protein_state employ I-protein_state threonine B-residue_name as O the O active B-site - I-site site I-site residue I-site instead O of O serine B-residue_name . O To O investigate O the O reason O for O this O singularity O , O we O analysed O a O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state , O which O is O viable O but O suffers O from O growth O defects O ( O Fig O . O 4a O and O Table O 1 O ). O Activity B-experimental_method assays I-experimental_method with O the O β5 B-protein - O specific O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical demonstrated O that O the O ChT O - O L O activity O of O the O T1S B-mutant mutant B-protein_state is O reduced O by O 40 O – O 45 O % O compared O with O WT B-protein_state proteasomes B-complex_assembly depending O on O the O incubation O temperature O ( O Fig O . O 4b O and O Supplementary O Fig O . O 9c O ). O By O contrast O , O turnover O of O the O substrate O Z B-chemical - I-chemical GGL I-chemical - I-chemical pNA I-chemical , O used O to O monitor O ChT O - O L O activity O in O situ O but O in O a O less O quantitative O fashion O , O is O not O detectably O impaired O ( O Supplementary O Fig O . O 9a O ). O Crystal B-evidence structure I-evidence analysis O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state confirmed O precursor B-ptm processing I-ptm ( O Fig O . O 4g O ), O and O ligand B-complex_assembly - I-complex_assembly complex I-complex_assembly structures B-evidence with O bortezomib B-chemical and O carfilzomib B-chemical unambiguously O corroborated O the O reactivity O of O Ser1 B-residue_name_number ( O Fig O . O 5 O ). O However O , O the O apo B-protein_state crystal B-evidence structure I-evidence revealed O that O Ser1Oγ B-residue_name_number is O turned O away O from O the O substrate B-site - I-site binding I-site channel I-site ( O Fig O . O 4g O ). O Compared O with O Thr1Oγ B-residue_name_number in O WT B-protein_state CP B-complex_assembly structures B-evidence , O Ser1Oγ B-residue_name_number is O rotated O by O 60 O °. O Because O both O conformations O of O Ser1Oγ B-residue_name_number are O hydrogen O - O bonded O to O Lys33NH2 B-residue_name_number ( O Fig O . O 4h O ), O the O relay O system O is O capable O of O hydrolysing O peptide O substrates O , O albeit O at O lower O rates O compared O with O Thr1 B-residue_name_number . O The O active B-site - I-site site I-site residue I-site Thr1 B-residue_name_number is O fixed O in O its O position O , O as O its O methyl O group O is O engaged O in O hydrophobic O interactions O with O Thr3 B-residue_name_number and O Ala46 B-residue_name_number ( O Fig O . O 4h O ). O Consequently O , O the O hydroxyl O group O of O Thr1 B-residue_name_number requires O no O reorientation O before O substrate O cleavage O and O is O thus O more O catalytically O efficient O than O Ser1 B-residue_name_number . O In O agreement O , O at O an O elevated O growing O temperature O of O 37 O ° O C O the O T1S B-mutant mutant B-protein_state is O unable O to O grow O ( O Fig O . O 4a O ). O In O vitro O , O the O mutant B-protein_state proteasome B-complex_assembly is O less O susceptible O to O proteasome B-complex_assembly inhibition O by O bortezomib B-chemical ( O 3 O . O 7 O - O fold O ) O and O carfilzomib B-chemical ( O 1 O . O 8 O - O fold O ; O Fig O . O 5 O ). O Nevertheless O , O inhibitor B-complex_assembly complex I-complex_assembly structures B-evidence indicate O identical O binding O modes O compared O with O the O WT B-protein_state yCP B-complex_assembly structures B-evidence , O with B-protein_state the I-protein_state same I-protein_state inhibitors I-protein_state . O Notably O , O the O affinity B-evidence of O the O tetrapeptide O carfilzomib B-chemical is O less O impaired O , O as O it O is O better O stabilized O in O the O substrate B-site - I-site binding I-site channel I-site than O the O dipeptide O bortezomib B-chemical , O which O lacks O a O defined O P3 O site O and O has O only O a O few O interactions O with O the O surrounding O protein O . O Hence O , O the O mean B-evidence residence I-evidence time I-evidence of O carfilzomib B-chemical at O the O active B-site site I-site is O prolonged O and O the O probability O to O covalently O react O with O Ser1 B-residue_name_number is O increased O . O Considered O together O , O these O results O provide O a O plausible O explanation O for O the O invariance O of O threonine B-residue_name as O the O active O - O site O nucleophile O in O proteasomes B-complex_assembly in O all O three O domains O of O life O , O as O well O as O in O proteasome B-protein_type - I-protein_type like I-protein_type proteases I-protein_type such O as O HslV B-protein ( O ref O .). O The O 20S B-complex_assembly proteasome I-complex_assembly CP B-complex_assembly is O the O major O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type in O eukaryotic B-taxonomy_domain cells O , O and O its O assembly O is O highly O organized O . O The O β B-protein - I-protein subunit I-protein propeptides B-structure_element , O particularly O that O of O β5 B-protein , O are O key O factors O that O help O drive O proper O assembly O of O the O CP B-complex_assembly complex O . O In O addition O , O they O prevent O irreversible O inactivation O of O the O Thr1 B-residue_name_number N O terminus O by O N B-ptm - I-ptm acetylation I-ptm . O By O contrast O , O the O prosegments B-structure_element of O β B-protein subunits I-protein are O dispensable O for O archaeal B-taxonomy_domain proteasome B-complex_assembly assembly O , O at O least O when O heterologously B-experimental_method expressed I-experimental_method in O Escherichia B-species coli I-species . O In O eukaryotes B-taxonomy_domain , O deletion O of O or O failure O to O cleave O the O β1 B-protein and O β2 B-protein propeptides B-structure_element is O well O tolerated O . O However O , O removal B-experimental_method of I-experimental_method the O β5 B-protein prosegment B-structure_element or O any O interference O with O its O cleavage O causes O severe O phenotypic O defects O . O These O observations O highlight O the O unique O function O and O importance O of O the O β5 B-protein propeptide B-structure_element as O well O as O the O β5 B-protein active B-site site I-site for O maturation O and O function O of O the O eukaryotic B-taxonomy_domain CP B-complex_assembly . O Here O we O have O described O the O atomic B-evidence structures I-evidence of O various O β5 B-mutant - I-mutant T1A I-mutant mutants O , O which O allowed O for O the O first O time O visualization O of O the O residual O β5 B-protein propeptide B-structure_element . O Depending O on O the O (- B-residue_number 2 I-residue_number ) I-residue_number residue O we O observed O various O propeptide B-structure_element conformations O , O but O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O in O all O structures B-evidence perfectly O located O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number , O although O it O does O not O adopt O the O tight B-structure_element turn I-structure_element observed O for O the O prosegment B-structure_element of O subunit O β1 B-protein . O From O these O data O we O conclude O that O only O the O positioning O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Thr1 B-residue_name_number as O well O as O the O integrity O of O the O proteasomal O active B-site site I-site are O required O for O autolysis B-ptm . O In O this O regard O , O inappropriate O N B-ptm - I-ptm acetylation I-ptm of O the O Thr1 B-residue_name_number N O terminus O cannot O be O removed O by O Thr1Oγ B-residue_name_number due O to O the O rotational O freedom O and O flexibility O of O the O acetyl O group O . O The O propeptide B-structure_element needs O some O anchoring O in O the O substrate B-site - I-site binding I-site channel I-site to O properly O position O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ), I-residue_name_number but O this O seems O to O be O independent O of O the O orientation O of O residue O (- B-residue_number 2 I-residue_number ). I-residue_number Autolytic O activation O of O the O CP B-complex_assembly constitutes O one O of O the O final O steps O of O proteasome O biogenesis O , O but O the O trigger O for O propeptide B-ptm cleavage I-ptm had O remained O enigmatic O . O On O the O basis O of O the O numerous O CP B-complex_assembly : I-complex_assembly ligand I-complex_assembly complexes O solved O during O the O past O 18 O years O and O in O the O current O study O , O we O provide O a O revised O interpretation O of O proteasome B-complex_assembly active B-site - I-site site I-site architecture I-site . O We O propose O a O catalytic B-site triad I-site for O the O active B-site site I-site of O the O CP B-complex_assembly consisting O of O residues O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number , O which O are O conserved O among O all O proteolytically O active O eukaryotic B-taxonomy_domain , O bacterial B-taxonomy_domain and O archaeal B-taxonomy_domain proteasome B-complex_assembly subunits O . O Lys33NH2 B-residue_name_number is O expected O to O act O as O the O proton O acceptor O during O autocatalytic B-ptm removal I-ptm of O the O propeptides B-structure_element , O as O well O as O during O substrate O proteolysis O , O while O Asp17Oδ B-residue_name_number orients O Lys33NH2 B-residue_name_number and O makes O it O more O prone O to O protonation O by O raising O its O pKa O ( O hydrogen O bond O distance O : O Lys33NH3 B-residue_name_number +– O Asp17Oδ B-residue_name_number : O 2 O . O 9 O Å O ). O Analogously O to O the O proteasome B-complex_assembly , O a O Thr B-site – I-site Lys I-site – I-site Asp I-site triad I-site is O also O found O in O L B-protein_type - I-protein_type asparaginase I-protein_type . O Thus O , O specific O protein O surroundings O can O significantly O alter O the O chemical O properties O of O amino O acids O such O as O Lys B-residue_name to O function O as O an O acid O – O base O catalyst O . O In O this O new O view O of O the O proteasomal O active B-site site I-site , O the O positively O charged O Thr1NH3 B-residue_name_number +- O terminus O hydrogen O bonds O to O the O amide O nitrogen O of O incoming O peptide O substrates O and O stabilizes O as O well O as O activates O them O for O the O endoproteolytic B-ptm cleavage I-ptm by O Thr1Oγ B-residue_name_number ( O Fig O . O 3d O ). O Consistent O with O this O model O , O the O positively O charged O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen O bonds O with O inhibitory O compounds O like O fellutamide B-chemical B I-chemical ( O ref O .), O α B-chemical - I-chemical ketoamides I-chemical , O homobelactosin B-chemical C I-chemical ( O ref O .) O and O salinosporamide B-chemical A I-chemical ( O ref O .). O Furthermore O , O opening O of O the O β O - O lactone O compound O omuralide B-chemical by O Thr1 B-residue_name_number creates O a O C3 O - O hydroxyl O group O , O whose O proton O originates O from O Thr1NH3 B-residue_name_number +. O The O resulting O uncharged O Thr1NH2 B-residue_name_number is O hydrogen O - O bridged O to O the O C3 O - O OH O group O . O In O agreement O , O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O irreversibly O blocks O hydrolytic O activity O , O and O binding O of O substrates O is O prevented O for O steric O reasons O . O By O acting O as O a O proton O donor O during O catalysis O , O the O Thr1 B-residue_name_number N O terminus O may O also O favour O cleavage O of O substrate O peptide O bonds O ( O Fig O . O 3d O ). O Cleavage O of O the O scissile O peptide O bond O requires O protonation O of O the O emerging O free O amine O , O and O in O the O proteasome B-complex_assembly , O the O Thr1 B-residue_name_number amine O group O is O likely O to O assume O this O function O . O Analogously O , O Thr1NH3 B-residue_name_number + O might O promote O the O bivalent O reaction O mode O of O epoxyketone O inhibitors O by O protonating O the O epoxide O moiety O to O create O a O positively O charged O trivalent O oxygen O atom O that O is O subsequently O nucleophilically O attacked O by O Thr1NH2 B-residue_name_number . O During O autolysis B-ptm the O Thr1 B-residue_name_number N O terminus O is O engaged O in O a O hydroxyoxazolidine O ring O intermediate O ( O Fig O . O 3d O ), O which O is O unstable O and O short O - O lived O . O Breakdown O of O this O tetrahedral O transition O state O releases O the O Thr1 B-residue_name_number N O terminus O that O is O protonated O by O aspartic B-residue_name_number acid I-residue_name_number 166 I-residue_name_number via O Ser129OH B-residue_name_number to O yield O Thr1NH3 B-residue_name_number +. O The O residues O Ser129 B-residue_name_number and O Asp166 B-residue_name_number are O expected O to O increase O the O pKa O value O of O Thr1N B-residue_name_number , O thereby O favouring O its O charged O state O . O Consistent O with O playing O an O essential O role O in O proton O shuttling O , O the O mutation B-experimental_method D166A B-mutant prevents O autolysis B-ptm of O the O archaeal B-taxonomy_domain CP B-complex_assembly and O the O exchange B-experimental_method D166N B-mutant impairs O catalytic O activity O of O the O yeast B-taxonomy_domain CP B-complex_assembly about O 60 O %. O The O mutation B-experimental_method D166N B-mutant lowers O the O pKa O of O Thr1N B-residue_name_number , O which O is O thus O more O likely O to O exist O in O the O uncharged O deprotonated O state O ( O Thr1NH2 B-residue_name_number ). O This O interpretation O agrees O with O the O strongly O reduced O catalytic O activity O of O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state on O the O one O hand O , O and O the O ability O to O react O readily O with O carfilzomib B-chemical on O the O other O . O Hence O , O the O proteasome B-complex_assembly can O be O viewed O as O having O a O second B-site triad I-site that O is O essential O for O efficient O proteolysis O . O While O Lys33NH2 B-residue_name_number and O Asp17Oδ B-residue_name_number are O required O to O deprotonate O the O Thr1 B-residue_name_number hydroxyl O side O chain O , O Ser129OH B-residue_name_number and O Asp166OH B-residue_name_number serve O to O protonate O the O N O - O terminal O amine O group O of O Thr1 B-residue_name_number . O In O accord O with O the O proposed O Thr1 B-residue_name_number – O Lys33 B-residue_name_number – O Asp17 B-residue_name_number catalytic B-site triad I-site , O crystallographic B-evidence data I-evidence on O the O proteolytically B-protein_state inactive I-protein_state β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state demonstrate O that O the O interaction O of O Lys33NH2 B-residue_name_number and O Cys1 B-residue_name_number is O broken O . O However O , O owing O to O Cys B-residue_name being O a O strong O nucleophile O , O the O propeptide B-structure_element can O still O be O cleaved B-protein_state off O over O time O . O While O only O one O single O turnover O is O necessary O for O autolysis B-ptm , O continuous O enzymatic O activity O is O required O for O significant O and O detectable O substrate O hydrolysis O . O Notably O , O in O the O Ntn B-protein_type hydrolase I-protein_type penicillin B-protein_type acylase I-protein_type , O substitution B-experimental_method of O the O catalytic B-protein_state N O - O terminal O Ser B-residue_name residue O by O Cys B-residue_name also O inactivates B-protein_state the O enzyme B-protein_type but O still O enables O precursor B-ptm processing I-ptm . O To O investigate O why O the O CP B-complex_assembly specifically O employs O threonine B-residue_name as O its O active B-site - I-site site I-site residue I-site , O we O used O a O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state of O the O yCP B-complex_assembly and O characterized O it O biochemically B-experimental_method and I-experimental_method structurally I-experimental_method . O Activity B-experimental_method assays I-experimental_method with O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state revealed O reduced O turnover O of O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O We O also O observed O slightly O lower O affinity O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state yCP B-complex_assembly for O the O Food O and O Drug O Administration O - O approved O proteasome B-complex_assembly inhibitors O bortezomib B-chemical and O carfilzomib B-chemical . O Structural B-evidence analyses I-evidence support O these O findings O with O the O T1S B-mutant mutant B-protein_state and O provide O an O explanation O for O the O strict B-protein_state use I-protein_state of I-protein_state Thr B-residue_name residues O in O proteasomes B-complex_assembly . O Thr1 B-residue_name_number is O well O anchored O in O the O active B-site site I-site by O hydrophobic O interactions O of O its O Cγ O methyl O group O with O Ala46 B-residue_name_number ( O Cβ O ), O Lys33 B-residue_name_number ( O carbon O side O chain O ) O and O Thr3 B-residue_name_number ( O Cγ O ). O Notably O , O proteolytically B-protein_state active I-protein_state proteasome B-complex_assembly subunits O from O archaea B-taxonomy_domain , O yeast B-taxonomy_domain and O mammals B-taxonomy_domain , O including O constitutive O , O immuno O - O and O thymoproteasome O subunits O , O either O encode O Thr B-residue_name or O Ile B-residue_name at O position O 3 B-residue_number , O indicating O the O importance O of O the O Cγ O for O fixing O the O position O of O the O nucleophilic O Thr1 B-residue_name_number . O In O contrast O to O Thr1 B-residue_name_number , O the O hydroxyl O group O of O Ser1 B-residue_name_number occupies O the O position O of O the O Thr1 B-residue_name_number methyl O side O chain O in O the O WT B-protein_state enzyme B-complex_assembly , O which O requires O its O reorientation O relative O to O the O substrate O to O allow O cleavage O ( O Fig O . O 4g O , O h O ). O Notably O , O in O the O threonine B-protein_type aspartase I-protein_type Taspase1 B-protein , O mutation B-experimental_method of O the O active B-site - I-site site I-site Thr234 B-residue_name_number to O Ser B-residue_name also O places O the O side O chain O in O the O position O of O the O methyl O group O of O Thr234 B-residue_name_number in O the O WT B-protein_state , O thereby O reducing O catalytic O activity O . O Similarly O , O although O the O serine B-residue_name mutant B-protein_state is O active B-protein_state , O threonine B-residue_name is O more O efficient O in O the O context O of O the O proteasome B-complex_assembly active B-site site I-site . O The O greater O suitability O of O threonine B-residue_name for O the O proteasome B-complex_assembly active B-site site I-site , O which O has O been O noted O in O biochemical O as O well O as O in O kinetic O studies O , O constitutes O a O likely O reason O for O the O conservation B-protein_state of O the O Thr1 B-residue_name_number residue O in O all O proteasomes B-complex_assembly from O bacteria B-taxonomy_domain to O eukaryotes B-taxonomy_domain . O Conformation O of O proteasomal O propeptides B-structure_element . O ( O a O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O matured B-protein_state WT B-protein_state β1 B-protein active B-site - I-site site I-site Thr1 B-residue_name_number . O Only O the O residues O (- B-residue_range 5 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 1 I-residue_range ) I-residue_range of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element are O displayed O . O The O major O determinant O of O the O S1 B-site specificity I-site pocket I-site , O residue O 45 B-residue_number , O is O depicted O . O Note O the O tight O conformation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number before O propeptide B-structure_element removal O ( O G B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number turn O ; O cyan O double O arrow O ) O compared O with O the O relaxed O , O processed B-protein_state WT B-protein_state active B-site - I-site site I-site Thr1 B-residue_name_number ( O red O double O arrow O ). O The O black O arrow O indicates O the O attack O of O Thr1Oγ B-residue_name_number onto O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element highlights O subtle O differences O in O their O conformations O , O but O illustrates O that O Ala1 B-residue_name_number and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number match O well O . O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O is O hydrogen O - O bonded O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O (∼ O 2 O . O 8 O Å O ; O black O dashed O line O ). O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant , O the O β2 B-mutant - I-mutant T1A I-mutant and O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant propeptide B-structure_element remnants O depict O their O differences O in O conformation O . O While O residue O (- B-residue_number 2 I-residue_number ) I-residue_number of O the O β1 B-protein and O β2 B-protein prosegments B-structure_element fit O the O S1 B-site pocket I-site , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O β5 B-protein propeptide B-structure_element occupies O the O S2 B-site pocket I-site . O Nonetheless O , O in O all O mutants O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number is O ideally O placed O for O the O nucleophilic O attack O by O Thr1Oγ B-residue_name_number . O The O hydrogen O bond O between O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O and O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O (∼ O 2 O . O 8 O Å O ) O is O indicated O by O a O black O dashed O line O . O Mutations B-experimental_method of O residue O (- B-residue_number 2 I-residue_number ) I-residue_number and O their O influence O on O propeptide B-structure_element conformation O and O autolysis B-ptm . O ( O a O ) O Structural B-experimental_method superposition I-experimental_method of O the O β1 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant mutant B-protein_state propeptide B-structure_element . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site . O ( O b O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-protein propeptides B-structure_element in O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant L I-mutant - I-mutant T1A I-mutant , O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant , O β5 B-mutant -( I-mutant H I-mutant - I-mutant 2 I-mutant ) I-mutant A I-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state proteasomes B-complex_assembly . O While O the O residues O (- B-residue_range 2 I-residue_range ) I-residue_range to I-residue_range (- I-residue_range 4 I-residue_range ) I-residue_range vary O in O their O conformation O , O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O Ala1 B-residue_name_number are O located O in O all O structures B-evidence at O the O same O positions O . O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β5 B-mutant - I-mutant H I-mutant (- I-mutant 2 I-mutant ) I-mutant T I-mutant - I-mutant T1A I-mutant mutant B-protein_state propeptide B-structure_element . O The O (- B-residue_number 2 I-residue_number ) I-residue_number residues O of O both O prosegments B-structure_element point O into O the O S1 B-site pocket I-site , O but O only O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number OH O of O β2 B-protein forms O a O hydrogen O bridge O to O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number O O ( O black O dashed O line O ). O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O matured B-protein_state β2 B-protein active B-site site I-site , O the O WT B-protein_state β2 B-mutant - I-mutant T1A I-mutant propeptide B-structure_element and O the O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant mutant B-protein_state propeptide B-structure_element . O Notably O , O Val B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number of O the O latter O does O not O occupy O the O S1 B-site pocket I-site , O thereby O changing O the O orientation O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number and O preventing O nucleophilic O attack O of O Thr1Oγ B-residue_name_number on O the O carbonyl O carbon O atom O of O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number Architecture O and O proposed O reaction O mechanism O of O the O proteasomal O active B-site site I-site . O ( O a O ) O Hydrogen B-site - I-site bonding I-site network I-site at O the O mature B-protein_state WT B-protein_state β5 B-protein proteasomal O active B-site site I-site ( O dotted O lines O ). O Thr1OH B-residue_name_number is O hydrogen O - O bonded O to O Lys33NH2 B-residue_name_number ( O 2 O . O 7 O Å O ), O which O in O turn O interacts O with O Asp17Oδ B-residue_name_number . O The O Thr1 B-residue_name_number N O terminus O is O engaged O in O hydrogen O bonds O with O Ser129Oγ B-residue_name_number , O the O carbonyl O oxygen O of O residue O 168 B-residue_number , O Ser169Oγ B-residue_name_number and O Asp166Oδ B-residue_name_number . O ( O b O ) O The O orientations O of O the O active B-site - I-site site I-site residues I-site involved O in O hydrogen O bonding O are O strictly B-protein_state conserved I-protein_state in O each O proteolytic B-site centre I-site , O as O shown O by O superposition B-experimental_method of O the O β B-protein subunits I-protein . O ( O c O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O the O β5 B-mutant - I-mutant K33A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state active B-site site I-site . O In O the O latter O , O a O water B-chemical molecule O ( O red O sphere O ) O is O found O at O the O position O where O in O the O WT B-protein_state structure O the O side O chain O amine O group O of O Lys33 B-residue_name_number is O located O . O Similarly O to O Lys33 B-residue_name_number , O the O water B-chemical molecule O hydrogen O bonds O to O Arg19O B-residue_name_number , O Asp17Oδ B-residue_name_number and O Thr1OH B-residue_name_number . O Note O , O the O strong O interaction O with O the O water B-chemical molecule O causes O a O minor O shift O of O Thr1 B-residue_name_number , O while O all O other O active B-site - I-site site I-site residues I-site remain O in O place O . O ( O d O ) O Proposed O chemical O reaction O mechanism O for O autocatalytic B-ptm precursor I-ptm processing I-ptm and O proteolysis O in O the O proteasome B-complex_assembly . O The O active B-site - I-site site I-site Thr1 B-residue_name_number is O depicted O in O blue O , O the O propeptide B-structure_element segment O and O the O peptide O substrate O are O coloured O in O green O , O whereas O the O scissile O peptide O bond O is O highlighted O in O red O . O Autolysis B-ptm ( O left O set O of O structures O ) O is O initiated O by O deprotonation O of O Thr1OH B-residue_name_number via O Lys33NH2 B-residue_name_number and O the O formation O of O a O tetrahedral O transition O state O . O The O strictly B-protein_state conserved I-protein_state oxyanion O hole O Gly47NH B-residue_name_number stabilizing O the O negatively O charged O intermediate O is O illustrated O as O a O semicircle O . O Collapse O of O the O transition O state O frees O the O Thr1 B-residue_name_number N O terminus O ( O by O completing O an O N O - O to O - O O O acyl O shift O of O the O propeptide B-structure_element ), O which O is O subsequently O protonated O by O Asp166OH B-residue_name_number via O Ser129OH B-residue_name_number . O Next O , O Thr1NH2 B-residue_name_number polarizes O a O water B-chemical molecule O for O the O nucleophilic O attack O of O the O acyl O - O enzyme O intermediate O . O On O hydrolysis O of O the O latter O , O the O active B-site - I-site site I-site Thr1 B-residue_name_number is O ready O for O catalysis O ( O right O set O of O structures O ). O The O charged O Thr1 B-residue_name_number N O terminus O may O engage O in O the O orientation O of O the O amide O moiety O and O donate O a O proton O to O the O emerging O N O terminus O of O the O C O - O terminal O cleavage O product O . O The O resulting O deprotonated O Thr1NH2 B-residue_name_number finally O activates O a O water B-chemical molecule O for O hydrolysis O of O the O acyl O - O enzyme O . O The O proteasome B-complex_assembly favours O threonine B-residue_name as O the O active O - O site O nucleophile O . O ( O a O ) O Growth B-experimental_method tests I-experimental_method by I-experimental_method serial I-experimental_method dilution I-experimental_method of O WT B-protein_state and O pre2 O ( O β5 B-protein ) O mutant B-protein_state yeast B-taxonomy_domain cultures O reveal O growth O defects O of O the O active B-site - I-site site I-site mutants B-experimental_method under O the O indicated O conditions O after O 2 O days O ( O 2 O d O ) O of O incubation O . O ( O b O ) O Purified O WT B-protein_state and O mutant B-protein_state proteasomes B-complex_assembly were O tested O for O their O chymotrypsin O - O like O activity O ( O β5 B-protein ) O using O the O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O ( O c O ) O Illustration O of O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence ( O blue O mesh O contoured O at O 1σ O ) O for O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element fragment O . O The O prosegment B-structure_element is O cleaved B-protein_state but O still B-protein_state bound I-protein_state in O the O substrate B-site - I-site binding I-site channel I-site . O Notably O , O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number does O not O occupy O the O S1 B-site pocket I-site formed O by O Met45 B-residue_name_number , O similar O to O what O was O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state . O ( O d O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant and O the O β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state subunits O onto O the O WT B-protein_state β5 B-protein subunit O . O ( O e O ) O Structural B-experimental_method superposition I-experimental_method of O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element onto O the O β1 B-mutant - I-mutant T1A I-mutant active B-site site I-site ( O blue O ) O and O the O WT B-protein_state β5 B-protein active B-site site I-site in B-protein_state complex I-protein_state with I-protein_state the O proteasome B-complex_assembly inhibitor O MG132 B-chemical ( O ref O .). O The O inhibitor B-chemical as O well O as O the O propeptides B-structure_element adopt O similar O conformations O in O the O substrate B-site - I-site binding I-site channel I-site . O ( O f O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1C I-mutant mutant B-protein_state active B-site sites I-site illustrates O the O different O orientations O of O the O hydroxyl O group O of O Thr1 B-residue_name_number and O the O thiol O side O chain O of O Cys1 B-residue_name_number . O ( O g O ) O Structural B-experimental_method superposition I-experimental_method of O the O WT B-protein_state β5 B-protein and O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state active B-site sites I-site reveals O different O orientations O of O the O hydroxyl O groups O of O Thr1 B-residue_name_number and O Ser1 B-residue_name_number , O respectively O . O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence for O Ser1 B-residue_name_number ( O blue O mesh O contoured O at O 1σ O ) O is O illustrated O . O ( O h O ) O The O methyl O group O of O Thr1 B-residue_name_number is O anchored O by O hydrophobic O interactions O with O Ala46Cβ B-residue_name_number and O Thr3Cγ B-residue_name_number . O Ser1 B-residue_name_number lacks B-protein_state this O stabilization O and O is O therefore O rotated O by O 60 O °. O Inhibition O of O WT B-protein_state and O mutant B-protein_state β5 B-mutant - I-mutant T1S I-mutant proteasomes B-complex_assembly by O bortezomib B-chemical and O carfilzomib B-chemical . O Inhibition B-experimental_method assays I-experimental_method ( O left O panel O ). O Purified O yeast B-taxonomy_domain proteasomes B-complex_assembly were O tested O for O the O susceptibility O of O their O ChT O - O L O ( O β5 B-protein ) O activity O to O inhibition O by O bortezomib B-chemical and O carfilzomib B-chemical using O the O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical . O IC50 B-evidence values I-evidence were O determined O in O triplicate O ; O s O . O d O .' O s O are O indicated O by O error O bars O . O Note O that O IC50 B-evidence values I-evidence depend O on O time O and O enzyme O concentration O . O Proteasomes B-complex_assembly ( O final O concentration O : O 66 O nM O ) O were O incubated O with O inhibitor O for O 45 O min O before O substrate O addition O ( O final O concentration O : O 200 O μM O ). O Structures B-evidence of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state in O complex B-complex_assembly with I-complex_assembly both I-complex_assembly ligands I-complex_assembly ( O green O ) O prove O the O reactivity O of O Ser1 B-residue_name_number ( O right O panel O ). O The O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence maps I-evidence ( O blue O mesh O ) O for O Ser1 B-residue_name_number ( O brown O ) O and O the O covalently O bound O ligands O ( O green O ; O only O the O P1 B-site site I-site ( O Leu1 B-residue_name_number ) O is O shown O ) O are O contoured O at O 1σ O . O The O WT B-protein_state proteasome B-complex_assembly : I-complex_assembly inhibitor I-complex_assembly complex I-complex_assembly structures B-evidence ( O inhibitor O in O grey O ; O Thr1 B-residue_name_number in O black O ) O are O superimposed B-experimental_method and O demonstrate O that O mutation B-experimental_method of O Thr1 B-residue_name_number to O Ser B-residue_name does O not O affect O the O binding O mode O of O bortezomib B-chemical or O carfilzomib B-chemical . O