PMC 20140719 pmc.key 4784909 CC BY no 0 0 The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle 10.1371/journal.pbio.1002399 4784909 26959993 PBIOLOGY-D-15-02496 e1002399 3 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. surname:Erbilgin;given-names:Onur surname:Sutter;given-names:Markus surname:Kerfeld;given-names:Cheryl A. surname:Petsko;given-names:Gregory A. PDB files are available from the Protein Data Bank under accession codes 5CUO and 5CUP. TITLE Data Availability front 14 2016 0 The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:42Z Coenzyme A taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z Bacterial ABSTRACT abstract 70 Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen. taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z Bacterial complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:39Z Microcompartments complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z aldehyde protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:12Z phosphotransacylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:19Z PTAC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:42Z Coenzyme A chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:53Z acyl phosphate protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:19Z PTAC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:27Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:19Z PTAC taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:12Z fermentative bacteria protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:20Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:27Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:40Z with bound substrates protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:22:32Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:22:46Z fold structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:21:59Z that protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:20Z Pta site SO: melaniev@ebi.ac.uk 2023-03-21T15:25:04Z dimetal active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:22:56Z housekeeping protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:19Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:27Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:20Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:27Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:23:00Z structure complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome ABSTRACT abstract 1219 This study describes the structure of a novel phosphotransacylase enzyme that facilitates the recycling of the essential cofactor acetyl-CoA within a bacterial organelle and discusses the properties of the enzyme's active site and how it is packaged into the organelle. evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:23:53Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:12Z phosphotransacylase chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:24:05Z acetyl-CoA taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z bacterial site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site ABSTRACT abstract_title_1 1489 Author Summary ABSTRACT abstract 1504 In metabolism, molecules with “high-energy” bonds (e.g., ATP and Acetyl~CoA) are critical for both catabolic and anabolic processes. Accordingly, the retention of these bonds during biochemical transformations is incredibly important. The phosphotransacylase (Pta) enzyme catalyzes the conversion between acyl-CoA and acyl-phosphate. This reaction directly links an acyl-CoA with ATP generation via substrate-level phosphorylation, producing short-chain fatty acids (e.g., acetate), and also provides a path for short-chain fatty acids to enter central metabolism. Due to this key function, Pta is conserved across the bacterial kingdom. Recently, a new type of phosphotransacylase was described that shares no evolutionary relation to Pta. This enzyme, PduL, is exclusively associated with organelles called bacterial microcompartments, which are used to catabolize various compounds. Not only does PduL facilitate substrate level phosphorylation, but it also is critical for cofactor recycling within, and product efflux from, the organelle. We solved the structure of this convergent phosphotransacylase and show that it is completely structurally different from Pta, including its active site architecture. We also discuss features of the protein important to its packaging in the organelle. chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:10Z ATP chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:17Z Acetyl~CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:12Z phosphotransacylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:10Z ATP chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:53Z short-chain fatty acids chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:29:00Z acetate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:53Z short-chain fatty acids protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:29:05Z conserved taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:29:09Z bacterial kingdom protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:12Z phosphotransacylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:27Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:29:19Z exclusively taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z bacterial complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:39Z microcompartments protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T15:29:26Z solved evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:29:29Z structure protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:29:33Z convergent protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:12Z phosphotransacylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site INTRO title_1 2804 Introduction INTRO paragraph 2817 Bacterial Microcompartments (BMCs) are organelles that encapsulate enzymes for sequential biochemical reactions within a protein shell. The shell is typically composed of three types of protein subunits, which form either hexagonal (BMC-H and BMC-T) or pentagonal (BMC-P) tiles that assemble into a polyhedral shell. The facets of the shell are composed primarily of hexamers that are typically perforated by pores lined with highly conserved, polar residues that presumably function as the conduits for metabolites into and out of the shell. taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z Bacterial complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:39Z Microcompartments complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:29Z shell structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:31:44Z hexagonal complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:31:48Z BMC-H complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:31:52Z BMC-T protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:31:54Z pentagonal complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:31:57Z BMC-P protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:32:00Z polyhedral structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:32:06Z hexamers site SO: melaniev@ebi.ac.uk 2023-03-21T15:32:12Z pores protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:32:18Z highly conserved protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:32:21Z polar structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:32:25Z residues structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell INTRO paragraph 3360 The vitamin B12-dependent propanediol-utilizing (PDU) BMC was one of the first functionally characterized catabolic BMCs; subsequently, other types have been implicated in the degradation of ethanolamine, choline, fucose, rhamnose, and ethanol, all of which produce different aldehyde intermediates (Table 1). More recently, bioinformatic studies have demonstrated the widespread distribution of BMCs among diverse bacterial phyla and grouped them into 23 different functional types. The reactions carried out in the majority of catabolic BMCs (also known as metabolosomes) fit a generalized biochemical paradigm for the oxidation of aldehydes (Fig 1). This involves a BMC-encapsulated signature enzyme that generates a toxic and/or volatile aldehyde that the BMC shell sequesters from the cytosol. The aldehyde is subsequently converted into an acyl-CoA by aldehyde dehydrogenase, which uses NAD+ and CoA as cofactors. These two cofactors are relatively large, and their diffusion across the protein shell is thought to be restricted, necessitating their regeneration within the BMC lumen. NAD+ is recycled via alcohol dehydrogenase, and CoA is recycled via phosphotransacetylase (PTAC) (Fig 1). The final product of the BMC, an acyl-phosphate, can then be used to generate ATP via acyl kinase, or revert back to acyl-CoA by Pta for biosynthesis. Collectively, the aldehyde and alcohol dehydrogenases, as well as the PTAC, constitute the common metabolosome core. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:35:57Z vitamin B12-dependent propanediol-utilizing (PDU) BMC protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:36:05Z ethanolamine chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:36:08Z choline chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:54:19Z fucose chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:36:10Z rhamnose chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:36:13Z ethanol chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z aldehyde experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T15:36:19Z bioinformatic studies complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:36:22Z bacterial phyla protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:36:31Z aldehydes complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z aldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z aldehyde chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:03Z aldehyde dehydrogenase chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:38:07Z NAD+ chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:38:10Z CoA structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:38:16Z protein shell complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:38:21Z NAD+ protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:28Z alcohol dehydrogenase chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:38:32Z CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:41Z phosphotransacetylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:10Z ATP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:57Z acyl kinase chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:39:04Z aldehyde and alcohol dehydrogenases protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome pbio.1002399.g001.jpg pbio.1002399.g001 FIG fig_title_caption 4825 General biochemical model of aldehyde-degrading BMCs (metabolosomes) illustrating the common metabolosome core enzymes and reactions. protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:39:32Z aldehyde-degrading complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome pbio.1002399.g001.jpg pbio.1002399.g001 FIG fig_caption 4959 Substrates and cofactors involving the PTAC reaction are shown in red; other substrates and enzymes are shown in black, and other cofactors are shown in gray. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC pbio.1002399.t001.xml pbio.1002399.t001 TABLE table_title_caption 5118 Characterized and predicted catabolic BMC (metabolosome) types that represent the aldehyde-degrading paradigm (for definition of types see Kerfeld and Erbilgin). protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z aldehyde pbio.1002399.t001.xml pbio.1002399.t001 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="justify" rowspan="1" colspan="1">Name</th><th align="justify" rowspan="1" colspan="1">PTAC Type</th><th align="justify" rowspan="1" colspan="1">Sequestered Aldehyde</th></tr></thead><tbody><tr><td align="justify" rowspan="1" colspan="1">PDU<xref ref-type="table-fn" rid="t001fn001">*</xref> </td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">propionaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">EUT1</td><td align="justify" rowspan="1" colspan="1">PTA_PTB</td><td align="justify" rowspan="1" colspan="1">acetaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">EUT2</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">acetaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">ETU</td><td align="justify" rowspan="1" colspan="1">None</td><td align="justify" rowspan="1" colspan="1">acetaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">GRM1/CUT</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">acetaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">GRM2</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">acetaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">GRM3<xref ref-type="table-fn" rid="t001fn001">*</xref>,4</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">propionaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">GRM5/GRP</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">propionaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">PVM<xref ref-type="table-fn" rid="t001fn001">*</xref> </td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">lactaldehyde</td></tr><tr><td align="justify" rowspan="1" colspan="1">RMM1,2</td><td align="justify" rowspan="1" colspan="1">None</td><td align="justify" rowspan="1" colspan="1">unknown</td></tr><tr><td align="justify" rowspan="1" colspan="1">SPU</td><td align="justify" rowspan="1" colspan="1">PduL</td><td align="justify" rowspan="1" colspan="1">unknown</td></tr></tbody></table> 5280 Name PTAC Type Sequestered Aldehyde PDU* PduL propionaldehyde EUT1 PTA_PTB acetaldehyde EUT2 PduL acetaldehyde ETU None acetaldehyde GRM1/CUT PduL acetaldehyde GRM2 PduL acetaldehyde GRM3*,4 PduL propionaldehyde GRM5/GRP PduL propionaldehyde PVM* PduL lactaldehyde RMM1,2 None unknown SPU PduL unknown protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:34Z Aldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:41:59Z PDU protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:02Z propionaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:09Z EUT1 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:42:12Z PTA_PTB chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:15Z acetaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:18Z EUT2 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:23Z acetaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:26Z ETU chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:28Z acetaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:31Z GRM1/CUT protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:35Z acetaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:38Z GRM2 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:41Z acetaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:44Z GRM3*,4 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:47Z propionaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:49Z GRM5/GRP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:52Z propionaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:42:55Z PVM protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:42:58Z lactaldehyde complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:43:01Z RMM1,2 complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:43:04Z SPU protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL pbio.1002399.t001.xml pbio.1002399.t001 TABLE table_footnote 5607 * PduL from these functional types of metabolosomes were purified in this study. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes INTRO paragraph 5688 The activities of core enzymes are not confined to BMC-associated functions: aldehyde and alcohol dehydrogenases are utilized in diverse metabolic reactions, and PTAC catalyzes a key biochemical reaction in the process of obtaining energy during fermentation. The concerted functioning of a PTAC and an acetate kinase (Ack) is crucial for ATP generation in the fermentation of pyruvate to acetate (see Reactions 1 and 2). Both enzymes are, however, not restricted to fermentative organisms. They can also work in the reverse direction to activate acetate to the CoA-thioester. This occurs, for example, during acetoclastic methanogenesis in the archaeal Methanosarcina species. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:45:57Z aldehyde and alcohol dehydrogenases protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:45:54Z acetate kinase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:46:04Z Ack chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:10Z ATP chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:46:13Z pyruvate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:29:00Z acetate taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:45:44Z fermentative organisms chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:29:00Z acetate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:46:23Z CoA-thioester taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:45:22Z archaeal taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:45:08Z Methanosarcina species INTRO paragraph 6366 Reaction 1: acetyl-S-CoA + Pi ←→ acetyl phosphate + CoA-SH (PTAC) chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:46:56Z acetyl-S-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:47:02Z Pi chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:47:09Z acetyl phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:47:19Z CoA-SH protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC INTRO paragraph 6437 Reaction 2: acetyl phosphate + ADP ←→ acetate + ATP (Ack) chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:47:10Z acetyl phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:47:55Z ADP chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:29:01Z acetate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:10Z ATP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:46:04Z Ack INTRO paragraph 6500 The canonical PTAC, Pta, is an ancient enzyme found in some eukaryotes and archaea, and widespread among the bacteria; 90% of the bacterial genomes in the Integrated Microbial Genomes database contain a gene encoding the PTA_PTB phosphotransacylase (Pfam domain PF01515). Pta has been extensively characterized due to its key role in fermentation. More recently, a second type of PTAC without any sequence homology to Pta was identified. This protein, PduL (Pfam domain PF06130), was shown to catalyze the conversion of propionyl-CoA to propionyl-phosphate and is associated with a BMC involved in propanediol utilization, the PDU BMC. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:50:42Z eukaryotes taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:50:50Z archaea taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:51:00Z bacteria taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:15:03Z bacterial protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:51:05Z PTA_PTB phosphotransacylase structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:16Z PF01515 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:42Z propionyl-phosphate complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:00Z BMC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:51:51Z PDU BMC INTRO paragraph 7136 Both pduL and pta genes can be found in genetic loci of functionally distinct BMCs, although the PduL type is much more prevalent, being found in all but one type of metabolosome locus: EUT1 (Table 1). Furthermore, in the Integrated Microbial Genomes Database, 91% of genomes that encode PF06130 also encode genes for shell proteins. As a member of the core biochemical machinery of functionally diverse aldehyde-oxidizing metabolosomes, PduL must have a certain level of substrate plasticity (see Table 1) that is not required of Pta, which has generally been observed to prefer acetyl-CoA. PduL from the PDU BMC of Salmonella enterica favors propionyl-CoA over acetyl-CoA, and it is likely that PduL orthologs in functionally diverse BMCs would have substrate preferences for other CoA derivatives. Another distinctive feature of BMC-associated PduL homologs is an N-terminal encapsulation peptide (EP) that is thought to “target” proteins for encapsulation by the BMC shell. EPs are frequently found on BMC-associated proteins and have been shown to interact with shell proteins. EPs have also been observed to cause proteins to aggregate, and this has recently been suggested to be functionally relevant as an initial step in metabolosome assembly, in which a multifunctional protein core is formed, around which the shell assembles. gene GENE: melaniev@ebi.ac.uk 2023-03-21T15:54:31Z pduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T15:54:49Z pta complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:55:23Z metabolosome locus gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:55:27Z EUT1 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:55:52Z aldehyde-oxidizing complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:24:05Z acetyl-CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:51:51Z PDU BMC species MESH: melaniev@ebi.ac.uk 2023-03-21T15:56:10Z Salmonella enterica chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:24:05Z acetyl-CoA protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:46Z BMCs chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:56:18Z CoA protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:56:22Z BMC-associated protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:32Z encapsulation peptide structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:54Z EPs protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:56:58Z BMC-associated proteins structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:54Z EPs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell INTRO paragraph 8478 Of the three common metabolosome core enzymes, crystal structures are available for both the alcohol and aldehyde dehydrogenases. In contrast, the structure of PduL, the PTAC found in the vast majority of catabolic BMCs, has not been determined. This is a major gap in our understanding of metabolosome-encapsulated biochemistry and cofactor recycling. Structural information will be essential to working out how the core enzymes and their cofactors assemble and organize within the organelle lumen to enhance catalysis. Moreover, it will be useful for guiding efforts to engineer novel BMC cores for biotechnological applications. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:58:16Z alcohol and aldehyde dehydrogenases evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:58:19Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC INTRO paragraph 9110 The primary structure of PduL homologs is subdivided into two PF06130 domains, each roughly 80 residues in length. No available protein structures contain the PF06130 domain, and homology searches using the primary structure of PduL do not return any significant results that would allow prediction of the structure. Moreover, the evident novelty of PduL makes its structure interesting in the context of convergent evolution of PTAC function; to-date, only the Pta active site and catalytic mechanism is known. Here we report high-resolution crystal structures of a PduL-type PTAC in both CoA- and phosphate-bound forms, completing our understanding of the structural basis of catalysis by the metabolosome common core enzymes. We propose a catalytic mechanism analogous but yet distinct from the ubiquitous Pta enzyme, highlighting the functional convergence of two enzymes with completely different structures and metal requirements. We also investigate the quaternary structures of three different PduL homologs and situate our findings in the context of organelle biogenesis in functionally diverse BMCs. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:00:07Z 80 residues in length structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:00:18Z homology searches protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:00:22Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:00:25Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T16:00:29Z PduL-type PTAC protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:48:27Z CoA- protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs RESULTS title_1 10220 Results RESULTS title_2 10228 Structure Determination of PduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:00:48Z Structure Determination protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL RESULTS paragraph 10260 We cloned, expressed, and purified three different PduL homologs from functionally distinct BMCs (Table 1): from the well-studied pdu locus in S. enterica Typhimurium LT2 (sPduL), from the recently characterized pvm locus in Planctomyces limnophilus (pPduL), and from the grm3 locus in Rhodopseudomonas palustris BisB18 (rPduL). While purifying full-length sPduL, we observed a tendency to aggregation as described previously, with a large fraction of the expressed protein found in the insoluble fraction in a white, cake-like pellet. Remarkably, after removing the N-terminal putative EP (27 amino acids), most of the sPduLΔEP protein was in the soluble fraction upon cell lysis. Similar differences in solubility were observed for pPduL and rPduL when comparing EP-truncated forms to the full-length protein, but none were quite as dramatic as for sPduL. We confirmed that all homologs were active (S1a and S1b Fig). Among these, we were only able to obtain diffraction-quality crystals of rPduL after removing the N-terminal putative EP (33 amino acids, also see Fig 2a) (rPduLΔEP). Truncated rPduLΔEP had comparable enzymatic activity to the full-length enzyme (S1a Fig). experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:03:27Z cloned, expressed, and purified protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs gene GENE: melaniev@ebi.ac.uk 2023-03-21T16:03:31Z pdu locus species MESH: melaniev@ebi.ac.uk 2023-03-21T16:03:38Z S. enterica Typhimurium LT2 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T16:03:48Z pvm locus species MESH: melaniev@ebi.ac.uk 2023-03-21T16:03:54Z Planctomyces limnophilus protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:00Z pPduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T16:04:05Z grm3 locus species MESH: melaniev@ebi.ac.uk 2023-03-21T16:04:10Z Rhodopseudomonas palustris BisB18 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:25Z full-length protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:04:30Z removing structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:37Z 27 amino acids mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:04:44Z sPduLΔEP protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:00Z pPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:54Z EP-truncated protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:25Z full-length protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:01Z active evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:06Z diffraction-quality crystals protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:09Z removing structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:12Z 33 amino acids mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:26Z Truncated mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:25Z full-length pbio.1002399.g002.jpg pbio.1002399.g002 FIG fig_title_caption 11449 Structural overview of R. palustris PduL from the grm3 locus. species MESH: melaniev@ebi.ac.uk 2023-03-21T16:06:40Z R. palustris protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T16:06:44Z grm3 locus pbio.1002399.g002.jpg pbio.1002399.g002 FIG fig_caption 11511 (a) Primary and secondary structure of rPduL (tubes represent α-helices, arrows β-sheets and dashed line residues disordered in the structure. Blocks of ten residues are shaded alternatively black/dark gray. The first 33 amino acids are present only in the wildtype construct and contains the predicted EP alpha helix, α0); the truncated rPduLΔEP that was crystallized begins with M-G-V. Coloring is according to structural domains (domain 1 D36-N46/Q155-C224, blue; loop insertion G61-E81, grey; domain 2 R47-F60/E82-A154, red). Metal coordination residues are highlighted in light blue and CoA contacting residues in magenta, residues contacting the CoA of the other chain are also outlined. (b) Cartoon representation of the structure colored by domains and including secondary structure numbering. The N-and C-termini are in close proximity. Coenzyme A is shown in magenta sticks and Zinc (grey) as spheres. protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:08:37Z α-helices structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:08:40Z β-sheets evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:08:43Z structure residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:08:47Z first 33 amino acids structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:09:10Z EP structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:09:24Z alpha helix structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:09:35Z α0 protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:26Z truncated mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:09:39Z crystallized residue_name SO: melaniev@ebi.ac.uk 2023-03-21T16:09:42Z M residue_name SO: melaniev@ebi.ac.uk 2023-03-21T16:09:44Z G residue_name SO: melaniev@ebi.ac.uk 2023-03-21T16:09:47Z V structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:09:51Z domain 1 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:09:53Z D36-N46 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:09:56Z Q155-C224 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:10:00Z loop insertion residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:10:02Z G61-E81 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:10:05Z domain 2 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:10:07Z R47-F60 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:10:10Z E82-A154 site SO: melaniev@ebi.ac.uk 2023-03-21T16:10:12Z Metal coordination residues site SO: melaniev@ebi.ac.uk 2023-03-21T16:10:16Z CoA contacting residues chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:18Z CoA evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:54:54Z structure evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:54:57Z structure chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:43Z Coenzyme A chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:26Z Zinc RESULTS paragraph 12438 We collected a native dataset from rPduLΔEP crystals diffracting to a resolution of 1.54 Å (Table 2). Using a mercury-derivative crystal form diffracting to 1.99 Å (Table 2), we obtained high quality electron density for model building and used the initial model to refine against the native data to Rwork/Rfree values of 18.9/22.1%. There are two PduL molecules in the asymmetric unit of the P212121 unit cell. We were able to fit all of the primary structure of PduLΔEP into the electron density with the exception of three amino acids at the N-terminus and two amino acids at the C-terminus (Fig 2a); the model is of excellent quality (Table 2). A CoA cofactor as well as two metal ions are clearly resolved in the density (for omit maps of CoA see S2 Fig). experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:33:57Z collected a native dataset mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:33:53Z crystals experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:33:59Z mercury-derivative crystal evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:34:03Z electron density evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:34:38Z Rwork evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:34:52Z Rfree protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:35:27Z PduLΔEP evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:35:31Z electron density chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:35:42Z CoA evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:35:52Z density evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:35:54Z omit maps chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:35:57Z CoA pbio.1002399.t002.xml pbio.1002399.t002 TABLE table_title_caption 13207 Data collection and refinement statistics pbio.1002399.t002.xml pbio.1002399.t002 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="justify" rowspan="1" colspan="1"/><th align="justify" rowspan="1" colspan="1">PduL native</th><th align="left" rowspan="1" colspan="1">PduL mercury derivative</th><th align="left" rowspan="1" colspan="1">PduL phosphate soaked</th></tr></thead><tbody><tr><td align="justify" rowspan="1" colspan="1"> <bold>Data collection</bold> </td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">Space group</td><td align="justify" rowspan="1" colspan="1">P 2<sub>1</sub> 2<sub>1</sub> 2<sub>1</sub> </td><td align="justify" rowspan="1" colspan="1">P 2<sub>1</sub> 2<sub>1</sub> 2<sub>1</sub> </td><td align="justify" rowspan="1" colspan="1">P 2<sub>1</sub> 2<sub>1</sub> 2<sub>1</sub> </td></tr><tr><td align="justify" rowspan="1" colspan="1">Cell dimensions</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1"> <italic>a</italic>, <italic>b</italic>, <italic>c</italic> (Å)</td><td align="justify" rowspan="1" colspan="1">57.7, 56.4, 150.4</td><td align="justify" rowspan="1" colspan="1">55.6, 57.7, 150.2</td><td align="justify" rowspan="1" colspan="1">57.1, 58.8, 136.7</td></tr><tr><td align="justify" rowspan="1" colspan="1"> <italic>α</italic>, <italic>β</italic>, <italic>γ</italic> (°)</td><td align="justify" rowspan="1" colspan="1">90, 90, 90</td><td align="justify" rowspan="1" colspan="1">90, 90, 90</td><td align="justify" rowspan="1" colspan="1">90, 90, 90</td></tr><tr><td align="justify" rowspan="1" colspan="1">Resolution (Å)</td><td align="justify" rowspan="1" colspan="1">31.4 − 1.54 (1.60 − 1.54)<xref ref-type="table-fn" rid="t002fn001">*</xref> </td><td align="justify" rowspan="1" colspan="1">35.3 − 1.99 (2.07 − 1.99)</td><td align="justify" rowspan="1" colspan="1">39.2 − 2.10 (2.21 − 2.10)</td></tr><tr><td align="justify" rowspan="1" colspan="1"> <italic>R</italic> <sub>merge</sub> </td><td align="justify" rowspan="1" colspan="1">0.169 (1.223)</td><td align="justify" rowspan="1" colspan="1">0.084 (0.299)</td><td align="justify" rowspan="1" colspan="1">0.122 (0.856)</td></tr><tr><td align="justify" rowspan="1" colspan="1">I/σ(I)</td><td align="justify" rowspan="1" colspan="1">12.9 (1.7)</td><td align="justify" rowspan="1" colspan="1">22.1 (7.1)</td><td align="justify" rowspan="1" colspan="1">12.6 (2.0)</td></tr><tr><td align="justify" rowspan="1" colspan="1">Completeness (%)</td><td align="justify" rowspan="1" colspan="1">99.4 (94.4)</td><td align="justify" rowspan="1" colspan="1">99.3 (93.3)</td><td align="justify" rowspan="1" colspan="1">100 (99.9)</td></tr><tr><td align="justify" rowspan="1" colspan="1">Redundancy</td><td align="justify" rowspan="1" colspan="1">13.9 (12.1)</td><td align="justify" rowspan="1" colspan="1">7.2 (7.0)</td><td align="justify" rowspan="1" colspan="1">6.5 (6.1)</td></tr><tr><td align="justify" rowspan="1" colspan="1"> <bold>Refinement</bold> </td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">Resolution (Å)</td><td align="justify" rowspan="1" colspan="1">31.4 − 1.54 (1.60 − 1.54)<xref ref-type="table-fn" rid="t002fn001">*</xref> </td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">39.2 − 2.10 (2.18 − 2.1)</td></tr><tr><td align="justify" rowspan="1" colspan="1">No. reflections</td><td align="justify" rowspan="1" colspan="1">72,698</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">27,554</td></tr><tr><td align="justify" rowspan="1" colspan="1"> <italic>R</italic> <sub>work/</sub> <italic>R</italic> <sub>free</sub> (%)</td><td align="justify" rowspan="1" colspan="1">18.9 (30.7) / 22.1 (34.7)</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">17.5 (24.2) / 22.6 (30.0)</td></tr><tr><td align="justify" rowspan="1" colspan="1">No. atoms</td><td align="justify" rowspan="1" colspan="1">3,453</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">3,127</td></tr><tr><td align="justify" rowspan="1" colspan="1">Protein</td><td align="justify" rowspan="1" colspan="1">2,841</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">2,838</td></tr><tr><td align="justify" rowspan="1" colspan="1">Ligand/ion</td><td align="justify" rowspan="1" colspan="1">100</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">24</td></tr><tr><td align="justify" rowspan="1" colspan="1">Water</td><td align="justify" rowspan="1" colspan="1">512</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">265</td></tr><tr><td align="justify" rowspan="1" colspan="1">B-factors</td><td align="justify" rowspan="1" colspan="1">22.8</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">34.7</td></tr><tr><td align="justify" rowspan="1" colspan="1">Protein</td><td align="justify" rowspan="1" colspan="1">21.5</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">24.3</td></tr><tr><td align="justify" rowspan="1" colspan="1">Ligand/ion</td><td align="justify" rowspan="1" colspan="1">21.9</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">40.6</td></tr><tr><td align="justify" rowspan="1" colspan="1">Water</td><td align="justify" rowspan="1" colspan="1">30.3</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">37.9</td></tr><tr><td align="justify" rowspan="1" colspan="1">R.m.s deviations</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">Bond lengths (Å)</td><td align="justify" rowspan="1" colspan="1">0.006</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">0.013</td></tr><tr><td align="justify" rowspan="1" colspan="1">Bond angles (°)</td><td align="justify" rowspan="1" colspan="1">1.26</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">1.30</td></tr><tr><td align="justify" rowspan="1" colspan="1">Ramachandran Plot</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">favored (%)</td><td align="justify" rowspan="1" colspan="1">99</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">99</td></tr><tr><td align="justify" rowspan="1" colspan="1">allowed (%)</td><td align="justify" rowspan="1" colspan="1">1</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">1</td></tr><tr><td align="justify" rowspan="1" colspan="1">disallowed (%)</td><td align="justify" rowspan="1" colspan="1">0</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1">0</td></tr></tbody></table> 13249 PduL native PduL mercury derivative PduL phosphate soaked Data collection Space group P 21 21 21 P 21 21 21 P 21 21 21 Cell dimensions a, b, c (Å) 57.7, 56.4, 150.4 55.6, 57.7, 150.2 57.1, 58.8, 136.7 α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 Resolution (Å) 31.4 − 1.54 (1.60 − 1.54)* 35.3 − 1.99 (2.07 − 1.99) 39.2 − 2.10 (2.21 − 2.10) Rmerge 0.169 (1.223) 0.084 (0.299) 0.122 (0.856) I/σ(I) 12.9 (1.7) 22.1 (7.1) 12.6 (2.0) Completeness (%) 99.4 (94.4) 99.3 (93.3) 100 (99.9) Redundancy 13.9 (12.1) 7.2 (7.0) 6.5 (6.1) Refinement Resolution (Å) 31.4 − 1.54 (1.60 − 1.54)* 39.2 − 2.10 (2.18 − 2.1) No. reflections 72,698 27,554 Rwork/Rfree (%) 18.9 (30.7) / 22.1 (34.7) 17.5 (24.2) / 22.6 (30.0) No. atoms 3,453 3,127 Protein 2,841 2,838 Ligand/ion 100 24 Water 512 265 B-factors 22.8 34.7 Protein 21.5 24.3 Ligand/ion 21.9 40.6 Water 30.3 37.9 R.m.s deviations Bond lengths (Å) 0.006 0.013 Bond angles (°) 1.26 1.30 Ramachandran Plot favored (%) 99 99 allowed (%) 1 1 disallowed (%) 0 0 pbio.1002399.t002.xml pbio.1002399.t002 TABLE table_footnote 14364 *Highest resolution shell is shown in parentheses. RESULTS paragraph 14415 Structurally, PduL consists of two domains (Fig 2, blue/red), each a beta-barrel that is capped on both ends by short α-helices. β-Barrel 1 consists of the N-terminal β strand and β strands from the C-terminal half of the polypeptide chain (β1, β10-β14; residues 37–46 and 155–224). β-Barrel 2 consists mainly of the central segment of primary structure (β2, β5–β9; residues 47–60 and 82–154) (Fig 2, red), but is interrupted by a short two-strand beta sheet (β3-β4, residues 61–81). This β-sheet is involved in contacts between the two domains and forms a lid over the active site. Residues in this region (Gln42, Pro43, Gly44), covering the active site, are strongly conserved (Fig 3). This structural arrangement is completely different from the functionally related Pta, which is composed of two domains, each consisting of a central flat beta sheet with alpha-helices on the top and bottom. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:19Z domains structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:22Z beta-barrel structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:24Z α-helices structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:31Z β-Barrel 1 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:34Z β strand structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:37Z β strands structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:40Z C-terminal half structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:43Z β1 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:45Z β10-β14 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:38:48Z 37–46 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:38:51Z 155–224 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:38:57Z β-Barrel 2 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:02Z β2 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:05Z β5–β9 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:39:07Z 47–60 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:55:31Z 82–154 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:14Z short two-strand beta sheet structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:16Z β3-β4 residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:39:19Z 61–81 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:22Z β-sheet site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:39:34Z Gln42 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:39:41Z Pro43 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:39:47Z Gly44 site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:54:31Z strongly conserved protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:52Z domains structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:54Z beta sheet structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:39:57Z alpha-helices pbio.1002399.g003.jpg pbio.1002399.g003 FIG fig_title_caption 15354 Primary structure conservation of the PduL protein family. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL pbio.1002399.g003.jpg pbio.1002399.g003 FIG fig_caption 15413 Sequence logo calculated from the multiple sequence alignment of PduL homologs (see Materials and Methods), but not including putative EP sequences. Residues 100% conserved across all PduL homologs in our dataset are noted with an asterisk, and residues conserved in over 90% of sequences are noted with a colon. The sequences aligning to the PF06130 domain (determined by BLAST) are highlighted in red and blue. The position numbers shown correspond to the residue numbering of rPduL; note that some positions in the logo represent gaps in the rPduL sequence. experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:40:47Z multiple sequence alignment protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:28Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:40:54Z not including structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL RESULTS paragraph 15974 There are two PduL molecules in the asymmetric unit forming a butterfly-shaped dimer (Fig 4c). Consistent with this, results from size exclusion chromatography of rPduLΔEP suggest that it is a dimer in solution (Fig 5e). The interface between the two chains buries 882 Å2 per monomer and is mainly formed by α-helices 2 and 4 and parts of β-sheets 12 and 14, as well as a π–π stacking of the adenine moiety of CoA with Phe116 of the adjacent chain (Fig 4c). The folds of the two chains in the asymmetric unit are very similar, superimposing with a rmsd of 0.16 Å over 2,306 aligned atom pairs. The peripheral helices and the short antiparallel β3–4 sheet mediate most of the crystal contacts. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:17Z butterfly-shaped oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:48:56Z size exclusion chromatography mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer site SO: melaniev@ebi.ac.uk 2023-03-21T16:42:34Z interface oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:40Z monomer structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:42:44Z α-helices 2 and 4 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:42:47Z β-sheets 12 and 14 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:42:58Z adenine chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:43:00Z CoA residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:43:09Z Phe116 experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:44:40Z superimposing evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:44:59Z rmsd structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:45:10Z helices structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:45:33Z short antiparallel β3–4 sheet pbio.1002399.g004.jpg pbio.1002399.g004 FIG fig_title_caption 16683 Details of active site, dimeric assembly, and sequence conservation of PduL. site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:45:56Z dimeric protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL pbio.1002399.g004.jpg pbio.1002399.g004 FIG fig_caption 16760 (a,b) Proposed active site of PduL with relevant residues shown as sticks in atom coloring (nitrogen blue, oxygen red, sulfur yellow), zinc as grey colored spheres and coordinating ordered water molecules in red. Distances between atom centers are indicated in Å. (a) Coenzyme A containing, (b) phosphate-bound structure. (c) View of the dimer in the asymmetric unit from the side, domains 1 and 2 colored as in Fig 2 and the two chains differentiated by blue/red versus slate/firebrick. The bottom panel shows a top view down the 2-fold axis as indicated by the arrow in the top panel. The asterisk and double arrow marks the location of the π–π interaction between F116 and the CoA base of the other dimer chain. (d) Surface representation of the structure with indicated conservation (red: high, white: intermediate, yellow: low). site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:01Z nitrogen chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:04Z oxygen chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:06Z sulfur chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:14Z water chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:43Z Coenzyme A protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:31Z structure oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer structure_element SO: melaniev@ebi.ac.uk 2023-03-21T16:47:37Z domains 1 and 2 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:43Z F116 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:53Z CoA oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:59Z structure pbio.1002399.g005.jpg pbio.1002399.g005 FIG fig_title_caption 17599 Size exclusion chromatography of PduL homologs. experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:48:56Z Size exclusion chromatography protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL pbio.1002399.g005.jpg pbio.1002399.g005 FIG fig_caption 17647 (a)–(c): Chromatograms of sPduL (a), rPduL (b), and pPduL (c) with (orange) or without (blue) the predicted EP, post-nickel affinity purification, applied over a preparative size exclusion column (see Materials and Methods). (d)–(f): Chromatograms of sPduL (d), rPduL (e), and pPduL (f) post-preparative size exclusion chromatography with different size fractions separated, applied over an analytical size exclusion column (see Materials and Methods). All chromatograms are cropped to show only the linear range of separation based on standard runs, shown in black squares with a dashed linear trend line. All y-axes are arbitrary absorbance units except the right-hand axes for panels (a) and (d), which is the log10(molecular weight) of the standards. evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:49:50Z Chromatograms protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:49:53Z nickel affinity purification evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:49:48Z Chromatograms protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:48:56Z size exclusion chromatography evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:49:45Z chromatograms RESULTS title_2 18406 Active Site Properties site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z Active Site RESULTS paragraph 18429 CoA and the metal ions bind between the two domains, presumably in the active site (Figs 2b and 4a). To identify the bound metals, we performed an X-ray fluorescence scan on the crystals at various wavelengths (corresponding to the K-edges of Mn, Fe, Co, Ni, Cu, and Zn). There was a large signal at the zinc edge, and we tested for the presence of zinc by collecting full data sets before and after the Zn K-edge (1.2861 and 1.2822 Å, respectively). The large differences between the anomalous signals confirm the presence of zinc at both metal sites (S3 Fig). chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:21Z CoA site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:51:26Z X-ray fluorescence scan evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:51:29Z crystals chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:32Z Mn chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:34Z Fe chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:37Z Co chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:40Z Ni chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:42Z Cu chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:51:45Z Zn chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:51:47Z collecting full data sets before and after the Zn K-edge (1.2861 and 1.2822 Å chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc RESULTS paragraph 18992 The first zinc ion (Zn1) is in a tetrahedral coordination state with His48, His50, Glu109, and the CoA sulfur (Fig 4a). The second (Zn2) is in octahedral coordination by three conserved histidine residues (His157, His159 and His204) as well as three water molecules (Fig 4a). The nitrogen atom coordinating the zinc is the Nε in each histidine residue, as is typical for this interaction. When the crystals were soaked in a sodium phosphate solution for 2 d prior to data collection, the CoA dissociates, and density for a phosphate molecule is visible at the active site (Table 2, Fig 4b). The phosphate-bound structure aligns well with the CoA-bound structure (0.43 Å rmsd over 2,361 atoms for the monomer, 0.83 Å over 5,259 aligned atoms for the dimer). The phosphate contacts both zinc atoms (Fig 4b) and replaces the coordination by CoA at Zn1; the coordination for Zn2 changes from octahedral with three bound waters to tetrahedral with a phosphate ion as one of the ligands (Fig 4b). Conserved Arg103 seems to be involved in maintaining the phosphate in that position. The two zinc atoms are slightly closer together in the phosphate-bound form (5.8 Å vs 6.3 Å), possibly due to the bridging effect of the phosphate. An additional phosphate molecule is bound at a crystal contact interface, perhaps accounting for the 14 Å shorter c-axis in the phosphate-bound crystal form (Table 2). chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:55:24Z Zn1 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:55:33Z His48 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:55:39Z His50 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:55:45Z Glu109 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:55:48Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:55:51Z sulfur chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:56:02Z Zn2 protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:06Z conserved residue_name SO: melaniev@ebi.ac.uk 2023-03-21T16:56:11Z histidine residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:17Z His157 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:23Z His159 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:29Z His204 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:47:14Z water chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc residue_name SO: melaniev@ebi.ac.uk 2023-03-21T16:56:11Z histidine experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:56:39Z crystals were soaked chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:56:43Z sodium phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:56:45Z CoA evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:48Z density chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:56:51Z phosphate site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:14Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:57Z structure experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:56:59Z aligns protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:04Z CoA-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:07Z structure evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:45:02Z rmsd oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:40Z monomer oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:57:13Z phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:57:20Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:55:24Z Zn1 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:56:02Z Zn2 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:54:23Z waters chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:57:30Z phosphate protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:33Z Conserved residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:39Z Arg103 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:54:27Z phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:10:27Z zinc protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:57:48Z phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T16:57:51Z phosphate protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound RESULTS title_2 20390 Oligomeric States of PduL Orthologs Are Influenced by the EP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP RESULTS paragraph 20451 Interestingly, some of the residues important for dimerization of rPduL, particularly Phe116, are poorly conserved across PduL homologs associated with functionally diverse BMCs (Figs 4c and 3), suggesting that they may have alternative oligomeric states. We tested this hypothesis by performing size exclusion chromatography on both full-length and truncated variants (lacking the EP, ΔEP) of sPduL, rPduL, and pPduL. These three homologs are found in functionally distinct BMCs (Table 1). Therefore, they are packaged with different signature enzymes and different ancillary proteins. It has been proposed that the catabolic BMCs may assemble in a core-first manner, with the luminal enzymes (signature enzyme, aldehyde, and alcohol dehydrogenases and the BMC PTAC) forming an initial bolus, or prometabolosome, around which a shell assembles. Given the diversity of signature enzymes (Table 1), it is plausible that PduL orthologs may adopt different oligomeric states that reflect the differences in the proteins being packaged with them in the organelle lumen. protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:43:09Z Phe116 protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:00:04Z poorly conserved protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:48:56Z size exclusion chromatography protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:25Z full-length protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:00:50Z lacking structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP mutant MESH: melaniev@ebi.ac.uk 2023-03-21T17:00:55Z ΔEP protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:01:05Z aldehyde, and alcohol dehydrogenases complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL RESULTS paragraph 21521 We found that not only did the different orthologs appear to assemble into different oligomeric states, but that quaternary structure was dependent on whether or not the EP was present. Full-length sPduL was unstable in solution—precipitating over time—and eluted throughout the entire volume of a size exclusion column, indicating it was nonspecifically aggregating. However, when the putative EP (residues 1–27) was removed (sPduL ΔEP), the truncated protein was stable and eluted as a single peak (Fig 5a) consistent with the size of a monomer (Fig 5d, blue curve). In contrast, both full-length rPduL and pPduL appeared to exist in two distinct oligomeric states (Fig 5b and 5c respectively, orange curves), one form of the approximate size of a dimer and the second, a higher molecular weight oligomer (~150 kDa). Upon deletion of the putative EP (residues 1–47 for rPduL, and 1–20 for pPduL), there was a distinct change in the elution profiles (Fig 5b and 5c respectively, blue curves). pPduLΔEP eluted as two smaller forms, possibly corresponding to a trimer and a monomer. In contrast, rPduLΔEP eluted as one smaller oligomer, possibly a dimer. We also analyzed purified rPduL and rPduLΔEP by size exclusion chromatography coupled with multiangle light scattering (SEC-MALS) for a complementary approach to assessing oligomeric state. SEC-MALS analysis of rPdulΔEP is consistent with a dimer (as observed in the crystal structure) with a weighted average (Mw) and number average (Mn) of the molar mass of 58.4 kDa +/− 11.2% and 58.8 kDa +/− 10.9%, respectively (S4a Fig). rPduL full length runs as Mw = 140.3 kDa +/− 1.2% and Mn = 140.5 kDa +/− 1.2%. This corresponds to an oligomeric state of six subunits (calculated molecular weight of 144 kDa). Collectively, these data strongly suggest that the N-terminal EP of PduL plays a role in defining the quaternary structure of the protein. structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:25Z Full-length protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:04:30Z 1–27 experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:04:33Z removed mutant MESH: melaniev@ebi.ac.uk 2023-03-21T17:04:36Z sPduL ΔEP protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:26Z truncated oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:40Z monomer protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:26Z full-length protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:17Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:04:51Z oligomer experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:04:54Z deletion structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:04:57Z 1–47 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL residue_range DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:05:01Z 1–20 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL mutant MESH: melaniev@ebi.ac.uk 2023-03-21T17:55:36Z pPduLΔEP oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:05:08Z trimer oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:40Z monomer mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPduLΔEP experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T16:48:56Z size exclusion chromatography experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:05:33Z multiangle light scattering experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:05:57Z SEC-MALS experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:05:57Z SEC-MALS mutant MESH: melaniev@ebi.ac.uk 2023-03-21T16:05:18Z rPdulΔEP oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:42:24Z dimer evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:55:02Z crystal structure evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:06:36Z weighted average (Mw) and number average (Mn) of the molar mass protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:06:45Z full length evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:07:03Z Mw evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:07:17Z Mn oligomeric_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:07:22Z six subunits evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:07:48Z molecular weight structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL DISCUSS title_1 23441 Discussion DISCUSS paragraph 23452 The hallmark attribute of an organelle is that it serves as a discrete subcellular compartment functioning as an isolated microenvironment distinct from the cytosol. In order to create and preserve this microenvironment, the defining barrier (i.e., lipid bilayer membrane or microcompartment shell) must be selectively permeable. The BMC shell not only sequesters specific enzymes but also their cofactors, thereby establishing a private cofactor pool dedicated to the encapsulated reactions. In catabolic BMCs, CoA and NAD+ must be continually recycled within the organelle (Fig 1). Homologs of the predominant cofactor utilizer (aldehyde dehydrogenase) and NAD+ regenerator (alcohol dehydrogenase) have been structurally characterized, but until now structural information was lacking for PduL, which recycles CoA in the organelle lumen. Curiously, while the housekeeping Pta could provide this function, and indeed does so in the case of one type of ethanolamine-utilizing (EUT) BMC, the evolutionarily unrelated PduL fulfills this function for the majority of metabolosomes using a novel structure and active site for convergent evolution of function. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:31:30Z shell protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:11:06Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:11:09Z NAD+ protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:03Z aldehyde dehydrogenase chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:11:20Z NAD+ protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:28Z alcohol dehydrogenase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:11:30Z CoA protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:22:56Z housekeeping protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:11:36Z ethanolamine-utilizing (EUT) BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:11:39Z structure site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site DISCUSS title_2 24608 The Tertiary Structure of PduL Is Formed by Discontinuous Segments of Primary Structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL DISCUSS paragraph 24696 The structure of PduL consists of two β-barrel domains capped by short alpha helical segments (Fig 2b). The two domains are structurally very similar (superimposing with a rmsd of 1.34 Å (over 123 out of 320/348 aligned backbone atoms, S5a Fig). However, the amino acid sequences of the two domains are only 16% identical (mainly the RHxH motif, β2 and β10), and 34% similar. Our structure reveals that the two assigned PF06130 domains (Fig 3) do not form structurally discrete units; this reduces the apparent sequence conservation at the level of primary structure. One strand of the domain 1 beta barrel (shown in blue in Fig 2) is contributed by the N-terminus, while the rest of the domain is formed by the residues from the C-terminal half of the protein. When aligned by structure, the β1 strand of the first domain (Fig 2a and 2b, blue) corresponds to the final strand of the second domain (β9), effectively making the domains continuous if the first strand was transplanted to the C-terminus. Refined domain assignment based on our structure should be able to predict domains of PF06130 homologs much more accurately. The closest structural homolog of the PduL barrel domain is a subdomain of a multienzyme complex, the alpha subunit of ethylbenzene dehydrogenase (S5b Fig, rmsd of 2.26 Å over 226 aligned atoms consisting of one beta barrel and one capping helix). In contrast to PduL, there is only one barrel present in ethylbenzene dehydrogenase, and there is no comparable active site arrangement. The PduL signature primary structure, two PF06130 domains, occurs in some multidomain proteins, most of them annotated as Acks, suggesting that PduL may also replace Pta in variants of the phosphotransacetylase-Ack pathway. These PduL homologs lack EPs, and their fusion to Ack may have evolved as a way to facilitate substrate channeling between the two enzymes. evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:15:35Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:33Z two β-barrel domains structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:37Z short alpha helical segments experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:15:40Z superimposing evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:45:02Z rmsd structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:45Z RHxH motif structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:48Z β2 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:51Z β10 evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:15:53Z structure structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:15:56Z strand structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:00Z domain 1 structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:02Z beta barrel structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:05Z C-terminal half protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:16:08Z protein experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:16:11Z aligned evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:16:13Z structure structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:17Z β1 strand structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:19Z first domain structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:21Z final strand structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:24Z second domain structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:26Z β9 evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:16:34Z structure structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:37Z barrel domain structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:40Z alpha subunit protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:16:43Z ethylbenzene dehydrogenase evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:45:02Z rmsd structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:47Z beta barrel structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:49Z capping helix protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:16:51Z barrel protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:16:54Z ethylbenzene dehydrogenase site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:51:25Z PF06130 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:16:58Z Acks protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:38:41Z phosphotransacetylase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:46:04Z Ack protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:17:06Z lack structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:54Z EPs protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:17:30Z their protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:46:04Z Ack DISCUSS title_2 26587 Implications for Metabolosome Core Assembly complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z Metabolosome DISCUSS paragraph 26631 For BMC-encapsulated proteins to properly function together, they must be targeted to the lumen and assemble into an organization that facilitates substrate/product channeling among the different catalytic sites of the signature and core enzymes. The N-terminal extension on PduL homologs may serve both of these functions. The extension shares many features with previously characterized EPs: it is present only in homologs associated with BMC loci, and it is predicted to form an amphipathic α-helix. Moreover, its removal affects the oligomeric state of the protein. EP-mediated oligomerization has been observed for the signature and core BMC enzymes; for example, full-length propanediol dehydratase and ethanolamine ammonia-lyase (signature enzymes for PDU and EUT BMCs) subunits are also insoluble, but become soluble upon removal of the predicted EP. sPduL has also previously been reported to localize to inclusion bodies when overexpressed; we show here that this is dependent on the presence of the EP. This propensity of the EP to cause proteins to form complexes (Fig 5) might not be a coincidence, but could be a necessary step in the assembly of BMCs. Structured aggregation of the core enzymes has been proposed to be the initial step in metabolosome assembly and is known to be the first step of β-carboxysome biogenesis, where the core enzyme Ribulose Bisphosphate Carboxylase/Oxygenase (RuBisCO) is aggregated by the CcmM protein. Likewise, CsoS2, a protein in the α-carboxysome core, also aggregates when purified and is proposed to facilitate the nucleation and encapsulation of RuBisCO molecules in the lumen of the organelle. Coupled with protein–protein interactions with other luminal components, the aggregation of these enzymes could lead to a densely packed organelle core. This role for EPs in BMC assembly is in addition to their interaction with shell proteins. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC site SO: melaniev@ebi.ac.uk 2023-03-21T17:55:12Z catalytic sites structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:20:42Z N-terminal extension protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:20:45Z The extension structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:54Z EPs gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:20:53Z BMC loci protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:20:48Z amphipathic structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:20:51Z α-helix experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:20:56Z removal structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:04:26Z full-length protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:54:36Z propanediol dehydratase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:54:40Z ethanolamine ammonia-lyase complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:21:18Z PDU complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:21:49Z EUT BMCs structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:21:53Z overexpressed structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:22:01Z Ribulose Bisphosphate Carboxylase/Oxygenase protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:22:03Z RuBisCO protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:22:05Z CcmM protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:22:08Z CsoS2 complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:22:10Z α-carboxysome protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:22:13Z RuBisCO structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:54Z EPs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC DISCUSS paragraph 28535 Moreover, the PduL crystal structures offer a clue as to how required cofactors enter the BMC lumen during assembly. Free CoA and NAD+/H could potentially be bound to the enzymes as the core assembles and is encapsulated. However, this raises an issue of stoichiometry: if the ratio of cofactors to core enzymes is too low, then the sequestered metabolism would proceed at suboptimal rates. Our PduL crystals contained CoA that was captured from the Escherichia coli cytosol, indicating that the “ground state” of PduL is in the CoA-bound form; this could provide an elegantly simple means of guaranteeing a 1:1 ratio of CoA:PduL within the metabolosome lumen. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:23:45Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:24:02Z NAD+ chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:24:11Z H protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:24:15Z crystals chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:24:18Z CoA species MESH: melaniev@ebi.ac.uk 2023-03-21T17:24:22Z Escherichia coli protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:04Z CoA-bound complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:24:35Z CoA:PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome DISCUSS title_2 29200 Active Site Identification and Structural Insights into Catalysis site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z Active Site DISCUSS paragraph 29266 The active site of PduL is formed at the interface of the two structural domains (Fig 2b). As expected, the amino acid sequence conservation is highest in the region around the proposed active site (Fig 4d); highly conserved residues are also involved in CoA binding (Figs 2a and 3, residues Ser45, Lys70, Arg97, Leu99, His204, Asn211). All of the metal-coordinating residues (Fig 2a) are absolutely conserved, implicating them in catalysis or the correct spatial orientation of the substrates. Arg103, which contacts the phosphate (Fig 4b), is present in all PduL homologs. The close resemblance between the structures binding CoA and phosphate likely indicates that no large changes in protein conformation are involved in catalysis, and that our crystal structures are representative of the active form. The native substrate for the forward reaction of rPduL and pPduL, propionyl-CoA, most likely binds to the enzyme in the same way at the observed nucleotide and pantothenic acid moiety, but the propionyl group in the CoA-thioester might point in a different direction. There is a pocket nearby the active site between the well-conserved residues Ser45 and Ala154, which could accommodate the propionyl group (S6 Fig). A homology model of sPduL indicates that the residues making up this pocket and the surrounding active site region are identical to that of rPduL, which is not surprising, because these two homologs presumably have the same propionyl-CoA substrate. The homology model of pPduL also has identical residues making up the pocket, but with a key difference in the vicinity of the active site: Gln77 of rPduL is replaced by a tyrosine (Tyr77) in pPduL. The physiological substrate of pPduL (Table 1) is thought to be lactyl-CoA, which contains an additional hydroxyl group relative to propionyl-CoA. The presence of an aromatic residue at this position may underlie the substrate preference of the PduL enzyme from the pvm locus. Indeed, in the majority of PduLs encoded in pvm loci, Gln77 is substituted by either a Tyr or Phe, whereas it is typically a Gln or Glu in PduLs in all other BMC types that degrade acetyl- or propionyl-CoA. A comparison of the PduL active site to that of the functionally identical Pta suggests that the two enzymes have distinctly different mechanisms. The catalytic mechanism of Pta involves the abstraction of a thiol hydrogen by an aspartate residue, resulting in the nucleophilic attack of thiolate upon the carbonyl carbon of acetyl-phosphate, oriented by an arginine and stabilized by a serine —there are no metals involved. In contrast, in the rPduL structure, there are no conserved aspartate residues in or around the active site, and the only well-conserved glutamate residue in the active site is involved in coordinating one of the metal ions. These observations strongly suggest that an acidic residue is not directly involved in catalysis by PduL. Instead, the dimetal active site of PduL may create a nucleophile from one of the hydroxyl groups on free phosphate to attack the carbonyl carbon of the thioester bond of an acyl-CoA. In the reverse direction, the metal ion(s) could stabilize the thiolate anion that would attack the carbonyl carbon of an acyl-phosphate; a similar mechanism has been described for phosphatases where hydroxyl groups or hydroxide ions can act as a base when coordinated by a dimetal active site. site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL site SO: melaniev@ebi.ac.uk 2023-03-21T17:33:23Z interface structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:33:26Z domains site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:32:18Z highly conserved chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:33:36Z CoA residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:33:41Z Ser45 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:33:47Z Lys70 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:33:52Z Arg97 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:33:57Z Leu99 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:56:29Z His204 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:34:07Z Asn211 site SO: melaniev@ebi.ac.uk 2023-03-21T17:34:11Z metal-coordinating residues protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:34:13Z absolutely conserved residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:39Z Arg103 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:34:20Z phosphate protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:34:23Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:34:26Z phosphate evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:05:01Z active protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:34:42Z nucleotide chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:34:45Z pantothenic acid chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:46:23Z CoA-thioester site SO: melaniev@ebi.ac.uk 2023-03-21T17:34:54Z pocket site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:34:56Z well-conserved residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:33:41Z Ser45 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:35:05Z Ala154 experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:35:13Z homology model protein PR: melaniev@ebi.ac.uk 2023-03-21T16:03:44Z sPduL site SO: melaniev@ebi.ac.uk 2023-03-21T17:35:15Z pocket site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:35:22Z homology model protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL site SO: melaniev@ebi.ac.uk 2023-03-21T17:35:29Z pocket site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:35:36Z Gln77 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:35:40Z tyrosine residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:35:45Z Tyr77 protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:01Z pPduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:35:49Z lactyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:36:02Z aromatic structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:36:04Z residue protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:36:09Z pvm locus protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:54:45Z PduLs gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:36:12Z pvm loci residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:35:36Z Gln77 residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:36:17Z Tyr residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:36:20Z Phe residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:36:22Z Gln residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:36:24Z Glu protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:54:49Z PduLs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:36:40Z acetyl- chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:51:34Z propionyl-CoA experimental_method MESH: melaniev@ebi.ac.uk 2023-03-21T17:36:43Z comparison protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:36:58Z aspartate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:37:22Z acetyl-phosphate residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:37:25Z arginine residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:37:28Z serine protein PR: melaniev@ebi.ac.uk 2023-03-21T16:04:18Z rPduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:37:30Z structure residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:37:33Z aspartate site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:37:35Z well-conserved residue_name SO: melaniev@ebi.ac.uk 2023-03-21T17:37:38Z glutamate site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:37:40Z acidic structure_element SO: melaniev@ebi.ac.uk 2023-03-21T17:37:42Z residue protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL site SO: melaniev@ebi.ac.uk 2023-03-21T17:37:45Z dimetal active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:37:50Z phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:38:26Z phosphatases site SO: melaniev@ebi.ac.uk 2023-03-21T17:38:34Z dimetal active site DISCUSS paragraph 32659 Our structures provide the foundation for studies to elucidate the details of the catalytic mechanism of PduL. Conserved residues in the active site that may contribute to substrate binding and/or transition state stabilization include Ser127, Arg103, Arg194, Gln107, Gln74, and Gln/Glu77. In the phosphate-bound crystal structure, Ser127 and Arg103 appear to position the phosphate (Fig 4b). Alternatively, Arg103 might act as a base to render the phosphate more nucleophilic. The functional groups of Gln74, Gln/Glu77, and Arg194 are directed away from the active site in both CoA and phosphate-bound crystal structures and do not appear to be involved in hydrogen bonding with these substrates, although they could be important for positioning an acyl-phosphate. evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:34Z structures protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:37Z Conserved site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:42Z Ser127 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:39Z Arg103 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:51Z Arg194 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:56Z Gln107 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:55:45Z Gln74 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:41:44Z Gln residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:41:58Z Glu77 protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:55:07Z crystal structure residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:42Z Ser127 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:39Z Arg103 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:42:07Z phosphate residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:40Z Arg103 chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:42:11Z phosphate residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:55:49Z Gln74 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:42:32Z Gln residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:42:45Z Glu77 residue_name_number DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:40:51Z Arg194 site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:43:09Z CoA protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate DISCUSS paragraph 33425 The free CoA-bound form is presumably poised for attack upon an acyl-phosphate, indicating that the enzyme initially binds CoA as opposed to acyl-phosphate. This hypothesis is strengthened by the fact that the CoA-bound crystals were obtained without added CoA, indicating that the protein bound CoA from the E. coli expression strain and retained it throughout purification and crystallization. The phosphate-bound structure indicates that in the opposite reaction direction phosphate is bound first, and then an acyl-CoA enters. The two high-resolution crystal structures presented here will serve as the foundation for mechanistic studies on this noncanonical PTAC enzyme to determine how the dimetal active site functions to catalyze both forward and reverse reactions. protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:04Z CoA-bound chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:44:53Z CoA chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:37Z acyl-phosphate protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:57:04Z CoA-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:45:00Z crystals chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:45:02Z CoA protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:45:07Z bound chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:45:09Z CoA species MESH: melaniev@ebi.ac.uk 2023-03-21T17:45:12Z E. coli protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T16:47:26Z phosphate-bound evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:45:16Z structure chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T17:45:19Z phosphate chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:28:28Z acyl-CoA evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:21:32Z crystal structures protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC site SO: melaniev@ebi.ac.uk 2023-03-21T17:45:25Z dimetal active site DISCUSS title_2 34199 Functional, but Not Structural, Convergence of PduL and Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:29Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta DISCUSS paragraph 34259 PduL and Pta are mechanistically and structurally distinct enzymes that catalyze the same reaction, a prime example of evolutionary convergence upon a function. There are several examples of such functional convergence of enzymes, although typically the enzymes have independently evolved similar, or even identical active sites; for example, the carbonic anhydrase family. However, apparently less frequent is functional convergence that is supported by distinctly different active sites and accordingly catalytic mechanism, as revealed by comparison of the structures of Pta and PduL. One well-studied example of this is the β-lactamase family of enzymes, in which the active site of Class A and Class C enzymes involve serine-based catalysis, but Class B enzymes are metalloproteins. This is not surprising, as β-lactamases are not so widespread among bacteria and therefore would be expected to have evolved independently several times as a defense mechanism against β-lactam antibiotics. However, nearly all bacteria encode Pta, and it is not immediately clear why the Pta/PduL functional convergence should have evolved: it would seem to be evolutionarily more resourceful for the Pta-encoding gene to be duplicated and repurposed for BMCs, as is apparently the case in one type of BMC—EUT1 (Table 1). There could be some intrinsic biochemical difference between the two enzymes that renders PduL a more attractive candidate for encapsulation in a BMC—for example, PduL might be more amenable to tight packaging, or is better suited for the chemical microenvironment formed within the lumen of the BMC, which can be quite different from the cytosol. Further biochemical comparison between the two PTACs will likely yield exciting results that could answer this evolutionary question. protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta site SO: melaniev@ebi.ac.uk 2023-03-21T17:55:17Z active sites protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:47:24Z carbonic anhydrase site SO: melaniev@ebi.ac.uk 2023-03-21T17:56:41Z active sites protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:47:26Z β-lactamase site SO: melaniev@ebi.ac.uk 2023-03-21T15:24:15Z active site protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:47:28Z metalloproteins protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:47:31Z β-lactamases taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:51:00Z bacteria taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:51:01Z bacteria protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL gene GENE: melaniev@ebi.ac.uk 2023-03-21T17:47:39Z Pta-encoding gene complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T17:47:42Z BMC—EUT1 protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T17:47:50Z PTACs DISCUSS title_2 36058 Implications DISCUSS paragraph 36071 BMCs are now known to be widespread among the bacteria and are involved in critical segments of both autotrophic and heterotrophic biochemical pathways that confer to the host organism a competitive (metabolic) advantage in select niches. As one of the three common metabolosome core enzymes, the structure of PduL provides a key missing piece to our structural picture of the shared core biochemistry (Fig 1) of functionally diverse catabolic BMCs. We have observed the oligomeric state differences of PduL to correlate with the presence of an EP, providing new insight into the function of this sequence extension in BMC assembly. Moreover, our results suggest a means for Coenzyme A incorporation during metabolosome biogenesis. A detailed understanding of the underlying principles governing the assembly and internal structural organization of BMCs is a requisite for synthetic biologists to design custom nanoreactors that use BMC architectures as a template. Furthermore, given the growing number of metabolosomes implicated in pathogenesis, the PduL structure will be useful in the development of therapeutics. It is gradually being realized that the metabolic capabilities of a pathogen are also important for virulence, along with the more traditionally cited factors like secretion systems and effector proteins. The fact that PduL is confined almost exclusively to metabolosomes can be used to develop an inhibitor that blocks only PduL and not Pta as a way to selectively disrupt BMC-based metabolism, while not affecting most commensal organisms that require PTAC activity. complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs taxonomy_domain DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:51:01Z bacteria complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:49:22Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL protein_state DUMMY: melaniev@ebi.ac.uk 2023-03-21T15:17:56Z catabolic complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL structure_element SO: melaniev@ebi.ac.uk 2023-03-21T15:56:46Z EP complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC chemical CHEBI: melaniev@ebi.ac.uk 2023-03-21T15:19:43Z Coenzyme A complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:39:38Z metabolosome complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:17:47Z BMCs complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL evidence DUMMY: melaniev@ebi.ac.uk 2023-03-21T17:49:24Z structure protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:18:05Z metabolosomes protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:20:30Z PduL protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:21:21Z Pta complex_assembly GO: melaniev@ebi.ac.uk 2023-03-21T15:37:01Z BMC protein_type MESH: melaniev@ebi.ac.uk 2023-03-21T15:19:20Z PTAC METHODS title_1 37659 Materials and Methods METHODS title_2 37681 Molecular Cloning METHODS paragraph 37699 Genes for PduL homologs with and without the EP were amplified via PCR using the primers listed in S1 Table. sPduL was amplified using S. enterica Typhimurium LT2 genomic DNA, and pPduL and rPduL sequences were codon optimized and synthesized by GenScript with the 6xHis tag. All 5’ primers included EcoRI and BglII restriction sites, and all 3’ primers included a BamHI restriction site to facilitate cloning using the BglBricks strategy. 5’ primers also included the sequence TTTAAGAAGGAGATATACCATG downstream of the restriction sites, serving as a strong ribosome binding site. The 6x polyhistidine tag sequence was added to the 3’ end of the gene using the BglBricks strategy and was subcloned into the pETBb3 vector, a pET21b-based vector modified to be BglBricks compatible. METHODS title_2 38488 Protein Purification, Size Exclusion Chromatography, and Protein Crystallization METHODS paragraph 38569 E. coli BL21(DE3) expression strains containing the relevant PduL construct in the pETBb3 vector were grown overnight at 37°C in standard LB medium and then used to inoculate 1L of standard LB medium in 2.8 L Fernbach flasks at a 1:100 dilution, which were then incubated at 37°C shaking at 150 rpm, until the culture reached an OD600 of 0.8–1.0, at which point cultures were induced with 200 μM IPTG (isopropylthio-β-D-galactoside) and incubated at 20°C for 18 h, shaking at 150 rpm. Cells were centrifuged at 5,000 xg for 15 min, and cell pellets were frozen at –20°C. METHODS paragraph 39151 For protein purifications, cell pellets from 1–3 L cultures were resuspended in 20–30 ml buffer A (50 mM Tris-HCl pH 7.4, 300 mM NaCl) and lysed using a French pressure cell at 20,000 lb/in2. The resulting cell lysate was centrifuged at 15,000 xg. 30 mM imidazole was added to the supernatant that was then applied to a 5 mL HisTrap column (GE Healthcare Bio-Sciences, Pittsburgh, PA). Protein was eluted off the column using a gradient of buffer A from 0 mM to 500 mM imidazole over 20 column volumes. Fractions corresponding to PduL were pooled and concentrated using Amicon Ultra Centrifugal filters (EMD Millipore, Billerica, MA) to a volume of no more than 2.5 mL. The protein sample was then applied to a HiLoad 26/60 Superdex 200 preparative size exclusion column (GE Healthcare Bio-Sciences, Pittsburgh, PA) and eluted with buffer B (20 mM Tris pH 7.4, 50 mM NaCl). Where applicable, fractions corresponding to different oligomeric states were pooled separately, leaving one or two fractions in between to prevent cross contamination. Pooled fractions were concentrated to 1–20 mg/mL protein as determined by the Bradford method prior to applying on a Superdex 200 10/300 GL analytical size exclusion column (GE Healthcare Bio-Sciences, Pittsburgh, PA). Size standards used were Thyroglobulin 670 kDa, γ-globulin 158 kDa, Ovalbumin 44 kDa, and Myoglobin 17 kDa. For light scattering, the proteins were measured in a Protein Solutions Dynapro dynamic light scattering instrument with an acquisition time of 5 s, averaging 10 acquisitions at a constant temperature of 25°C. The radii were calculated assuming a globular particle shape. METHODS paragraph 40801 Size exclusion chromatography coupled with SEC-MALS was performed on full-length rPduL and rPduL-ΔEP similar to Luzi et al. 2015. A Wyatt DAWN Heleos-II 18-angle light scattering instrument was used in tandem with a GE AKTA pure FPLC with built in UV detector, and a Wyatt Optilab T-Rex refractive index detector. Detector 16 of the DAWN Heleos-II was replaced with a Wyatt Dynapro Nanostar QELS detector for dynamic light scattering. A GE Superdex S200 10/300 GL column was used, with 125–100 μl of protein sample at 1 mg/ml concentration injected, and the column run at 0.5 ml/min in 20 mM Tris, 50 mM NaCl, pH 7.4. METHODS paragraph 41424 Each detector of the DAWN-Heleos-II was plotted with the Zimm model in the Wyatt ASTRA software to calculate the molar mass. The molar mass was measured at each collected data point across the peaks at ~1 point per 8 μl eluent. Both the Mw and Mn of the molar mass calculations, as well as percent deviations, were also determined using Wyatt software program ASTRA. METHODS paragraph 41792 For preparing protein for crystallography, expression cells were grown as above, except were induced with 50 μM IPTG. Harvested cells were resuspended in buffer B and lysed using a French Press. Cleared lysate was applied on a 5 ml HisTrap HP column (GE Healthcare) and washed with buffer A containing 20 mM imidazole. Pdul-His was eluted with 2 CV buffer B containing 300 mM imidazole, concentrated and then applied on a HiLoad 26/60 Superdex 200 (GE Healthcare) column equilibrated in buffer B for final cleanup. Protein was then concentrated to 20–30 mg/ml for crystallization. Crystals were obtained from sitting drop experiments at 22°C, mixing 3 μl of protein solution with 3 μl of reservoir solution containing 39%–35% MPD. Crystals were flash frozen in liquid nitrogen after being adding 5 μl of a reservoir solution. For heavy atom derivatives, 0.2 μl of 100 mM Thiomerosal (Hampton Research) was added to the crystallization drop 36 h prior to freezing. For phosphate soaks, 5 μl reservoir and 1.5 μl 200 mM sodium phosphate solution (pH 7.0) were added 2 d prior to flash freezing. METHODS title_2 42897 PTAC Activity Assay METHODS paragraph 42917 Enzyme reactions were performed in a 2 mL cuvette containing 50 mM Tris-HCl pH 7.5, 0.2 mM 5,5'-dithiobis-2-nitrobenzoic acid (DTNB; Ellman’s reagent), 0.1 mM acyl-CoA, and 0.5 μg purified PTAC, unless otherwise noted. To initiate the reaction, 5 mM NaH2PO4 was added, the cuvette was inverted to mix, and the absorbance at 412 nm was measured every 2 s over the course of four minutes in a Nanodrop 2000c, in the cuvette holder. 14,150 M-1cm-1 was used as the extinction coefficient of DTNB to determine the specific activity. METHODS title_2 43448 PduL Sequence Analysis METHODS paragraph 43471 A multiple sequence alignment of 228 PduL sequences associated with BMCs and 20 PduL sequences not associated with BMCs was constructed using MUSCLE. PduL sequences associated with BMCs were determined from Dataset S1 of Reference, and those not associated with BMCs were determined by searching for genomes that encoded PF06130 but not PF03319 nor PF00936 in the IMG database. The multiple sequence alignment was visualized in Jalview, and the nonconserved N- and C-terminal amino acids were deleted. This trimmed alignment was used to build the sequence logo using WebLogo. METHODS title_2 44047 Diffraction Data Collection, Structure Determination and Visualization METHODS paragraph 44118 Diffraction data were collected at the Advanced Light Source at Lawrence Berkeley National Laboratory beamline 5.0.2 (100 K, 1.0000 Å wavelength for native data, 1.0093 Å for mercury derivative, 1.2861 Å for Zn pre-edge and 1.2822 Å for Zn peak). Diffraction data were integrated with XDS and scaled with SCALA (CCP4). The structure of PduL was solved using phenix.autosol, which found 11 heavy atom sites and produced density suitable for automatic model building. The model was refined with phenix.refine, with refinement alternating with model building using 2Fo-Fc and Fo-Fc maps visualized in COOT. Statistics for diffraction data collection, structure determination and refinement are summarized in Table 2. Figures were prepared using pymol (www.pymol.org) and Raster3D. METHODS title_2 44900 Homology Modeling METHODS paragraph 44918 Models of S. enterica Typhimurium LT2 and P. limnophilus PduL were generated with Modeller using the align2d and model-default scripts. SUPPL title_1 45054 Supporting Information ABBR title 45077 Abbreviations ABBR paragraph 45091 Ack ABBR paragraph 45095 acetate kinase ABBR paragraph 45110 BMC ABBR paragraph 45114 Bacterial Microcompartment ABBR paragraph 45141 EP ABBR paragraph 45144 encapsulation peptide ABBR paragraph 45166 EUT ABBR paragraph 45170 ethanolamine-utilizing ABBR paragraph 45193 Mn ABBR paragraph 45196 number average ABBR paragraph 45211 Mw ABBR paragraph 45214 weighted average ABBR paragraph 45231 PDU ABBR paragraph 45235 propanediol-utilizing ABBR paragraph 45257 Pta ABBR paragraph 45261 phosphotransacylase ABBR paragraph 45281 PTAC ABBR paragraph 45286 phosphotransacylase ABBR paragraph 45306 RuBisCO ABBR paragraph 45314 Ribulose Bisphosphate Carboxylase/Oxygenase ABBR paragraph 45358 SEC-MALS ABBR paragraph 45367 multiangle light scattering REF title 45395 References 22 1 34 surname:Kerfeld;given-names:CA surname:Erbilgin;given-names:O 10.1016/j.tim.2014.10.003 25455419 REF Trends in microbiology ref 23 2015 45406 Bacterial microcompartments and the modular construction of microbial metabolism e1003898 10 surname:Axen;given-names:SD surname:Erbilgin;given-names:O surname:Kerfeld;given-names:CA 10.1371/journal.pcbi.1003898 25340524 REF PLoS Comput Biol ref 10 2014 45487 A taxonomy of bacterial microcompartment loci constructed by a novel scoring method surname:Liu;given-names:Y surname:Jorda;given-names:J surname:Yeates;given-names:TO surname:Bobik;given-names:TA 10.1128/JB.00056-15 25962918 REF Journal of bacteriology ref 2015 45571 The PduL phosphotransacylase is used to recycle coenzyme A within the Pdu microcompartment 1589 5 96 surname:Liu;given-names:Y surname:Leal;given-names:NA surname:Sampson;given-names:EM surname:Johnson;given-names:CLV surname:Havemann;given-names:GD surname:Bobik;given-names:Ta 10.1128/JB.01151-06 17158662 REF Journal of bacteriology ref 189 2007 45662 PduL is an Evolutionarily Distinct Phosphotransacylase Involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar typhimurium LT2 936 8 surname:Kerfeld;given-names:CA surname:Sawaya;given-names:MR surname:Tanaka;given-names:S surname:Nguyen;given-names:CV surname:Phillips;given-names:M surname:Beeby;given-names:M 10.1126/science.1113397 REF Science (New York, NY) ref 309 2005 45818 Protein structures forming the shell of primitive bacterial organelles 1642 12 52 surname:Pang;given-names:A surname:Liang;given-names:M surname:Prentice;given-names:MB surname:Pickersgill;given-names:RW 10.1107/S0907444912039315 23151629 REF Acta Crystallographica Section D Biological Crystallography ref 68 2012 45889 Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB 5967 19 75 surname:Bobik;given-names:TA surname:Havemann;given-names:GD surname:Busch;given-names:RJ surname:Williams;given-names:DS surname:Aldrich;given-names:HC 10498708 REF Journal of bacteriology ref 181 1999 46001 The Propanediol Utilization (pdu) Operon of Salmonella enterica serovar Typhimurium LT2 Includes Genes Necessary for Formation of Polyhedral Organelles Involved in coenzyme B12-Dependent 1, 2-Propanediol Degradation 1000118 4 surname:Abdul-Rahman;given-names:F surname:Petit;given-names:E surname:Blanchard;given-names:JL 10.4172/2329-9002.1000118 REF Phylogenetics and Evolutionary Biology ref 1 2013 46217 The Distribution of Polyhedral Bacterial Microcompartments Suggests Frequent Horizontal Transfer and Operon Reassembly 179 2 95 surname:Jorda;given-names:J surname:Lopez;given-names:D surname:Wheatley;given-names:NM surname:Yeates;given-names:TO 10.1002/pro.2196 23188745 REF Protein Science ref 22 2013 46336 Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria 3855 9 63 surname:Roof;given-names:DM surname:Roth;given-names:JR 3045078 REF Journal of bacteriology ref 170 1988 46434 Ethanolamine utilization in Salmonella typhimurium 353 5 61 surname:Leal;given-names:NA surname:Havemann;given-names:GD surname:Bobik;given-names:TA 10.1007/s00203-003-0601-0 14504694 REF Archives of microbiology ref 180 2003 46486 PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2 2864 12 79 surname:Huseby;given-names:DL surname:Roth;given-names:JR 10.1128/JB.02179-12 23585538 REF Journal of bacteriology ref 195 2013 46686 Evidence that a metabolic microcompartment contains and recycles private cofactor pools e47144 10 e surname:Cheng;given-names:S surname:Fan;given-names:C surname:Sinha;given-names:S surname:Bobik;given-names:TA 10.1371/journal.pone.0047144 23077559 REF PloS ONE ref 7 2012 46774 The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica surname:White;given-names:D REF The Physiology and Biochemistry of Prokaryotes ref 2000 46905 18392 31 6 surname:Lundie;given-names:LL;suffix:Jr. surname:Ferry;given-names:JG 2808380 REF J Biol Chem ref 264 1989 46906 Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase 25 1 35 surname:Ferry;given-names:JG 9233537 REF Biofactors ref 6 1997 47018 Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila 387 4 97 surname:Tielens;given-names:AG surname:van Grinsven;given-names:KW surname:Henze;given-names:K surname:van Hellemond;given-names:JJ surname:Martin;given-names:W 10.1016/j.ijpara.2009.12.006 20085767 REF Int J Parasitol ref 40 2010 47101 Acetate formation in the energy metabolism of parasitic helminths and protists D115 Database issue 22 surname:Markowitz;given-names:VM surname:Chen;given-names:IMA surname:Palaniappan;given-names:K surname:Chu;given-names:K surname:Szeto;given-names:E surname:Grechkin;given-names:Y 10.1093/nar/gkr1044 22194640 REF Nucleic acids research ref 40 2012 47180 IMG: the Integrated Microbial Genomes database and comparative analysis system D222 Database issue 30 surname:Finn;given-names:RD surname:Bateman;given-names:A surname:Clements;given-names:J surname:Coggill;given-names:P surname:Eberhardt;given-names:RY surname:Eddy;given-names:SR 10.1093/nar/gkt1223 24288371 REF Nucleic acids research ref 42 2014 47259 Pfam: the protein families database D290 Database issue 301 surname:Punta;given-names:M surname:Coggill;given-names:PC surname:Eberhardt;given-names:RY surname:Mistry;given-names:J surname:Tate;given-names:J surname:Boursnell;given-names:C 10.1093/nar/gkr1065 22127870 REF Nucleic acids research ref 40 2012 47295 The Pfam protein families database 527 2 34 surname:Stadtman;given-names:ER 12980995 REF J Biol Chem ref 196 1952 47330 The purification and properties of phosphotransacetylase 114 1 25 surname:Rado;given-names:TA surname:Hoch;given-names:JA 4201530 REF Biochim Biophys Acta ref 321 1973 47387 Phosphotransacetylase from Bacillus subtilis: purification and physiological studies 1657 11 64 surname:Smith;given-names:JE surname:Ng;given-names:WS 4263885 REF Can J Microbiol ref 18 1972 47472 Fluorometric determination of glycolytic intermediates and adenylates during sequential changes in replacement culture of Aspergillus niger e1039755 3 surname:Aussignargues;given-names:C surname:Paasch;given-names:BC surname:Gonzales-Esquer;given-names:R surname:Erbilgin;given-names:O surname:Kerfeld;given-names:CA 26478774 REF Communicative & Integrative Biology ref 8 2015 47612 Bacterial Microcompartment Assembly: The Key Role of Encapsulation Peptides 14995 37 5000 surname:Fan;given-names:C surname:Cheng;given-names:S surname:Sinha;given-names:S surname:Bobik;given-names:Ta 10.1073/pnas.1207516109 22927404 REF Proceedings of the National Academy of Sciences of the United States of America ref 109 2012 47688 Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments 17729 21 36 surname:Kinney;given-names:JN surname:Salmeen;given-names:A surname:Cai;given-names:F surname:Kerfeld;given-names:CA 10.1074/jbc.M112.355305 22461622 REF The Journal of biological chemistry ref 287 2012 47819 Elucidating the essential role of the conserved carboxysomal protein CcmN reveals a common feature of bacterial microcompartment assembly 455 3 62 surname:Tobimatsu;given-names:T surname:Kawata;given-names:M surname:Toraya;given-names:T surname:Obimatsu;given-names:TT surname:Awata;given-names:MK surname:Oraya;given-names:TT 15784971 REF Bioscience, Biotechnology, and Biochemistry ref 69 2005 47957 The N-Terminal Regions of β and γ Subunits Lower the Solubility of Adenosylcobalamin-Dependent Diol Dehydratase 26484 34 93 surname:Shibata;given-names:N surname:Tamagaki;given-names:H surname:Hieda;given-names:N surname:Akita;given-names:K surname:Komori;given-names:H surname:Shomura;given-names:Y 10.1074/jbc.M110.125112 20519496 REF The Journal of biological chemistry ref 285 2010 48076 Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates 273 2 9 surname:Frank;given-names:S surname:Lawrence;given-names:AD surname:Prentice;given-names:MB surname:Warren;given-names:MJ 10.1016/j.jbiotec.2012.09.002 22982517 REF Journal of biotechnology ref 163 2013 48176 Bacterial microcompartments moving into a synthetic biological world surname:Gonzalez-Esquer;given-names:CR surname:Shubitowski;given-names:TB surname:Kerfeld;given-names:CA REF Plant Cell ref 48245 Streamlined construction of the cyanobacterial CO2-fixing organelle via protein domain fusions 1143 3 54 surname:Lawrence;given-names:SH surname:Luther;given-names:KB surname:Schindelin;given-names:H surname:Ferry;given-names:JG 10.1128/JB.188.3.1143-1154.2006 16428418 REF J Bacteriol ref 188 2006 48340 Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila 2193 7 205 surname:Erbilgin;given-names:O surname:McDonald;given-names:KL surname:Kerfeld;given-names:Ca 10.1128/AEM.03887-13 24487526 REF Applied and environmental microbiology ref 80 2014 48466 Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides 57 1 63 surname:Chakrabarti;given-names:P 2290835 REF Protein engineering ref 4 1990 48598 Geometry of interaction of metal ions with histidine residues in protein structures 2392 14 9 surname:Liu;given-names:Y surname:Jorda;given-names:J surname:Yeates;given-names:TO surname:Bobik;given-names:TA 10.1128/JB.00056-15 25962918 REF J Bacteriol ref 197 2015 48682 The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment 1377 9 88 surname:Kloer;given-names:DP surname:Hagel;given-names:C surname:Heider;given-names:J surname:Schulz;given-names:GE 10.1016/j.str.2006.07.001 16962969 REF Structure ref 14 2006 48773 Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum 1141 2 71 surname:Cai;given-names:F surname:Dou;given-names:Z surname:Bernstein;given-names:SL surname:Leverenz;given-names:R surname:Williams;given-names:EB surname:Heinhorst;given-names:S 10.3390/life5021141 25826651 REF Life (Basel) ref 5 2015 48849 Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component 1131 5 40 surname:Cameron;given-names:JC surname:Wilson;given-names:SC surname:Bernstein;given-names:SL surname:Kerfeld;given-names:CA 10.1016/j.cell.2013.10.044 24267892 REF Cell ref 155 2013 48973 Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway 140130103032007 surname:Lawrence;given-names:AD surname:Frank;given-names:S surname:Newnham;given-names:S surname:Lee;given-names:MJ surname:Brown;given-names:IR surname:Xue;given-names:W-F 10.1021/sb4001118 REF ACS Synthetic Biology ref 2014 49043 Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor 3252 8 78 surname:Cleland;given-names:WW surname:Hengge;given-names:AC 10.1021/cr050287o 16895327 REF Chem Rev ref 106 2006 49177 Enzymatic mechanisms of phosphate and sulfate transfer 1407 7 18 surname:Kimber;given-names:MS surname:Pai;given-names:EF 10.1093/emboj/19.7.1407 10747009 REF EMBO J ref 19 2000 49232 The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases 48615 52 8 surname:Tripp;given-names:BC surname:Smith;given-names:K surname:Ferry;given-names:JG 10.1074/jbc.R100045200 11696553 REF J Biol Chem ref 276 2001 49357 Carbonic anhydrase: new insights for an ancient enzyme 4914 20 21 surname:Carfi;given-names:A surname:Pares;given-names:S surname:Duee;given-names:E surname:Galleni;given-names:M surname:Duez;given-names:C surname:Frere;given-names:JM 7588620 REF EMBO J ref 14 1995 49412 The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold 160 1 201 surname:Drawz;given-names:SM surname:Bonomo;given-names:RA 10.1128/CMR.00037-09 20065329 REF Clin Microbiol Rev ref 23 2010 49519 Three decades of beta-lactamase inhibitors 2455 6 60 surname:Peña;given-names:KL surname:Castel;given-names:SE surname:de Araujo;given-names:C surname:Espie;given-names:GS surname:Kimber;given-names:MS 10.1073/pnas.0910866107 20133749 REF Proceedings of the National Academy of Sciences of the United States of America ref 107 2010 49562 Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM e76127 9 e surname:Chen;given-names:AH surname:Robinson-Mosher;given-names:A surname:Savage;given-names:DF surname:Silver;given-names:Pa surname:Polka;given-names:JK 10.1371/journal.pone.0076127 24023971 REF PloS ONE ref 8 2013 49658 The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo 4105 10 21 surname:Harvey;given-names:PC surname:Watson;given-names:M surname:Hulme;given-names:S surname:Jones;given-names:Ma surname:Lovell;given-names:M surname:Berchieri;given-names:A 10.1128/IAI.01390-10 21768276 REF Infection and immunity ref 79 2011 49749 Salmonella enterica typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes 556 2 68 surname:Joseph;given-names:B surname:Przybilla;given-names:K surname:Stu;given-names:C surname:Schauer;given-names:K surname:Fuchs;given-names:TM surname:Goebel;given-names:W 16385046 REF Journal of bacteriology ref 188 2006 49904 Identification of Listeria monocytogenes Genes Contributing to Intracellular Replication by Expression Profiling and Mutant Screening 1 3 10 surname:Kendall;given-names:MM surname:Gruber;given-names:CC surname:Parker;given-names:CT surname:Sperandio;given-names:V 10.1128/mBio.00050-12 REF mBio ref 3 2012 50038 Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7 1207 20 surname:Klumpp;given-names:J surname:Fuchs;given-names:TM REF Microbiology ref 2 2007 50195 Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages 2634 5 7 surname:Maadani;given-names:A surname:Fox;given-names:KA surname:Mylonakis;given-names:E surname:Garsin;given-names:DA 10.1128/IAI.01372-06 17307944 REF Infection and immunity ref 75 2007 50313 Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host 239 6 46 surname:Mobley;given-names:H REF Microbe ref 10 2015 50407 Redefining Virulence of Bacterial Pathogens 248 54 surname:Bradford;given-names:MM 942051 REF Anal Biochem ref 72 1976 50451 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding 45 2 52 surname:Luzi;given-names:S surname:Kondo;given-names:Y surname:Bernard;given-names:E surname:Stadler;given-names:LK surname:Vaysburd;given-names:M surname:Winter;given-names:G 10.1093/protein/gzu055 25614525 REF Protein Eng Des Sel ref 28 2015 50583 Subunit disassembly and inhibition of TNFalpha by a semi-synthetic bicyclic peptide 1792 5 7 surname:Edgar;given-names:RC 10.1093/nar/gkh340 15034147 REF Nucleic acids research ref 32 2004 50667 MUSCLE: multiple sequence alignment with high accuracy and high throughput 1189 9 91 surname:Waterhouse;given-names:AM surname:Procter;given-names:JB surname:Martin;given-names:DMa surname:Clamp;given-names:M surname:Barton;given-names:GJ 10.1093/bioinformatics/btp033 REF Bioinformatics (Oxford, England) ref 25 2009 50742 Jalview Version 2—a multiple sequence alignment editor and analysis workbench 1188 6 90 surname:Crooks;given-names:GE surname:Hon;given-names:G surname:Chandonia;given-names:JM surname:Brenner;given-names:SE 10.1101/gr.849004 15173120 REF Genome Res ref 14 2004 50822 WebLogo: a sequence logo generator 125 Pt 2 32 surname:Kabsch;given-names:W 10.1107/S0907444909047337 20124692 REF Acta crystallographica Section D, Biological crystallography ref 66 2010 50857 XDS 235 Pt 4 42 surname:Winn;given-names:MD surname:Ballard;given-names:CC surname:Cowtan;given-names:KD surname:Dodson;given-names:EJ surname:Emsley;given-names:P surname:Evans;given-names:PR 10.1107/S0907444910045749 21460441 REF Acta crystallographica Section D, Biological crystallography ref 67 2011 50861 Overview of the CCP4 suite and current developments 352 67 surname:Afonine;given-names:PV surname:Grosse-Kunstleve;given-names:RW surname:Echols;given-names:N surname:Headd;given-names:JJ surname:Moriarty;given-names:NW surname:Mustyakimov;given-names:M 10.1107/S0907444912001308 22505256 REF Acta Crystallogr D ref 68 2012 50913 Towards automated crystallographic structure refinement with phenix.refine 2126 Pt 12 Pt 1 32 surname:Emsley;given-names:P surname:Cowtan;given-names:K 10.1107/S0907444904019158 15572765 REF Acta crystallographica Section D, Biological crystallography ref 60 2004 50988 Coot: model-building tools for molecular graphics 505 24 surname:Merritt;given-names:EA surname:Bacon;given-names:DJ 18488322 REF Methods in enzymology ref 277 1997 51038 Raster3D: photorealistic molecular graphics 291 325 surname:Marti-Renom;given-names:MA surname:Stuart;given-names:AC surname:Fiser;given-names:A surname:Sanchez;given-names:R surname:Melo;given-names:F surname:Sali;given-names:A 10.1146/annurev.biophys.29.1.291 10940251 REF Annu Rev Biophys Biomol Struct ref 29 2000 51082 Comparative protein structure modeling of genes and genomes