Roquin B-protein recognizes O a O non O - O canonical O hexaloop B-structure_element structure O in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein The O RNA B-protein_type - I-protein_type binding I-protein_type protein I-protein_type Roquin B-protein is O required O to O prevent O autoimmunity O . O Roquin B-protein controls O T O - O helper O cell O activation O and O differentiation O by O limiting O the O induced O expression O of O costimulatory B-protein_type receptors I-protein_type such O as O tumor B-protein necrosis I-protein factor I-protein receptor I-protein superfamily I-protein 4 I-protein ( O Tnfrs4 B-protein or O Ox40 B-protein ). O A O constitutive B-structure_element decay I-structure_element element I-structure_element ( O CDE B-structure_element ) O with O a O characteristic O triloop B-structure_element hairpin I-structure_element was O previously O shown O to O be O recognized O by O Roquin B-protein . O Here O we O use O SELEX B-experimental_method assays I-experimental_method to O identify O a O novel O U B-structure_element - I-structure_element rich I-structure_element hexaloop I-structure_element motif I-structure_element , O representing O an O alternative B-structure_element decay I-structure_element element I-structure_element ( O ADE B-structure_element ). O Crystal B-evidence structures I-evidence and O NMR B-experimental_method data O show O that O the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O recognizes O hexaloops B-structure_element in O the O SELEX B-experimental_method - O derived O ADE B-structure_element and O in O an O ADE B-structure_element - O like O variant O present O in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element with O identical O binding O modes O . O In O cells O , O ADE B-structure_element - O like O and O CDE B-structure_element - O like O motifs O cooperate O in O the O repression O of O Ox40 B-protein by O Roquin B-protein . O Our O data O reveal O an O unexpected O recognition O of O hexaloop B-structure_element cis I-structure_element elements I-structure_element for O the O posttranscriptional O regulation O of O target O messenger B-chemical RNAs I-chemical by O Roquin B-protein . O Roquin B-protein is O an O RNA B-protein_type - I-protein_type binding I-protein_type protein I-protein_type that O prevents O autoimmunity O by O limiting O expression O of O receptors O such O as O Ox40 B-protein . O Here O , O the O authors O identify O an O RNA B-chemical structure B-evidence that O they O describe O as O an O alternative B-structure_element decay I-structure_element element I-structure_element , O and O they O characterise O its O interaction O with O Roquin B-protein using O structural B-experimental_method and I-experimental_method biochemical I-experimental_method techniques I-experimental_method . O The O Roquin B-protein protein O is O essential O in O T O cells O for O the O prevention O of O autoimmune O disease O . O This O is O evident O from O the O so O - O called O sanroque O mutation O in O Roquin B-protein - I-protein 1 I-protein , O a O single O amino O acid O exchange O from O Met199 B-residue_name_number to O Arg B-residue_name that O causes O the O development O of O systemic O lupus O erythematosus O - O like O symptoms O in O homozygous O mice B-taxonomy_domain . O The O Rc3h1 B-gene and O Rc3h2 B-gene genes O , O encoding O for O Roquin B-protein - I-protein 1 I-protein and O Roquin B-protein - I-protein 2 I-protein proteins O in O vertebrates B-taxonomy_domain , O respectively O , O have O both O been O shown O to O be O essential O for O the O survival O of O mice B-taxonomy_domain , O but O apparently O serve O redundant O functions O in O T O cells O . O Consistently O , O CD4 O + O and O CD8 O + O T O cells O with O the O combined O deletion B-experimental_method of I-experimental_method Roquin B-protein - O encoding O genes O are O spontaneously O activated O and O CD4 O + O T O - O helper O cells O preferentially O differentiate O into O the O Th1 O , O Tfh O or O Th17 O subsets O . O Roquin B-protein - I-protein 1 I-protein was O shown O to O negatively O regulate O expression O of O transcripts O encoding O for O co B-protein_type - I-protein_type stimulatory I-protein_type receptors I-protein_type such O as O Icos B-protein , O Ox40 B-protein and O CTLA B-protein - I-protein 4 I-protein , O for O cytokines B-protein_type such O as O interleukin B-protein ( I-protein IL I-protein )- I-protein 6 I-protein and O tumour B-protein necrosis I-protein factor I-protein or O for O transcription B-protein_type factors I-protein_type such O as O IRF4 B-protein , O IκBNS B-protein and O IκBζ B-protein ( O refs O ). O We O have O recently O reported O structural B-evidence and I-evidence functional I-evidence data I-evidence of O the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O bound B-protein_state to I-protein_state a O canonical O constitutive B-structure_element decay I-structure_element element I-structure_element ( O CDE B-structure_element ), O a O short B-structure_element stem I-structure_element loop I-structure_element ( O SL B-structure_element ) O that O acts O as O a O cis O - O regulatory O RNA B-chemical element O in O the O 3 B-structure_element ′- I-structure_element untranslated I-structure_element regions I-structure_element ( O 3 B-structure_element ′- I-structure_element UTRs I-structure_element ) O of O target O genes O such O as O Tnf B-protein ( O ref O ). O The O ROQ B-structure_element domain O adopts O an O extended B-structure_element winged I-structure_element helix I-structure_element fold I-structure_element that O engages O predominantly O non O - O sequence O - O specific O protein O – O RNA B-chemical contacts O and O mainly O recognizes O the O shape O of O the O canonical O Tnf B-protein CDE B-structure_element RNA B-chemical . O The O structural B-evidence data I-evidence and O mutational B-experimental_method analysis I-experimental_method indicated O that O a O broader O , O extended O range O of O sequence O variations O in O both O the O loop B-structure_element and O stem B-structure_element of O the O CDE B-structure_element element O is O recognized O and O regulated O by O Roquin B-protein . O At O the O same O time O , O Tan O et O al O . O described O the O crystal B-evidence structure I-evidence and O supporting O functional O data O of O a O similar O interaction O with O a O CDE B-structure_element - O like O SL B-structure_element , O and O reported O a O second B-site binding I-site site I-site for O a O double B-chemical - I-chemical stranded I-chemical RNA I-chemical ( O dsRNA B-chemical ) O within O an O extended B-protein_state ROQ B-structure_element domain O . O The O structural O basis O for O CDE B-structure_element recognition O by O the O Roquin B-protein - I-protein 2 I-protein ROQ B-structure_element domain O has O also O been O recently O reported O . O We O found O that O the O posttranscriptional O activity O of O Roquin B-protein - I-protein 1 I-protein and O Roquin B-protein - I-protein 2 I-protein is O regulated O through O cleavage O by O the O paracaspase B-protein_type MALT1 B-protein ( O refs O ). O Enhanced O MALT1 B-protein - O dependent O cleavage O and O inactivation O of O Roquin B-protein , O and O thus O less O effective O repression O of O target O genes O , O result O from O increased O strength O of O antigen O recognition O in O T O cells O . O These O findings O suggest O that O dependent O on O the O strength O of O cognate O antigen O recognition O differential O gene O expression O and O cell O fate O decisions O can O be O established O in O naive O T O cells O by O a O graded O cleavage O and O inactivation O of O Roquin B-protein . O In O addition O to O this O mechanism O , O the O composition O and O binding B-evidence affinity I-evidence of O cis O - O regulatory O SL B-structure_element elements O in O the O 3 B-structure_element ′- I-structure_element UTRs I-structure_element of O target O mRNAs B-chemical may O determine O the O sensitivity O to O repression O by O the O trans O - O acting O factor O Roquin B-protein . O Defining O the O SL B-structure_element RNA B-chemical structures O that O are O recognized O by O Roquin B-protein is O therefore O essential O for O our O understanding O of O posttranscriptional O gene O regulation O by O Roquin B-protein and O its O involvement O in O T O - O cell O biology O and O T O - O cell O - O driven O pathology O . O Here O we O present O structural O and O functional O evidence O for O a O greatly O expanded O repertoire O of O RNA B-chemical elements O that O are O regulated O by O Roquin B-protein as O demonstrated O with O a O novel O U B-structure_element - I-structure_element rich I-structure_element hexaloop I-structure_element SL B-structure_element in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein bound B-protein_state to I-protein_state the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O . O We O find O an O additive O regulation O of O Ox40 B-protein gene O expression O based O on O both O its O CDE B-structure_element - O like O and O hexaloop B-structure_element SL B-structure_element RNAs B-chemical that O we O identified O using O Systematic B-experimental_method Evolution I-experimental_method of I-experimental_method Ligands I-experimental_method by I-experimental_method Exponential I-experimental_method Enrichment I-experimental_method ( O SELEX B-experimental_method ) O experiments O . O Our O X B-experimental_method - I-experimental_method ray I-experimental_method crystallographic I-experimental_method , O NMR B-experimental_method , O biochemical B-evidence and I-evidence functional I-evidence data I-evidence combined O with O mutational B-experimental_method analysis I-experimental_method demonstrate O that O both O triloop B-structure_element and O hexaloop B-structure_element SL B-structure_element RNAs B-chemical contribute O to O the O functional O activity O of O Roquin B-protein in O T O cells O . O SELEX B-experimental_method identifies O novel O RNA B-chemical ligands O of O Roquin B-protein - I-protein 1 I-protein We O set O out O to O identify O Roquin B-protein_state - I-protein_state bound I-protein_state RNA B-chemical motifs O in O an O unbiased O manner O by O performing O SELEX B-experimental_method experiments O . O A O biotinylated B-protein_state amino O - O terminal O protein O fragment O of O Roquin B-protein - I-protein 1 I-protein ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O was O used O to O enrich O RNAs B-chemical from O a O library O containing O 47 O random O nucleotides O over O three O sequential O selection O rounds O . O Next B-experimental_method - I-experimental_method generation I-experimental_method sequencing I-experimental_method ( O NGS B-experimental_method ) O of O the O RNA B-chemical before O and O after O each O selection O round O revealed O that O the O starting O pool O represented O about O 99 O . O 6 O % O unique O reads O in O ∼ O 4 O . O 2 O × O 106 O sequences O . O Bioinformatic B-experimental_method analysis I-experimental_method of O NGS B-experimental_method data O sets O derived O from O the O starting O pool O and O enriched O selection O rounds O revealed O that O the O complexity O was O reduced O to O 78 O . O 6 O % O unique O reads O in O 3 O . O 7 O × O 106 O sequences O that O were O analysed O after O 3 O rounds O of O selection O and O enrichment O . O For O NGS B-experimental_method data O analysis O , O the O COMPAS O software O ( O AptaIT O , O Munich O , O Germany O ) O was O applied O . O Enriched O sequences B-experimental_method were I-experimental_method clustered I-experimental_method into O so O - O called O patterns O with O highly O homologous O sequences O . O Based O on O this O so O - O called O co B-experimental_method - I-experimental_method occurrence I-experimental_method approach I-experimental_method , O patterns O on O the O basis O of O frequent O motifs O were O generated O and O were O searched O for O prominent O hexamer O sequences O ( O Supplementary O Fig O . O 1a O ). O We O identified O 5 B-chemical ′- I-chemical CGTTTT I-chemical - I-chemical 3 I-chemical ′, I-chemical 5 B-chemical ′- I-chemical GCGTTT I-chemical - I-chemical 3 I-chemical ′, I-chemical 5 B-chemical ′- I-chemical TGCGTT I-chemical - I-chemical 3 I-chemical ′ I-chemical and O 5 B-chemical ′- I-chemical GTTTTA I-chemical - I-chemical 3 I-chemical ′ I-chemical motifs O that O were O also O reconfirmed O in O an O independent O experiment O ( O Supplementary O Fig O . O 1a O ) O and O are O located O within O highly O similar O sequences O ( O Fig O . O 1a O and O Supplementary O Fig O . O 1b O ). O Consistent O with O previous O findings O showing O that O the O sanroque B-mutant mutation I-mutant does O not O impair O RNA B-chemical binding O of O Roquin B-protein , O we O found O similarly O enriched O sequences O in O SELEX B-experimental_method approaches O using O a O corresponding O Roquin B-protein - I-protein 1 I-protein fragment O harbouring O the O M199R B-mutant mutation O ( O Fig O . O 1a O and O Supplementary O Fig O . O 1b O ). O Notably O , O our O SELEX B-experimental_method approach O did O not O reveal O the O previously O identified O CDE B-structure_element sequence O . O We O assume O that O the O region O of O sequence O identity O in O the O CDE B-structure_element is O too O short O for O our O sequence B-experimental_method clustering I-experimental_method algorithm I-experimental_method . O Evaluation O of O the O structural O context O for O the O SELEX B-experimental_method - O derived O motif O suggested O a O putative O SL B-structure_element formation O with O six O unpaired O nucleotides O in O a O loop B-structure_element followed O by O a O 5 O – O 8 O nt O stem B-structure_element , O with O one O base O in O the O stem B-structure_element not O being O paired O ( O Supplementary O Fig O . O 1c O ). O Searching O the O 3 B-structure_element ′- I-structure_element UTRs I-structure_element of O known O Roquin B-protein targets O with O the O consensus O 5 B-chemical ′- I-chemical TGCGTTTTAGGA I-chemical - I-chemical 3 I-chemical ′, I-chemical obtained O by O Motif B-experimental_method - I-experimental_method based I-experimental_method sequence I-experimental_method analysis I-experimental_method ( O MEME B-experimental_method ), O revealed O a O homologous O sequence O with O the O potential O to O form O a O hexaloop B-structure_element structure O in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein ( O Fig O . O 1b O ). O Importantly O , O this O motif O is O present O across O species O in O the O 3 B-structure_element ′- I-structure_element UTRs I-structure_element of O respective O mRNAs B-chemical and O showed O highest O conservation O in O the O loop B-structure_element and O the O upper O stem B-structure_element sequences O with O a O drop O of O conservation O towards O the O boundaries O of O the O motif O ( O Fig O . O 1c O , O d O ). O The O predicted O SL B-structure_element for O the O consensus O SELEX B-experimental_method - O derived O motif O ( O from O here O on O referred O to O as O alternative B-structure_element decay I-structure_element element I-structure_element SL B-structure_element , O ADE B-structure_element SL B-structure_element ), O the O ADE B-structure_element - O like O SL B-structure_element , O is O positioned O 5 O ′ O to O another O CDE B-structure_element - O like O SL B-structure_element in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein mRNA B-chemical . O This O CDE B-structure_element - O like O SL B-structure_element differs O in O the O sequence O of O the O upper O stem O from O the O canonical O CDE B-structure_element from O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Tnf B-protein mRNA B-chemical ( O CDE B-structure_element SL B-structure_element ) O ( O Fig O . O 1d O ). O NMR B-experimental_method analysis O of O Roquin B-protein_state - I-protein_state bound I-protein_state SL B-structure_element RNAs B-chemical We O used O NMR B-experimental_method to O analyse O the O secondary O structure O of O Roquin B-structure_element - I-structure_element 1 I-structure_element - I-structure_element binding I-structure_element motifs I-structure_element derived O from O SELEX B-experimental_method . O Imino B-experimental_method one I-experimental_method - I-experimental_method and I-experimental_method two I-experimental_method - I-experimental_method dimensional I-experimental_method nuclear I-experimental_method Overhauser I-experimental_method enhancement I-experimental_method spectroscopy I-experimental_method ( O NOESY B-experimental_method ) O NMR B-experimental_method spectra B-evidence of O the O free B-protein_state RNA B-chemical and O when O bound B-protein_state to I-protein_state the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O were O recorded O for O the O ADE B-structure_element SL B-structure_element , O the O ADE B-structure_element - O like O SL B-structure_element in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein and O the O previously O identified O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element ( O Fig O . O 2 O ). O The O NMR B-experimental_method data O of O the O free B-protein_state RNAs B-chemical show O that O almost O all O predicted O base O pairs O in O the O stem B-structure_element regions I-structure_element of O the O hexa B-structure_element - I-structure_element and I-structure_element triloop I-structure_element SL B-structure_element including O the O closing O base O pairs O are O formed O in O all O three O RNAs B-chemical . O Notably O , O we O also O found O an O unambiguous O imino O proton O signal O for O G15 B-residue_name_number , O but O not O G6 B-residue_name_number , O in O the O ADE B-structure_element SL B-structure_element , O indicating O a O non B-bond_interaction - I-bond_interaction Watson I-bond_interaction – I-bond_interaction Crick I-bond_interaction G I-bond_interaction – I-bond_interaction G I-bond_interaction base I-bond_interaction pair I-bond_interaction at O this O position O ( O Fig O . O 2a O ). O Significant O chemical B-evidence shift I-evidence perturbations I-evidence ( O CSPs B-evidence ) O are O observed O for O imino O proton O signals O on O binding O to O the O ROQ B-structure_element domain O , O demonstrating O that O formation O of O protein O – O RNA B-chemical complexes O involves O contacts O of O the O ROQ B-structure_element domain O to O the O stem B-structure_element region I-structure_element of O the O RNA B-chemical ligands O ( O Fig O . O 2 O , O bases O coloured O red O ). O No O imino O correlations O are O observed O for O the O predicted O Watson B-bond_interaction – I-bond_interaction Crick I-bond_interaction base I-bond_interaction pairs I-bond_interaction at O the O bottom O of O the O ADE B-structure_element SL B-structure_element and O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical , O as O well O as O for O the O A B-residue_name – O U B-residue_name base O pair O flanking O the O bulge B-structure_element in O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical ( O Fig O . O 2a O , O b O ), O suggesting O that O these O base O pairs O are O dynamic O . O In O contrast O , O all O expected O base O pairs O are O observed O for O the O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element RNA B-chemical ( O Fig O . O 2c O ; O see O also O Supplementary O Notes O ). O Structures B-evidence of O ROQ B-structure_element bound B-protein_state to I-protein_state ADE B-structure_element SL B-structure_element RNAs B-chemical To O elucidate O how O Roquin B-protein can O recognize O the O novel O SL B-structure_element elements O identified O in O the O SELEX B-experimental_method approach O , O we O solved B-experimental_method crystal B-evidence structures I-evidence of O the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O bound B-protein_state to I-protein_state these O non O - O canonical O RNA B-chemical elements O . O The O structures B-evidence of O ROQ B-structure_element bound B-protein_state to I-protein_state the O 20 O - O mer O ADE B-structure_element SL B-structure_element ( O Supplementary O Fig O . O 2a O ) O and O to O the O 22 O - O mer O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical ( O Fig O . O 3a O ) O were O refined O to O a O resolution O of O 3 O . O 0 O and O 2 O . O 2 O Å O , O respectively O . O In O both O structures B-evidence the O RNA B-chemical adopts O an O SL B-structure_element fold O , O where O the O hexaloop B-structure_element is O located O in O the O vicinity O of O the O carboxy O - O terminal O end O of O ROQ B-structure_element helix B-structure_element α4 B-structure_element and O the O N O - O terminal O part O of O β3 B-structure_element ( O Fig O . O 3a O , O b O and O Supplementary O Fig O . O 2a O , O b O ). O The O dsRNA B-chemical stem B-structure_element is O recognized O in O the O same O way O as O previously O reported O for O the O Tnf B-protein CDE B-structure_element SL B-structure_element RNA B-chemical ( O Supplementary O Fig O . O 2c O – O e O ). O As O may O be O expected O , O the O recognition O of O the O hexaloop B-structure_element is O significantly O different O from O the O triloop B-structure_element in O the O CDE B-structure_element RNA B-chemical ( O Fig O . O 3b O , O c O and O Supplementary O Fig O . O 2b O ). O Interestingly O , O although O the O sequences O of O the O ADE B-structure_element SL B-structure_element and O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical are O different O , O the O overall O structures B-evidence and O protein O – O RNA B-chemical contacts O are O virtually O identical O ( O Supplementary O Fig O . O 2a O , O d O , O e O ). O The O only O differences O are O a O C19 B-residue_name_number bulge B-structure_element , O the O non B-bond_interaction - I-bond_interaction Watson I-bond_interaction – I-bond_interaction Crick I-bond_interaction G6 B-residue_name_number – O G15 B-residue_name_number base B-bond_interaction pair I-bond_interaction and O the O interaction O of O U1 B-residue_name_number with O Trp184 B-residue_name_number and O Phe194 B-residue_name_number in O the O ADE B-structure_element - O like O SL B-structure_element RNA B-chemical ( O Supplementary O Fig O . O 2a O , O e O – O g O ). O Given O their O highly O similar O binding O modes O we O focus O the O following O discussion O on O the O structure B-evidence of O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical , O as O it O naturally O exists O in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element and O was O solved O at O higher O resolution O . O The O overall O orientation O and O recognition O of O the O double B-structure_element - I-structure_element stranded I-structure_element stem I-structure_element in O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element is O similar O to O the O CDE B-structure_element triloop B-structure_element . O Notably O , O the O U B-structure_element - I-structure_element rich I-structure_element hexaloop I-structure_element in O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical binds O to O an O extended O surface B-site on O the O ROQ B-structure_element domain O that O cannot O be O accessed O by O the O CDE B-structure_element triloop B-structure_element ( O Fig O . O 3b O , O c O ) O and O includes O a O few O pyrimidine O - O specific O contacts O . O For O example O , O the O main O chain O atoms O of O Phe255 B-residue_name_number form O two O hydrogen B-bond_interaction bonds I-bond_interaction with O the O Watson O – O Crick O face O of O the O U11 B-residue_name_number base O ( O Fig O . O 3d O ). O Although O in O the O structure B-evidence of O the O Tnf B-protein CDE B-structure_element triloop B-structure_element the O Tyr250 B-residue_name_number side O chain O engages O only O one O hydrogen B-bond_interaction bond I-bond_interaction to O the O phosphate O group O of O G12 B-residue_name_number ( O ref O .), O a O number O of O contacts O are O observed O with O the O hexaloop B-structure_element ( O Fig O . O 3d O – O f O ): O the O side O chain O hydroxyl O of O Tyr250 B-residue_name_number contacts O the O phosphate O group O of O U11 B-residue_name_number , O while O the O aromatic O ring O is O positioned O by O parallel O and O orthogonal O stacking B-bond_interaction interactions I-bond_interaction with O the O U10 B-residue_name_number and O U11 B-residue_name_number bases O , O on O either O side O , O respectively O ( O Fig O . O 3e O ). O In O addition O , O the O Tyr250 B-residue_name_number main O - O chain O carbonyl O interacts O with O U13 B-residue_name_number imino O proton O ( O Fig O . O 3d O , O e O ). O Val257 B-residue_name_number and O Lys259 B-residue_name_number in O strand B-structure_element β3 B-structure_element are O too O far O to O contact O the O UGU B-structure_element triloop B-structure_element in O the O Tnf B-protein CDE B-structure_element RNA B-chemical , O but O mediate O a O number O of O contacts O with O the O longer O hexaloop B-structure_element . O The O side O chain O of O Lys259 B-residue_name_number forms O hydrogen B-bond_interaction bonds I-bond_interaction with O the O phosphate O groups O of O U10 B-residue_name_number and O U11 B-residue_name_number ( O Fig O . O 3e O , O f O ) O and O the O hydrophobic O side O chain O of O Val257 B-residue_name_number stacks B-bond_interaction with O the O U11 B-residue_name_number base O ( O Fig O . O 3d O , O f O ). O The O RNA B-chemical stem B-structure_element is O closed O by O a O Watson B-bond_interaction – I-bond_interaction Crick I-bond_interaction base I-bond_interaction pair I-bond_interaction ( O C8 B-residue_name_number – O G15 B-residue_name_number in O the O hexaloop B-structure_element SL B-structure_element RNA B-chemical ). O Interestingly O , O the O G9 B-residue_name_number base O stacks B-bond_interaction on O top O of O this O closing O base O pair O and O takes O a O position O that O is O very O similar O to O the O purine O base O of O G12 B-residue_name_number in O the O CDE B-structure_element triloop B-structure_element ( O Fig O . O 3b O , O c O and O Supplementary O Fig O . O 2b O ). O The O G9 B-residue_name_number base O does O not O form O a O base O pair O with O A14 B-residue_name_number but O rather O the O A14 B-residue_name_number base O packs O into O the O minor B-site groove I-site of O the O RNA B-chemical duplex O . O This O arrangement O provides O an O extended O stacking B-bond_interaction interaction I-bond_interaction of O G9 B-residue_name_number , O U10 B-residue_name_number and O Tyr250 B-residue_name_number in O the O ROQ B-structure_element domain O at O the O 5 O ′- O side O of O the O RNA B-chemical stem B-structure_element ( O Fig O . O 3e O ). O The O U11 B-residue_name_number and O U13 B-residue_name_number bases O stack B-bond_interaction with O each O other O in O the O vicinity O of O the O ROQ B-structure_element domain O wing B-structure_element ( O Fig O . O 3b O , O d O , O f O ). O This O is O possible O by O exposing O the O base O C12 B-residue_name_number of O the O Ox B-protein - I-protein 40 I-protein ADE B-structure_element - O like O SL B-structure_element towards O the O solvent O , O which O accordingly O does O not O show O any O contacts O to O the O protein O . O In O summary O , O similar O to O the O CDE B-structure_element SL B-structure_element , O both O the O ADE B-structure_element SL B-structure_element and O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical are O recognized O mainly O by O non O - O sequence O - O specific O contacts O . O However O , O these O involve O an O extended O binding O surface O on O the O ROQ B-structure_element domain O with O a O number O of O additional O residues O compared O with O the O triloop O RNA B-chemical . O NMR B-experimental_method analysis O of O ROQ B-structure_element interactions O with O ADE B-structure_element SLs B-structure_element We O next O used O NMR B-experimental_method spectroscopy I-experimental_method to O compare O the O ROQ B-structure_element domain O interaction O of O ADE B-structure_element - O like O and O CDE B-structure_element - O like O SL B-structure_element RNAs B-chemical in O solution O . O CSPs B-evidence observed O for O amides O in O the O ROQ B-structure_element domain O on O binding O to O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical ( O Fig O . O 4a O , O b O ) O map O to O residues O that O also O mediate O key O interactions O with O CDE B-structure_element SLs B-structure_element , O such O as O Lys220 B-residue_name_number , O Lys239 B-residue_name_number / O Thr240 B-residue_name_number and O Lys259 B-residue_name_number / O Arg260 B-residue_name_number ( O Fig O . O 4b O ). O This O is O fully O consistent O with O the O interactions O observed O in O the O crystal B-evidence structure I-evidence ( O Supplementary O Fig O . O 2c O – O e O ) O and O indicates O a O similar O binding B-site surface I-site . O However O , O there O are O also O notable O CSP B-evidence differences I-evidence when O comparing O binding O of O the O ROQ B-structure_element domain O to O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical and O to O the O CDE B-structure_element - O like O SL B-structure_element RNA B-chemical in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O Fig O . O 4c O ), O or O to O the O Tnf B-protein CDE B-structure_element SL B-structure_element RNA B-chemical ( O Supplementary O Fig O . O 3 O and O Supplementary O Notes O ). O For O example O , O Ser253 B-residue_name_number is O strongly O affected O only O on O binding O to O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element ( O Fig O . O 4a O , O b O ) O in O line O with O tight O interactions O with O the O hexaloop B-structure_element ( O Fig O . O 3d O ). O On O the O other O hand O , O comparison O of O ROQ B-structure_element domain O binding O with O the O ADE B-structure_element and O with O the O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical indicates O almost O identical O NMR B-experimental_method spectra B-evidence and O CSPs B-evidence . O This O is O consistent O with O the O very O similar O structural O features O and O mode O of O RNA B-chemical recognition O of O the O ROQ B-structure_element domain O with O these O RNAs B-chemical ( O Supplementary O Fig O . O 2a O , O d O , O e O ). O Mutational B-experimental_method analysis I-experimental_method of O the O ROQ B-structure_element - O ADE B-structure_element interaction O To O examine O the O individual O contributions O of O ROQ B-structure_element – O hexaloop O interactions O for O complex O formation O , O we O performed O electrophoretic B-experimental_method mobility I-experimental_method shift I-experimental_method assays I-experimental_method ( O EMSAs B-experimental_method ) O with O variants O of O the O ROQ B-structure_element domain O and O the O Ox40 B-protein ADE B-structure_element - O like O RNA B-chemical ( O Fig O . O 5a O and O Supplementary O Fig O . O 4 O ). O Analysis O of O the O interaction O with O wild B-protein_state - I-protein_state type I-protein_state ROQ B-structure_element revealed O an O apparent O affinity B-evidence in O a O similar O range O as O for O the O Tnf B-protein CDE B-structure_element ( O Fig O . O 5a O and O ) O Table O 2 O ). O We O next O tested O a O set O of O mutants O ( O Supplementary O Fig O . O 4 O ), O which O were O designed O based O on O contacts O observed O in O the O crystal B-evidence structure I-evidence ( O Fig O . O 3 O ) O and O the O NMR B-experimental_method CSPs B-evidence ( O Fig O . O 4a O , O b O ). O In O line O with O expectations O from O ROQ B-complex_assembly - I-complex_assembly Tnf I-complex_assembly CDE I-complex_assembly binding O ( O see O comparison O in O Supplementary O Fig O . O 4 O ) O and O based O on O our O structural B-experimental_method analysis I-experimental_method , O the O key O residues O Lys220 B-residue_name_number , O Lys239 B-residue_name_number , O Lys259 B-residue_name_number and O Arg260 B-residue_name_number strongly O reduce O or O abolish O binding O after O replacement B-experimental_method by O alanine B-residue_name . O We O also O observe O an O almost O complete O loss O of O binding O in O the O Y250A B-mutant mutant B-protein_state to O the O hexaloop B-structure_element SL B-structure_element RNA B-chemical , O which O had O not O been O seen O for O the O Tnf B-protein CDE B-structure_element previously O ( O Fig O . O 5a O ). O This O underlines O the O central O role O of O Tyr250 B-residue_name_number for O stabilization O of O the O hexaloop B-structure_element structure O and O recognition O by O stacking B-bond_interaction interactions I-bond_interaction ( O Fig O . O 3b O , O e O ). O Mutation B-experimental_method of O Ser253 B-residue_name_number , O which O shows O large O CSPs B-evidence in O the O NMR B-experimental_method titrations I-experimental_method ( O Fig O . O 4a O , O b O ), O does O not O significantly O impair O complex O formation O ( O Supplementary O Fig O . O 4 O ). O The O large O chemical B-evidence shift I-evidence change I-evidence is O probably O caused O by O ring O current O effects O induced O by O the O close O proximity O of O the O U11 B-residue_name_number and O U13 B-residue_name_number bases O . O Finally O , O a O mutant B-protein_state in O the O wing B-structure_element of O the O ROQ B-structure_element domain O ( O S265Y B-mutant ) O does O only O slightly O impair O binding O , O as O has O been O previously O observed O for O the O interaction O with O the O Tnf B-protein CDE B-structure_element ( O Supplementary O Fig O . O 4 O ). O This O indicates O that O replacement B-experimental_method by O Tyr B-residue_name does O not O strongly O affect O the O RNA B-chemical interaction O , O and O that O some O conformational O variations O are O tolerated O . O Thus O , O the O mutational B-experimental_method analysis I-experimental_method is O fully O consistent O with O the O recognition O of O the O hexaloop B-structure_element observed O in O our O crystal B-evidence structures I-evidence . O To O prove O the O contribution O of O the O key O residue O Tyr250 B-residue_name_number in O Roquin B-protein - I-protein 1 I-protein to O Ox40 B-protein mRNA B-chemical recognition O and O regulation O , O we O set O up O a O retroviral B-experimental_method reconstitution I-experimental_method system I-experimental_method in O Roquin B-protein - O deficient O CD4 O + O T O cells O . O Isolated O CD4 O + O T O cells O from O Rc3h1 B-gene / O 2fl B-gene / O fl B-gene ; O Cd4 O - O Cre O - O ERT2 O ; O rtTA O mice B-taxonomy_domain harbouring O floxed O Roquin B-protein - I-protein 1 I-protein / O 2 B-protein encoding O alleles O , O a O tamoxifen B-chemical - O inducible O Cre O recombinase O and O the O reverse B-protein_type tetracycline I-protein_type - I-protein_type controlled I-protein_type transactivator I-protein_type rtTA B-protein were O treated O in O vitro O with O 4 B-chemical - I-chemical hydroxy I-chemical tamoxifen I-chemical , O to O induce O deletion O . O The O cells O were O then O transduced O with O doxycycline B-chemical - O inducible O retroviral O vectors O to O reconstitute O Roquin B-protein - I-protein 1 I-protein expression O ( O Fig O . O 5b O ). O Depletion O of O Roquin B-protein proteins O on O tamoxifen B-chemical treatment O ( O Supplementary O Fig O . O 5a O ) O strongly O increased O surface O expression O of O Ox40 B-protein and O Icos B-protein ( O Fig O . O 5c O ). O This O increase O in O surface O expression O of O both O costimulatory B-protein_type receptors I-protein_type was O partially O corrected O by O the O doxycycline B-chemical - O induced O reconstitution O with O Roquin B-protein - I-protein 1 I-protein WT B-protein_state protein O ( O Fig O . O 5c O left O panels O ). O Importantly O , O no O effect O was O observed O on O expression O of O the O Y250A B-mutant mutant B-protein_state of O Roquin B-protein - I-protein 1 I-protein or O the O K220A B-mutant , O K239A B-mutant and O R260 B-mutant mutant B-protein_state , O which O is O strongly O impaired O in O CDE B-structure_element SL B-structure_element interactions O ( O Fig O . O 5c O middle O and O right O panels O ). O However O , O it O is O also O possible O that O continuous O overexpression B-experimental_method of O targets O following O Roquin B-protein deletion O induces O a O hyperactivated O state O in O the O T O cells O . O This O hyperactivation O , O compared O with O the O actual O posttranscriptional O derepression O , O may O contribute O even O stronger O to O the O increased O Icos B-protein and O Ox40 B-protein expression O levels O . O Hence O , O our O structure B-experimental_method – I-experimental_method function I-experimental_method analyses I-experimental_method conclusively O show O that O the O Y250 B-residue_name_number residue O is O essential O for O Roquin B-protein interaction O and O regulation O of O Ox40 B-protein , O and O potentially O also O for O other O Roquin B-protein targets O such O as O Icos B-protein . O We O also O investigated O the O role O of O individual O nucleotides O in O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element for O complex O formation O with O the O ROQ B-structure_element domain O . O We O designed O four O mutants O ( O Mut1 O – O 4 O , O see O Supplementary O Fig O . O 6 O ) O that O were O expected O to O disrupt O key O interactions O with O the O protein O according O to O our O co B-evidence - I-evidence crystal I-evidence structure I-evidence ( O Fig O . O 3d O – O f O and O Supplementary O Fig O . O 2 O ). O NMR B-experimental_method analysis O confirmed O that O all O mutant B-protein_state RNAs B-chemical formed O the O same O base O pairs O in O the O stem B-structure_element region I-structure_element , O identical O to O the O wild B-protein_state - I-protein_state type I-protein_state ADE B-structure_element - O like O SL B-structure_element ( O Fig O . O 2b O and O Supplementary O Fig O . O 6 O ). O We O next O used O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method experiments O to O determine O dissociation B-evidence constants I-evidence for O the O ROQ B-structure_element - O RNA B-chemical interaction O ( O Table O 2 O and O Supplementary O Fig O . O 7 O ). O Although O the O replacement B-experimental_method of O a O C8 B-residue_name_number – O G15 B-residue_name_number closing O base O pair O by O A B-residue_name - O U B-residue_name ( O Mut B-mutant 4 I-mutant ) O only O reduces O the O affinity B-evidence threefold O , O reduction O of O loop B-structure_element size O in O the O A14C B-mutant mutant B-protein_state ( O Mut B-mutant 1 I-mutant , O see O Table O 2 O ) O reduces O the O affinity B-evidence and O binding O is O not O detected O by O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method . O As O intended O , O the O mutation O Mut B-mutant 1 I-mutant allows O the O formation O of O an O additional O base O pair O and O thus O leads O to O the O formation O of O a O tetraloop B-structure_element with O a O new O G B-residue_name - O C B-residue_name closing O base O pair O ( O Supplementary O Fig O . O 6a O ). O Consistent O with O the O structural B-experimental_method analysis I-experimental_method , O we O assume O that O this O variant O alters O the O hexaloop B-structure_element conformation O and O thus O reduces O the O interaction O with O ROQ B-structure_element . O Disruption O of O stacking B-bond_interaction interactions I-bond_interaction between O G15 B-residue_name_number , O G9 B-residue_name_number and O Y250 B-residue_name_number in O the O G9C B-mutant mutant B-protein_state ( O Mut B-mutant 2 I-mutant ) O completely O abolished O binding O of O ROQ B-structure_element to O the O SL B-structure_element RNA B-chemical ( O Table O 2 O and O Supplementary O Fig O . O 7 O ). O No O binding O is O also O observed O for O the O U11AU13G B-mutant double B-protein_state mutant I-protein_state ( O Mut B-mutant 3 I-mutant ) O ( O Table O 2 O and O Supplementary O Fig O . O 7 O ), O which O abolishes O specific O interactions O mediated O by O U11 B-residue_name_number and O U13 B-residue_name_number in O the O hexaloop B-structure_element with O ROQ B-structure_element ( O Fig O . O 3d O ). O Consistent O with O the O SELEX B-experimental_method consensus O ( O Fig O . O 1b O ), O all O of O the O tested O mutations B-experimental_method of O conserved B-protein_state nucleotides B-chemical in O the O loop B-structure_element reduce O or O abolish O the O interaction O with O ROQ B-structure_element . O Interestingly O , O the O affinity B-evidence of O the O wild B-protein_state - I-protein_state type I-protein_state Tnf B-protein CDE B-structure_element and O the O Ox40 B-protein ADE B-structure_element - O like O SLs B-structure_element to O ROQ B-structure_element are O very O similar O ( O 42 O and O 81 O nM O , O respectively O , O Table O 2 O and O Supplementary O Fig O . O 7 O ). O Roquin B-protein binding O to O different O SLs B-structure_element in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element We O have O recently O shown O that O Roquin B-protein - I-protein 1 I-protein binds O to O a O CDE B-structure_element - O like O motif O in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein mRNA B-chemical ( O Figs O 1d O and O 4c O ). O We O therefore O investigated O whether O the O interactions O with O the O CDE B-structure_element - O like O and O the O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical both O contribute O to O Roquin B-protein - I-protein 1 I-protein binding O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element . O The O binding B-evidence affinities I-evidence of O either O motif O for O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element of O Roquin B-protein - I-protein 1 I-protein ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O ( O Supplementary O Fig O . O 8a O , O b O ) O or O the O ROQ B-structure_element domain O alone B-protein_state are O in O a O similar O range O ( O Table O 2 O ). O The O dissociation B-evidence constants I-evidence for O the O ROQ B-structure_element interaction O with O the O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element and O the O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical are O 1 O , O 460 O and O 81 O nM O , O respectively O ( O Table O 2 O ). O This O is O consistent O with O the O extended O binding B-site interface I-site and O additional O interactions O observed O with O the O hexaloop B-structure_element , O and O suggests O a O preferential O binding O to O the O hexaloop B-structure_element SL B-structure_element RNA B-chemical in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element . O We O designed O different O variants O of O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element by O point B-experimental_method mutagenesis I-experimental_method abrogating O base O pairing O in O the O stem B-structure_element region I-structure_element , O where O none O , O individual O , O or O both O SL B-structure_element RNA B-chemical motifs O were O mutated B-experimental_method to O impair O Roquin B-protein - I-protein 1 I-protein binding O ( O Fig O . O 6a O ). O These O RNAs B-chemical were O then O tested O in O EMSAs B-experimental_method with O the O Roquin B-protein - I-protein 1 I-protein N O terminus O ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O ( O Fig O . O 6b O ). O Gel B-experimental_method shift I-experimental_method assays I-experimental_method show O that O binding O to O the O wild B-protein_state - I-protein_state type I-protein_state 3 B-structure_element ′- I-structure_element UTR I-structure_element construct O leads O to O two O distinct O bands O during O the O titrations B-experimental_method , O which O should O reflect O binding O to O one O and O both O RNA B-chemical motifs O , O respectively O . O Consistent O with O this O , O both O bands O are O strongly O reduced O when O mutations O are O introduced O that O interfere O with O the O formation O of O both O SLs B-structure_element . O Notably O , O among O these O , O the O slower O migrating O band O disappears O when O either O of O the O two O SL B-structure_element RNA B-chemical motifs O is O altered O to O impair O Roquin B-protein binding O , O indicating O an O interaction O with O the O remaining O wild B-protein_state - I-protein_state type I-protein_state SL B-structure_element . O We O thus O conclude O that O Roquin B-protein is O able O to O bind O to O both O SL B-structure_element RNA B-chemical motifs O in O the O context O of O the O full B-protein_state - I-protein_state length I-protein_state Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element . O Regulation O of O Ox40 B-protein expression O via O two O motifs O in O its O 3 B-structure_element ′- I-structure_element UTR I-structure_element To O investigate O the O role O of O the O new O ADE B-structure_element - O like O motif O in O target O mRNA B-chemical regulation O , O we O introduced B-experimental_method Ox40 B-protein mRNA B-chemical variants O harbouring O altered B-protein_state 3 B-structure_element ′- I-structure_element UTRs I-structure_element in O cells O . O Considering O the O close O proximity O of O the O ADE B-structure_element - O like O and O CDE B-structure_element - O like O SL B-structure_element RNAs B-chemical in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O Fig O . O 6a O ), O which O is O essential O for O Roquin B-protein - O mediated O posttranscriptional O regulation O of O Ox40 B-protein ( O ref O .) O we O tested O individual O contributions O and O the O functional O cooperation O of O the O two O RNA B-chemical elements O by O deletion B-experimental_method and I-experimental_method point I-experimental_method mutagenesis I-experimental_method abrogating B-protein_state base B-bond_interaction pairing I-bond_interaction in O the O stem B-structure_element region I-structure_element ( O Fig O . O 6a O , O c O and O Supplementary O Fig O . O 8c O ). O Specifically O , O using O retroviruses B-taxonomy_domain we O introduced O Ox40 B-protein expression O constructs O placed O under O the O control O of O different O 3 B-structure_element ′- I-structure_element UTRs I-structure_element into O Roquin B-protein - I-protein 1 I-protein / O 2 B-protein - O deficient O mouse B-taxonomy_domain embryonic O fibroblasts O . O Doxycycline B-chemical treatment O of O cells O from O this O cell O line O enabled O ectopic O Roquin B-protein - I-protein 1 I-protein and O co O - O translational O mCherry O expression O due O to O the O stable O integration O of O an O inducible O lentiviral B-taxonomy_domain vector O ( O Supplementary O Fig O . O 8c O ). O The O expression O of O Ox40 B-protein in O cells O with O and O without O doxycycline B-chemical treatment O was O then O quantified O by O flow B-experimental_method cytometry I-experimental_method ( O Supplementary O Fig O . O 8c O ). O Comparing O the O ratio O of O Ox40 B-protein mean B-evidence fluorescence I-evidence intensities I-evidence in O cells O with O and O without O doxycycline B-chemical treatment O normalized O to O the O values O from O cells O that O expressed O Ox40 B-protein constructs O without B-protein_state 3 B-structure_element ′- I-structure_element UTR I-structure_element revealed O a O comparable O importance O of O both O structural O elements O ( O Fig O . O 6c O ). O In O fact O , O only O deletion B-experimental_method or I-experimental_method point I-experimental_method mutagenesis I-experimental_method of O the O sequences O encoding O both O structures O at O the O same O time O ( O 3 B-structure_element ′- I-structure_element UTR I-structure_element 1 B-residue_range – I-residue_range 80 I-residue_range and O double B-protein_state mut I-protein_state ) O neutralized O Roquin B-protein - O dependent O repression O of O Ox40 B-protein . O In O contrast O , O individual O mutations B-experimental_method that O left O the O hexaloop B-structure_element ( O 3 B-structure_element ′- I-structure_element UTR I-structure_element 1 B-residue_range – I-residue_range 120 I-residue_range or O CDE B-mutant mut I-mutant ) O or O the O CDE B-structure_element - O like O triloop B-structure_element intact B-protein_state still O enabled O Roquin B-protein - O dependent O repression O , O which O occurred O in O an O attenuated O manner O compared O with O the O full B-protein_state - I-protein_state length I-protein_state 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O Fig O . O 6c O ). O To O further O analyse O the O functional O consequences O of O Roquin B-protein binding O to O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element , O we O also O measured O mRNA B-evidence decay I-evidence rates I-evidence after O introducing O the O different O Ox40 B-protein constructs O into O HeLa O tet O - O off O cells O that O allow O to O turn O off O transcription O from O the O tetracycline O - O repressed O vectors O by O addition O of O doxycycline B-chemical ( O Fig O . O 6d O ). O Quantitative B-experimental_method reverse I-experimental_method transcriptase I-experimental_method – I-experimental_method PCR I-experimental_method revealed O a O strong O stabilization O of O the O Ox40 B-protein mRNA B-chemical by O deletion B-experimental_method of I-experimental_method the O 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O CDS B-structure_element t1 B-evidence / I-evidence 2 I-evidence = O 311 O min O vs O full B-protein_state - I-protein_state length I-protein_state t1 B-evidence / I-evidence 2 I-evidence = O 96 O min O ). O A O comparable O stabilization O was O achieved O by O combined B-experimental_method mutation I-experimental_method of O the O CDE B-structure_element - O like O and O the O ADE B-structure_element - O like O SLs B-structure_element ( O ADE B-structure_element / O CDE B-structure_element - O like O mut B-protein_state t1 B-evidence / I-evidence 2 I-evidence = O 255 O min O ). O Individual O mutations B-experimental_method of O either O the O ADE B-structure_element - O like O or O the O CDE B-structure_element - O like O SLs B-structure_element showed O intermediate O effects O ( O ADE B-structure_element - O like O mut B-protein_state t1 B-evidence / I-evidence 2 I-evidence = O 170 O min O , O CDE B-structure_element - O like O mut B-protein_state t1 B-evidence / I-evidence 2 I-evidence = O 167 O min O ), O respectively O . O These O findings O underscore O the O importance O of O both O structural O motifs O and O reveal O that O they O have O an O additive O effect O on O the O regulation O of O Ox40 B-protein mRNA B-chemical expression O in O cells O . O Recent O structural B-experimental_method and I-experimental_method functional I-experimental_method studies I-experimental_method have O provided O first O insight O into O the O RNA B-chemical binding O of O Roquin B-protein . O Structures B-evidence of O Roquin B-protein bound B-protein_state to I-protein_state CDE B-structure_element SL B-structure_element RNAs B-chemical indicated O mainly O shape O recognition O of O the O SL B-structure_element RNA B-chemical in O the O so O - O called O A B-site - I-site site I-site of O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O Roquin B-protein protein O with O no O sequence O specificity O , O except O the O requirement O for O a O pyrimidine B-structure_element – I-structure_element purine I-structure_element – I-structure_element pyrimidine I-structure_element triloop I-structure_element . O Considering O that O the O CDE B-structure_element RNA B-chemical recognition O is O mostly O structure O specific O and O not O sequence O dependent O , O a O wide O spectrum O of O target O mRNA B-chemical might O be O recognized O by O Roquin B-protein . O Here O we O have O used O SELEX B-experimental_method assays I-experimental_method to O identify O a O novel O RNA B-structure_element recognition I-structure_element motif I-structure_element of O Roquin B-protein - I-protein 1 I-protein , O which O is O present O in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element and O variations O of O which O may O be O found O in O the O 3 B-structure_element ′- I-structure_element UTRs I-structure_element of O many O other O genes O . O Our O experiments O show O that O this O SELEX B-experimental_method - O derived O ADE B-structure_element shows O functional O activity O comparable O to O the O previously O established O CDE B-structure_element motif O . O The O ADE B-structure_element and O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical adopt O SL B-structure_element folds O with O a O hexaloop B-structure_element instead O of O a O triloop B-structure_element . O Notably O , O the O recognition O of O the O respective O RNA B-structure_element - I-structure_element helical I-structure_element stem I-structure_element regions I-structure_element by O the O ROQ B-structure_element domain O is O identical O for O the O triloop B-structure_element and O hexaloop B-structure_element motifs O . O However O , O the O U B-structure_element - I-structure_element rich I-structure_element hexaloops I-structure_element in O the O ADE B-structure_element and O ADE B-structure_element - O like O SL B-structure_element RNAs B-chemical mediate O a O number O of O additional O contacts O with O the O helix B-structure_element α4 B-structure_element and O strand B-structure_element β3 B-structure_element in O the O ROQ B-structure_element domain O that O are O absent O in O the O triloop B-structure_element CDE B-structure_element ( O Fig O . O 3b O – O f O ). O Of O particular O importance O for O the O hexaloop B-structure_element recognition O is O Tyr250 B-residue_name_number , O which O acts O as O a O stabilizing O element O for O the O integrity O of O a O defined O loop B-structure_element conformation O . O It O stacks B-bond_interaction with O nucleotides O in O the O hexaloop B-structure_element but O not O the O CDE B-structure_element triloop B-structure_element ( O Fig O . O 3b O , O c O ). O The O functional O role O of O Tyr250 B-residue_name_number for O ADE B-structure_element - O mediated O mRNA B-chemical regulation O by O Roquin B-protein - I-protein 1 I-protein is O thus O explained O by O our O experiments O ( O Fig O . O 5b O , O c O ). O The O preference O for O U B-structure_element - I-structure_element rich I-structure_element hexaloops I-structure_element depends O on O nucleotide O - O specific O interactions O of O ROQ B-structure_element with O U10 B-residue_name_number , O U11 B-residue_name_number and O U13 B-residue_name_number in O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element . O Consistent O with O this O , O loss O of O ROQ B-structure_element binding O is O observed O on O replacement B-experimental_method of O U11 B-residue_name_number and O U13 B-residue_name_number by O other O bases O ( O Table O 2 O ). O In O spite O of O these O differences O in O some O aspects O of O the O RNA B-chemical recognition O , O overall O features O of O Roquin B-protein targets O are O conserved O in O ADE B-structure_element and O CDE B-structure_element - O like O RNAs B-chemical , O namely O , O a O crucial O role O of O non O - O sequence O - O specific O contacts O to O the O RNA B-chemical stem B-structure_element and O mainly O shape O recognition O of O the O hexa B-structure_element - I-structure_element and I-structure_element triloops I-structure_element , O respectively O . O A O unique O feature O of O the O bound B-protein_state RNA B-chemical structure B-evidence , O common O to O both O tri B-structure_element - I-structure_element and I-structure_element hexaloops I-structure_element , O is O the O stacking B-bond_interaction of O a O purine O base O onto O the O closing O base O pair O ( O Fig O . O 3b O , O c O ). O Previous O structural B-evidence data I-evidence and O the O results O presented O here O therefore O suggest O that O Roquin B-protein may O recognize O additional O SL B-structure_element RNA B-chemical motifs O , O potentially O with O larger O loops B-structure_element . O Interestingly O , O the O SELEX B-experimental_method - O derived O motif O resembles O the O U B-structure_element - I-structure_element rich I-structure_element motifs I-structure_element that O were O identified O recently O by O Murakawa O et O al O .. O In O their O study O , O several O U B-structure_element - I-structure_element rich I-structure_element loops I-structure_element of O various O sizes O were O identified O by O crosslinking B-experimental_method and I-experimental_method immunoprecipitation I-experimental_method of O Roquin B-protein - I-protein 1 I-protein using O PAR B-experimental_method - I-experimental_method CLIP I-experimental_method and O the O data O also O included O sequences O comprising O the O U B-structure_element - I-structure_element rich I-structure_element hexaloop I-structure_element identified O in O our O present O work O . O Most O probably O , O the O experimental O setup O of O Murakawa O et O al O . O revealed O both O high O - O and O low O - O affinity O target O motifs O for O Roquin B-protein , O whereas O our O structural B-experimental_method study I-experimental_method reports O on O a O high O - O affinity O binding O motif O . O Notably O , O Murakawa O et O al O . O neither O found O the O Roquin B-protein - O regulated O Ox40 B-protein nor O the O Tnf B-protein 3 B-structure_element ′- I-structure_element UTRs I-structure_element , O as O both O genes O are O not O expressed O in O HEK O 293 O cells O . O However O , O their O newly O identified O U O - O rich O target O SL B-structure_element within O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O A20 B-protein mRNA B-chemical supports O our O conclusion O that O Roquin B-protein can O accept O alternative O target O motifs O apart O from O the O classical O CDE B-structure_element triloop B-structure_element arrangement O . O It O remains O to O be O seen O which O exact O features O govern O the O recognition O of O the O A20 B-protein SL B-structure_element by O Roquin B-protein . O The O regulatory O cis B-structure_element RNA I-structure_element elements I-structure_element in O 3 B-structure_element ′- I-structure_element UTRs I-structure_element may O also O be O targeted O by O additional O trans O - O acting O factors O . O We O have O recently O identified O the O endonuclease B-protein_type Regnase B-protein - I-protein 1 I-protein as O a O cofactor O of O Roquin B-protein function O that O shares O an O overlapping O set O of O target O mRNAs B-chemical . O In O another O study O , O the O overlap O in O targets O was O confirmed O , O but O a O mutually O exclusive O regulation O was O proposed O based O on O studies O in O lipopolysaccharide B-chemical ( O LPS B-chemical )- O stimulated O myeloid O cells O . O In O these O cells O , O Roquin B-protein induced O mRNA B-chemical decay O only O for O translationally O inactive B-protein_state mRNAs B-chemical , O while O Regnase B-protein - I-protein 1 I-protein - O induced O mRNA B-chemical decay O depended O on O active O translation O of O the O target O . O In O CD4 O + O T O cells O , O Ox40 B-protein does O not O show O derepression O in O individual O knockouts O of O Roquin B-protein - I-protein 1 I-protein or O Roquin B-protein - I-protein 2 I-protein encoding O genes O , O but O is O strongly O induced O upon O combined O deficiency B-experimental_method of O both O genes O . O In O addition O , O conditional O deletion B-experimental_method of I-experimental_method the O Regnase B-protein - I-protein 1 I-protein - O encoding O gene O induced O Ox40 B-protein expression O in O these O cells O . O Whether O induced O decay O of O Ox40 B-protein mRNA B-chemical by O Roquin B-protein or O Regnase B-protein_type proteins O occurs O in O a O mutually O exclusive O manner O at O different O points O during O T O - O cell O activation O or O shows O cooperative O regulation O will O have O to O await O a O direct O comparison O of O T O cells O with O single O , O double B-experimental_method and I-experimental_method triple I-experimental_method knockouts I-experimental_method of O these O genes O . O However O , O in O cultures O of O CD4 O + O T O cells O , O Ox40 B-protein is O translated O on O day O 4 O – O 5 O and O is O expressed O much O higher O in O T O cells O with O combined O deficiency O of O Roquin B-protein - I-protein 1 I-protein and O Roquin B-protein - I-protein 2 I-protein . O At O this O time O point O , O the O short O - O term O inducible O reconstitution B-experimental_method with O WT B-protein_state Roquin B-protein - I-protein 1 I-protein was O effective O to O reduced O Ox40 B-protein expression O , O demonstrating O the O regulation O of O a O translationally O active B-protein_state mRNA B-chemical by O Roquin B-protein - I-protein 1 I-protein in O T O cells O ( O Fig O . O 5c O ). O Recombinant O N O - O terminal O protein O fragments O of O Roquin B-protein - I-protein 1 I-protein or O Roquin B-protein - I-protein 2 I-protein bind O with O comparable O affinity O to O Ox40 B-protein mRNA B-chemical in O EMSAs B-experimental_method and O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O Ox40 B-protein is O similarly O retained O by O the O two O recombinant O proteins O in O filter B-experimental_method binding I-experimental_method assays I-experimental_method . O Given O the O almost O identical O RNA B-chemical contacts O in O both O paralogues O , O we O assume O a O similar O recognition O of O ADE B-structure_element and O CDE B-structure_element motifs O in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element by O both O proteins O . O In O contrast O , O structural O details O on O how O Regnase B-protein - I-protein 1 I-protein can O interact O with O these O SL B-structure_element RNAs B-chemical are O currently O missing O . O Surprisingly O , O transcriptome O - O wide O mapping O of O Regnase B-site - I-site 1 I-site - I-site binding I-site sites I-site in O crosslinking B-experimental_method and I-experimental_method immunoprecipitation I-experimental_method experiments I-experimental_method identified O specific O triloop B-structure_element structures O with O pyrimidine B-structure_element – I-structure_element purine I-structure_element – I-structure_element pyrimidine I-structure_element loops I-structure_element in O 3 O - O to O 7 O - O nt O - O long O stems B-structure_element , O as O well O as O a O novel O hexaloop B-structure_element structure O in O the O Ptgs2 B-gene gene O . O Both O were O required O for O Regnase B-protein - I-protein 1 I-protein - O mediated O repression O . O These O findings O therefore O raise O the O possibility O that O Regnase B-protein - I-protein 1 I-protein interacts O with O ADE B-structure_element - O like O hexaloop B-structure_element structures O either O in O a O direct O or O indirect O manner O . O Nevertheless O , O it O becomes O clear O that O composite O cis B-structure_element - I-structure_element elements I-structure_element , O that O is O , O the O presence O of O several O SLs B-structure_element as O in O Ox40 B-protein or O Icos B-protein , O could O attract O multiple O trans O - O acting O factors O that O may O potentially O co O - O regulate O or O even O act O cooperatively O to O control O mRNA B-chemical expression O through O posttranscriptional O pathways O of O gene O regulation O . O The O novel O 3 B-structure_element ′- I-structure_element UTR I-structure_element loop B-structure_element motif I-structure_element that O we O have O identified O as O a O bona O fide O target O of O Roquin B-protein now O expands O this O multilayer O mode O of O co O - O regulation O . O We O suggest O that O differential O regulation O of O mRNA B-chemical expression O is O not O only O achieved O through O multiple O regulators O with O individual O preferences O for O a O given O motif O or O variants O thereof O , O but O that O regulators O may O also O identify O and O use O distinct O motifs O , O as O long O as O they O exhibit O some O basic O features O regarding O shape O , O size O and O sequence O . O The O presence O of O distinct O motifs O in O 3 B-structure_element ′- I-structure_element UTRs I-structure_element offers O a O broader O variability O for O gene O regulation O by O RNA B-chemical cis B-structure_element elements I-structure_element . O Their O accessibility O can O be O modulated O by O trans O - O acting O factors O that O may O bind O regulatory O motifs O , O unfold O higher O - O order O structures O in O the O RNA B-chemical or O maintain O a O preference O for O duplex O structures O as O was O shown O recently O for O mRNAs B-chemical that O are O recognized O by O Staufen B-protein - I-protein 1 I-protein ( O ref O .). O In O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O the O Ox40 B-protein mRNA B-chemical , O we O find O one O ADE B-structure_element - O like O and O one O CDE B-structure_element - O like O SL B-structure_element , O with O similar O binding O to O the O ROQ B-structure_element domain O . O The O exact O stoichiometry O of O Roquin B-protein bound B-protein_state to I-protein_state the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element is O unknown O . O The O recently O identified O secondary B-site binding I-site site I-site for O dsRNA B-chemical in O Roquin B-protein ( O B B-site - I-site site I-site ) O could O potentially O allow O for O simultaneous O binding O of O dsRNA B-chemical and O thereby O promote O engagement O of O Roquin B-protein and O target O RNAs B-chemical before O recognition O of O high O - O affinity B-evidence SLs B-structure_element . O In O this O respect O , O it O is O interesting O to O note O that O symmetry O - O related O RNA B-chemical molecules O of O both O Tnf B-protein CDE B-structure_element and O ADE B-structure_element SL B-structure_element RNAs B-chemical are O found O in O the O respective O crystal B-evidence lattice I-evidence in O a O position O that O corresponds O to O the O recognition O of O dsRNA B-chemical in O the O B B-site site I-site . O This O opens O the O possibility O that O one O Roquin B-protein molecule O may O cluster O two O motifs O in O a O given O 3 B-structure_element ′- I-structure_element UTR I-structure_element and O / O or O cluster O motifs O from O distinct O 3 B-structure_element ′- I-structure_element UTRs I-structure_element to O enhance O downstream O processing O . O Interestingly O , O two O SL B-structure_element RNA B-chemical elements O that O resemble O bona O fide O ligands O of O Roquin B-protein have O also O been O identified O in O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element of O the O Nfkbid B-protein mRNA B-chemical . O We O therefore O hypothesize O that O the O combination O of O multiple O binding B-site sites I-site may O be O more O commonly O used O to O enhance O the O functional O activity O of O Roquin B-protein . O At O the O same O time O , O the O combination O of O cis B-structure_element elements I-structure_element may O be O important O for O differential O gene O regulation O , O as O composite O cis B-structure_element elements I-structure_element with O lower O affinity B-evidence may O be O less O sensitive O to O Roquin B-protein . O This O will O lead O to O less O effective O repression O in O T O cells O when O antigen O recognition O is O of O moderate O signal O strength O and O only O incomplete O cleavage O of O Roquin B-protein by O MALT1 B-protein occurs O . O For O understanding O the O intricate O complexity O of O 3 B-structure_element ′- I-structure_element UTR I-structure_element regulation O , O future O work O will O be O necessary O by O combining O large O - O scale O approaches O , O such O as O cross B-experimental_method - I-experimental_method linking I-experimental_method and I-experimental_method immunoprecipitation I-experimental_method experiments I-experimental_method to O identify O RNA B-site - I-site binding I-site sites I-site , O and O structural B-experimental_method biology I-experimental_method to O dissect O the O underlying O molecular O mechanisms O . O SELEX B-experimental_method identifies O a O novel O SL B-structure_element RNA B-chemical ligand O of O Roquin B-protein - I-protein 1 I-protein . O ( O a O ) O Enriched O hexamers O that O were O found O by O Roquin B-protein - I-protein 1 I-protein N O terminus O ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O or O Roquin B-mutant - I-mutant 1 I-mutant M199R I-mutant N O terminus O ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O ( O see O also O Supplementary O Fig O . O 1 O ). O ( O b O ) O An O ADE B-structure_element sequence O motif O in O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element closely O resembles O the O MEME B-experimental_method motif O found O in O SELEX B-experimental_method - O enriched O RNA B-chemical sequences O . O ( O c O ) O Conservation O of O the O motif O found O in O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTRs I-structure_element for O various O species O as O indicated O . O rn5 B-gene is O the O fifth O assembly O version O of O the O rat B-taxonomy_domain ( O Rattus B-species novegicus I-species ). O ( O d O ) O Schematic O representation O of O the O predicted O SELEX B-experimental_method - O derived O consensus O SL B-structure_element , O ADE B-structure_element and O the O Ox40 B-protein ADE B-structure_element - O like O hexaloop B-structure_element SL B-structure_element . O The O broken O line O between O the O G O – O G O base O pair O in O the O ADE B-structure_element SL B-structure_element indicates O a O putative O non B-bond_interaction - I-bond_interaction Watson I-bond_interaction – I-bond_interaction Crick I-bond_interaction pairing I-bond_interaction . O The O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element and O the O Tnf B-protein CDE B-structure_element SL B-structure_element are O shown O for O comparison O . O NMR B-experimental_method analysis O of O the O SL B-structure_element RNAs B-chemical used O in O this O study O . O Imino O proton O regions O of O one O - O dimensional O 1H B-experimental_method NMR I-experimental_method spectra B-evidence of O ( O a O ) O the O ADE B-structure_element SL B-structure_element ( O b O ), O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element and O ( O c O ) O the O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element are O shown O for O free B-protein_state RNAs B-chemical ( O black O ) O and O in B-protein_state complex I-protein_state with I-protein_state the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O ( O red O ). O The O respective O SL B-structure_element RNAs B-chemical and O their O base O pairs O are O indicated O . O Red O asterisks O indicate O NMR B-experimental_method signals O of O the O protein O . O Green O lines O in O the O secondary O structure O schemes O on O the O left O refer O to O visible O imino O NMR B-experimental_method signals B-evidence and O thus O experimental O confirmation O of O the O base O pairs O indicated O . O The O dotted O green O line O between O G6 B-residue_name_number and O G15 B-residue_name_number in O a O highlights O a O G B-residue_name – O G B-residue_name base O pair O . O Structure B-evidence of O the O Roquin B-protein - I-protein 1 I-protein ROQ B-structure_element domain O bound B-protein_state to I-protein_state Ox40 B-protein ADE B-structure_element - O like O RNA B-chemical . O ( O a O ) O Cartoon O presentation O of O the O crystal B-evidence structure I-evidence of O the O ROQ B-structure_element domain O ( O residues O 174 B-residue_range – I-residue_range 325 I-residue_range ; O blue O ) O and O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical ( O magenta O ). O Selected O RNA B-chemical bases O and O protein O secondary O structure O elements O are O labelled O . O ( O b O ) O Close O - O up O view O of O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element ( O bases O in O the O RNA B-chemical hexaloop B-structure_element are O shown O in O magenta O ) O and O ( O c O ) O the O previously O reported O structure B-evidence of O the O ROQ B-complex_assembly - I-complex_assembly Tnf I-complex_assembly CDE I-complex_assembly complex O ( O bases O of O the O triloop O RNA B-chemical are O shown O in O green O ). O Only O RNA B-site - I-site interacting I-site residues I-site that O are O different O in O both O structures B-evidence are O shown O . O Both O protein O chains O and O remaining O parts O of O both O RNAs B-chemical are O shown O in O grey O and O protein O residue O side O chains O are O shown O in O turquoise O . O ( O d O ) O Close O - O up O view O of O the O contacts O between O the O ROQ B-structure_element domain O and O nucleotides O U11 B-residue_name_number and O U13 B-residue_name_number of O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element RNA B-chemical . O The O nucleotides O interact O with O the O C O - O terminal O end O of O helix B-structure_element α4 B-structure_element ( O Tyr250 B-residue_name_number and O Ser253 B-residue_name_number ) O and O the O N O - O terminal O part O of O strand B-structure_element β3 B-structure_element ( O Phe255 B-residue_name_number and O Val257 B-residue_name_number ). O The O protein O chain O is O shown O in O turquoise O and O the O RNA B-chemical is O shown O in O grey O . O ( O e O ) O Close O - O up O view O of O the O contacts O between O the O ROQ B-structure_element domain O and O nucleotides O U10 B-residue_name_number , O U11 B-residue_name_number and O U13 B-residue_name_number in O the O RNA B-chemical hexaloop B-structure_element . O U11 B-residue_name_number and O U13 B-residue_name_number contact O the O C O - O terminal O end O of O helix B-structure_element α4 B-structure_element : O residues O Tyr250 B-residue_name_number and O Gln247 B-residue_name_number . O The O side O chain O of O Tyr250 B-residue_name_number makes O hydrophobic B-bond_interaction interactions I-bond_interaction with O the O pyrimidine O side O chain O of O U10 B-residue_name_number on O one O side O and O U11 B-residue_name_number on O the O other O side O . O Lys259 B-residue_name_number interacts O with O the O phosphate O groups O of O U10 B-residue_name_number and O U11 B-residue_name_number . O ( O f O ) O Close O - O up O view O of O the O hydrophobic B-bond_interaction interaction I-bond_interaction between O Val257 B-residue_name_number and O U11 B-residue_name_number , O as O well O as O the O double O hydrogen B-bond_interaction bond I-bond_interaction of O Lys259 B-residue_name_number with O phosphate O groups O of O U10 B-residue_name_number and O U11 B-residue_name_number . O NMR B-experimental_method analysis O of O ROQ B-structure_element domain O interactions O with O the O Ox40 B-protein ADE B-structure_element - O like O hexaloop B-structure_element RNA B-chemical . O ( O a O ) O Overlay B-experimental_method of O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method spectra B-evidence of O either O the O free B-protein_state ROQ B-structure_element domain O ( O 171 B-residue_range – I-residue_range 326 I-residue_range , O black O ) O or O in B-protein_state complex I-protein_state with I-protein_state stoichiometric O amounts O of O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element ( O red O ). O ( O b O ) O Plot O of O chemical B-evidence shift I-evidence change I-evidence versus O residue O number O in O the O ROQ B-structure_element domain O ( O residues O 171 B-residue_range – I-residue_range 326 I-residue_range ) O from O a O . O Grey O negative O bars O indicate O missing O assignments O in O one O of O the O spectra B-evidence . O Gaps O indicate O prolines B-residue_name . O ( O c O ) O Overlay B-experimental_method of O the O ROQ B-structure_element domain O alone B-protein_state ( O black O ) O or O in B-protein_state complex I-protein_state with I-protein_state the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element ( O red O ) O or O the O Ox40 B-protein CDE B-structure_element - O like O SL B-structure_element ( O green O ). O Mutational B-experimental_method analysis I-experimental_method of O Roquin B-protein - I-protein 1 I-protein - O interactions O with O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element and O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element . O ( O a O ) O EMSA B-experimental_method assay I-experimental_method comparing O binding O of O the O wild B-protein_state - I-protein_state type I-protein_state and O of O the O Y250A B-mutant mutant B-protein_state ROQ B-structure_element domain O for O binding O to O the O Ox40 B-protein ADE B-structure_element - O like O SL B-structure_element ( O left O ) O or O the O previously O described O Tnf B-protein CDE B-structure_element SL B-structure_element ( O right O ). O A O comparison O of O further O mutants O is O shown O in O Supplementary O Fig O . O 4 O . O ( O b O ) O Schematic O overview O of O the O timeline O used O for O the O reconstitution O experiment O shown O in O c O . O ( O c O ) O Flow B-experimental_method cytometry I-experimental_method of O Ox40 B-protein and O Icos B-protein surface O expression O on O CD4 O + O Th1 O cells O from O Rc3h1 B-gene / O 2fl B-gene / O fl B-gene ; O Cd4 O - O Cre O - O ERT2 O ; O rtTA O mice B-taxonomy_domain treated O with O tamoxifen B-chemical (+ O tam O ) O to O induce O Rc3h1 B-gene / O 2fl B-gene / O fl B-gene deletion B-experimental_method or O left O untreated O (− O tam O ). O The O cells O were O then O either O left O untransduced O ( O UT O ) O or O were O transduced O with O retrovirus B-taxonomy_domain containing O a O doxycycline B-chemical - O inducible O cassette O , O to O express O Roquin B-protein - I-protein 1 I-protein WT B-protein_state , O Roquin B-protein - I-protein 1 I-protein Y250A B-mutant or O Roquin B-protein - I-protein 1 I-protein K220A B-mutant , O K239A B-mutant and O R260A B-mutant mutants B-protein_state ( O see O also O Supplementary O Fig O . O 5 O ). O Functional O importance O of O Roquin B-protein - I-protein 1 I-protein target O motifs O in O cells O . O ( O a O ) O Overview O of O the O Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element and O truncated B-protein_state / O mutated B-protein_state versions O thereof O as O used O for O EMSA B-experimental_method assays O in O b O and O the O expression O experiments O of O Ox40 B-protein in O c O and O d O . O ( O b O ) O EMSA B-experimental_method experiments O probing O the O interaction O between O the O Roquin B-protein - I-protein 1 I-protein N O - O terminal O region O ( O residues O 2 B-residue_range – I-residue_range 440 I-residue_range ) O and O either O the O complete O wild B-protein_state - I-protein_state type I-protein_state Ox40 B-protein 3 B-structure_element ′- I-structure_element UTR I-structure_element or O versions O with O mutations B-experimental_method of O the O CDE B-structure_element - O like O SL B-structure_element , O the O ADE B-structure_element - O like O SL B-structure_element or O both O SLs B-structure_element ( O see O a O ). O It O is O noteworthy O that O the O higher O bands O observed O at O large O protein O concentrations O are O probably O additional O nonspecific O , O lower O - O affinity O interactions O of O Roquin B-protein - I-protein 1 I-protein with O the O 3 B-structure_element ′- I-structure_element UTR I-structure_element or O protein O aggregates O . O ( O c O ) O Relative O Ox40 B-protein MFI B-evidence normalized I-evidence to I-evidence expression I-evidence levels I-evidence from O the O Ox40 B-protein CDS B-structure_element construct O . O Error O bars O show O s O . O d O . O of O seven O ( O CDS B-structure_element , O 1 B-residue_range – I-residue_range 40 I-residue_range , O 1 B-residue_range – I-residue_range 80 I-residue_range , O 1 B-residue_range – I-residue_range 120 I-residue_range and O full B-protein_state - I-protein_state length I-protein_state ), O six O ( O ADE B-structure_element - O like O mut B-protein_state and O CDE B-structure_element mut B-protein_state ) O or O three O ( O double B-protein_state mut I-protein_state ) O independent O experiments O . O Statistical O significance O was O calculated O by O one B-experimental_method - I-experimental_method way I-experimental_method analysis I-experimental_method of I-experimental_method variance I-experimental_method ( O ANOVA B-experimental_method ) O Kruskal B-experimental_method – I-experimental_method Wallis I-experimental_method test I-experimental_method followed O by O Dunn B-experimental_method ’ I-experimental_method s I-experimental_method multiple I-experimental_method comparison I-experimental_method test I-experimental_method (** O P O < O 0 O . O 01 O ). O ( O d O ) O mRNA B-evidence decay I-evidence curves I-evidence of O Hela O Tet O - O Off O cells O stably O transduced O with O retroviruses B-taxonomy_domain expressing O Ox40 B-protein CDS B-structure_element without O 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O CDS B-structure_element , O red O line O ), O Ox40 B-protein CDS B-structure_element with O its O wild B-protein_state - I-protein_state type I-protein_state 3 B-structure_element ′- I-structure_element UTR I-structure_element ( O full B-protein_state length I-protein_state , O black O line O ), O Ox40 B-protein full B-protein_state length I-protein_state with O mutated B-protein_state ADE B-structure_element - O like O motif O ( O ADE B-structure_element - O like O mut B-protein_state , O grey O line O ), O Ox40 B-protein full B-protein_state length I-protein_state with O mutated B-protein_state CDE B-structure_element - O like O motif O ( O CDE B-structure_element - O like O mut B-protein_state , O green O line O ) O or O Ox40 B-protein full B-protein_state length I-protein_state with O mutated B-protein_state ADE B-structure_element and O CDE B-structure_element motifs O ( O Double B-protein_state mut I-protein_state , O blue O line O ). O mRNA B-evidence half I-evidence - I-evidence life I-evidence times I-evidence were O calculated O with O Graph O Pad O Prism O . O Data B-evidence collection I-evidence and I-evidence refinement I-evidence statistics I-evidence . O ROQ B-structure_element - O Ox40ADE B-protein - O like O SL B-structure_element ROQ B-structure_element - O ADE B-structure_element SL B-structure_element Data O collection O space O group O P21212 O P212121 O Cell O dimensions O a O , O b O , O c O ( O Å O ) O 89 O . O 66 O , O 115 O . O 79 O , O 42 O . O 61 O 72 O . O 90 O , O 89 O . O 30 O , O 144 O . O 70 O α O , O β O , O γ O (°) O 90 O , O 90 O , O 90 O 90 O , O 90 O , O 90 O Resolution O ( O Å O ) O 50 O – O 2 O . O 23 O ( O 2 O . O 29 O – O 2 O . O 23 O ) O 50 O – O 3 O . O 0 O ( O 3 O . O 08 O – O 3 O . O 00 O ) O Rmerge O 5 O . O 9 O ( O 68 O . O 3 O ) O 14 O . O 8 O ( O 93 O . O 8 O ) O I O / O σI O 14 O . O 9 O ( O 2 O . O 1 O ) O 16 O . O 7 O ( O 3 O . O 1 O ) O Completeness O (%) O 98 O . O 7 O ( O 97 O . O 7 O ) O 99 O . O 9 O ( O 99 O . O 9 O ) O Redundancy O 3 O . O 9 O ( O 3 O . O 7 O ) O 13 O . O 2 O ( O 12 O . O 7 O ) O Refinement O Resolution O ( O Å O ) O 2 O . O 23 O 3 O . O 00 O No O . O reflections O 21 O , O 018 O 18 O , O 598 O Rwork O / O Rfree O 21 O . O 8 O / O 25 O . O 7 O 18 O . O 6 O / O 23 O . O 4 O No O . O atoms O Protein O 2 O , O 404 O 4 O , O 820 O Ligand O / O ion O 894 O 1 O , O 708 O Water O 99 O 49 O B O - O factor O overall O 47 O . O 2 O 60 O . O 4 O Root B-evidence mean I-evidence squared I-evidence deviations I-evidence Bond O lengths O ( O Å O ) O 0 O . O 006 O 0 O . O 014 O Bond O angles O (°) O 1 O . O 07 O 1 O . O 77 O Ramachandran O plot O Most O favoured O (%) O 98 O . O 6 O 99 O . O 8 O Additional O allowed O (%) O 1 O . O 4 O 0 O . O 2 O ADE B-structure_element , O alternative B-structure_element decay I-structure_element element I-structure_element ; O CDE B-structure_element , O constitutive B-structure_element decay I-structure_element element I-structure_element ; O SL B-structure_element , O stem B-structure_element loop I-structure_element . O For O each O data O set O , O only O one O crystal B-evidence has O been O used O . O KD B-evidence for O selected O RNAs B-chemical obtained O from O SPR B-experimental_method measurements I-experimental_method with O immobilized O ROQ B-structure_element domain O of O Roquin B-protein - I-protein 1 I-protein . O