Structure B-evidence of O the O Dual O - O Mode O Wnt B-protein_type Regulator O Kremen1 B-protein and O Insight O into O Ternary O Complex O Formation O with O LRP6 B-protein and O Dickkopf B-protein_type Kremen B-protein_type 1 I-protein_type and I-protein_type 2 I-protein_type have O been O identified O as O co B-protein_type - I-protein_type receptors I-protein_type for O Dickkopf B-protein_type ( O Dkk B-protein_type ) O proteins O , O hallmark O secreted O antagonists O of O canonical O Wnt B-protein_type signaling O . O We O present O here O three O crystal B-evidence structures I-evidence of O the O ectodomain B-structure_element of O human B-species Kremen1 B-protein ( O KRM1ECD B-protein ) O at O resolutions O between O 1 O . O 9 O and O 3 O . O 2 O Å O . O KRM1ECD B-protein emerges O as O a O rigid O molecule O with O tight O interactions O stabilizing O a O triangular B-protein_state arrangement I-protein_state of O its O Kringle B-structure_element , O WSC B-structure_element , O and O CUB B-structure_element structural O domains O . O The O structures B-evidence reveal O an O unpredicted O homology O of O the O WSC B-structure_element domain O to O hepatocyte B-protein_type growth I-protein_type factor I-protein_type . O We O further O report O the O general O architecture O of O the O ternary O complex O formed O by O the O Wnt B-protein_type co B-protein_type - I-protein_type receptor I-protein_type Lrp5 B-protein_type / I-protein_type 6 I-protein_type , O Dkk B-protein_type , O and O Krm B-protein_type , O determined O from O a O low O - O resolution O complex O crystal B-evidence structure I-evidence between O β B-structure_element - I-structure_element propeller I-structure_element / I-structure_element EGF I-structure_element repeats I-structure_element ( I-structure_element PE I-structure_element ) I-structure_element 3 I-structure_element and I-structure_element 4 I-structure_element of O the O Wnt B-protein_type co B-protein_type - I-protein_type receptor I-protein_type LRP6 B-protein ( O LRP6PE3PE4 B-protein ), O the O cysteine B-structure_element - I-structure_element rich I-structure_element domain I-structure_element 2 I-structure_element ( O CRD2 B-structure_element ) O of O DKK1 B-protein , O and O KRM1ECD B-protein . O DKK1CRD2 B-protein is O sandwiched O between O LRP6PE3 B-protein and O KRM1Kringle B-protein - B-structure_element WSC I-structure_element . O Modeling B-experimental_method studies O supported O by O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method suggest O a O direct O interaction B-site site I-site between O Krm1CUB B-protein and O Lrp6PE2 B-protein . O The O structure B-evidence of O the O KREMEN B-protein 1 I-protein ectodomain B-structure_element is O solved B-experimental_method from O three O crystal B-evidence forms I-evidence Kringle B-structure_element , O WSC B-structure_element , O and O CUB B-structure_element subdomains O interact O tightly O to O form O a O single O structural O unit O The O interface B-site to O DKKs B-protein_type is O formed O from O the O Kringle B-structure_element and O WSC B-structure_element domains O The O CUB B-structure_element domain O is O found O to O interact O directly O with O LRP6PE1PE2 B-protein Zebisch O et O al O . O describe O the O ectodomain B-structure_element structure B-evidence of O KREMEN B-protein 1 I-protein , O a O receptor B-protein_type for O Wnt B-protein_type antagonists O of O the O DKK B-protein_type family O . O Apo B-protein_state structures B-evidence and O a O complex B-protein_state with I-protein_state functional B-protein_state fragments I-protein_state of O DKK1 B-protein and O LRP6 B-protein shed O light O on O the O function O of O this O dual O - O mode O regulator O of O Wnt B-protein_type signaling O . O Signaling O by O Wnt B-protein_type morphogens O is O renowned O for O its O fundamental O roles O in O embryonic O development O , O tissue O homeostasis O , O and O stem O cell O maintenance O . O Due O to O these O functions O , O generation O , O delivery O , O and O interpretation O of O Wnt B-protein_type signals O are O all O heavily O regulated O in O the O animal O body O . O Vertebrate B-taxonomy_domain Dickkopf B-protein_type proteins O ( O Dkk1 B-protein_type , O 2 B-protein_type , O and O 4 B-protein_type ) O are O one O of O many O secreted O antagonists O of O Wnt B-protein_type and O function O by O blocking O access O to O the O Wnt B-protein_type co B-protein_type - I-protein_type receptor I-protein_type LRP5 B-protein / I-protein 6 I-protein . O Kremen B-protein_type proteins O ( O Krm1 B-protein_type and O Krm2 B-protein_type ) O have O been O identified O as O additional O high O - O affinity O transmembrane B-protein_type receptors I-protein_type for O Dkk B-protein_type . O Krm B-protein_type and O Dkk B-protein_type synergize O in O Wnt B-protein_type inhibition O during O Xenopus B-taxonomy_domain embryogenesis O to O regulate O anterior O - O posterior O patterning O . O Mechanistically O it O is O thought O that O , O in O the O presence B-protein_state of I-protein_state Dkk B-protein_type , O Krm B-protein_type forms O a O ternary O complex B-protein_state with I-protein_state Lrp6 B-protein_type , O which O is O then O rapidly O endocytosed O . O This O amplifies O the O intrinsic O Wnt B-protein_type antagonistic O activity O of O Dkk B-protein_type by O efficiently O depleting O the O cell O surface O of O the O Wnt B-protein_type co B-protein_type - I-protein_type receptor I-protein_type . O In O accordance O with O this O , O Krm1 B-protein_type −/− O and O Krm2 B-protein_type −/− O double B-experimental_method knockout I-experimental_method mice B-taxonomy_domain show O a O high O bone O mass O phenotype O typical O of O increased O Wnt B-protein_type signaling O , O as O well O as O growth O of O ectopic O forelimb O digits O . O Growth O of O ectopic O digits O is O further O enhanced O upon O additional O loss O of O dkk B-protein_type expression O . O The O Wnt B-protein_type antagonistic O activity O of O Krm1 B-protein_type is O also O linked O to O its O importance O for O correct O thymus O epithelium O formation O in O mice B-taxonomy_domain . O The O importance O of O intact B-protein_state KRM1 B-protein for O normal O human B-species development O and O health O is O highlighted O by O the O recent O finding O that O a O homozygous O mutation O in O the O ectodomain B-structure_element of O KRM1 B-protein leads O to O severe O ectodermal O dysplasia O including O oligodontia O . O Interestingly O , O the O Wnt B-protein_type antagonistic O activity O of O Krm B-protein_type is O context O dependent O , O and O Krm B-protein_type proteins O are O actually O dual O - O mode O Wnt B-protein_type regulators O . O In O the O absence B-protein_state of I-protein_state Dkk B-protein_type , O Krm1 B-protein_type and O 2 B-protein_type change O their O function O from O inhibition O to O enhancement O of O Lrp6 B-protein_type - O mediated O signaling O . O By O direct O binding O to O Lrp6 B-protein_type via O the O ectodomains B-structure_element , O Krm B-protein_type proteins O promote O Lrp6 B-protein_type cell O - O surface O localization O and O hence O increase O receptor O availability O . O Further O increasing O the O complexity O of O Krm B-protein_type functionality O , O it O was O recently O found O that O Krm1 B-protein_type ( O but O not O Krm2 B-protein_type ) O can O also O act O independently O of O LRP5 B-protein / I-protein 6 I-protein and O Wnt B-protein_type as O a O dependence O receptor O , O triggering O apoptosis O unless O bound B-protein_state to I-protein_state Dkk B-protein_type . O Structurally O , O Krm1 B-protein_type and O 2 B-protein_type are O type B-protein_type I I-protein_type transmembrane I-protein_type proteins I-protein_type with O a O 40 O kDa O ectodomain B-structure_element and O a O flexible B-protein_state cytoplasmic B-structure_element tail I-structure_element consisting O of O 60 B-residue_range – O 75 B-residue_range residues O . O The O ectodomain B-structure_element consists O of O three O similarly O sized O structural O domains O of O around O 10 O kDa O each O : O the O N O - O terminal O Kringle B-structure_element domain O ( O KR B-structure_element ) O is O followed O by O a O WSC B-structure_element domain O of O unknown O fold O . O The O third O structural O domain O is O a O CUB B-structure_element domain O . O An O approximately B-residue_range 70 I-residue_range - I-residue_range residue I-residue_range linker B-structure_element connects O the O CUB B-structure_element domain O to O the O transmembrane B-structure_element span I-structure_element . O An O intact B-protein_state KR B-structure_element - I-structure_element WSC I-structure_element - I-structure_element CUB I-structure_element domain O triplet O and O membrane O attachment O is O required O for O Wnt B-protein_type antagonism O . O The O transmembrane B-structure_element span I-structure_element and O cytoplasmic B-structure_element tail I-structure_element can O be O replaced O with O a O GPI B-structure_element linker B-structure_element without O impact O on O Wnt B-protein_type antagonism O . O The O structures B-evidence presented O here O reveal O the O unknown O fold O of O the O WSC B-structure_element domain O and O the O tight O interactions O of O all O three O domains O . O We O further O succeeded O in O determination O of O a O low O - O resolution O LRP6PE3PE4 B-complex_assembly - I-complex_assembly DKK1CRD2 I-complex_assembly - I-complex_assembly KRM1ECD I-complex_assembly complex O , O defining O the O architecture O of O the O Wnt B-protein_type inhibitory B-complex_assembly complex I-complex_assembly that O leads O to O Lrp6 B-protein cell O - O surface O depletion O . O The O recombinant O production O of O the O extracellular B-structure_element domain I-structure_element of O Krm B-protein_type for O structural B-experimental_method studies I-experimental_method proved O challenging O ( O see O Experimental O Procedures O ). O We O succeeded O in O purifying O KRM1ECD B-protein complexes B-protein_state with I-protein_state DKK1fl B-protein , O DKK1Linker B-protein - B-structure_element CRD2 I-structure_element , O and O DKK1CRD2 B-protein that O were O monodisperse O and O stable O in O gel B-experimental_method filtration I-experimental_method , O hence O indicating O at O least O micromolar O affinity O ( O data O not O shown O ). O Several O crystal B-evidence forms I-evidence were O obtained O from O these O complexes O , O however O , O crystals B-evidence always O contained O only O KRM1 B-protein protein O . O We O solved B-experimental_method the O structure B-evidence of O KRM1ECD B-protein in O three O crystal O forms O at O 1 O . O 9 O , O 2 O . O 8 O , O and O 3 O . O 2 O Å O resolution O ( O Table O 1 O ). O The O high O - O resolution O structure B-evidence is O a O near O full B-protein_state - I-protein_state length I-protein_state model O ( O Figure O 1 O ). O The O small B-protein_state , O flexible B-protein_state , O and O charged B-protein_state 98AEHED102 B-structure_element loop I-structure_element could O only O be O modeled O in O a O slightly O lower O resolution O structure B-evidence and O in O crystal O form O III O . O The O KR B-structure_element , O WSC B-structure_element , O and O CUB B-structure_element are O arranged O in O a O roughly O triangular O fashion O with O tight O interactions O between O all O three O domains O . O The O KR B-structure_element domain O , O which O bears O two O of O the O four O glycosylation B-site sites I-site , O contains O the O canonical O three O disulfide B-ptm bridges I-ptm ( O C32 B-residue_name_number - O C114 B-residue_name_number , O C55 B-residue_name_number - O C95 B-residue_name_number , O C84 B-residue_name_number - O C109 B-residue_name_number ) O and O , O like O other O Kringle B-structure_element domains O , O is O low O in O secondary O structure O elements O . O The O structurally O most O similar O Kringle B-structure_element domain O is O that O of O human B-species plasminogen B-protein ( O PDB O : O 1PKR O ) O with O an O root B-evidence - I-evidence mean I-evidence - I-evidence square I-evidence deviation I-evidence ( O RMSD B-evidence ) O of O 1 O . O 7 O Å O for O 73 O aligned O Cα O ( O Figure O 1B O ). O The O KRM1 B-protein structure B-evidence reveals O the O fold O of O the O WSC B-structure_element domain O for O the O first O time O . O The O structure B-evidence is O best O described O as O a O sandwich B-structure_element of O a O β1 B-structure_element - I-structure_element β5 I-structure_element - I-structure_element β3 I-structure_element - I-structure_element β4 I-structure_element - I-structure_element β2 I-structure_element antiparallel I-structure_element β I-structure_element sheet I-structure_element and O a O single O α B-structure_element helix I-structure_element . O The O structure B-evidence is O also O rich O in O loops B-structure_element and O is O stabilized O by O four O disulfide B-ptm bridges I-ptm ( O C122 B-residue_name_number - O C186 B-residue_name_number , O C147 B-residue_name_number - O C167 B-residue_name_number , O C151 B-residue_name_number - O C169 B-residue_name_number , O C190 B-residue_name_number - O C198 B-residue_name_number ). O Using O the O PDBeFold B-experimental_method server I-experimental_method , O we O detected O a O surprising O yet O significant O homology O to O PAN B-structure_element module I-structure_element domains I-structure_element . O The O closest O structural O relative O is O hepatocyte B-protein_type growth I-protein_type factor I-protein_type ( O HGF B-protein_type , O PDB O : O 1GP9 O ), O which O superposes B-experimental_method with O an O RMSD B-evidence of O 2 O . O 3 O Å O for O 58 O aligned O Cα O ( O Figure O 1B O ). O The O CUB B-structure_element domain O bears O two O glycosylation B-site sites I-site . O Although O present O , O the O quality O of O the O electron B-evidence density I-evidence around O N217 B-residue_name_number did O not O allow O modeling O of O the O sugar O moiety O . O In O crystal B-evidence form I-evidence I I-evidence , O a O calcium B-chemical ion O is O present O at O the O canonical O position O coordinated B-bond_interaction by I-bond_interaction the O carboxylates O of O D263 B-residue_name_number , O D266 B-residue_name_number ( O bidentate O ), O and O D306 B-residue_name_number , O as O well O as O the O carbonyl O of O N309 B-residue_name_number and O a O water B-chemical molecule O . O The O coordination B-site sphere I-site deviates O significantly O from O perfectly O octahedral O ( O not O shown O ). O This O might O result O in O the O site O having O a O low O affinity O and O may O explain O why O calcium B-chemical is O not O present O in O the O two O low O - O resolution O crystal B-evidence forms I-evidence . O Loss B-protein_state of I-protein_state calcium B-chemical has O led O to O loop B-structure_element rearrangements O and O partial O disorder O in O these O crystal B-evidence forms I-evidence . O The O closest O structural O relative O is O the O CUB_C B-structure_element domain O of O Tsg B-protein - I-protein 6 I-protein ( O PDB O : O 2WNO O ), O which O superposes B-experimental_method with O KRMCUB B-protein with O an O RMSD B-evidence of O 1 O . O 6 O Å O for O 104 O Cα O ( O Figure O 1B O ). O A O superposition B-experimental_method of O the O three O KRM1 B-protein structures B-evidence reveals O no O major O structural O differences O ( O Figure O 1C O ) O as O anticipated O from O the O plethora O of O interactions O between O the O three O domains O . O Minor O differences O are O caused O by O the O collapse O of O the O Ca2 B-site + I-site binding I-site site I-site in O crystal B-evidence forms I-evidence II I-evidence and I-evidence III I-evidence and O loop B-structure_element flexibility O in O the O KR B-structure_element domain O . O The O F207S B-mutant mutation O recently O found O to O cause O ectodermal O dysplasia O in O Palestinian O families O maps O to O the O hydrophobic B-site core I-site of O the O protein O at O the O interface B-site of O the O three O subdomains O ( O Figure O 1A O ). O Such O a O mutation O is O bound B-protein_state to I-protein_state severely O destabilize O the O protein O structure O of O KRM1 B-protein , O leading O to O disturbance O of O its O Wnt B-protein_type antagonistic O , O Wnt B-protein_type stimulatory O , O and O Wnt B-protein_type independent O activity O . O Co B-experimental_method - I-experimental_method crystallization I-experimental_method of O LRP6PE3PE4 B-protein with O DKK1CRD2 B-protein , O and O LRP6PE1 B-protein with O an O N O - O terminal O peptide O of O DKK1 B-protein has O provided O valuable O structural O insight O into O direct O Wnt B-protein_type inhibition O by O Dkk B-protein_type ligands O . O One O face O of O the O rather O flat B-protein_state DKK1CRD2 B-protein fragment O binds B-protein_state to I-protein_state the O third B-structure_element β I-structure_element propeller I-structure_element of O LRP6 B-protein . O Mutational B-experimental_method analyses I-experimental_method further O implied O that O the O LRP6PE3 B-protein - O averted O face O of O DKK1CRD2 B-protein bears O the O Krm B-site binding I-site site I-site , O hence O suggesting O how O Dkk B-protein_type can O recruit O both O receptors B-protein_type into O a O ternary O complex O . O To O obtain O direct O insight O into O ternary O complex O formation O by O Lrp5 B-protein_type / I-protein_type 6 I-protein_type , O Dkk B-protein_type , O and O Krm B-protein_type , O we O subjected O an O LRP6PE3PE4 B-complex_assembly - I-complex_assembly DKK1fl I-complex_assembly - I-complex_assembly KRM1ECD I-complex_assembly complex O to O crystallization B-experimental_method trials I-experimental_method . O Diffraction B-evidence data I-evidence collected O from O the O resulting O crystals B-evidence were O highly O anisotropic O with O diffraction O extending O in O the O best O directions O to O 3 O . O 5 O Å O and O 3 O . O 7 O Å O but O only O to O 6 O . O 4 O Å O in O the O third O direction O . O Despite O the O lack O of O high O - O resolution O diffraction B-evidence , O the O general O architecture O of O the O ternary O complex O is O revealed O ( O Figure O 2A O ). O DKK1CRD2 B-protein binds B-protein_state to I-protein_state the O top O face O of O the O LRP6 B-protein PE3 B-structure_element β B-structure_element propeller I-structure_element as O described O earlier O for O the O binary O complex O . O KRM1ECD B-protein does O indeed O bind B-protein_state on I-protein_state the O opposite O side O of O DKK1CRD2 B-protein with O only O its O KR B-structure_element and O WSC B-structure_element domains O engaged O in O binding O ( O Figure O 2A O ). O Although O present O in O the O complex O subjected O to O crystallization B-experimental_method , O we O observe O no O density B-evidence that O could O correspond O to O CRD1 B-structure_element or O the O domain B-structure_element linker I-structure_element ( O L B-structure_element ). O We O confirm O that O the O CRD2 B-structure_element of O DKK1 B-protein is O required O and O sufficient O for O binding O to O KRM1 B-protein : O In O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ), O we O measured O low O micromolar O affinity B-evidence between O full B-protein_state - I-protein_state length I-protein_state DKK1 B-protein and O immobilized O KRM1ECD B-protein ( O Figure O 2B O ). O A O SUMO B-experimental_method fusion I-experimental_method of O DKK1L B-structure_element - I-structure_element CRD2 I-structure_element displayed O a O similar O ( O slightly O higher O ) O affinity B-evidence . O In O contrast O , O a O SUMO B-experimental_method fusion I-experimental_method of O DKK1CRD1 B-structure_element - I-structure_element L I-structure_element did O not O display O binding O for O concentrations O tested O up O to O 325 O μM O ( O Figure O 2B O ). O Overall O , O the O DKK1 B-site - I-site KRM1 I-site interface I-site is O characterized O by O a O large O number O of O polar B-bond_interaction interactions I-bond_interaction but O only O few O hydrophobic B-bond_interaction contacts I-bond_interaction ( O Figure O 2C O ). O The O crystal B-evidence structure I-evidence gives O an O explanation O for O DKK1 B-protein loss O - O of O - O binding O mutations O identified O previously O : O R191 B-residue_name_number of O DKK1 B-protein forms O a O double O salt B-bond_interaction bridge I-bond_interaction to O D125 B-residue_name_number and O E162 B-residue_name_number of O KRM1 B-protein ( O Figure O 2C O ). O A O charge B-experimental_method reversal I-experimental_method as O in O the O mouse B-taxonomy_domain Dkk1 B-protein ( O mDkk1 B-protein ) O R197E B-mutant variant O would O severely O disrupt O the O binding O . O Similarly O , O the O K226 B-residue_name_number side O chain O of O DKK1 B-protein , O which O points O to O a O small O hydrophobic B-site pocket I-site on O the O surface O of O KRM1 B-protein formed O by O Y108 B-residue_name_number , O W94 B-residue_name_number , O and O W106 B-residue_name_number , O forms O salt B-bond_interaction bridges I-bond_interaction with O the O side O chains O of O KRM1 B-protein D88 B-residue_name_number and O D90 B-residue_name_number . O Again O , O a O charge B-experimental_method reversal I-experimental_method as O shown O before O for O mDkk1 B-protein K232E B-mutant would O be O incompatible O with O binding O . O The O side O chain O of O DKK1 B-protein S192 B-residue_name_number was O also O predicted O to O be O involved O in O Krm B-protein_type binding O . O Indeed O , O we O found O ( O Figure O 2C O ) O that O the O side O chain O of O D201 B-residue_name_number of O KRM1 B-protein forms O two O hydrogen B-bond_interaction bonds I-bond_interaction to O the O side O - O chain O hydroxyl O and O the O backbone O amide O of O S192 B-residue_name_number ( O mouse B-taxonomy_domain , O S198 B-residue_name_number ). O Additional O polar B-bond_interaction interactions I-bond_interaction are O formed O between O the O N140 B-residue_name_number , O S163 B-residue_name_number , O and O Y165 B-residue_name_number side O chains O of O KRM1 B-protein and O DKK1 B-protein backbone O carbonyls O of O W206 B-residue_name_number , O L190 B-residue_name_number , O and O C189 B-residue_name_number , O respectively O . O The O carbonyl O of O DKK1 B-protein R224 B-residue_name_number is O hydrogen B-bond_interaction bonded I-bond_interaction to O Y105 B-residue_name_number and O W106 B-residue_name_number of O KRM1 B-protein . O We O suspect O that O the O Dkk B-protein_type charge B-experimental_method reversal I-experimental_method mutations I-experimental_method performed O in O the O murine B-taxonomy_domain background O and O shown O to O diminish O Krm B-protein_type binding O K211E B-mutant and O R203E B-mutant ( O mouse B-taxonomy_domain K217E B-mutant and O R209E B-mutant ) O do O so O likely O indirectly O by O disruption O of O the O Dkk B-protein_type fold O . O We O further O validated O the O DKK1 B-site binding I-site site I-site on O KRM1 B-protein by O introducing B-experimental_method glycosylation B-site sites I-site at O the O KR B-structure_element ( O 90DVS92 B-mutant → I-mutant NVS I-mutant ) O and O WSC B-structure_element ( O 189VCF191 B-mutant → I-mutant NCS I-mutant ) O domains O pointing O toward O DKK B-protein ( O Figures O 2A O and O 2D O ). O Introduction O of O N B-ptm - I-ptm linked I-ptm glycans I-ptm in O protein B-site - I-site protein I-site - I-site binding I-site sites I-site is O an O established O way O of O disrupting O protein B-site - I-site binding I-site interfaces I-site . O Both O ectodomain B-structure_element mutants B-protein_state were O secreted O comparably O with O the O wild B-protein_state - I-protein_state type I-protein_state , O indicating O correct O folding O , O but O failed O to O achieve O any O detectable O binding O in O SPR B-experimental_method using O full B-protein_state - I-protein_state length I-protein_state DKK1 B-protein as O analyte O . O In O contrast O , O a O mutant B-protein_state carrying O an O additional O N B-ptm - I-ptm glycan I-ptm outside O the O interface B-site at O the O CUB B-structure_element domain O ( O 309NQA311 B-mutant → I-mutant NQS I-mutant ), O was O wild B-protein_state - I-protein_state type I-protein_state - O like O in O DKK1 B-protein binding O ( O Figure O 2D O ). O Identification O of O a O Direct O LRP6 B-site - I-site KRM1 I-site Binding I-site Site I-site The O LRP6PE3PE4 B-complex_assembly - I-complex_assembly DKK1CRD2 I-complex_assembly - I-complex_assembly KRM1ECD I-complex_assembly complex O structure B-evidence reveals O no O direct O interactions O between O KRM1 B-protein and O LRP6 B-protein . O We O constructed O in O silico O a O ternary O complex B-protein_state with I-protein_state a O close O to O full B-protein_state - I-protein_state length I-protein_state LRP6 B-protein ectodomain B-structure_element ( O PE1PE2PE3PE4 B-structure_element horse B-structure_element shoe I-structure_element ) O similar O to O but O without O refinement O against O electron B-experimental_method microscopy I-experimental_method ( O EM B-experimental_method ) O or O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method data O . O An O auxiliary O PE3PE4 B-structure_element fragment O was O superimposed B-experimental_method via O PE4 B-structure_element onto O PE3 B-structure_element of O the O crystal B-evidence structure I-evidence , O and O the O LRP6PE1PE2 B-protein structure B-evidence was O superimposed B-experimental_method via O PE2 B-structure_element onto O PE3 B-structure_element of O this O auxiliary O fragment O ( O Figure O 3A O ). O For O this O crude O approximation O of O a O true O ternary O complex O , O we O noted O very O close O proximity O between O the O Ca2 B-site +- I-site binding I-site region I-site of O KRM1 B-protein and O the O top O face O of O the O PE2 B-structure_element β B-structure_element propeller I-structure_element of O LRP6 B-protein . O The O solvent B-protein_state - I-protein_state exposed I-protein_state residues O R307 B-residue_name_number , O I308 B-residue_name_number , O and O N309 B-residue_name_number of O the O central O Ca2 B-structure_element +- I-structure_element binding I-structure_element β I-structure_element connection I-structure_element loop I-structure_element of O KRM1 B-protein would O be O almost O ideally O positioned O for O binding O to O this O face O , O which O is O commonly O used O as O a O binding B-site site I-site on O β B-structure_element propellers I-structure_element . O Peptides O containing O arginine B-residue_name / O lysine B-residue_name , O isoleucine B-residue_name , O and O asparagine B-residue_name ( O consensus O sequence O N B-structure_element - I-structure_element X I-structure_element - I-structure_element I I-structure_element -( I-structure_element G I-structure_element )- I-structure_element R I-structure_element / I-structure_element K I-structure_element ) O are O also O employed O by O DKK1 B-protein and O SOST B-protein to O bind O to O LRP6 B-protein ( O albeit O to O propeller B-structure_element 1 I-structure_element ; O Figure O 3B O ). O To O support O the O hypothesis O that O KRM1CUB B-protein binds B-protein_state to I-protein_state LRP6PE2 B-protein , O we O used O SPR B-experimental_method and O compared O binding O of O the O wild B-protein_state - I-protein_state type I-protein_state and O the O GlycoCUB B-protein_state mutant I-protein_state of O KRM1ECD B-protein ( O bearing O an O N B-site - I-site glycosylation I-site site I-site at O N309 B-residue_name_number ) O with O a O purified O LRP6PE1PE2 B-protein fragment O . O Indeed O , O we O found O that O in O the O absence B-protein_state of I-protein_state Dkk B-protein_type , O KRM1ECD B-protein bound B-protein_state with O considerable O affinity O to B-protein_state LRP6PE1PE2 B-protein ( O Figure O 3C O ). O In O contrast O , O no O saturable O binding O was O observed O between O KRM1 B-protein and O LRP6PE3PE4 B-protein . O Introduction B-experimental_method of I-experimental_method an O N B-site - I-site glycosylation I-site site I-site at O N309 B-residue_name_number in O KRM1ECD B-protein abolished O LRP6PE1PE2 B-protein binding O ( O Figure O 3C O ), O while O binding O to O DKK1 B-protein was O unaffected O ( O Figure O 2D O ). O We O conclude O that O the O predicted O binding B-site site I-site between O KRM1CUB B-protein and O LRP6PE2 B-protein is O a O strong O candidate O for O mediating O the O direct O Lrp6 B-complex_assembly - I-complex_assembly Krm I-complex_assembly interaction O , O which O is O thought O to O increase O Wnt B-protein_type responsiveness O by O stabilizing O Lrp6 B-protein at O the O cell O surface O . O Further O experiments O are O required O to O pinpoint O the O exact O binding B-site site I-site . O Although O LRP6PE1 B-protein appears O somewhat O out O of O reach O in O the O modeled O ternary O complex O , O it O cannot O be O excluded O as O the O Krm B-site binding I-site site I-site in O the O ternary O complex O and O LRP6 B-complex_assembly - I-complex_assembly Krm I-complex_assembly binary O complex O . O The O presence B-protein_state of I-protein_state DKK B-protein may O govern O which O propeller B-structure_element ( O PE1 B-structure_element versus O PE2 B-structure_element ) O of O LRP6 B-protein is O available O for O Krm B-protein_type binding O . O Apparent O binding O across O the O proposed O KRM1CUB B-site - I-site LRP6PE2 I-site interface I-site is O expected O to O be O higher O once O Krm B-protein_type is O also O cross O - O linked O to O LRP6PE3 B-protein via O DKK1CRD2 B-protein ( O Figure O 3D O ). O Low O - O resolution O negative B-experimental_method - I-experimental_method stain I-experimental_method EM I-experimental_method and O small B-experimental_method - I-experimental_method angle I-experimental_method X I-experimental_method - I-experimental_method ray I-experimental_method scattering I-experimental_method studies O of O LRP6PE1PE2PE3PE4 B-protein , O in B-protein_state isolation I-protein_state and O in B-protein_state complex I-protein_state with I-protein_state Dkk1 B-protein_type , O plus O negative B-experimental_method - I-experimental_method stain I-experimental_method EM I-experimental_method of O full B-protein_state - I-protein_state length I-protein_state LRP6 B-protein ectodomain B-structure_element , O have O indicated O curved B-protein_state , O platform B-protein_state - I-protein_state like I-protein_state conformations O but O also O potential O flexibility O between O PE2 B-structure_element and O PE3 B-structure_element . O It O is O therefore O possible O that O the O interplay O of O Krm B-protein_type and O Dkk B-protein_type binding O can O promote O changes O in O LRP6 B-protein ectodomain B-structure_element conformation O with O functional O consequences O ; O however O , O such O ideas O await O investigation O . O Taken O together O , O the O structural B-experimental_method and I-experimental_method biophysical I-experimental_method studies I-experimental_method we O report O here O extend O our O mechanistic O understanding O of O Wnt B-protein_type signal O regulation O . O We O describe O the O ectodomain B-structure_element structure B-evidence of O the O dual O Wnt B-protein_type regulator O Krm1 B-protein_type , O providing O an O explanation O for O the O detrimental O effect O on O health O and O development O of O a O homozygous O KRM1 B-protein mutation O . O We O also O reveal O the O interaction O mode O of O Krm B-complex_assembly - I-complex_assembly Dkk I-complex_assembly and O the O architecture O of O the O ternary O complex O formed O by O Lrp5 B-protein_type / I-protein_type 6 I-protein_type , O Dkk B-protein_type , O and O Krm B-protein_type . O Furthermore O , O the O ternary O crystal B-evidence structure I-evidence has O guided O in B-experimental_method silico I-experimental_method and I-experimental_method biophysical I-experimental_method analyses I-experimental_method to O suggest O a O direct O LRP6 B-site - I-site KRM1 I-site interaction I-site site I-site . O Our O findings O provide O a O solid O foundation O for O additional O studies O to O probe O how O ternary O complex O formation O triggers O internalization O , O whereas O Krm B-protein_type binding O in O the O absence B-protein_state of I-protein_state Dkk B-protein_type stabilizes O the O Wnt B-protein_type co B-protein_type - I-protein_type receptor I-protein_type at O the O cell O surface O . O Structure B-evidence of O Unliganded B-protein_state KRM1ECD B-protein ( O A O ) O The O KRM1ECD B-protein fold O ( O crystal B-evidence form I-evidence I I-evidence ) O colored O blue O to O red O from O the O N O to O C O terminus O . O Cysteines B-residue_name as O ball O and O sticks O , O glycosylation B-site sites I-site as O sticks O . O The O bound O calcium B-chemical is O shown O as O a O gray O sphere O . O The O site O of O the O F207S B-mutant mutation O associated O with O ectodermal O dysplasia O in O humans B-species is O shown O as O mesh O . O ( O B O ) O Superposition B-experimental_method of O the O three O KRM1ECD B-protein subdomains O ( O solid O ) O with O their O next O structurally O characterized O homologs O ( O half O transparent O ). O ( O C O ) O Superposition B-experimental_method of O KRM1ECD B-protein from O the O three O crystal B-evidence forms I-evidence . O Alignment B-evidence scores I-evidence for O each O pairing O are O indicated O on O the O dashed O triangle O . O ( O A O ) O The O structure B-evidence of O the O ternary O LRP6PE3PE4 B-complex_assembly - I-complex_assembly DKK1CRD2 I-complex_assembly - I-complex_assembly KRM1ECD I-complex_assembly complex O . O DKK1 B-protein ( O orange O ) O is O sandwiched O between O the O PE3 B-structure_element module O of O LRP6 B-protein ( O blue O ) O and O the O KR B-structure_element - I-structure_element WSC I-structure_element domain O pair O of O KRM1 B-protein ( O green O ). O Colored O symbols O indicate O introduced O N B-site - I-site glycan I-site attachment I-site sites I-site ( O see O D O ). O ( O B O ) O SPR B-experimental_method data O comparing O binding O of O full B-protein_state - I-protein_state length I-protein_state DKK1 B-protein and O SUMO B-experimental_method fusions I-experimental_method of O DKK1 B-protein truncations O for O binding O to O immobilized O wild B-protein_state - I-protein_state type I-protein_state KRM1ECD B-protein . O ( O C O ) O Close O - O up O view O of O the O DKK1CRD2 B-site - I-site KRM1ECD I-site interface I-site . O Residues O involved O in O interface B-site formation O are O shown O as O sticks O ; O those O mentioned O in O the O text O are O labeled O . O Salt B-bond_interaction bridges I-bond_interaction are O in O pink O and O hydrogen B-bond_interaction bonds I-bond_interaction in O black O . O ( O D O ) O SPR B-experimental_method binding B-evidence data I-evidence comparing O DKK1 B-protein analyte O binding O with O wild B-protein_state - I-protein_state type I-protein_state KRM1ECD B-protein and O three O variants O bearing O engineered B-protein_state glycosylation B-site sites I-site on O the O KR B-structure_element and O WSC B-structure_element domains O ( O green O and O blue O pointing O to O DKK1 B-protein ) O and O on O the O CUB B-structure_element domain O ( O orange O ). O LRP6 B-complex_assembly - I-complex_assembly KRM1 I-complex_assembly Direct O Interaction O and O Summary O ( O A O ) O In O a O construction O of O a O ternary O complex B-protein_state with I-protein_state all O four O β B-structure_element propellers I-structure_element of O LRP6 B-protein intact B-protein_state , O the O CUB B-structure_element domain O points O via O its O Ca2 B-site +- I-site binding I-site region I-site toward O the O top O face O of O the O second B-structure_element β I-structure_element propeller I-structure_element . O ( O B O ) O Close O - O up O view O of O the O potential O interaction B-site site I-site . O In O addition O , O LRP6PE2 B-protein has O been O superimposed B-experimental_method with O DKK1 B-protein ( O yellow O ) O and O SOST B-protein ( O pink O ) O peptide O complexes O of O LRP6PE1 B-protein . O ( O C O ) O SPR B-experimental_method measurements I-experimental_method comparing O LRP6PE1PE2 B-protein binding O with O wild B-protein_state - I-protein_state type I-protein_state KRM1ECD B-protein and O the O GlycoCUB B-protein_state mutant I-protein_state bearing O an O N B-ptm - I-ptm glycan I-ptm at O N309 B-residue_name_number . O ( O D O ) O Schematic O representation O of O structural O and O biophysical O findings O and O their O implications O for O Wnt B-protein_type - O dependent O ( O left O , O middle O ) O and O independent O ( O right O ) O signaling O . O Conformational O differences O in O the O depictions O of O LRP6 B-protein are O included O purely O for O ease O of O representation O . O Diffraction B-evidence and I-evidence Refinement I-evidence Statistics I-evidence KRM1ECD B-protein KRM1ECD B-protein KRM1ECD B-protein KRM1ECD B-protein LRP6PE3PE4 B-complex_assembly - I-complex_assembly DKKCRD2 I-complex_assembly - I-complex_assembly KRM1ECD I-complex_assembly Crystal O form O I O I O II O III O I O X O - O ray O source O Diamond O i04 O Diamond O i03 O Diamond O i03 O Diamond O i04 O Diamond O i04 O Wavelength O ( O Å O ) O 0 O . O 9793 O 0 O . O 9700 O 0 O . O 9700 O 0 O . O 9795 O 0 O . O 9795 O Space O group O P3121 O P3121 O P43 O P41212 O C2221 O Unit O cell O a O / O α O ( O Å O /°) O 50 O . O 9 O / O 90 O 50 O . O 5 O / O 90 O 65 O . O 8 O / O 90 O 67 O . O 8 O / O 90 O 86 O . O 9 O / O 90 O b O / O β O ( O Å O /°) O 50 O . O 9 O / O 90 O 50 O . O 5 O / O 90 O 65 O . O 8 O / O 90 O 67 O . O 8 O / O 90 O 100 O . O 1 O / O 90 O c O / O γ O ( O Å O /°) O 188 O . O 4 O / O 120 O 187 O . O 4 O / O 120 O 75 O . O 0 O / O 90 O 198 O . O 2 O / O 90 O 270 O . O 7 O / O 90 O Wilson O B O factor O ( O Å2 O ) O 31 O 41 O 76 O 77 O NA O Resolution O range O ( O Å O ) O 47 O . O 10 O – O 1 O . O 90 O ( O 1 O . O 95 O – O 1 O . O 90 O ) O 62 O . O 47 O – O 2 O . O 10 O ( O 2 O . O 16 O – O 2 O . O 10 O ) O 75 O . O 00 O – O 2 O . O 80 O ( O 2 O . O 99 O – O 2 O . O 80 O ) O 67 O . O 80 O – O 3 O . O 20 O ( O 3 O . O 42 O – O 3 O . O 20 O ) O 67 O . O 68 O – O 3 O . O 50 O ( O 7 O . O 16 O – O 6 O . O 40 O , O 3 O . O 92 O – O 3 O . O 50 O ) O Unique O reflections O 23 O , O 300 O ( O 1 O , O 524 O ) O 17 O , O 089 O ( O 1 O , O 428 O ) O 7 O , O 964 O ( O 1 O , O 448 O ) O 8 O , O 171 O ( O 1 O , O 343 O ) O 8 O , O 070 O ( O 723 O , O 645 O ) O Average O multiplicity O 9 O . O 1 O ( O 9 O . O 2 O ) O 5 O . O 2 O ( O 5 O . O 3 O ) O 3 O . O 7 O ( O 3 O . O 7 O ) O 22 O . O 7 O ( O 12 O . O 6 O ) O 3 O . O 8 O ( O 3 O . O 5 O , O 4 O . O 4 O ) O Completeness O (%) O 99 O . O 8 O ( O 98 O . O 5 O ) O 100 O ( O 100 O ) O 99 O . O 8 O ( O 100 O ) O 98 O . O 8 O ( O 93 O . O 4 O ) O 51 O . O 6 O ( O 98 O . O 5 O , O 14 O . O 1 O ) O < O I O / O σI O > O 11 O . O 4 O ( O 1 O . O 7 O ) O 12 O . O 0 O ( O 1 O . O 7 O ) O 14 O . O 9 O ( O 1 O . O 5 O ) O 13 O . O 1 O ( O 1 O . O 9 O ) O 4 O . O 6 O ( O 4 O . O 1 O , O 2 O . O 2 O ) O Rmerge O (%) O 14 O . O 8 O ( O 158 O . O 3 O ) O 9 O . O 3 O ( O 98 O . O 0 O ) O 6 O . O 2 O ( O 98 O . O 9 O ) O 29 O . O 8 O ( O 142 O . O 2 O ) O 44 O . O 9 O ( O 40 O . O 5 O , O 114 O . O 2 O ) O Rpim O (%) O 15 O . O 7 O ( O 55 O . O 3 O ) O 10 O . O 3 O ( O 109 O . O 0 O ) O 3 O . O 7 O ( O 53 O . O 8 O ) O 6 O . O 3 O ( O 40 O . O 0 O ) O 24 O . O 7 O ( O 23 O . O 9 O , O 59 O . O 9 O ) O Refinement O Rwork O (%) O 17 O . O 9 O 18 O . O 4 O 21 O . O 6 O 20 O . O 2 O 32 O . O 1 O Rfree O (%) O 22 O . O 7 O 23 O . O 2 O 30 O . O 7 O 27 O . O 1 O 35 O . O 5 O No O . O of O Non O - O Hydrogen O Atoms O Protein O 2 O , O 260 O 2 O , O 301 O 2 O , O 102 O 2 O , O 305 O 7 O , O 730 O N O - O glycans O 42 O 42 O 28 O 28 O 0 O Water B-chemical 79 O 54 O 0 O 2 O 0 O Ligands O 6 O 6 O 2 O 5 O 0 O Average O B O factor O ( O Å2 O ) O Protein O 63 O 65 O 108 O 84 O – O N O - O glycans O 35 O 46 O 102 O 18 O – O Water B-chemical 68 O 85 O – O 75 O – O Ligands O 36 O 47 O 91 O 75 O 66 O RMSD B-evidence from O Ideality O Bond O lengths O ( O Å O ) O 0 O . O 020 O 0 O . O 016 O 0 O . O 019 O 0 O . O 016 O 0 O . O 004 O Bond O angles O (°) O 2 O . O 050 O 1 O . O 748 O 1 O . O 952 O 1 O . O 796 O 0 O . O 770 O Ramachandran O Plot O Favored O (%) O 96 O . O 8 O 95 O . O 5 O 96 O . O 9 O 94 O . O 9 O 92 O . O 3 O Allowed O (%) O 99 O . O 7 O 100 O . O 0 O 100 O . O 0 O 99 O . O 7 O 99 O . O 8 O Number O of O outliers O 1 O 0 O 0 O 1 O 2 O PDB O code O 5FWS O 5FWT O 5FWU O 5FWV O 5FWW O An O additional O shell O given O for O the O ternary O complex O corresponds O to O the O last O shell O with O near O - O complete O diffraction B-evidence data I-evidence . O