Structural B-experimental_method characterization I-experimental_method of O encapsulated B-protein_state ferritin B-protein_type provides O insight O into O iron B-chemical storage O in O bacterial B-taxonomy_domain nanocompartments B-complex_assembly Ferritins B-protein_type are O ubiquitous O proteins O that O oxidise O and O store O iron B-chemical within O a O protein O shell B-structure_element to O protect O cells O from O oxidative O damage O . O We O have O characterized O the O structure B-evidence and O function O of O a O new O member O of O the O ferritin B-protein_type superfamily O that O is O sequestered O within O an O encapsulin B-protein capsid O . O We O show O that O this O encapsulated B-protein_state ferritin B-protein_type ( O EncFtn B-protein ) O has O two O main B-structure_element alpha I-structure_element helices I-structure_element , O which O assemble O in O a O metal B-protein_state dependent I-protein_state manner O to O form O a O ferroxidase B-site center I-site at O a O dimer B-site interface I-site . O EncFtn B-protein adopts O an O open B-protein_state decameric B-oligomeric_state structure B-evidence that O is O topologically O distinct O from O other O ferritins B-protein_type . O While O EncFtn B-protein acts O as O a O ferroxidase B-protein_type , O it O cannot O mineralize O iron B-chemical . O Conversely O , O the O encapsulin B-protein shell B-structure_element associates O with O iron B-chemical , O but O is O not B-protein_state enzymatically I-protein_state active I-protein_state , O and O we O demonstrate O that O EncFtn B-protein must O be O housed O within O the O encapsulin B-protein for O iron B-chemical storage O . O This O encapsulin B-protein nanocompartment B-complex_assembly is O widely O distributed O in O bacteria B-taxonomy_domain and O archaea B-taxonomy_domain and O represents O a O distinct O class O of O iron B-chemical storage O system O , O where O the O oxidation O and O mineralization O of O iron B-chemical are O distributed O between O two O proteins O . O Iron B-chemical is O essential O for O life O as O it O is O a O key O component O of O many O different O enzymes O that O participate O in O processes O such O as O energy O production O and O metabolism O . O However O , O iron B-chemical can O also O be O highly O toxic O to O cells O because O it O readily O reacts O with O oxygen B-chemical . O To O balance O the O cell O ’ O s O need O for O iron B-chemical against O its O potential O damaging O effects O , O organisms O have O evolved O iron B-protein_type storage I-protein_type proteins I-protein_type known O as O ferritins B-protein_type that O form O cage B-structure_element - I-structure_element like I-structure_element structures I-structure_element . O The O ferritins B-protein_type convert O iron B-chemical into O a O less O reactive O form O that O is O mineralised O and O safely O stored O in O the O central B-site cavity I-site of O the O ferritin B-protein_type cage O and O is O available O for O cells O when O they O need O it O . O Recently O , O a O new O family O of O ferritins B-protein_type known O as O encapsulated B-protein_state ferritins B-protein_type have O been O found O in O some O microorganisms B-taxonomy_domain . O These O ferritins B-protein_type are O found O in O bacterial B-taxonomy_domain genomes O with O a O gene O that O codes O for O a O protein O cage O called O an O encapsulin B-protein . O Although O the O structure B-evidence of O the O encapsulin B-protein cage O is O known O to O look O like O the O shell B-structure_element of O a O virus B-taxonomy_domain , O the O structure B-evidence that O the O encapsulated B-protein_state ferritin B-protein_type itself O forms O is O not O known O . O It O is O also O not O clear O how O encapsulin B-protein and O the O encapsulated B-protein_state ferritin B-protein_type work O together O to O store O iron B-chemical . O He O et O al O . O have O now O used O the O techniques O of O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method and O mass B-experimental_method spectrometry I-experimental_method to O determine O the O structure B-evidence of O the O encapsulated B-protein_state ferritin B-protein_type found O in O some O bacteria B-taxonomy_domain . O The O encapsulated B-protein_state ferritin B-protein_type forms O a O ring B-structure_element - I-structure_element shaped I-structure_element doughnut B-structure_element in O which O ten O subunits B-structure_element of O ferritin B-protein_type are O arranged O in O a O ring B-structure_element ; O this O is O totally O different O from O the O enclosed O cages B-structure_element that O other O ferritins B-protein_type form O . O Biochemical B-experimental_method studies I-experimental_method revealed O that O the O encapsulated B-protein_state ferritin B-protein_type is O able O to O convert O iron B-chemical into O a O less O reactive O form O , O but O it O cannot O store O iron B-chemical on O its O own O since O it O does O not O form O a O cage O . O Thus O , O the O encapsulated B-protein_state ferritin B-protein_type needs O to O be O housed O within O the O encapsulin B-protein cage O to O store O iron B-chemical . O Further O work O is O needed O to O investigate O how O iron B-chemical moves O into O the O encapsulin B-protein cage O to O reach O the O ferritin B-protein_type proteins O . O Some O organisms O have O both O standard O ferritin B-protein_type cages O and O encapsulated B-protein_state ferritins B-protein_type ; O why O this O is O the O case O also O remains O to O be O discovered O . O Encapsulin B-protein_type nanocompartments B-complex_assembly are O a O family O of O proteinaceous O metabolic O compartments O that O are O widely O distributed O in O bacteria B-taxonomy_domain and O archaea B-taxonomy_domain . O They O share O a O common O architecture O , O comprising O an O icosahedral B-protein_state shell B-structure_element formed O by O the O oligomeric O assembly O of O a O protein O , O encapsulin B-protein_type , O that O is O structurally O related O to O the O HK97 B-taxonomy_domain bacteriophage I-taxonomy_domain capsid O protein O gp5 B-protein . O Gp5 B-protein is O known O to O assemble O as O a O 66 O nm O diameter O icosahedral B-protein_state shell B-structure_element of O 420 O subunits B-structure_element . O In O contrast O , O both O the O Pyrococcus B-species furiosus I-species and O Myxococcus B-species xanthus I-species encapsulin B-protein shell B-structure_element - O proteins O form O 32 O nm O icosahedra B-structure_element with O 180 O subunits B-structure_element ; O while O the O Thermotoga B-species maritima I-species encapsulin B-protein is O smaller O still O with O a O 25 O nm O , O 60 O - O subunit O icosahedron B-structure_element . O The O high O structural O similarity O of O the O encapsulin B-protein_type shell B-structure_element - O proteins O to O gp5 B-protein suggests O a O common O evolutionary O origin O for O these O proteins O . O The O genes O encoding O encapsulin B-protein_type proteins O are O found O downstream O of O genes O for O dye B-protein_type - I-protein_type dependent I-protein_type peroxidase I-protein_type ( O DyP B-protein_type ) O family O enzymes O , O or O encapsulin B-protein_type - I-protein_type associated I-protein_type ferritins I-protein_type ( O EncFtn B-protein_type ). O Enzymes O in O the O DyP B-protein_type family I-protein_type are O active O against O polyphenolic O compounds O such O as O azo O dyes O and O lignin O breakdown O products O ; O although O their O physiological O function O and O natural O substrates O are O not O known O . O Ferritin B-protein_type family O proteins O are O found O in O all O kingdoms B-taxonomy_domain and O have O a O wide O range O of O activities O , O including O ribonucleotide B-protein_type reductase I-protein_type , O protecting O DNA O from O oxidative O damage O , O and O iron B-chemical storage O . O The O classical B-protein_state iron B-complex_assembly storage I-complex_assembly ferritin I-complex_assembly nanocages I-complex_assembly are O found O in O all O kingdoms B-taxonomy_domain and O are O essential O in O eukaryotes B-taxonomy_domain ; O they O play O a O central O role O in O iron B-chemical homeostasis O , O where O they O protect O the O cell O from O toxic O free O Fe2 B-chemical + I-chemical by O oxidizing O it O and O storing O the O resulting O Fe3 B-chemical + I-chemical as O ferrihydrite B-chemical minerals O within O their O central B-site cavity I-site . O The O encapsulin B-protein_type - O associated O enzymes O are O sequestered O within O the O icosahedral B-protein_state shell B-structure_element through O interactions O between O the O shell B-structure_element ’ O s O inner O surface O and O a O short B-structure_element localization I-structure_element sequence I-structure_element ( O Gly B-structure_element - I-structure_element Ser I-structure_element - I-structure_element Leu I-structure_element - I-structure_element Lys I-structure_element ) O appended O to O their O C O - O termini O . O This B-structure_element motif I-structure_element is O well B-protein_state - I-protein_state conserved I-protein_state , O and O the O addition O of O this O sequence O to O heterologous O proteins O is O sufficient O to O direct O them O to O the O interior O of O encapsulins B-protein_type . O A O recent O study O of O the O Myxococcus B-species xanthus I-species encapsulin B-protein showed O that O it O sequesters O a O number O of O different O EncFtn B-protein_type proteins O and O acts O as O an O ‘ O iron B-chemical - O megastore O ’ O to O protect O these O bacteria B-taxonomy_domain from O oxidative O stress O . O At O 32 O nm O in O diameter O , O it O is O much O larger O than O other O members O of O the O ferritin B-protein_type superfamily O , O such O as O the O 12 O nm O 24 O - O subunit O classical B-protein_state ferritin B-protein_type nanocage B-complex_assembly and O the O 8 O nm O 12 O - O subunit O Dps B-protein_type ( O DNA B-protein_type - I-protein_type binding I-protein_type protein I-protein_type from O starved O cells O ) O complex O ; O and O is O thus O capable O of O sequestering O up O to O ten O times O more O iron B-chemical than O these O ferritins B-protein_type . O The O primary O sequences O of O EncFtn B-protein_type proteins O have O Glu B-structure_element - I-structure_element X I-structure_element - I-structure_element X I-structure_element - I-structure_element His I-structure_element metal B-site coordination I-site sites I-site , O which O are O shared O features O of O the O ferritin B-protein_type family O proteins O . O Secondary B-experimental_method structure I-experimental_method prediction I-experimental_method identifies O two O major B-structure_element α I-structure_element - I-structure_element helical I-structure_element regions I-structure_element in O these O proteins O ; O this O is O in O contrast O to O other O members O of O the O ferritin B-protein_type superfamily O , O which O have O four O major B-structure_element α I-structure_element - I-structure_element helices I-structure_element ( O Supplementary O file O 1 O ). O The O ‘ O half O - O ferritin B-protein_type ’ O primary O sequence O of O the O EncFtn B-protein_type family O and O their O association O with O encapsulin B-protein nanocompartments B-complex_assembly suggests O a O distinct O biochemical O and O structural O organization O to O other O ferritin B-protein_type family O proteins O . O The O Rhodospirillum B-species rubrum I-species EncFtn B-protein protein O ( O Rru_A0973 B-gene ) O shares O 33 O % O protein O sequence O identity O with O the O M B-species . I-species xanthus I-species ( O MXAN_4464 B-gene ), O 53 O % O with O the O T B-species . I-species maritima I-species ( O Tmari_0787 B-gene ), O and O 29 O % O with O the O P B-species . I-species furiosus I-species ( O PF1192 B-gene ) O homologues O . O The O GXXH B-structure_element motifs O are O strictly B-protein_state conserved I-protein_state in O each O of O these O species O ( O Supplementary O file O 1 O ). O Here O we O investigate O the O structure B-evidence and O biochemistry O of O EncFtn B-protein in O order O to O understand O iron B-chemical storage O within O the O encapsulin B-protein nanocompartment B-complex_assembly . O We O have O produced O recombinant O encapsulin B-protein ( O Enc B-protein ) O and O EncFtn B-protein from O the O aquatic B-taxonomy_domain purple B-taxonomy_domain - I-taxonomy_domain sulfur I-taxonomy_domain bacterium I-taxonomy_domain R B-species . I-species rubrum I-species , O which O serves O as O a O model O organism O for O the O study O of O the O control O of O the O bacterial B-taxonomy_domain nitrogen O fixation O machinery O , O in O Escherichia B-species coli I-species . O Analysis O by O transmission B-experimental_method electron I-experimental_method microscopy I-experimental_method ( O TEM B-experimental_method ) O indicates O that O their O co B-experimental_method - I-experimental_method expression I-experimental_method leads O to O the O production O of O an O icosahedral B-protein_state nanocompartment B-complex_assembly with O encapsulated B-protein_state EncFtn B-protein . O The O crystal B-evidence structure I-evidence of O a O truncated B-protein_state hexahistidine B-protein_state - I-protein_state tagged I-protein_state variant O of O the O EncFtn B-protein protein O ( O EncFtnsH B-protein ) O shows O that O it O forms O a O decameric B-oligomeric_state structure B-evidence with O an O annular O ‘ O ring B-structure_element - I-structure_element doughnut I-structure_element ’ O topology O , O which O is O distinct O from O the O four B-structure_element - I-structure_element helical I-structure_element bundles I-structure_element of O the O 24meric B-oligomeric_state ferritins B-protein_type and O dodecahedral B-oligomeric_state DPS B-protein_type proteins O . O We O identify O a O symmetrical O iron B-protein_state bound I-protein_state ferroxidase B-site center I-site ( O FOC B-site ) O formed O between O subunits B-structure_element in O the O decamer B-oligomeric_state and O additional O metal B-site - I-site binding I-site sites I-site close O to O the O center O of O the O ring B-structure_element and O on O the O outer O surface O . O We O also O demonstrate O the O metal O - O dependent O assembly O of O EncFtn B-protein decamers B-oligomeric_state using O native B-experimental_method PAGE I-experimental_method , O analytical B-experimental_method gel I-experimental_method - I-experimental_method filtration I-experimental_method , O and O native B-experimental_method mass I-experimental_method spectrometry I-experimental_method . O Biochemical B-experimental_method assays I-experimental_method show O that O EncFtn B-protein is O active B-protein_state as O a O ferroxidase B-protein_type enzyme O . O Through O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method we O show O that O the O conserved B-protein_state glutamic B-residue_name acid I-residue_name and O histidine B-residue_name residues O in O the O FOC B-site influence O protein O assembly O and O activity O . O We O use O our O combined O structural B-evidence and I-evidence biochemical I-evidence data I-evidence to O propose O a O model O for O the O EncFtn B-protein - O catalyzed O sequestration O of O iron B-chemical within O the O encapsulin B-protein shell B-structure_element . O Assembly O of O R B-species . I-species rubrum I-species EncFtn B-protein encapsulin B-protein nanocompartments B-complex_assembly in O E B-species . I-species coli I-species Full B-evidence - I-evidence frame I-evidence transmission I-evidence electron I-evidence micrographs I-evidence of O R B-species . I-species rubrum I-species nanocompartments B-complex_assembly . O ( O A O / O B O ) O Negative B-experimental_method stain I-experimental_method TEM I-experimental_method image B-evidence of O recombinant O R B-species . I-species rubrum I-species encapsulin B-protein and O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartments B-complex_assembly . O All O samples O were O imaged O at O 143 O , O 000 O x O magnification O ; O the O scale O bar O length O corresponds O to O 50 O nm O . O ( O C O ) O Histogram B-evidence showing O the O distribution O of O nanocompartment B-complex_assembly diameters O . O A O model O Gaussian B-experimental_method nonlinear I-experimental_method least I-experimental_method square I-experimental_method function I-experimental_method was O fitted O to O the O data O to O obtain O a O mean O diameter O of O 24 O . O 6 O nm O with O a O standard O deviation O of O 2 O . O 0 O nm O for O encapsulin B-protein ( O grey O ) O and O a O mean O value O of O 23 O . O 9 O nm O with O a O standard O deviation O of O 2 O . O 2 O nm O for O co B-experimental_method - I-experimental_method expressed I-experimental_method EncFtn B-protein and O encapsulin B-protein ( O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly , O black O ). O Purification O of O recombinant O R B-species . I-species rubrum I-species encapsulin B-protein nanocompartments B-complex_assembly . O ( O A O ) O Recombinantly B-experimental_method expressed I-experimental_method encapsulin B-protein ( O Enc B-protein ) O and O co B-experimental_method - I-experimental_method expressed I-experimental_method EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly were O purified O by O sucrose B-experimental_method gradient I-experimental_method ultracentrifugation I-experimental_method from O E B-species . I-species coli I-species B834 O ( O DE3 O ) O grown O in O SeMet B-chemical medium O . O Samples O were O resolved O by O 18 O % O acrylamide O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method ; O the O position O of O the O proteins O found O in O the O complexes O as O resolved O on O the O gel O are O shown O with O arrows O . O ( O B O / O C O ) O Negative B-experimental_method stain I-experimental_method TEM I-experimental_method image O of O recombinant O encapsulin B-protein and O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartments B-complex_assembly . O Representative O encapsulin B-protein and O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly complexes O are O indicated O with O red O arrows O . O We O produced O recombinant O R B-species . I-species rubrum I-species encapsulin B-protein nanocompartments B-complex_assembly in O E B-species . I-species coli I-species by O co B-experimental_method - I-experimental_method expression I-experimental_method of O the O encapsulin B-protein ( O Rru_A0974 B-gene ) O and O EncFtn B-protein ( O Rru_A0973 B-gene ) O proteins O , O and O purified O these O by O sucrose B-experimental_method gradient I-experimental_method ultra I-experimental_method - I-experimental_method centrifugation I-experimental_method ( O Figure O 1A O ). O TEM B-experimental_method imaging O of O uranyl O acetate O - O stained O samples O revealed O that O , O when O expressed B-experimental_method in I-experimental_method isolation I-experimental_method , O the O encapsulin B-protein protein O forms O empty B-protein_state compartments B-complex_assembly with O an O average O diameter O of O 24 O nm O ( O Figure O 1B O and O Figure O 1 O — O figure O supplement O 1A O / O C O ), O consistent O with O the O appearance O and O size O of O the O T B-species . I-species maritima I-species encapsulin B-protein . O We O were O not O able O to O resolve O any O higher O - O order O structures O of O EncFtn B-protein by O TEM B-experimental_method . O Protein O purified O from O co B-experimental_method - I-experimental_method expression I-experimental_method of O the O encapsulin B-protein and O EncFtn B-protein resulted O in O 24 O nm O compartments O with O regions O in O the O center O that O exclude O stain O , O consistent O with O the O presence B-protein_state of I-protein_state the O EncFtn B-protein within O the O encapsulin B-protein shell B-structure_element ( O Figure O 1C O and O Figure O 1 O — O figure O supplement O 1B O / O C O ). O R B-species . I-species rubrum I-species EncFtn B-protein forms O a O metal O - O ion O stabilized O decamer B-oligomeric_state in O solution O Purification B-experimental_method of I-experimental_method recombinant I-experimental_method R B-species . I-species rubrum I-species EncFtnsH B-protein . O ( O A O ) O Recombinant O SeMet B-protein_state - I-protein_state labeled I-protein_state EncFtnsH B-protein produced O with O 1 O mM O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical in O the O growth O medium O was O purified O by O nickel B-experimental_method affinity I-experimental_method chromatography I-experimental_method and O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method using O a O Superdex O 200 O 16 O / O 60 O column O ( O GE O Healthcare O ). O Chromatogram B-evidence traces O measured O at O 280 O nm O and O 315 O nm O are O shown O with O the O results O from O ICP B-experimental_method - I-experimental_method MS I-experimental_method analysis O of O the O iron B-chemical content O of O the O fractions O collected O during O the O experiment O . O The O peak O around O 73 O ml O corresponds O to O a O molecular B-evidence weight I-evidence of O around O 130 O kDa O when O compared O to O calibration O standards O ; O this O is O consistent O with O a O decamer B-oligomeric_state of O EncFtnsH B-protein . O The O small O peak O at O 85 O ml O corresponds O to O the O 13 O kDa O monomer B-oligomeric_state compared O to O the O standards O . O Only O the O decamer B-oligomeric_state peak O contains O significant O amounts O of O iron B-chemical as O indicated O by O the O ICP B-experimental_method - I-experimental_method MS I-experimental_method analysis O . O ( O B O ) O Peak O fractions O from O the O gel B-experimental_method filtration I-experimental_method run O were O resolved O by O 15 O % O acrylamide O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method and O stained O with O Coomassie O blue O stain O . O The O bands O around O 13 O kDa O and O 26 O kDa O correspond O to O EncFtnsH B-protein , O as O identified O by O MALDI B-experimental_method peptide I-experimental_method mass I-experimental_method fingerprinting I-experimental_method . O The O band O at O 13 O kDa O is O consistent O with O the O monomer B-oligomeric_state mass O , O while O the O band O at O 26 O kDa O is O consistent O with O a O dimer B-oligomeric_state of O EncFtnsH B-protein . O The O dimer B-oligomeric_state species O only O appears O in O the O decamer B-oligomeric_state fractions O . O ( O C O ) O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method analysis O of O EncFtnsH B-protein from O decamer B-oligomeric_state fractions O and O monomer B-oligomeric_state fractions O allows O assignment O of O an O average O mass O of O 132 O kDa O to O decamer B-oligomeric_state fractions O and O 13 O kDa O to O monomer B-oligomeric_state fractions O , O consistent O with O decamer B-oligomeric_state and O monomer B-oligomeric_state species O ( O Table O 2 O ). O Determination O of O the O Fe B-chemical / O EncFtnsH B-protein protein O ratio O by O ICP B-experimental_method - I-experimental_method MS I-experimental_method . O EncFtnsH B-protein was O purified O as O a O SeMet B-chemical derivative O from O E B-species . I-species coli I-species B834 I-species ( I-species DE3 I-species ) I-species cells O grown O in O SeMet B-chemical medium O with O 1 O mM O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical . O Fractions O from O SEC B-experimental_method were O collected O , O acidified O and O analysed O by O ICP B-experimental_method - I-experimental_method MS I-experimental_method . O EncFtnsH B-protein concentration O was O calculated O based O on O the O presence B-protein_state of I-protein_state two O SeMet B-chemical per O mature B-protein_state monomer B-oligomeric_state . O These O data O were O collected O from O EncFtnsH B-protein fractions O from O a O single O gel B-experimental_method - I-experimental_method filtration I-experimental_method run O . O Peak O EncFtnsHretention B-protein volume O ( O ml O ) O Element O concentration O ( O µM O ) O Derived O EncFtnsHconcentration B-protein ( O µM O ) O Derived O Fe B-chemical / O EncFtnsH B-protein monomer B-oligomeric_state Ca B-chemical Fe B-chemical Zn B-chemical Se B-chemical Decamer B-oligomeric_state 66 O . O 5 O n O . O d O . O Estimates O of O EncFtnsH B-protein molecular B-evidence weight I-evidence from O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method analysis O . O EncFtnsH B-protein was O purified O from O E B-species . I-species coli I-species BL21 I-species ( I-species DE3 I-species ) I-species grown O in O minimal B-experimental_method medium I-experimental_method ( O MM B-experimental_method ) O by O nickel B-experimental_method affinity I-experimental_method chromatography I-experimental_method and O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O Fractions O from O two O peaks B-evidence ( O decamer B-oligomeric_state and O monomer B-oligomeric_state ) O were O pooled O separately O ( O Figure O 1C O ) O and O analysed O by O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method using O a O Superdex O 200 O 10 O / O 300 O GL O column O ( O GE O Healthcare O ) O and O Viscotek O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method instruments O ( O Malvern O Instruments O ) O ( O Figure O 2C O ). O The O decamer B-oligomeric_state and O monomer B-oligomeric_state peaks B-evidence were O both O symmetric O and O monodisperse O , O allowing O the O estimation O of O the O molecular B-evidence weight I-evidence of O the O species O in O these O fractions O . O The O proteins O analyzed O by O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method came O from O single O protein O preparation O . O Molecular B-evidence Weight I-evidence ( O kDa O ) O Decamer B-oligomeric_state peak O Monomer B-oligomeric_state peak O Theoretical O 133 O 13 O EncFtnsH B-protein - O decamer B-oligomeric_state fractions O 132 O 15 O EncFtnsH B-protein - O monomer B-oligomeric_state fractions O 126 O 13 O We O purified O recombinant O R B-species . I-species rubrum I-species EncFtn B-protein as O both O the O full B-protein_state - I-protein_state length I-protein_state sequence O ( O 140 B-residue_range amino I-residue_range acids I-residue_range ) O and O a O truncated B-protein_state C O - O terminal O hexahistidine B-protein_state - I-protein_state tagged I-protein_state variant O ( O amino O acids O 1 B-residue_range – I-residue_range 96 I-residue_range plus O the O tag O ; O herein O EncFtnsH B-protein ). O In O both O cases O the O elution B-evidence profile I-evidence from O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method ( O SEC B-experimental_method ) O displayed O two O peaks B-evidence ( O Figure O 2A O ). O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O of O fractions O from O these O peaks B-evidence showed O that O the O high O molecular B-evidence weight I-evidence peak O was O partially O resistant O to O SDS O and O heat O - O induced O denaturation O ; O in O contrast O , O the O low O molecular B-evidence weight I-evidence peak O was O consistent O with O monomeric B-oligomeric_state mass O of O 13 O kDa O ( O Figure O 2B O ). O MALDI B-experimental_method peptide I-experimental_method mass I-experimental_method fingerprinting I-experimental_method of O these O bands O confirmed O the O identity O of O both O as O EncFtn B-protein . O Inductively B-experimental_method coupled I-experimental_method plasma I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O ICP B-experimental_method - I-experimental_method MS I-experimental_method ) O analysis O of O the O SEC B-experimental_method fractions O showed O 100 O times O more O iron B-chemical in O the O oligomeric O fraction O than O the O monomer B-oligomeric_state ( O Figure O 2A O , O blue O scatter O points O ; O Table O 1 O ), O suggesting O that O EncFtn B-protein oligomerization O is O associated O with O iron B-chemical binding O . O In O order O to O determine O the O iron B-chemical - O loading O stoichiometry O in O the O EncFtn B-protein complex O , O further O ICP B-experimental_method - I-experimental_method MS I-experimental_method experiments O were O performed O using O selenomethionine B-chemical ( O SeMet B-chemical )- O labelled O protein O EncFtn B-protein ( O Table O 1 O ). O In O these O experiments O , O we O observed O sub O - O stoichiometric O metal O binding O , O which O is O in O contrast O to O the O classical B-protein_state ferritins B-protein_type . O Size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method with O multi B-experimental_method - I-experimental_method angle I-experimental_method laser I-experimental_method light I-experimental_method scattering I-experimental_method ( O SEC B-experimental_method - I-experimental_method MALLS I-experimental_method ) O analysis O of O samples O taken O from O each O peak O gave O calculated O molecular O weights O consistent O with O a O decamer B-oligomeric_state for O the O high O molecular B-evidence weight I-evidence peak O and O a O monomer B-oligomeric_state for O the O low O molecular B-evidence weight I-evidence peak O ( O Figure O 2C O , O Table O 2 O ). O Effect O of O metal O ions O on O the O oligomeric O state O of O EncFtnsH B-protein in O solution O . O ( O A O / O B O ) O EncFtnsH B-protein - O monomer B-oligomeric_state was O incubated B-experimental_method with O one O mole O equivalent O of O various O metal O salts O for O two O hours O prior O to O analytical B-experimental_method gel I-experimental_method - I-experimental_method filtration I-experimental_method using O a O Superdex O 200 O PC O 3 O . O 2 O / O 30 O column O . O Co2 B-chemical + I-chemical and O Zn2 B-chemical + I-chemical induced O the O formation O of O the O decameric B-oligomeric_state form O of O EncFtnsH B-protein ; O while O Mn2 B-chemical +, I-chemical Mg2 B-chemical + I-chemical and O Fe3 B-chemical + I-chemical did O not O significantly O alter O the O oligomeric O state O of O EncFtnsH B-protein . O PAGE B-experimental_method analysis O of O the O effect O of O metal O ions O on O the O oligomeric O state O of O EncFtnsH B-protein . O 50 O µM O EncFtnsH B-protein monomer B-oligomeric_state or O decamer B-oligomeric_state samples O were O mixed O with O equal O molar O metal O ions O including O Fe2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical Zn2 B-chemical +, I-chemical Mn2 B-chemical +, I-chemical Ca2 B-chemical +, I-chemical Mg2 B-chemical + I-chemical and O Fe3 B-chemical +, I-chemical which O were O analyzed O by O Native B-experimental_method PAGE I-experimental_method alongside O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method . O ( O A O ) O 10 O % O Native B-experimental_method PAGE I-experimental_method analysis O of O EncFtnsH B-protein monomer B-oligomeric_state fractions O mixed O with O various O metal O solutions O ; O ( O B O ) O 10 O % O Native B-experimental_method PAGE I-experimental_method analysis O of O EncFtnsH B-protein decamer B-oligomeric_state fractions O mixed O with O various O metal O solutions O ; O ( O C O ) O 15 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O on O the O mixtures O of O EncFtnsH B-protein monomer B-oligomeric_state fractions O and O metal O solutions O ; O ( O D O ) O 15 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method analysis O on O the O mixtures O of O EncFtnsH B-protein decamer B-oligomeric_state fractions O and O metal O solutions O . O Effect O of O Fe2 B-chemical + I-chemical and O protein O concentration O on O the O oligomeric O state O of O EncFtnsH B-protein in O solution O . O ( O A O ) O Recombinant O EncFtnsH B-protein was O purified O by O Gel B-experimental_method filtration I-experimental_method Superdex O 200 O chromatography O from O E B-species . I-species coli I-species BL21 I-species ( I-species DE3 I-species ) I-species grown O in O MM B-experimental_method or O in O MM B-experimental_method supplemented O with O 1 O mM O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical ( O MM B-experimental_method + O Fe2 B-chemical +). I-chemical A O higher O proportion O of O decamer B-oligomeric_state ( O peak O between O 65 O and O 75 O ml O ) O is O seen O in O the O sample O purified O from O MM B-experimental_method + O Fe2 B-chemical + I-chemical compared O to O EncFtnsH B-protein - O MM B-experimental_method , O indicating O that O Fe2 B-chemical + I-chemical facilitates O the O multimerization O of O EncFtnsH B-protein in O vivo O . O ( O B O ) O EncFtnsH B-protein - O monomer B-oligomeric_state was O incubated O with O one O molar O equivalent O of O Fe2 B-chemical + I-chemical salts O for O two O hours O prior O to O analytical B-experimental_method gel I-experimental_method - I-experimental_method filtration I-experimental_method using O a O Superdex O 200 O PC O 3 O . O 2 O / O 30 O column O ( O GE O Healthcare O ). O Both O Fe2 B-chemical + I-chemical salts O tested O induced O the O formation O of O decamer B-oligomeric_state indicated O by O the O peak O between O 1 O . O 2 O and O 1 O . O 6 O ml O . O Monomeric B-oligomeric_state and O decameric B-oligomeric_state samples O of O EncFtnsH B-protein are O shown O as O controls O . O Peaks B-evidence around O 0 O . O 8 O ml O were O seen O as O protein O aggregation O . O ( O C O ) O Analytical B-experimental_method gel I-experimental_method filtration I-experimental_method of O EncFtn B-protein monomer B-oligomeric_state at O different O concentrations O to O illustrate O the O effect O of O protein O concentration O on O multimerization O . O The O major O peak O shows O a O shift O towards O a O dimer B-oligomeric_state species O at O high O concentration O of O protein O , O but O the O ratio O of O this O peak O ( O 1 O . O 5 O – O 1 O . O 8 O ml O ) O to O the O decamer B-oligomeric_state peak O ( O 1 O . O 2 O – O 1 O . O 5 O ml O ) O does O not O change O when O compared O to O the O low O concentration O sample O . O Gel B-experimental_method - I-experimental_method filtration I-experimental_method peak B-evidence area I-evidence ratios I-evidence for O EncFtnsH B-protein decamer B-oligomeric_state and O monomer B-oligomeric_state on O addition O of O different O metal O ions O . O EncFtnsH B-protein was O produced O in O E B-species . I-species coli I-species BL21 I-species ( I-species DE3 I-species ) I-species cultured O in O MM B-experimental_method and O MM B-experimental_method with O 1 O mM O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical ( O MM B-experimental_method + O Fe2 B-chemical +) I-chemical and O purified O by O gel B-experimental_method - I-experimental_method filtration I-experimental_method chromatography I-experimental_method using O an O Superdex O 200 O 16 O / O 60 O column O ( O GE O Healthcare O ). O Monomer B-oligomeric_state fractions O of O EncFtnsH B-protein purified O from O MM B-experimental_method were O pooled O and O run O in O subsequent O analytical B-experimental_method gel I-experimental_method - I-experimental_method filtration I-experimental_method runs O over O the O course O of O three O days O . O Samples O of O EncFtnsH B-protein monomer B-oligomeric_state were O incubated O with O one O molar O equivalent O of O metal O ion O salts O at O room O temperature O for O two O hours O before O analysis O by O analytical B-experimental_method gel I-experimental_method filtration I-experimental_method chromatography I-experimental_method ( O AGF B-experimental_method ) O using O a O Superdex O 200 O 10 O / O 300 O GL O column O . O The O area O for O resulting O protein O peaks B-evidence were O calculated O using O the O Unicorn O software O ( O GE O Healthcare O ); O peak B-evidence ratios I-evidence were O calculated O to O quantify O the O propensity O of O EncFtnsH B-protein to O multimerize O in O the O presence B-protein_state of I-protein_state the O different O metal O ions O . O The O change O in O the O ratios O of O monomer B-oligomeric_state to O decamer B-oligomeric_state over O the O three O days O of O experiments O may O be O a O consequence O of O experimental O variability O , O or O the O propensity O of O this O protein O to O equilibrate O towards O decamer B-oligomeric_state over O time O . O The O increased O decamer B-oligomeric_state : O monomer B-oligomeric_state ratio O seen O in O the O presence B-protein_state of I-protein_state Fe2 B-chemical +, I-chemical Co2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical indicates O that O these O metal O ions O facilitate O multimerization O of O the O EncFtnsH B-protein protein O , O while O the O other O metal O ions O tested O do O not O appear O to O induce O multimerization O . O The O analytical B-experimental_method gel I-experimental_method filtration I-experimental_method experiment O was O repeated O twice O using O two O independent O preparations O of O protein O , O of O which O values O calculated O from O one O sample O are O presented O here O . O Method O Sample O Monomer B-oligomeric_state area O Decamer B-oligomeric_state area O Decamer B-oligomeric_state / O Monomer B-oligomeric_state Gel B-experimental_method filtration I-experimental_method Superdex O 200 O chromatography O EncFtnsH B-protein - O MM B-experimental_method 64 O . O 3 O 583 O . O 6 O 0 O . O 1 O EncFtnsH B-protein - O MM B-experimental_method + O Fe2 B-chemical + I-chemical 1938 O . O 4 O 426 O . O 4 O 4 O . O 5 O Analytical B-experimental_method Gel I-experimental_method filtration I-experimental_method Day1 O EncFtnsH B-protein - O decamer B-oligomeric_state fractions O 20 O . O 2 O 1 O . O 8 O 11 O . O 2 O EncFtnsH B-protein - O monomer B-oligomeric_state fractions O 2 O . O 9 O 21 O . O 9 O 0 O . O 1 O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 11 O . O 0 O 13 O . O 0 O 0 O . O 8 O FeSO4 B-chemical - I-chemical HCl I-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 11 O . O 3 O 11 O . O 4 O 1 O . O 0 O Analytical B-experimental_method Gel I-experimental_method filtration I-experimental_method Day2 O EncFtnsH B-protein - O monomer B-oligomeric_state fractions O 8 O . O 3 O 22 O . O 8 O 0 O . O 4 O CoCl2 B-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 17 O . O 7 O 14 O . O 5 O 1 O . O 2 O MnCl2 B-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 3 O . O 1 O 30 O . O 5 O 0 O . O 1 O ZnSO4 B-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 20 O . O 4 O 9 O . O 0 O 2 O . O 3 O FeCl3 B-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 3 O . O 9 O 28 O . O 6 O 0 O . O 1 O Analytical B-experimental_method Gel I-experimental_method filtration I-experimental_method Day3 O EncFtnsH B-protein - O monomer B-oligomeric_state fractions O 6 O . O 3 O 23 O . O 4 O 0 O . O 3 O MgSO4 B-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 5 O . O 8 O 30 O . O 2 O 0 O . O 2 O Ca B-chemical acetate I-chemical / O EncFtnsH B-protein - O monomer B-oligomeric_state 5 O . O 6 O 25 O . O 2 O 0 O . O 2 O We O purified O EncFtnsH B-protein from O E B-species . I-species coli I-species grown O in O MM B-experimental_method with O or O without O the O addition O of O 1 O mM O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical . O The O decamer B-oligomeric_state to O monomer B-oligomeric_state ratio O in O the O sample O purified O from O cells O grown O in O iron B-chemical - O supplemented O media O was O 4 O . O 5 O , O while O that O from O the O iron B-protein_state - I-protein_state free I-protein_state media O was O 0 O . O 11 O , O suggesting O that O iron B-chemical induces O the O oligomerization O of O EncFtnsH B-protein in O vivo O ( O Figure O 3A O , O Table O 3 O ). O To O test O the O metal O - O dependent O oligomerization O of O EncFtnsH B-protein in O vitro O , O we O incubated B-experimental_method the O protein O with O various O metal O cations O and O subjected O samples O to O analytical B-experimental_method SEC I-experimental_method and O non B-experimental_method - I-experimental_method denaturing I-experimental_method PAGE I-experimental_method . O Of O the O metals O tested O , O only O Fe2 B-chemical +, I-chemical Zn2 B-chemical + I-chemical and O Co2 B-chemical + I-chemical induced O the O formation O of O significant O amounts O of O the O decamer B-oligomeric_state ( O Figure O 3B O , O Figure O 3 O — O figure O supplement O 1 O / O 2 O ). O While O Fe2 B-chemical + I-chemical induces O the O multimerization O of O EncFtnsH B-protein , O Fe3 B-chemical + I-chemical in O the O form O of O FeCl3 B-chemical does O not O have O this O effect O on O the O protein O , O highlighting O the O apparent O preference O this O protein O has O for O the O ferrous B-chemical form I-chemical of I-chemical iron I-chemical . O To O determine O if O the O oligomerization O of O EncFtnsH B-protein was O concentration O dependent O we O performed O analytical B-experimental_method SEC I-experimental_method at O 90 O and O 700 O µM O protein O concentration O ( O Figure O 3C O ). O At O the O higher O concentration O , O no O increase O in O the O decameric B-oligomeric_state form O of O EncFtn B-protein was O observed O ; O however O , O the O shift O in O the O major O peak O from O the O position O of O the O monomer B-oligomeric_state species O indicated O a O tendency O to O dimerize B-oligomeric_state at O high O concentration O . O Crystal B-evidence structure I-evidence of O EncFtnsH B-protein Electrostatic O surface O of O EncFtnsH B-protein . O The O solvent O accessible O surface O of O EncFtnsH B-protein is O shown O , O colored O by O electrostatic O potential O as O calculated O using O the O APBS O plugin O in O PyMOL O . O Negatively O charged O regions O are O colored O red O and O positive O regions O in O blue O , O neutral O regions O in O grey O . O ( O A O ) O View O of O the O surface O of O the O EncFtnsH B-protein decamer B-oligomeric_state looking O down O the O central O axis O . O ( O B O ) O Orthogonal O view O of O ( O A O ). O ( O C O ) O Cutaway O view O of O ( O B O ) O showing O the O charge O distribution O within O the O central B-site cavity I-site . O Crystal B-evidence structure I-evidence of O EncFtnsH B-protein . O ( O A O ) O Overall O architecture O of O EncFtnsH B-protein . O Transparent O solvent O accessible O surface O view O with O α B-structure_element - I-structure_element helices I-structure_element shown O as O tubes O and O bound O metal O ions O as O spheres O . O Alternating O subunits B-structure_element are O colored O blue O and O green O for O clarity O . O The O doughnut B-structure_element - I-structure_element like I-structure_element decamer B-oligomeric_state is O 7 O nm O in O diameter O and O 4 O . O 5 O nm O thick O . O ( O B O ) O Monomer B-oligomeric_state of O EncFtnsH B-protein shown O as O a O secondary O structure O cartoon O . O ( O C O / O D O ) O Dimer B-site interfaces I-site formed O in O the O decameric B-oligomeric_state ring B-structure_element of O EncFtnsH B-protein . O Subunits B-structure_element are O shown O as O secondary O structure O cartoons O and O colored O blue O and O green O for O clarity O . O Bound O metal O ions O are O shown O as O orange O spheres O for O Fe3 B-chemical + I-chemical and O grey O and O white O spheres O for O Ca2 B-chemical +. I-chemical We O determined O the O crystal B-evidence structure I-evidence of O EncFtnsH B-protein by O molecular B-experimental_method replacement I-experimental_method to O 2 O . O 0 O Å O resolution O ( O see O Table O 1 O for O X B-evidence - I-evidence ray I-evidence data I-evidence collection I-evidence and I-evidence refinement I-evidence statistics I-evidence ). O The O crystallographic O asymmetric O unit O contained O thirty O monomers B-oligomeric_state of O EncFtn B-protein with O visible O electron B-evidence density I-evidence for O residues O 7 B-residue_range – I-residue_range 96 I-residue_range in O each O chain O . O The O protein O chains O were O arranged O as O three O identical O annular B-structure_element decamers B-oligomeric_state , O each O with O D5 O symmetry O . O The O decamer B-oligomeric_state has O a O diameter O of O 7 O nm O and O thickness O of O 4 O nm O ( O Figure O 4A O ). O The O monomer B-oligomeric_state of O EncFtn B-protein has O an O N O - O terminal O 310 B-structure_element - I-structure_element helix I-structure_element that O precedes O two O 4 O nm O long O antiparallel B-structure_element α I-structure_element - I-structure_element helices I-structure_element arranged O with O their O long O axes O at O 25 O ° O to O each O other O ; O these O helices B-structure_element are O followed O by O a O shorter O 1 O . O 4 O nm O helix B-structure_element projecting O at O 70 O ° O from O α2 B-structure_element ( O Figure O 4B O ). O The O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O the O crystallized O construct O extends O from O the O outer O circumference O of O the O ring B-structure_element , O indicating O that O the O encapsulin B-site localization I-site sequence I-site in O the O full B-protein_state - I-protein_state length I-protein_state protein O is O on O the O exterior O of O the O ring B-structure_element and O is O thus O free O to O interact O with O its O binding B-site site I-site on O the O encapsulin B-protein shell B-structure_element protein O . O The O monomer B-oligomeric_state of O EncFtnsH B-protein forms O two O distinct O dimer B-site interfaces I-site within O the O decamer B-oligomeric_state ( O Figure O 4 O C O / O D O ). O The O first O dimer B-oligomeric_state is O formed O from O two O monomers B-oligomeric_state arranged O antiparallel O to O each O other O , O with O α1 B-structure_element from O each O monomer B-oligomeric_state interacting O along O their O lengths O and O α3 B-structure_element interdigitating O with O α2 B-structure_element and O α3 B-structure_element of O the O partner O chain O . O This O interface B-site buries O one O third O of O the O surface O area O from O each O partner O and O is O stabilized O by O thirty O hydrogen B-bond_interaction bonds I-bond_interaction and O fourteen O salt B-bond_interaction bridges I-bond_interaction ( O Figure O 4C O ). O The O second O dimer B-site interface I-site forms O an O antiparallel B-structure_element four I-structure_element - I-structure_element helix I-structure_element bundle I-structure_element between O helices B-structure_element 1 I-structure_element and I-structure_element 2 I-structure_element from O each O monomer B-oligomeric_state ( O Figure O 4D O ). O This O interface B-site is O less O extensive O than O the O first O and O is O stabilized O by O twenty O - O one O hydrogen B-bond_interaction bonds I-bond_interaction , O six O salt B-bond_interaction bridges I-bond_interaction , O and O a O number O of O metal O ions O . O The O arrangement O of O ten O monomers B-oligomeric_state in O alternating O orientation O forms O the O decamer B-oligomeric_state of O EncFtn B-protein , O which O assembles O as O a O pentamer B-oligomeric_state of O dimers B-oligomeric_state ( O Figure O 4A O ). O Each O monomer B-oligomeric_state lies O at O 45 O ° O relative O to O the O vertical O central O - O axis O of O the O ring B-structure_element , O with O the O N O - O termini O of O alternating O subunits B-structure_element capping O the O center O of O the O ring B-structure_element at O each O end O , O while O the O C O - O termini O are O arranged O around O the O circumference O . O The O central B-site hole I-site in O the O ring B-structure_element is O 2 O . O 5 O nm O at O its O widest O in O the O center O of O the O complex O , O and O 1 O . O 5 O nm O at O its O narrowest O point O near O the O outer O surface O , O although O it O should O be O noted O that O a O number O of O residues O at O the O N O - O terminus O are O not O visible O in O the O crystallographic B-evidence electron I-evidence density I-evidence and O these O may O occupy O the O central B-site channel I-site . O The O surface O of O the O decamer B-oligomeric_state has O distinct O negatively B-site charged I-site patches I-site , O both O within O the O central B-site hole I-site and O on O the O outer O circumference O , O which O form O spokes B-structure_element through O the O radius O of O the O complex O ( O Figure O 4 O — O figure O supplement O 1 O ). O EncFtn B-protein ferroxidase B-site center I-site Putative O ligand B-site - I-site binding I-site site I-site in O EncFtnsH B-protein . O ( O A O ) O Wall O - O eyed O stereo O view O of O the O dimer B-site interface I-site of O EncFtn B-protein . O Protein O chains O are O shown O as O sticks O , O with O 2mFo B-evidence - I-evidence DFc I-evidence electron I-evidence density I-evidence shown O in O blue O mesh O and O contoured O at O 1 O . O 5 O σ O and O mFo B-evidence - I-evidence DFc I-evidence shown O in O green O mesh O and O contoured O at O 3 O σ O . O ( O B O ) O Wall O - O eyed O stereo O view O of O putative O metal B-site binding I-site site I-site at O the O external O surface O of O EncFtnsH B-protein . O Protein O chains O and O electron B-evidence density I-evidence maps I-evidence are O shown O as O in O ( O A O ). O EncFtnsH B-protein metal B-site binding I-site sites I-site . O ( O A O ) O Wall O - O eyed O stereo O view O of O the O metal B-site - I-site binding I-site dimerization I-site interface I-site of O EncFtnsH B-protein . O Protein O residues O are O shown O as O sticks O with O blue O and O green O carbons O for O the O different O subunits B-structure_element , O iron B-chemical ions O are O shown O as O orange O spheres O and O calcium B-chemical as O grey O spheres O , O and O the O glycolic B-chemical acid I-chemical ligand O is O shown O with O yellow O carbon O atoms O coordinated O above O the O di B-site - I-site iron I-site center I-site . O The O 2mFo B-evidence - I-evidence DFc I-evidence electron I-evidence density I-evidence map I-evidence is O shown O as O a O blue O mesh O contoured O at O 1 O . O 5 O σ O and O the O NCS B-evidence - I-evidence averaged I-evidence anomalous I-evidence difference I-evidence map I-evidence is O shown O as O an O orange O mesh O and O contoured O at O 10 O σ O . O ( O B O ) O Iron B-chemical coordination B-bond_interaction within O the O FOC B-site including O residues O Glu32 B-residue_name_number , O Glu62 B-residue_name_number , O His65 B-residue_name_number and O Tyr39 B-residue_name_number from O two O chains O . O Protein O and O metal O ions O are O shown O as O in O A O . O Coordination B-bond_interaction between O the O protein O and O iron B-chemical ions O is O shown O as O yellow O dashed O lines O with O distances O indicated O . O ( O C O ) O Coordination B-bond_interaction of O calcium B-chemical within O the O dimer B-site interface I-site by O four O glutamic B-residue_name acid I-residue_name residues O ( O E31 B-residue_name_number and O E34 B-residue_name_number from O two O chains O ). O The O calcium B-chemical ion O is O shown O as O a O grey O sphere O and O water B-chemical molecules O involved O in O the O coordination B-bond_interaction of O the O calcium B-chemical ion O are O shown O as O crosses O . O ( O D O ) O Metal B-site coordination I-site site I-site on O the O outer O surface O of O EncFtnsH B-protein . O The O two O calcium B-chemical ions O are O coordinated B-bond_interaction by I-bond_interaction residues O His57 B-residue_name_number , O Glu61 B-residue_name_number and O Glu64 B-residue_name_number from O the O two O chains O of O the O FOC B-site dimer B-oligomeric_state , O and O are O located O at O the O outer O surface O of O the O complex O , O positioned O 10 O Å O away O from O the O FOC B-site iron B-chemical . O The O electron B-evidence density I-evidence maps I-evidence of O the O initial O EncFtnsH B-protein model O displayed O significant O positive O peaks O in O the O mFo B-evidence - I-evidence DFc I-evidence map I-evidence at O the O center O of O the O 4 B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element dimer B-oligomeric_state ( O Figure O 5 O — O figure O supplement O 1 O ). O Informed O by O the O ICP B-experimental_method - I-experimental_method MS I-experimental_method data O indicating O the O presence B-protein_state of I-protein_state iron B-chemical in O the O protein O we O collected O diffraction B-evidence data I-evidence at O the O experimentally O determined O iron B-chemical absorption O edge O ( O 1 O . O 74 O Å O ) O and O calculated O an O anomalous B-evidence difference I-evidence Fourier I-evidence map I-evidence using O this O data O . O Inspection O of O this O map B-evidence showed O two O 10 O - O sigma O peaks B-evidence between O residues O Glu32 B-residue_name_number , O Glu62 B-residue_name_number and O His65 B-residue_name_number of O two O adjacent O chains O , O and O a O statistically O smaller O 5 O - O sigma O peak O between O residues O Glu31 B-residue_name_number and O Glu34 B-residue_name_number of O the O two O chains O . O Modeling O metal O ions O into O these O peaks O and O refinement B-experimental_method of O the O anomalous B-evidence scattering I-evidence parameters I-evidence allowed O us O to O identify O these O as O two O iron B-chemical ions O and O a O calcium B-chemical ion O respectively O ( O Figure O 5A O ). O An O additional O region O of O asymmetric O electron B-evidence density I-evidence near O the O di B-site - I-site iron I-site binding I-site site I-site in O the O mFo B-evidence - I-evidence DFc I-evidence map I-evidence was O modeled O as O glycolic B-chemical acid I-chemical , O presumably O a O breakdown O product O of O the O PEG B-chemical 3350 I-chemical used O for O crystallization O . O This O di B-site - I-site iron I-site center I-site has O an O Fe B-evidence - I-evidence Fe I-evidence distance I-evidence of O 3 O . O 5 O Å O , O Fe B-evidence - I-evidence Glu I-evidence - I-evidence O I-evidence distances I-evidence between O 2 O . O 3 O and O 2 O . O 5 O Å O , O and O Fe B-evidence - I-evidence His I-evidence - I-evidence N I-evidence distances I-evidence of O 2 O . O 5 O Å O ( O Figure O 5B O ). O This O coordination B-bond_interaction geometry O is O consistent O with O the O di B-site - I-site nuclear I-site ferroxidase I-site center I-site ( O FOC B-site ) O found O in O ferritin B-protein_type . O It O is O interesting O to O note O that O although O we O did O not O add O any O additional O iron B-chemical to O the O crystallization B-experimental_method trials I-experimental_method , O the O FOC B-site was O fully O occupied O with O iron B-chemical in O the O final O structure B-evidence , O implying O that O this O site O has O a O very O high O affinity B-evidence for O iron B-chemical . O The O calcium B-chemical ion O coordinated B-bond_interaction by I-bond_interaction Glu31 B-residue_name_number and O Glu34 B-residue_name_number adopts O heptacoordinate B-protein_state geometry O , O with O coordination B-bond_interaction distances O of O 2 O . O 5 O Å O between O the O metal O ion O and O carboxylate O oxygens O of O Glu31 B-residue_name_number and O Glu34 B-residue_name_number ( O E31 B-site / I-site 34 I-site - I-site site I-site ). O A O number O of O ordered O solvent O molecules O are O also O coordinated B-bond_interaction to O this O metal O ion O at O a O distance O of O 2 O . O 5 O Å O . O This O heptacoordinate B-protein_state geometry O is O common O in O crystal B-evidence structures I-evidence with O calcium B-chemical ions O ( O Figure O 5C O ). O While O ICP B-experimental_method - I-experimental_method MS I-experimental_method indicated O that O there O were O negligible O amounts O of O calcium B-chemical in O the O purified O protein O , O the O presence B-protein_state of I-protein_state 140 O mM O calcium B-chemical acetate I-chemical in O the O crystallization O mother O liquor O favors O the O coordination B-bond_interaction of O calcium B-chemical at O this O site O . O The O fact O that O the O protein O does O not O multimerize O in O solution O in O the O presence B-protein_state of I-protein_state Fe3 B-chemical + I-chemical may O indicate O that O these O metal B-site binding I-site sites I-site have O a O lower O affinity O for O the O ferric O form O of O iron B-chemical , O which O is O the O product O of O the O ferroxidase B-protein_type reaction O . O A O number O of O additional O metal O - O ions O were O present O at O the O outer O circumference O of O at O least O one O decamer B-oligomeric_state in O the O asymmetric O unit O ( O Figure O 5D O ). O These O ions O are O coordinated B-bond_interaction by I-bond_interaction His57 B-residue_name_number , O Glu61 B-residue_name_number and O Glu64 B-residue_name_number from O both O chains O in O the O FOC B-site dimer B-oligomeric_state and O are O 4 O . O 5 O Å O apart O ; O Fe B-evidence - I-evidence Glu I-evidence - I-evidence O I-evidence distances O are O between O 2 O . O 5 O and O 3 O . O 5 O Å O and O the O Fe B-evidence - I-evidence His I-evidence - I-evidence N I-evidence distances I-evidence are O 4 O and O 4 O . O 5 O Å O . O Comparison O of O quaternary O structure O of O EncFtnsH B-protein and O ferritin B-protein_type . O ( O A O ) O Aligned B-experimental_method FOC B-site of O EncFtnsH B-protein and O Pseudo B-species - I-species nitzschia I-species multiseries I-species ferritin B-protein ( O PmFtn B-protein ). O The O metal B-site binding I-site site I-site residues O from O two O EncFtnsH B-protein chains O are O shown O in O green O and O blue O , O while O the O PmFtn B-protein is O shown O in O orange O . O Fe2 B-chemical + I-chemical in O the O FOC B-site is O shown O as O orange O spheres O and O Ca2 B-chemical + I-chemical in O EncFtnsH B-protein is O shown O as O a O grey O sphere O . O The O two O - O fold O symmetry O axis O of O the O EncFtn B-protein FOC B-site is O shown O with O a O grey O arrow O ( O B O ) O Cross O - O section O surface O view O of O quaternary O structure O of O EncFtnsH B-protein and O PmFtn B-protein as O aligned O in O ( O A O ) O ( O dashed O black O box O ). O The O central B-site channel I-site of O EncFtnsH B-protein is O spatially O equivalent O to O the O outer O surface O of O ferritin B-protein_type and O its O outer O surface O corresponds O to O the O mineralization B-site surface I-site within O ferritin B-protein_type . O Comparison B-experimental_method of O the O symmetric O metal B-site ion I-site binding I-site site I-site of O EncFtnsH B-protein and O the O ferritin B-protein_type FOC B-site . O ( O A O ) O Structural B-experimental_method alignment I-experimental_method of O the O FOC B-site residues O in O a O dimer B-oligomeric_state of O EncFtnsH B-protein ( O green O / O blue O ) O with O a O monomer B-oligomeric_state of O Pseudo B-species - I-species nitzschia I-species multiseries I-species ferritin B-protein ( O PmFtn B-protein ) O ( O PDBID O : O 4ITW O ) O ( O orange O ). O Iron B-chemical ions O are O shown O as O orange O spheres O and O a O single O calcium B-chemical ion O as O a O grey O sphere O . O Residues O within O the O FOC B-site are O conserved B-protein_state between O EncFtn B-protein and O ferritin B-protein_type PmFtn B-protein , O with O the O exception O of O residues O in O the O position O equivalent O to O H65 B-residue_name_number ’ O in O the O second O subunit B-oligomeric_state in O the O dimer B-oligomeric_state ( O blue O ). O The O site O in O EncFtn B-protein with O bound B-protein_state calcium B-chemical is O not O present O in O other O family O members O . O ( O B O ) O Secondary O structure O of O aligned B-experimental_method dimeric B-oligomeric_state EncFtnsH B-protein and O monomeric B-oligomeric_state ferritin B-protein_type highlighting O the O conserved B-protein_state four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element . O EncFtnsH B-protein monomers B-oligomeric_state are O shown O in O green O and O blue O and O aligned B-experimental_method PmFtn B-protein monomer B-oligomeric_state in O orange O as O in O A O . O ( O C O ) O Cartoon O of O secondary O structure O elements O in O EncFtn B-protein dimer B-oligomeric_state and O ferritin B-protein_type . O In O the O dimer B-oligomeric_state of O EncFtn B-protein that O forms O the O FOC B-site , O the O C O - O terminus O of O the O first O monomer B-oligomeric_state ( O green O ) O and O N O - O terminus O of O the O second O monomer B-oligomeric_state ( O blue O ) O correspond O to O the O position O of O the O long B-structure_element linker I-structure_element between O α2 B-structure_element and O α3 B-structure_element in O ferritin B-protein_type PmFtn B-protein . O Structural B-experimental_method alignment I-experimental_method of O the O di B-site - I-site iron I-site binding I-site site I-site of O EncFtnsH B-protein to O the O FOC B-site of O Pseudo B-species - I-species nitzschia I-species multiseries I-species ferritin B-protein_type ( O PmFtn B-protein , O PDB O ID O : O 4ITW O ) O reveals O a O striking O similarity O between O the O metal B-site binding I-site sites I-site of O EncFtnsH B-protein and O the O classical B-protein_state ferritins B-protein_type ( O Figure O 6A O ). O The O di B-site - I-site iron I-site site I-site of O EncFtnsH B-protein is O by O necessity O symmetrical O , O as O it O is O formed O through O a O dimer B-site interface I-site , O while O the O FOC B-site of O ferritin B-protein_type does O not O have O these O constraints O and O varies O in O different O species O at O a O position O equivalent O to O His65 B-residue_name_number of O the O second O EncFtn B-protein monomer B-oligomeric_state in O the O FOC B-site interface I-site ( O His65 B-residue_name_number ’) O ( O Figure O 6A O ). O Structural B-experimental_method superimposition I-experimental_method of O the O FOCs B-site of O ferritin B-protein_type and O EncFtn B-protein brings O the O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element of O the O ferritin B-protein_type fold O into O close O alignment O with O the O EncFtn B-protein dimer B-oligomeric_state , O showing O that O the O two O families O of O proteins O have O essentially O the O same O architecture O around O the O di B-site - I-site iron I-site center I-site ( O Figure O 6B O ). O The O linker B-structure_element connecting O helices B-structure_element 2 I-structure_element and I-structure_element 3 I-structure_element of O ferritin B-protein_type is O congruent O with O the O start O of O the O C O - O terminal O helix B-structure_element of O one O EncFtn B-protein monomer B-oligomeric_state and O the O N O - O terminal O 310 B-structure_element helix I-structure_element of O the O second O monomer B-oligomeric_state ( O Figure O 6C O ). O Mass B-experimental_method spectrometry I-experimental_method of O the O EncFtn B-protein assembly O Native B-experimental_method IM I-experimental_method - I-experimental_method MS I-experimental_method analysis O of O the O apo B-protein_state - O EncFtnsH B-protein monomer B-oligomeric_state . O ( O A O ) O Mass B-evidence spectrum I-evidence of O apo B-protein_state - O EncFtnsH B-protein acquired O from O 100 O mM O ammonium O acetate O pH O 8 O . O 0 O under O native B-experimental_method MS I-experimental_method conditions O . O The O charge B-evidence state I-evidence distribution O observed O is O bimodal O , O with O peaks B-evidence corresponding O to O the O 6 O + O to O 15 O + O charge B-evidence states I-evidence of O apo B-protein_state - O monomer B-oligomeric_state EncFtnsH B-protein ( O neutral O average O mass O 13 O , O 194 O . O 3 O Da O ). O ( O B O ) O The O arrival B-evidence time I-evidence distributions I-evidence ( O ion B-evidence mobility I-evidence data I-evidence ) O of O all O ions O in O the O apo B-protein_state - O EncFtnsH B-protein charge B-evidence state I-evidence distribution O displayed O as O a O greyscale O heat O map O ( O linear O intensity O scale O ). O ( O B O ) O Right O , O the O arrival B-evidence time I-evidence distribution I-evidence of O the O 6 O + O ( O orange O ) O and O 7 O + O ( O green O ) O charge B-evidence state I-evidence ( O dashed O colored O ‐ O box O ) O has O been O extracted O and O plotted O ; O The O arrival B-evidence time I-evidence distributions I-evidence for O these O ion O is O shown O ( O ms O ), O along O with O the O calibrated O collision B-evidence cross I-evidence section I-evidence , O Ω B-evidence ( O nm2 O ). O ( O C O ) O The O collision B-evidence cross I-evidence section I-evidence of O a O single O monomer B-oligomeric_state unit O from O the O crystal B-evidence structure I-evidence of O the O Fe B-protein_state - I-protein_state loaded I-protein_state EncFtnsH B-protein decamer B-oligomeric_state was O calculated O to O be O 15 O . O 8 O nm2 O using O IMPACT O v O . O 0 O . O 9 O . O 1 O . O The O + O 8 O to O + O 15 O protein O charge B-evidence states I-evidence have O observed O CCS B-evidence between O 20 O – O 26 O nm2 O , O which O is O significantly O higher O than O the O calculated O CCS B-evidence for O an O EncFtnsH B-protein monomer B-oligomeric_state taken O from O the O decameric B-oligomeric_state assembly O crystal B-evidence structure I-evidence ( O 15 O . O 8 O nm2 O ). O The O mobility B-evidence of O the O + O 7 O charge B-evidence state I-evidence displays O broad O drift B-evidence - I-evidence time I-evidence distribution I-evidence with O maxima O consistent O with O CCS B-evidence of O 15 O . O 9 O and O 17 O . O 9 O nm2 O . O Finally O , O the O 6 O + O charge B-evidence state I-evidence of O EncFtnsH B-protein has O mobility B-evidence consistent O with O a O CCS B-evidence of O 12 O . O 3 O nm2 O , O indicating O a O more O compact B-protein_state / O collapsed B-protein_state structure O . O It O is O clear O from O this O data O that O apo B-protein_state - O EncFtnsH B-protein exists O in O several O gas O phase O conformations O . O The O range O of O charge B-evidence states I-evidence occupied O by O the O protein O ( O 6 O + O to O 15 O +) O and O the O range O of O CCS B-evidence in O which O the O protein O is O observed O ( O 12 O . O 3 O nm2 O – O 26 O nm2 O ) O are O both O large O . O In O addition O , O many O of O the O charge B-evidence states I-evidence observed O have O higher O charge O than O the O theoretical O maximal O charge O on O spherical O globular B-protein_state protein O , O as O determined O by O the O De B-experimental_method La I-experimental_method Mora I-experimental_method relationship I-experimental_method ( O ZR B-evidence = O 0 O . O 0778m O ; O for O the O EncFtnsH B-protein monomer B-oligomeric_state ZR B-evidence = O 8 O . O 9 O ) O Fernandez O . O As O described O by O Beveridge O et O al O ., O all O these O factors O are O indicative O of O a O disordered B-protein_state protein O . O Gas O - O phase O disassembly O of O the O holo B-protein_state - O EncFtnsH B-protein decameric B-oligomeric_state assembly O . O The O entire O charge B-evidence state I-evidence distribution O of O the O Fe B-protein_state - I-protein_state loaded I-protein_state holo B-protein_state - O EncFtnsH B-protein assembly O ( O green O circles O ) O was O subject O to O collisional B-experimental_method - I-experimental_method induced I-experimental_method dissociation I-experimental_method ( O CID B-experimental_method ) O by O increasing O the O source O cone O voltage O to O 200 O V O and O the O trap O voltage O to O 50 O V O . O The O resulting O CID B-experimental_method mass B-evidence spectrum I-evidence ( O A O ) O revealed O that O dissociation O of O the O holo B-protein_state - O EncFtnsH B-protein decamer B-oligomeric_state primarily O occurred O via O ejection O of O a O highly O charged O monomer B-oligomeric_state ( O blue O circles O ), O leaving O the O ‘ O stripped B-protein_state ’ O complex O ( O a O 9mer B-oligomeric_state ; O 118 O . O 7 O kDa O ; O yellow O circles O ). O The O mass O of O the O ejected O - O monomer B-oligomeric_state is O consistent O with O apo B-protein_state - O EncFtnsH B-protein ( O 13 O . O 2 O kDa O ), O suggesting O unfolding O of O the O monomer B-oligomeric_state ( O and O loss B-protein_state of I-protein_state Fe B-chemical ) O occurs O during O ejection O from O the O complex O . O This O observation O of O asymmetric O charge O partitioning O of O the O sub O - O complexes O with O respect O to O the O mass O of O the O complex O is O consistent O with O the O ' O typical O ' O pathway O of O dissociation O of O protein O assemblies O by O CID B-experimental_method , O as O described O by O . O In O addition O , O a O third O , O lower O abundance O , O charge B-evidence state I-evidence distribution O is O observed O which O overlaps O the O EncFtn B-protein ejected O monomer B-oligomeric_state charge B-evidence state I-evidence distribution O ; O this O region O of O the O spectrum O is O highlighted O in O ( O B O ). O This O distribution O is O consistent O with O an O ejected O EncFtnsH B-protein dimer B-oligomeric_state ( O orange O circles O ). O Interestingly O , O closer O analysis O of O the O individual O charge B-evidence state I-evidence of O this O dimeric B-oligomeric_state CID B-experimental_method product O shows O that O this O sub O - O complex O exists O in O three O forms O – O displaying O mass O consistent O with O an O EncFtnsH B-protein dimer B-oligomeric_state binding O 0 O , O 1 O , O and O 2 O Fe B-chemical ions O . O This O is O highlighted O in O ( O C O ), O where O the O 15 O + O charge B-evidence state I-evidence of O the O EncFtnsH B-protein dimer B-oligomeric_state is O shown O ; O 3 O peaks B-evidence are O observed O with O m O / O z O 1760 O . O 5 O , O 1763 O . O 8 O , O and O 1767 O . O 0 O Th O – O the O lowest O peak O corresponds O to O neutral O masses O of O 26392 O . O 5 O Da O [ O predicted O EncFtnsH B-protein dimer B-oligomeric_state , O ( O C572H884N172O185S2 O ) O 2 O ; O 26388 O . O 6 O Da O ]. O The O two O further O peaks B-evidence have O a O delta O - O mass O of O ~+ O 50 O Da O , O consistent O with O Fe B-chemical binding O . O We O interpret O these O observations O as O partial O ‘ O atypical O ’ O CID B-experimental_method fragmentation O of O the O decameric B-oligomeric_state complex O – O i O . O e O . O fragmentation O of O the O initial O complex O with O retention O of O subunit O and O ligand O interactions O . O We O postulate O the O high O stability O of O this O iron B-protein_state - I-protein_state bound I-protein_state dimer B-oligomeric_state sub O - O complex O is O due O to O the O metal B-chemical coordination B-bond_interaction at O the O dimer B-site interface I-site , O increasing O the O strength O of O the O dimer B-site interface I-site . O Taken O together O , O these O observations O support O our O findings O that O the O topology O of O the O decameric B-oligomeric_state EncFtnsH B-protein assembly O is O arranged O as O a O pentamer B-oligomeric_state of O dimers B-oligomeric_state , O with O two O Fe B-chemical ions O at O each O dimer B-site interface I-site . O Native B-experimental_method mass I-experimental_method spectrometry I-experimental_method and O ion B-experimental_method mobility I-experimental_method analysis I-experimental_method of O iron B-chemical loading O in O EncFtnsH B-protein . O All O spectra B-evidence were O acquired O in O 100 O mM O ammonium O acetate B-chemical , O pH O 8 O . O 0 O with O a O protein O concentration O of O 5 O µM O . O ( O A O ) O Native B-experimental_method nanoelectrospray I-experimental_method ionization I-experimental_method ( O nESI B-experimental_method ) O mass B-experimental_method spectrometry I-experimental_method of O EncFtnsH B-protein at O varying O iron B-chemical concentrations O . O A1 O , O nESI B-experimental_method spectrum B-evidence of O iron B-protein_state - I-protein_state free I-protein_state EncFtnsH B-protein displays O a O charge B-evidence state I-evidence distribution O consistent O with O EncFtnsH B-protein monomer B-oligomeric_state ( O blue O circles O , O 13 O , O 194 O Da O ). O Addition O of O 100 O µM O ( O A2 O ) O and O 300 O µM O ( O A3 O ) O Fe2 B-chemical + I-chemical results O in O the O appearance O of O a O second O higher O molecular B-evidence weight I-evidence charge B-evidence state I-evidence distribution O consistent O with O a O decameric B-oligomeric_state assembly O of O EncFtnsH B-protein ( O green O circles O , O 132 O . O 6 O kDa O ). O ( O B O ) O Ion B-experimental_method mobility I-experimental_method ( I-experimental_method IM I-experimental_method )- I-experimental_method MS I-experimental_method of O the O iron B-protein_state - I-protein_state bound I-protein_state holo B-protein_state - O EncFtnsH B-protein decamer B-oligomeric_state . O Top O , O Peaks B-evidence corresponding O to O the O 22 O + O to O 26 O + O charge B-evidence states I-evidence of O a O homo B-oligomeric_state - I-oligomeric_state decameric I-oligomeric_state assembly O of O EncFtnsH B-protein are O observed O ( O 132 O . O 6 O kDa O ). O Top O Insert O , O Analysis O of O the O 24 O + O charge B-evidence state I-evidence of O the O assembly O at O m O / O z O 5528 O . O 2 O Th O . O The O theoretical O average O m O / O z O of O the O 24 O + O charge B-evidence state I-evidence with O no O additional O metals O bound O is O marked O by O a O red O line O ( O 5498 O . O 7 O Th O ); O the O observed O m O / O z O of O the O 24 O + O charge B-evidence state I-evidence indicates O that O the O EncFtnsH B-protein assembly O binds O between O 10 O ( O green O line O , O 5521 O . O 1 O Th O ) O and O 15 O Fe B-chemical ions O ( O blue O line O , O 5532 O . O 4 O Th O ) O per O decamer B-oligomeric_state . O Bottom O , O The O arrival B-evidence time I-evidence distributions I-evidence ( O ion B-evidence mobility I-evidence data I-evidence ) O of O all O ions O in O the O EncFtnsH B-protein charge B-evidence state I-evidence distribution O displayed O as O a O greyscale O heat O map O ( O linear O intensity O scale O ). O Bottom O right O , O The O arrival B-evidence time I-evidence distribution I-evidence of O the O 24 O + O charge B-evidence state I-evidence ( O dashed O blue O box O ) O has O been O extracted O and O plotted O . O The O drift B-evidence time I-evidence for O this O ion O is O shown O ( O ms O ), O along O with O the O calibrated O collision B-evidence cross I-evidence section I-evidence ( O CCS B-evidence ), O Ω B-evidence ( O nm2 O ). O In O order O to O confirm O the O assignment O of O the O oligomeric O state O of O EncFtnsH B-protein and O investigate O further O the O Fe2 B-chemical +- I-chemical dependent O assembly O , O we O used O native B-experimental_method nano I-experimental_method - I-experimental_method electrospray I-experimental_method ionization I-experimental_method ( O nESI B-experimental_method ) O and O ion B-experimental_method - I-experimental_method mobility I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O IM B-experimental_method - I-experimental_method MS I-experimental_method ). O As O described O above O , O by O recombinant B-experimental_method production I-experimental_method of O EncFtnsH B-protein in O minimal O media O we O were O able O to O limit O the O bioavailability O of O iron B-chemical . O Native B-experimental_method MS I-experimental_method analysis O of O EncFtnsH B-protein produced O in O this O way O displayed O a O charge B-evidence state I-evidence distribution O consistent O with O an O EncFtnsH B-protein monomer B-oligomeric_state ( O blue O circles O , O Figure O 7A1 O ) O with O an O average O neutral O mass O of O 13 O , O 194 O Da O , O in O agreement O with O the O predicted O mass O of O the O EncFtnsH B-protein protein O ( O 13 O , O 194 O . O 53 O Da O ). O Titration B-experimental_method with O Fe2 B-chemical + I-chemical directly O before O native B-experimental_method MS I-experimental_method analysis O resulted O in O the O appearance O of O a O new O charge B-evidence state I-evidence distribution O , O consistent O with O an O EncFtnsH B-protein decameric B-oligomeric_state assembly O (+ O 22 O to O + O 26 O ; O 132 O . O 65 O kDa O ) O ( O Figure O 7A2 O / O 3 O ). O After O instrument O optimization O , O the O mass O resolving O power O achieved O was O sufficient O to O assign O iron B-chemical - O loading O in O the O complex O to O between O 10 O and O 15 O Fe B-chemical ions O per O decamer B-oligomeric_state ( O Figure O 7B O , O inset O top O right O ), O consistent O with O the O presence B-protein_state of I-protein_state 10 O irons B-chemical in O the O FOC B-site and O the O coordination B-bond_interaction of O iron B-chemical in O the O Glu31 B-site / I-site 34 I-site - I-site site I-site occupied O by O calcium B-chemical in O the O crystal B-evidence structure I-evidence ( O Δmass B-evidence observed O ~ O 0 O . O 67 O kDa O ). O MS B-experimental_method analysis O of O EncFtnsH B-protein after O addition O of O further O Fe2 B-chemical + I-chemical did O not O result O in O iron B-chemical loading O above O this O stoichiometry O . O Therefore O , O the O extent O of O iron B-chemical binding O seen O is O limited O to O the O FOC B-site and O Glu31 B-site / I-site 34 I-site secondary I-site metal I-site binding I-site site I-site . O These O data O suggest O that O the O decameric B-oligomeric_state assembly O of O EncFtnsH B-protein does O not O accrue O iron B-chemical in O the O same O manner O as O classical B-protein_state ferritin B-protein_type , O which O is O able O to O sequester O around O 4500 O iron B-chemical ions O within O its O nanocage B-complex_assembly . O Ion B-experimental_method mobility I-experimental_method analysis I-experimental_method of O the O EncFtnsH B-protein decameric B-oligomeric_state assembly O , O collected O with O minimal O collisional O activation O , O suggested O that O it O consists O of O a O single O conformation O with O a O collision B-evidence cross I-evidence section I-evidence ( O CCS B-evidence ) O of O 58 O . O 2 O nm2 O ( O Figure O 7B O ). O This O observation O is O in O agreement O with O the O calculated O CCS B-evidence of O 58 O . O 7 O nm2derived O from O our O crystal B-evidence structure I-evidence of O the O EncFtnsH B-protein decamer B-oligomeric_state . O By O contrast O , O IM B-experimental_method - I-experimental_method MS I-experimental_method measurements O of O the O monomeric B-oligomeric_state EncFtnsH B-protein at O pH B-protein_state 8 I-protein_state . I-protein_state 0 I-protein_state under O the O same O instrumental O conditions O revealed O that O the O metal B-protein_state - I-protein_state free I-protein_state protein B-protein monomer B-oligomeric_state exists O in O a O wide O range O of O charge B-evidence states I-evidence (+ O 6 O to O + O 16 O ) O and O adopts O many O conformations O in O the O gas O phase O with O collision O cross O sections O ranging O from O 12 O nm2 O to O 26 O nm2 O ( O Figure O 7 O — O figure O supplement O 1 O ). O Thus O , O IM B-experimental_method - I-experimental_method MS I-experimental_method studies O highlight O that O higher O order O structure O in O EncFtnsH B-protein is O mediated O / O stabilized O by O metal O binding O , O an O observation O that O is O in O agreement O with O our O solution O studies O . O Taken O together O , O these O results O suggest O that O di O - O iron B-chemical binding O , O forming O the O FOC B-site in O EncFtnsH B-protein , O is O required O to O stabilize O the O 4 B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element dimer B-site interface I-site , O essentially O reconstructing O the O classical B-protein_state ferritin B-protein_type - O like O fold O ; O once O stabilized O , O these O dimers B-oligomeric_state readily O associate O as O pentamers O , O and O the O overall O assembly O adopts O the O decameric B-oligomeric_state ring O arrangement O observed O in O the O crystal B-evidence structure I-evidence . O We O subsequently O performed O gas O phase O disassembly O of O the O decameric B-oligomeric_state EncFtnsH B-protein using O collision B-experimental_method - I-experimental_method induced I-experimental_method dissociation I-experimental_method ( O CID B-experimental_method ) O tandem B-experimental_method mass I-experimental_method spectrometry I-experimental_method . O Under O the O correct O CID B-experimental_method conditions O , O protein O assemblies O can O dissociate O with O retention O of O subunit O and O ligand O interactions O , O and O thus O provide O structurally O - O informative O evidence O as O to O the O topology O of O the O original O assembly O ; O this O has O been O termed O ‘ O atypical O ’ O dissociation O . O For O EncFtnsH B-protein , O this O atypical O dissociation O pathway O was O clearly O evident O ; O CID B-experimental_method of O the O EncFtnsH B-protein decamer B-oligomeric_state resulted O in O the O appearance O of O a O dimeric B-oligomeric_state EncFtnsH B-protein subcomplex O containing O 0 O , O 1 O , O or O 2 O iron B-chemical ions O ( O Figure O 7 O — O figure O supplement O 2 O ). O In O light O of O the O crystal B-evidence structure I-evidence , O this O observation O can O be O rationalized O as O dissociation O of O the O EncFtnsH B-protein decamer B-oligomeric_state by O disruption O of O the O non B-site - I-site FOC I-site interface I-site with O at O least O partial O retention O of O the O FOC B-site interface I-site and O the O FOC B-site - O Fe B-chemical . O Thus O , O this O observation O supports O our O crystallographic O assignment O of O the O overall O topology O of O the O EncFtnsH B-protein assembly O as O a O pentameric B-oligomeric_state assembly O of O dimers B-oligomeric_state with O two O iron B-chemical ions O located O at O the O FOC B-site dimer I-site interface I-site . O In O addition O , O this O analysis O provides O evidence O that O the O overall O architecture O of O the O complex O is O consistent O in O the O crystal B-evidence , O solution O and O gas O phases O . O Ferroxidase B-protein_type activity O TEM B-experimental_method visualization O of O iron B-protein_state - I-protein_state loaded I-protein_state bacterial B-taxonomy_domain nanocompartments B-complex_assembly and O ferritin B-protein_type . O Decameric B-oligomeric_state EncFtnsH B-protein , O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly and O apoferritin B-protein_state , O at O 8 O . O 5 O µM O , O were O mixed O with O 147 O µM O , O 1 O mM O , O 1 O mM O and O 215 O µM O acidic O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical , O respectively O . O Protein O mixtures O were O incubated O at O room O temperature O for O 1 O hr O prior O to O TEM B-experimental_method analysis O with O or O without O uranyl B-chemical acetate I-chemical stain O . O ( O A O – O D O ) O Unstained O EncFtnsH B-protein , O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly , O apoferritin B-protein_state loaded B-protein_state with I-protein_state Fe2 B-chemical +, I-chemical respectively O , O with O 35 O , O 000 O x O magnification O and O scale O bars O indicate O 100 O nm O . O ( O E O ) O Protein O - O free O sample O as O a O control O . O ( O F O – O I O ) O Stained B-experimental_method EncFtnsH B-protein , O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly , O apoferritin B-protein_state loaded B-protein_state with I-protein_state Fe2 B-chemical +, I-chemical respectively O , O with O 140 O , O 000 O x O magnification O and O scale O bars O indicate O 25 O nm O . O Spectroscopic O evidence O for O the O ferroxidase B-protein_type activity O and O comparison O of O iron B-chemical loading O capacity O of O apoferritin B-protein_state , O EncFtnsH B-protein , O encapsulin B-protein , O and O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly . O ( O A O ) O Apoferritin B-protein_state ( O 10 O μM O monomer B-oligomeric_state concentration O ) O and O EncFtnsH B-protein decamer B-oligomeric_state fractions O ( O 20 O μM O monomer B-oligomeric_state concentration O , O 10 O μM O FOC B-site concentration O ) O were O incubated O with O 20 O and O 100 O μM O iron B-chemical ( O 2 O and O 10 O times O molar O equivalent O Fe2 B-chemical + I-chemical per O FOC B-site ) O and O progress B-evidence curves I-evidence of O the O oxidation O of O Fe2 B-chemical + I-chemical to O Fe3 B-chemical + I-chemical at O 315 O nm O were O recorded O in O a O spectrophotometer O . O The O background O oxidation O of O iron B-chemical at O 20 O and O 100 O μM O in O enzyme O - O free O controls O are O shown O for O reference O . O ( O B O ) O Encapsulin B-protein and O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly complexes O at O 10 O μM O asymmetric O unit O concentration O were O incubated B-experimental_method with O Fe2 B-chemical + I-chemical at O 20 O and O 100 O μM O and O progress B-evidence curves I-evidence for O iron B-chemical oxidation O at O A315 O were O measured O in O a O UV B-experimental_method / I-experimental_method visible I-experimental_method spectrophotometer I-experimental_method . O Enzyme O free O controls O for O background O oxidation O of O Fe2 B-chemical + I-chemical are O shown O for O reference O . O ( O C O ) O Histogram O of O the O iron B-chemical loading O capacity O per O biological O assembly O of O EncFtnsH B-protein , O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly and O apoferritin B-protein_state . O The O results O shown O are O for O three O technical O replicates O and O represent O the O optimal O iron B-chemical loading O by O the O complexes O after O three O hours O when O incubated O with O Fe2 B-chemical +. I-chemical In O light O of O the O identification O of O an O iron B-protein_state - I-protein_state loaded I-protein_state FOC B-site in O the O crystal B-evidence structure I-evidence of O EncFtn B-protein and O our O native B-experimental_method mass I-experimental_method spectrometry I-experimental_method data O , O we O performed O ferroxidase B-experimental_method and I-experimental_method peroxidase I-experimental_method assays I-experimental_method to O demonstrate O the O catalytic O activity O of O this O protein O . O In O addition O , O we O also O assayed O equine B-taxonomy_domain apoferritin B-protein_state , O an O example O of O a O classical B-protein_state ferritin B-protein_type enzyme O , O as O a O positive O control O . O Unlike O the O Dps B-protein_type family I-protein_type of O ferritin B-protein_type - I-protein_type like I-protein_type proteins I-protein_type , O EncFtn B-protein showed O no O peroxidase O activity O when O assayed O with O the O substrate O ortho B-chemical - I-chemical phenylenediamine I-chemical . O The O ferroxidase B-protein_type activity O of O EncFtnsH B-protein was O measured O by O recording O the O progress B-evidence curve I-evidence of O Fe2 B-chemical + I-chemical oxidation O to O Fe3 B-chemical + I-chemical at O 315 O nm O after O addition O of O 20 O and O 100 O µM O Fe2 B-chemical + I-chemical ( O 2 O and O 10 O times O molar O ratio O Fe2 B-chemical +/ I-chemical FOC B-site ). O In O both O experiments O the O rate O of O oxidation O was O faster O than O background O oxidation O of O Fe2 B-chemical + I-chemical by O molecular O oxygen B-chemical , O and O was O highest O for O 100 O µM O Fe2 B-chemical + I-chemical ( O Figure O 8A O ). O These O data O show O that O recombinant O EncFtnsH B-protein acts O as O an O active B-protein_state ferroxidase B-protein_type enzyme O . O When O compared O to O apoferritin B-protein_state , O EncFtnsH B-protein oxidized O Fe2 B-chemical + I-chemical at O a O slower O rate O and O the O reaction O did O not O run O to O completion O over O the O 1800 O s O of O the O experiment O . O Addition O of O higher O quantities O of O iron B-chemical resulted O in O the O formation O of O a O yellow O / O red O precipitate O at O the O end O of O the O reaction O . O We O also O performed O these O assays O on O purified O recombinant O encapsulin B-protein ; O which O , O when O assayed O alone O , O did O not O display O ferroxidase B-protein_type activity O above O background O Fe2 B-chemical + I-chemical oxidation O ( O Figure O 8B O ). O In O contrast O , O complexes O of O the O full B-protein_state EncFtn B-protein encapsulin B-protein nanocompartment B-complex_assembly ( O i O . O e O . O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly protein O complex O ) O displayed O ferroxidase B-protein_type activity O comparable O to O apoferritin B-protein_state without O the O formation O of O precipitates O ( O Figure O 8B O ). O We O attributed O the O precipitates O observed O in O the O EncFtnsH B-protein ferroxidase B-experimental_method assay I-experimental_method to O the O production O of O insoluble O Fe3 B-chemical + I-chemical complexes O , O which O led O us O to O propose O that O EncFtn B-protein does O not O directly O store O Fe3 B-chemical + I-chemical in O a O mineral O form O . O This O observation O agrees O with O native B-experimental_method MS I-experimental_method results O , O which O indicates O a O maximum O iron B-chemical loading O of O 10 O – O 15 O iron B-chemical ions O per O decameric B-oligomeric_state EncFtn B-protein ; O and O the O structure B-evidence , O which O does O not O possess O the O enclosed O iron B-site - I-site storage I-site cavity I-site characteristic O of O classical B-protein_state ferritins B-protein_type and O Dps B-protein_type family I-protein_type proteins I-protein_type that O can O directly O accrue O mineralized O Fe3 B-chemical + I-chemical within O their O nanocompartment B-complex_assembly structures B-evidence . O To O analyze O the O products O of O these O reactions O and O determine O whether O the O EncFtn B-protein and O encapsulin B-protein were O able O to O store O iron B-chemical in O a O mineral O form O , O we O performed O TEM B-experimental_method on O the O reaction O mixtures O from O the O ferroxidase B-experimental_method assay I-experimental_method . O The O EncFtnsH B-protein reaction O mixture O showed O the O formation O of O large O , O irregular O electron O - O dense O precipitates O ( O Figure O 8 O — O figure O supplement O 1A O ). O A O similar O distribution O of O particles O was O observed O after O addition O of O Fe2 B-chemical + I-chemical to O the O encapsulin B-protein protein O ( O Figure O 8 O — O figure O supplement O 1B O ). O In O contrast O , O addition O of O Fe2 B-chemical + I-chemical to O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly resulted O in O small O , O highly O regular O , O electron O dense O particles O of O approximately O 5 O nm O in O diameter O ( O Figure O 8 O — O figure O supplement O 1C O ); O we O interpret O these O observations O as O controlled O mineralization O of O iron B-chemical within O the O nanocompartment B-complex_assembly . O Addition O of O Fe2 B-chemical + I-chemical to O apoferritin B-protein_state resulted O in O a O mixture O of O large O particles O and O small O (~ O 2 O nm O ) O particles O consistent O with O partial O mineralization O by O the O ferritin B-protein_type and O some O background O oxidation O of O the O iron B-chemical ( O Figure O 8 O — O figure O supplement O 1D O ). O Negative B-experimental_method stain I-experimental_method TEM I-experimental_method of O these O samples O revealed O that O upon O addition O of O iron B-chemical , O the O EncFtnsH B-protein protein O showed O significant O aggregation O ( O Figure O 8 O — O figure O supplement O 1F O ); O while O the O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly system O , O and O apoferritin B-protein_state are O present O as O distinct O nanocompartments B-complex_assembly without O significant O protein O aggregation O ( O Figure O 8 O — O figure O supplement O 1G O – O I O ). O Iron B-chemical storage O in O encapsulin B-protein nanocompartments B-complex_assembly The O results O of O the O ferroxidase B-experimental_method assay I-experimental_method and O micrographs B-evidence of O the O reaction O products O suggest O that O the O oxidation O and O mineralization O function O of O the O classical B-protein_state ferritins B-protein_type are O split O between O the O EncFtn B-protein and O encapsulin B-protein proteins O , O with O the O EncFtn B-protein acting O as O a O ferroxidase B-protein_type and O the O encapsulin B-protein shell B-structure_element providing O an O environment O and O template O for O iron B-chemical mineralization O and O storage O . O To O investigate O this O further O , O we O added O Fe2 B-chemical + I-chemical at O various O concentrations O to O samples O of O apo B-protein_state - O ferritin B-protein_type , O EncFtn B-protein , O isolated O encapsulin B-protein , O and O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly protein O complex O , O and O subjected O these O samples O to O a O ferrozine B-experimental_method assay I-experimental_method to O quantify O the O amount O of O iron B-chemical associated O with O the O proteins O after O three O hours O of O incubation O . O The O maximum O iron B-chemical loading O capacity O of O these O systems O was O calculated O as O the O quantity O of O iron B-chemical per O biological O assembly O ( O Figure O 8C O ). O In O this O assay O , O the O EncFtnsH B-protein decamer B-oligomeric_state binds O a O maximum O of O around O 48 O iron B-chemical ions O before O excess O iron B-chemical induces O protein O precipitation O . O The O encapsulin B-protein shell B-structure_element protein O can O sequester O about O 2200 O iron B-chemical ions O before O significant O protein O loss O occurs O , O and O the O reconstituted O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly sequestered O about O 4150 O iron B-chemical ions O . O This O latter O result O is O significantly O more O than O the O apoferritin B-protein_state used O in O our O assay O , O which O sequesters O approximately O 570 O iron B-chemical ions O in O this O assay O ( O Figure O 8C O , O Table O 5 O ). O Consideration O of O the O functional O oligomeric O states O of O these O proteins O , O where O EncFtn B-protein is O a O decamer B-oligomeric_state and O encapsulin B-protein forms O an O icosahedral B-protein_state cage B-complex_assembly , O and O estimation O of O the O iron B-chemical loading O capacity O of O these O complexes O gives O insight O into O the O role O of O the O two O proteins O in O iron B-chemical storage O and O mineralization O . O EncFtn B-protein decamers B-oligomeric_state bind O up O to O 48 O iron B-chemical ions O ( O Figure O 8C O ), O which O is O significantly O higher O than O the O stoichiometry O of O fifteen O metal O ions O visible O in O the O FOC B-site and O E31 B-site / I-site 34 I-site - I-site site I-site of O the O crystal B-evidence structure I-evidence of O the O EncFtnsH B-protein decamer B-oligomeric_state and O our O MS B-experimental_method analysis O . O The O discrepancy O between O these O solution B-experimental_method measurements I-experimental_method and O our O MS B-experimental_method analysis O may O indicate O that O there O are O additional O metal B-site - I-site binding I-site sites I-site on O the O interior O channel B-site and O exterior O faces O of O the O protein O ; O this O is O consistent O with O our O identification O of O a O number O of O weak O metal B-site - I-site binding I-site sites I-site at O the O surface O of O the O protein O in O the O crystal B-evidence structure I-evidence ( O Figure O 5D O ). O These O observations O are O consistent O with O hydrated O Fe2 B-chemical + I-chemical ions O being O channeled O to O the O active B-site site I-site from O the O E31 B-site / I-site 34 I-site - I-site site I-site and O the O subsequent O exit O of O Fe3 B-chemical + I-chemical products O on O the O outer O surface O , O as O is O seen O in O other O ferritin B-protein_type family O proteins O . O While O the O isolated O encapsulin B-protein shell B-structure_element does O not O display O any O ferroxidase B-protein_type activity O , O it O binds O around O 2200 O iron B-chemical ions O in O our O assay O ( O Table O 5 O ). O This O implies O that O the O shell B-structure_element can O bind O a O significant O amount O of O iron B-chemical on O its O outer O and O inner O surfaces O . O While O the O maximum O reported O loading O capacity O of O classical B-protein_state ferritins B-protein_type is O approximately O 4500 O iron B-chemical ions O , O in O our O assay O system O we O were O only O able O to O load O apoferritin B-protein_state with O around O 570 O iron B-chemical ions O . O However O , O the O recombinant O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly was O able O to O bind O over O 4100 O iron B-chemical ions O in O the O same O time O period O , O over O seven O times O the O amount O seen O for O the O apoferritin B-protein_state . O We O note O we O do O not O reach O the O experimental O maximum O iron B-chemical loading O for O apoferritin B-protein_state and O therefore O the O total O iron B-chemical - O loading O capacity O of O our O system O may O be O significantly O higher O than O in O this O experimental O system O . O Taken O together O , O our O data O show O that O EncFtn B-protein can O catalytically O oxidize O Fe2 B-chemical + I-chemical to O Fe3 B-chemical +; I-chemical however O , O iron B-chemical binding O in O EncFtn B-protein is O limited O to O the O FOC B-site and O several O surface O metal B-site binding I-site sites I-site . O In O contrast O , O the O encapsulin B-protein protein O displays O no O catalytic O activity O , O but O has O the O ability O to O bind O a O considerable O amount O of O iron B-chemical . O Finally O , O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly complex O retains O the O catalytic O activity O of O EncFtn B-protein , O and O sequesters O iron B-chemical within O the O encapsulin B-protein shell B-structure_element at O a O higher O level O than O the O isolated O components O of O the O system O , O and O at O a O significantly O higher O level O than O the O classical B-protein_state ferritins B-protein_type . O Furthermore O , O our O recombinant O nanocompartments B-complex_assembly may O not O have O the O physiological O subunit O stoichiometry O , O and O the O iron B-chemical - O loading O capacity O of O native B-protein_state nanocompartments B-complex_assembly is O potentially O much O higher O than O the O level O we O have O observed O . O Mutagenesis B-experimental_method of O the O EncFtnsHferroxidase B-protein center B-site Purification O of O recombinant O R B-species . I-species rubrum I-species EncFtnsH B-protein FOC B-site mutants B-protein_state . O Single O mutants B-protein_state E32A B-mutant , O E62A B-mutant , O and O H65A B-mutant of O EncFtnsH B-protein produced O from O E B-species . I-species coli I-species BL21 I-species ( I-species DE3 I-species ) I-species cells O grown O in O MM B-experimental_method and O MM B-experimental_method supplemented O with O iron B-chemical were O subjected O to O Superdex O 200 O size B-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O ( O A O ) O Gel B-evidence - I-evidence filtration I-evidence chromatogram I-evidence of O the O E32A B-mutant mutant B-protein_state form O of O EncFtnsH B-protein resulted O in O an O elution B-evidence profile I-evidence with O a O majority O of O the O protein O eluting O as O the O decameric B-oligomeric_state form O of O the O protein O and O a O small O proportion O of O monomer B-oligomeric_state . O ( O B O ) O Gel B-experimental_method - I-experimental_method filtration I-experimental_method chromatograhy I-experimental_method of O the O E62A B-mutant mutant B-protein_state form O of O EncFtnsH B-protein resulted O in O an O elution B-evidence profile I-evidence with O a O single O major O decameric B-oligomeric_state peak O . O ( O C O ) O Gel B-experimental_method - I-experimental_method filtration I-experimental_method chromatography I-experimental_method of O the O H65A B-mutant mutant B-protein_state form O of O EncFtnsH B-protein resulted O in O a O single O peak O corresponding O to O the O protein O monomer B-oligomeric_state . O To O investigate O the O structural O and O biochemical O role O played O by O the O metal B-site binding I-site residues I-site in O the O di B-site - I-site iron I-site FOC I-site of O EncFtnsH B-protein we O produced O alanine B-experimental_method mutations I-experimental_method in O each O of O these O residues O : O Glu32 B-residue_name_number , O Glu62 B-residue_name_number , O and O His65 B-residue_name_number . O These O EncFtnsH B-protein mutants B-protein_state were O produced O in O E B-species . I-species coli I-species cells O grown O in O MM B-experimental_method , O both O in O the O absence B-protein_state and O presence B-protein_state of I-protein_state additional O iron B-chemical . O The O E32A B-mutant and O E62A B-mutant mutants B-protein_state eluted O from O SEC B-experimental_method at O a O volume O consistent O with O the O decameric B-oligomeric_state form O of O EncFtnsH B-protein , O with O a O small O proportion O of O monomer B-oligomeric_state ; O the O H65A B-mutant mutant B-protein_state eluted O at O a O volume O consistent O with O the O monomeric B-oligomeric_state form O of O EncFtnsH B-protein ( O Figure O 9 O ). O For O all O of O the O mutants B-protein_state studied O , O no O change O in O oligomerization O state O was O apparent O upon O addition O of O Fe2 B-chemical + I-chemical in O vitro O . O Native B-experimental_method mass I-experimental_method spectrometry I-experimental_method of O EncFtnsH B-protein mutants B-protein_state . O All O spectra B-evidence were O acquired O in O 100 O mM O ammonium O acetate B-chemical , O pH O 8 O . O 0 O with O a O protein O concentration O of O 5 O µM O . O ( O A O ) O Wild B-protein_state - I-protein_state type I-protein_state EncFtnsH B-protein in O the O absence B-protein_state of I-protein_state iron B-chemical displays O a O charge B-evidence state I-evidence distribution I-evidence consistent O with O a O monomer B-oligomeric_state ( O see O also O Figure O 8 O ). O ( O B O ) O E32A B-mutant EncFtnsH B-protein displays O a O charge B-evidence states I-evidence consistent O with O a O decamer B-oligomeric_state ( O green O circles O ); O a O minor O species O , O consistent O with O the O monomer B-oligomeric_state of O E32A B-mutant mutant B-protein_state is O also O observed O ( O blue O circles O ). O ( O C O ) O E62A B-mutant EncFtnsH B-protein displays O charge B-evidence states I-evidence consistent O with O a O decamer B-oligomeric_state ( O green O circles O ). O ( O D O ) O H65A B-mutant EncFtnsH B-protein displays O charge B-evidence states I-evidence consistent O with O both O monomer B-oligomeric_state ( O blue O circles O ) O and O dimer B-oligomeric_state ( O purple O circles O ). O In O addition O to O SEC B-experimental_method studies O , O native B-experimental_method mass I-experimental_method spectrometry I-experimental_method of O the O apo B-protein_state - O EncFtnsH B-protein mutants B-protein_state was O performed O and O compared O with O the O wild B-protein_state - I-protein_state type I-protein_state apo B-protein_state - O EncFtnsH B-protein protein O ( O Figure O 10 O ). O As O described O above O , O the O apo B-protein_state - O EncFtnsH B-protein has O a O charge B-evidence state I-evidence distribution O consistent O with O an O unstructured B-protein_state monomer B-oligomeric_state , O and O decamer B-oligomeric_state formation O is O only O initiated O upon O addition O of O ferrous O iron B-chemical . O Both O the O E32A B-mutant mutant B-protein_state and O E62A B-mutant mutant B-protein_state displayed O charge B-evidence state I-evidence distributions O consistent O with O decamers B-oligomeric_state , O even O in O the O absence B-protein_state of I-protein_state Fe2 B-chemical +. I-chemical This O gas O - O phase O observation O is O consistent O with O SEC B-experimental_method measurements O , O which O indicate O both O of O these O variants O were O also O decamers B-oligomeric_state in O solution O . O Thus O it O seems O that O these O mutations O allow O the O decamer B-oligomeric_state to O form O in O the O absence B-protein_state of I-protein_state iron B-chemical in O the O FOC B-site . O In O contrast O to O the O glutamic B-residue_name acid I-residue_name mutants B-protein_state , O MS B-experimental_method analysis O of O the O H65A B-mutant mutant B-protein_state is O similar O to O wild B-protein_state - I-protein_state type I-protein_state apo B-protein_state - O EncFtnsH B-protein and O is O present O as O a O monomer B-oligomeric_state ; O interestingly O a O minor O population O of O dimeric B-oligomeric_state H65A B-mutant was O also O observed O . O We O propose O that O the O observed O differences O in O the O oligomerization O state O of O the O E32A B-mutant and O E62A B-mutant mutants B-protein_state compared O to O wild B-protein_state - I-protein_state type I-protein_state are O due O to O the O changes O in O the O electrostatic O environment O within O the O FOC B-site . O At O neutral B-protein_state pH I-protein_state the O glutamic B-residue_name acid I-residue_name residues O are O negatively O charged O , O while O the O histidine B-residue_name residues O are O predominantly O in O their O uncharged O state O . O In O the O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O EncFtnsH B-protein this O leads O to O electrostatic O repulsion O between O subunits B-structure_element in O the O absence B-protein_state of I-protein_state iron B-chemical . O Coordination B-bond_interaction of O Fe2 B-chemical + I-chemical in O this O site O stabilizes O the O dimer B-oligomeric_state and O reconstitutes O the O active B-protein_state FOC B-site . O The O geometric O arrangement O of O Glu32 B-residue_name_number and O Glu62 B-residue_name_number in O the O FOC B-site explains O their O behavior O in O solution O and O the O gas O phase O , O where O they O both O favor O the O formation O of O decamers B-oligomeric_state due O to O the O loss O of O a O repulsive O negative O charge O . O The O FOC B-site in O the O H65A B-mutant mutant B-protein_state is O destabilized O through O the O loss B-protein_state of I-protein_state this O metal B-site coordinating I-site residue I-site and O potential O positive O charge O carrier O , O thus O favoring O the O monomer B-oligomeric_state in O solution O and O the O gas O phase O . O Data B-evidence collection I-evidence and I-evidence refinement I-evidence statistics I-evidence . O WT B-protein_state E32A B-mutant E62A B-mutant H65A B-mutant Data O collection O Wavelength O ( O Å O ) O 1 O . O 74 O 1 O . O 73 O 1 O . O 73 O 1 O . O 74 O Resolution O range O ( O Å O ) O 49 O . O 63 O - O 2 O . O 06 O ( O 2 O . O 10 O - O 2 O . O 06 O ) O 48 O . O 84 O - O 2 O . O 59 O ( O 2 O . O 683 O - O 2 O . O 59 O ) O 48 O . O 87 O - O 2 O . O 21 O ( O 2 O . O 29 O - O 2 O . O 21 O ) O 48 O . O 86 O - O 2 O . O 97 O ( O 3 O . O 08 O - O 2 O . O 97 O ) O Space O group O P O 1 O 21 O 1 O P O 1 O 21 O 1 O P O 1 O 21 O 1 O P O 1 O 21 O 1 O Unit O cell O ( O Å O ) O a O b O c O β O (°) O 98 O . O 18 O 120 O . O 53 O 140 O . O 30 O 95 O . O 36 O 97 O . O 78 O 120 O . O 28 O 140 O . O 53 O 95 O . O 41 O 98 O . O 09 O 120 O . O 23 O 140 O . O 36 O 95 O . O 50 O 98 O . O 03 O 120 O . O 29 O 140 O . O 43 O 95 O . O 39 O Total O reflections O 1 O , O 264 O , O 922 O ( O 41 O , O 360 O ) O 405 O , O 488 O ( O 36 O , O 186 O ) O 1 O , O 069 O , O 345 O ( O 95 O , O 716 O ) O 323 O , O 853 O ( O 32 O , O 120 O ) O Unique O reflections O 197 O , O 873 O ( O 8 O , O 766 O ) O 100 O , O 067 O ( O 9 O , O 735 O ) O 162 O , O 379 O ( O 15 O , O 817 O ) O 66 O , O 658 O ( O 6 O , O 553 O ) O Multiplicity O 6 O . O 4 O ( O 4 O . O 7 O ) O 4 O . O 1 O ( O 3 O . O 7 O ) O 6 O . O 6 O ( O 6 O . O 1 O ) O 4 O . O 9 O ( O 4 O . O 9 O ) O Anomalous O multiplicity O 3 O . O 2 O ( O 2 O . O 6 O ) O N O / O A O N O / O A O N O / O A O Completeness O (%) O 99 O . O 2 O ( O 88 O . O 6 O ) O 99 O . O 0 O ( O 97 O . O 0 O ) O 100 O ( O 97 O . O 0 O ) O 100 O ( O 99 O . O 0 O ) O Anomalous O completeness O (%) O 96 O . O 7 O ( O 77 O . O 2 O ) O N O / O A O N O / O A O N O / O A O Mean O I O / O sigma O ( O I O ) O 10 O . O 6 O ( O 1 O . O 60 O ) O 8 O . O 46 O ( O 1 O . O 79 O ) O 13 O . O 74 O ( O 1 O . O 80 O ) O 8 O . O 09 O ( O 1 O . O 74 O ) O Wilson O B O - O factor O 26 O . O 98 O 40 O . O 10 O 33 O . O 97 O 52 O . O 20 O Rmerge O 0 O . O 123 O ( O 0 O . O 790 O ) O 0 O . O 171 O ( O 0 O . O 792 O ) O 0 O . O 0979 O ( O 1 O . O 009 O ) O 0 O . O 177 O ( O 0 O . O 863 O ) O Rmeas O 0 O . O 147 O ( O 0 O . O 973 O ) O 0 O . O 196 O ( O 0 O . O 923 O ) O 0 O . O 1064 O ( O 1 O . O 107 O ) O 0 O . O 199 O ( O 0 O . O 966 O ) O CC1 O / O 2 O 0 O . O 995 O ( O 0 O . O 469 O ) O 0 O . O 985 O ( O 0 O . O 557 O ) O 0 O . O 998 O ( O 0 O . O 642 O ) O 0 O . O 989 O ( O 0 O . O 627 O ) O CC O * O 0 O . O 999 O ( O 0 O . O 846 O ) O 0 O . O 996 O ( O 0 O . O 846 O ) O 0 O . O 999 O ( O 0 O . O 884 O ) O 0 O . O 997 O ( O 0 O . O 878 O ) O Image O DOI O 10 O . O 7488 O / O ds O / O 1342 O 10 O . O 7488 O / O ds O / O 1419 O 10 O . O 7488 O / O ds O / O 1420 O 10 O . O 7488 O / O ds O / O 1421 O Refinement O Rwork O 0 O . O 171 O ( O 0 O . O 318 O ) O 0 O . O 183 O ( O 0 O . O 288 O ) O 0 O . O 165 O ( O 0 O . O 299 O ) O 0 O . O 186 O ( O 0 O . O 273 O ) O Rfree O 0 O . O 206 O ( O 0 O . O 345 O ) O 0 O . O 225 O ( O 0351 O ) O 0 O . O 216 O ( O 0 O . O 364 O ) O 0 O . O 237 O ( O 0 O . O 325 O ) O Number O of O non O - O hydrogen O atoms O 23 O , O 222 O 22 O , O 366 O 22 O , O 691 O 22 O , O 145 O macromolecules O 22 O , O 276 O 22 O , O 019 O 21 O , O 965 O 22 O , O 066 O ligands O 138 O 8 O 24 O 74 O water B-chemical 808 O 339 O 702 O 5 O Protein O residues O 2 O , O 703 O 2 O , O 686 O 2 O , O 675 O 2 O , O 700 O RMS O ( O bonds O ) O ( O Å O ) O 0 O . O 012 O 0 O . O 005 O 0 O . O 011 O 0 O . O 002 O RMS O ( O angles O ) O (°) O 1 O . O 26 O 0 O . O 58 O 1 O . O 02 O 0 O . O 40 O Ramachandran O favored O (%) O 100 O 99 O 100 O 99 O Ramachandran O allowed O (%) O 0 O 1 O 0 O 1 O Ramachandran O outliers O (%) O 0 O 0 O 0 O 0 O Clash O score O 1 O . O 42 O 1 O . O 42 O 1 O . O 79 O 0 O . O 97 O Average O B O - O factor O ( O Å2 O ) O 33 O . O 90 O 42 O . O 31 O 41 O . O 34 O 47 O . O 68 O macromolecules O 33 O . O 80 O 42 O . O 35 O 41 O . O 31 O 47 O . O 60 O ligands O 40 O . O 40 O 72 O . O 80 O 65 O . O 55 O 72 O . O 34 O solvent O 36 O . O 20 O 38 O . O 95 O 41 O . O 46 O 33 O . O 85 O PDB O ID O 5DA5 O 5L89 O 5L8B O 5L8G O Iron B-chemical loading O capacity O of O EncFtn B-protein , O encapsulin B-protein and O ferritin B-protein_type . O Protein O samples O ( O at O 8 O . O 5 O µM O ) O including O decameric B-oligomeric_state EncFtnsH B-protein , O encapsulin B-protein , O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly and O apoferritin B-protein_state were O mixed O with O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical ( O in O 0 O . O 1 O % O ( O v O / O v O ) O HCl B-chemical ) O of O different O concentrations O in O 50 O mM O Tris O - O HCl O ( O pH O 8 O . O 0 O ), O 150 O mM O NaCl B-chemical buffer O at O room O temperature O for O 3 O hrs O in O the O air O . O Protein O - O Fe B-chemical mixtures O were O centrifuged O at O 13 O , O 000 O x O g O to O remove O precipitated O material O and O desalted O prior O to O the O Fe B-chemical and O protein O content O analysis O by O ferrozine B-experimental_method assay I-experimental_method and O BCA B-experimental_method microplate I-experimental_method assay I-experimental_method , O respectively O . O Fe B-chemical to O protein O ratio O was O calculated O to O indicate O the O Fe B-chemical binding O capacity O of O the O protein O . O Protein O stability O was O compromised O at O high O iron B-chemical concentrations O ; O therefore O , O the O highest O iron B-chemical loading O with O the O least O protein O precipitation O was O used O to O derive O the O maximum O iron B-chemical loading O capacity O per O biological O assembly O ( O underlined O and O highlighted O in O bold O ). O The O biological O unit O assemblies O are O a O decamer B-oligomeric_state for O EncFtnsH B-protein , O a O 60mer B-oligomeric_state for O encapsulin B-protein , O a O 60mer B-oligomeric_state of O encapsulin B-protein loaded B-protein_state with I-protein_state 12 O copies O of O decameric B-oligomeric_state EncFtn B-protein in O the O complex O , O and O 24mer B-oligomeric_state for O horse B-taxonomy_domain spleen O apoferritin B-protein_state . O Errors O are O quoted O as O the O standard O deviation O of O three O technical O repeats O in O both O the O ferrozine B-experimental_method and I-experimental_method BCA I-experimental_method microplate I-experimental_method assays I-experimental_method . O The O proteins O used O in O Fe B-chemical loading O experiment O came O from O a O single O preparation O . O Protein O sample O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical loading O ( O µM O ) O Fe B-chemical detected O by O ferrozine B-experimental_method assay I-experimental_method ( O µM O ) O Protein O detected O by O BCA B-experimental_method microplate I-experimental_method assay I-experimental_method ( O µM O ) O Fe B-chemical / O monomeric O protein O Maximum O Fe B-chemical loading O per O biological O assembly O unit O 8 O . O 46 O µM O EncFtnsH B-protein - O 10mer B-oligomeric_state 0 O 4 O . O 73 O ± O 2 O . O 32 O 5 O . O 26 O ± O 0 O . O 64 O 0 O . O 90 O ± O 0 O . O 44 O 39 O . O 9 O 9 O . O 93 O ± O 1 O . O 20 O 5 O . O 36 O ± O 0 O . O 69 O 1 O . O 85 O ± O 0 O . O 22 O 84 O 17 O . O 99 O ± O 2 O . O 01 O 4 O . O 96 O ± O 0 O . O 04 O 3 O . O 63 O ± O 0 O . O 41 O 147 O 21 O . O 09 O ± O 1 O . O 94 O 4 O . O 44 O ± O 0 O . O 21 O 4 O . O 75 O ± O 0 O . O 44 O 48 O ± O 4 O 224 O 28 O . O 68 O ± O 0 O . O 30 O 3 O . O 73 O ± O 0 O . O 53 O 7 O . O 68 O ± O 0 O . O 08 O 301 O 11 O . O 27 O ± O 1 O . O 10 O 2 O . O 50 O ± O 0 O . O 05 O 4 O . O 51 O ± O 0 O . O 44 O 8 O . O 50 O µM O Encapsulin B-protein 0 O - O 1 O . O 02 O ± O 0 O . O 54 O 8 O . O 63 O ± O 0 O . O 17 O - O 0 O . O 12 O ± O 0 O . O 06 O 224 O 62 O . O 24 O ± O 2 O . O 49 O 10 O . O 01 O ± O 0 O . O 58 O 6 O . O 22 O ± O 0 O . O 35 O 301 O 67 O . O 94 O ± O 3 O . O 15 O 8 O . O 69 O ± O 0 O . O 42 O 7 O . O 81 O ± O 0 O . O 36 O 450 O 107 O . O 96 O ± O 8 O . O 88 O 8 O . O 50 O ± O 0 O . O 69 O 12 O . O 71 O ± O 1 O . O 05 O 700 O 97 O . O 51 O ± O 3 O . O 19 O 7 O . O 26 O ± O 0 O . O 20 O 13 O . O 44 O ± O 0 O . O 44 O 1000 O 308 O . O 63 O ± O 2 O . O 06 O 8 O . O 42 O ± O 0 O . O 34 O 36 O . O 66 O ± O 0 O . O 24 O 2199 O ± O 15 O 1500 O 57 O . O 09 O ± O 0 O . O 90 O 1 O . O 44 O ± O 0 O . O 21 O 39 O . O 77 O ± O 0 O . O 62 O 2000 O 9 O . O 2 O ± O 1 O . O 16 O 0 O . O 21 O ± O 0 O . O 14 O 44 O . O 73 O ± O 5 O . O 63 O 8 O . O 70 O µM O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly 0 O 3 O . O 31 O ± O 1 O . O 57 O 6 O . O 85 O ± O 0 O . O 07 O 0 O . O 48 O ± O 0 O . O 23 O 224 O 116 O . O 27 O ± O 3 O . O 74 O 7 O . O 63 O ± O 0 O . O 12 O 15 O . O 25 O ± O 0 O . O 49 O 301 O 132 O . O 86 O ± O 4 O . O 03 O 6 O . O 66 O ± O 0 O . O 31 O 19 O . O 96 O ± O 0 O . O 61 O 450 O 220 O . O 57 O ± O 27 O . O 33 O 6 O . O 12 O ± O 1 O . O 07 O 36 O . O 06 O ± O 4 O . O 47 O 700 O 344 O . O 03 O ± O 40 O . O 38 O 6 O . O 94 O ± O 0 O . O 17 O 49 O . O 58 O ± O 5 O . O 82 O 1000 O 496 O . O 00 O ± O 38 O . O 48 O 7 O . O 19 O ± O 0 O . O 08 O 68 O . O 94 O ± O 5 O . O 35 O 4137 O ± O 321 O 1500 O 569 O . O 98 O ± O 73 O . O 63 O 5 O . O 73 O ± O 0 O . O 03 O 99 O . O 44 O ± O 12 O . O 84 O 2000 O 584 O . O 30 O ± O 28 O . O 33 O 4 O . O 88 O ± O 0 O . O 22 O 119 O . O 62 O ± O 5 O . O 80 O 8 O . O 50 O µM O Apoferritin B-protein_state 0 O 3 O . O 95 O ± O 2 O . O 26 O 9 O . O 37 O ± O 0 O . O 24 O 0 O . O 42 O ± O 0 O . O 25 O 42 O . O 5 O 10 O . O 27 O ± O 1 O . O 12 O 8 O . O 27 O ± O 0 O . O 30 O 1 O . O 24 O ± O 0 O . O 18 O 212 O . O 5 O 44 O . O 48 O ± O 2 O . O 76 O 7 O . O 85 O ± O 0 O . O 77 O 5 O . O 67 O ± O 0 O . O 83 O 637 O . O 5 O 160 O . O 93 O ± O 4 O . O 27 O 6 O . O 76 O ± O 0 O . O 81 O 23 O . O 79 O ± O 3 O . O 12 O 571 O ± O 75 O 1275 O 114 O . O 92 O ± O 3 O . O 17 O 3 O . O 84 O ± O 0 O . O 30 O 29 O . O 91 O ± O 2 O . O 95 O 1700 O 91 O . O 40 O ± O 3 O . O 37 O 3 O . O 14 O ± O 0 O . O 35 O 29 O . O 13 O ± O 3 O . O 86 O To O understand O the O impact O of O the O mutants B-protein_state on O the O organization O and O metal O binding O of O the O FOC B-site , O we O determined O the O X B-evidence - I-evidence ray I-evidence crystal I-evidence structures I-evidence of O each O of O the O EncFtnsH B-protein mutants B-protein_state ( O See O Table O 4 O for O data O collection O and O refinement O statistics O ). O The O crystal O packing O of O all O of O the O mutants B-protein_state in O this O study O is O essentially O isomorphous O to O the O EncFtnsH B-protein structure B-evidence . O All O of O the O mutants B-protein_state display O the O same O decameric B-oligomeric_state arrangement O in O the O crystals B-evidence as O the O EncFtnsH B-protein structure B-evidence , O and O the O monomers B-oligomeric_state superimpose B-experimental_method with O an O average O RMSDCα B-evidence of O less O than O 0 O . O 2 O Å O . O FOC B-site dimer B-site interface I-site of O EncFtnsH B-mutant - I-mutant E32A I-mutant mutant B-protein_state . O ( O A O ) O Wall O - O eyed O stereo O view O of O the O metal B-site - I-site binding I-site dimerization I-site interface I-site of O EncFtnsH B-mutant - I-mutant E32A I-mutant . O Protein O residues O are O shown O as O sticks O with O blue O and O green O carbons O for O the O different O subunits B-structure_element . O The O 2mFo B-evidence - I-evidence DFc I-evidence electron I-evidence density I-evidence map I-evidence is O shown O as O a O blue O mesh O contoured O at O 1 O . O 5 O σ O . O ( O B O ) O Views O of O the O FOC B-site of O the O EncFtnsH B-mutant - I-mutant E32Amutant I-mutant . O FOC B-site dimer I-site interface I-site of O EncFtnsH B-mutant - I-mutant E62A I-mutant mutant B-protein_state . O ( O A O ) O Wall O - O eyed O stereo O view O of O the O metal B-site - I-site binding I-site dimerization I-site interface I-site of O EncFtnsH B-mutant - I-mutant E62A I-mutant . O The O single O coordinated O calcium B-chemical ion O is O shown O as O a O grey O sphere O . O ( O B O ) O Views O of O the O FOC B-site of O the O EncFtnsH B-mutant - I-mutant E62A I-mutant mutant B-protein_state . O FOC B-site dimer I-site interface I-site of O EncFtnsH B-mutant - I-mutant H65A I-mutant mutant B-protein_state . O ( O A O ) O Wall O - O eyed O stereo O view O of O the O metal B-site - I-site binding I-site dimerization I-site interface I-site of O EncFtnsH B-mutant - I-mutant H65A I-mutant . O The O coordinated O calcium B-chemical ions O are O shown O as O a O grey O spheres O with O coordination B-bond_interaction distances O in O the O FOC B-site highlighted O with O yellow O dashed O lines O . O ( O B O ) O Views O of O the O FOC B-site of O the O EncFtnsH B-mutant - I-mutant H65A I-mutant mutant B-protein_state . O Comparison O of O the O EncFtnsH B-protein FOC B-site mutants B-protein_state vs O wild B-protein_state type I-protein_state . O The O structures B-evidence of O the O three O EncFtnsH B-protein mutants B-protein_state were O all O determined O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method . O The O E32A B-mutant , O E62A B-mutant and O H65A B-mutant mutants B-protein_state were O crystallized B-experimental_method in O identical O conditions O to O the O wild B-protein_state type I-protein_state . O EncFtnsH B-protein structure B-evidence and O were O essentially O isomorphous O in O terms O of O their O unit O cell O dimensions O . O The O FOC B-site residues O of O the O mutants B-protein_state and O native B-protein_state EncFtnsH B-protein structures B-evidence are O shown O as O sticks O with O coordinated B-bond_interaction Fe2 B-chemical + I-chemical as O orange O and O Ca2 B-chemical + I-chemical as O grey O spheres O and O are O colored O as O follows O : O wild B-protein_state type I-protein_state , O grey O ; O E32A B-mutant , O pink O ; O E62A B-mutant , O green O ; O H65A B-mutant , O blue O . O Of O the O mutants B-protein_state , O only O H65A B-mutant has O any O coordinated B-bond_interaction metal O ions O , O which O appear O to O be O calcium B-chemical ions O from O the O crystallization O condition O . O The O overall O organization O of O FOC B-site residues O is O retained O in O the O mutants B-protein_state , O with O almost O no O backbone O movements O . O Significant O differences O center O around O Tyr39 B-residue_name_number , O which O moves O to O coordinate B-bond_interaction the O bound B-protein_state calcium B-chemical ions O in O the O H65A B-mutant mutant B-protein_state ; O and O Glu32 B-residue_name_number , O which O moves O away O from O the O metal O ions O in O this O structure B-evidence . O Close O inspection O of O the O region O of O the O protein O around O the O FOC B-site in O each O of O the O mutants B-protein_state highlights O their O effect O on O metal O binding O ( O Figure O 11 O and O Figure O 11 O — O figure O supplement O 1 O – O 3 O ). O In O the O E32A B-mutant mutant B-protein_state the O position O of O the O side O chains O of O the O remaining O iron B-site coordinating I-site residues I-site in O the O FOC B-site is O essentially O unchanged O , O but O the O absence B-protein_state of I-protein_state the O axial O - O metal O coordinating B-bond_interaction ligand O provided O by O the O Glu32 B-residue_name_number side O chain O abrogates B-protein_state metal I-protein_state binding I-protein_state in O this O site O . O The O Glu31 B-site / I-site 34 I-site - I-site site I-site also O lacks B-protein_state metal B-chemical , O with O the O side O chain O of O Glu31 B-residue_name_number rotated O by O 180 O ° O at O the O Cβ O in O the O absence B-protein_state of I-protein_state metal B-chemical ( O Figure O 11 O — O figure O supplement O 1 O ). O The O E62A B-mutant mutant B-protein_state has O a O similar O effect O on O the O FOC B-site to O the O E32A B-mutant mutant B-protein_state , O however O the O entry B-site site I-site still O has O a O calcium B-chemical ion O coordinated B-bond_interaction between O residues O Glu31 B-residue_name_number and O Glu34 B-residue_name_number ( O Figure O 11 O — O figure O supplement O 2 O ). O The O H65A B-mutant mutant B-protein_state diverges O significantly O from O the O wild B-protein_state type I-protein_state in O the O position O of O the O residues O Glu32 B-residue_name_number and O Tyr39 B-residue_name_number in O the O FOC B-site . O E32 B-residue_name_number appears O in O either O the O original O orientation O as O the O wild B-protein_state type I-protein_state and O coordinates B-bond_interaction Ca2 B-chemical + I-chemical in O this O position O , O or O it O is O flipped O by O 180 O ° O at O the O Cβ O , O moving O away O from O the O coordinated B-bond_interaction calcium B-chemical ion O in O the O FOC B-site . O Tyr39 B-residue_name_number moves O closer O to O Ca2 B-chemical + I-chemical compared O to O the O wild B-protein_state - I-protein_state type I-protein_state and O coordinates B-bond_interaction the O calcium B-chemical ion O ( O Figure O 11 O — O figure O supplement O 3 O ). O A O single O calcium B-chemical ion O is O present O in O the O entry B-site site I-site of O this O mutant B-protein_state ; O however O , O Glu31 B-residue_name_number of O one O chain O is O rotated O away O from O the O metal O ion O and O is O not O involved O in O coordination B-bond_interaction . O Taken O together O the O results O of O our O data O show O that O these O changes O to O the O FOC B-site of O EncFtn B-protein still O permit O the O formation O of O the O decameric B-oligomeric_state form O of O the O protein O . O While O the O proteins O all O appear O decameric B-oligomeric_state in O crystals B-evidence , O their O solution O and O gas O - O phase O behavior O differs O considerably O and O the O mutants B-protein_state no O longer O show O metal O - O dependent O oligomerization O . O These O results O highlight O the O importance O of O metal B-chemical coordination B-bond_interaction in O the O FOC B-site for O the O stability O and O assembly O of O the O EncFtn B-protein protein O . O Progress B-evidence curves I-evidence recording O ferroxidase B-protein_type activity O of O EncFtnsH B-protein mutants B-protein_state . O 20 O µM O wild B-protein_state - I-protein_state type I-protein_state EncFtnsH B-protein , O E32A B-mutant , O E62A B-mutant and O H65A B-mutant mutants B-protein_state were O mixed O with O 20 O µM O or O 100 O µM O acidic O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical , O respectively O . O Absorbance O at O 315 O nm O was O recorded O for O 1800 O s O at O 25 O ° O C O as O an O indication O of O Fe3 B-chemical + I-chemical formation O . O Protein O free O samples O ( O dashed O and O dotted O lines O ) O were O measured O for O Fe2 B-chemical + I-chemical background O oxidation O as O controls O . O Relative O ferroxidase B-protein_type activity O of O EncFtnsH B-protein mutants B-protein_state . O EncFtnsH B-protein , O and O the O mutant B-protein_state forms O E32A B-mutant , O E62A B-mutant and O H65A B-mutant , O each O at O 20 O µM O , O were O mixed O with O 100 O µM O acidic O Fe B-chemical ( I-chemical NH4 I-chemical ) I-chemical 2 I-chemical ( I-chemical SO4 I-chemical ) I-chemical 2 I-chemical . O Ferroxidase B-protein_type activity O of O the O mutant B-protein_state forms O is O determined O by O measuring B-experimental_method the I-experimental_method absorbance I-experimental_method at I-experimental_method 315 I-experimental_method nm I-experimental_method for O 1800 O s O at O 25 O ° O C O as O an O indication O of O Fe3 B-chemical + I-chemical formation O . O The O relative O ferroxidase B-protein_type activity O of O mutants B-protein_state is O plotted O as O a O proportion O of O the O activity O of O the O wild B-protein_state - I-protein_state type I-protein_state protein O using O the O endpoint O measurement B-experimental_method of I-experimental_method A315 I-experimental_method . O The O FOC B-site mutants B-protein_state showed O reduced O ferroxidase B-protein_type activity O to O varied O extents O , O among O which O E62A B-mutant significantly O abrogated O the O ferroxidase B-protein_type activity O . O To O address O the O question O of O how O mutagenesis B-experimental_method of O the O iron B-site coordinating I-site residues I-site affects O the O enzymatic O activity O of O the O EncFtnsH B-protein protein O we O recorded O progress B-evidence curves I-evidence for O the O oxidation O of O Fe2 B-chemical + I-chemical to O Fe3 B-chemical + I-chemical by O the O different O mutants B-protein_state as O before O . O Mutagenesis B-experimental_method of O E32A B-mutant and O H65A B-mutant reduces O the O activity O of O EncFtnsH B-protein by O about O 40 O %- O 55 O %; O the O E62A B-mutant mutant B-protein_state completely O abrogates O activity O , O presumably O through O the O loss B-protein_state of I-protein_state the O bridging O coordination B-bond_interaction for O the O formation O of O the O di B-site - I-site nuclear I-site iron I-site center I-site of O the O FOC B-site ( O Figure O 12 O ). O Collectively O , O the O effect O of O mutating B-experimental_method these O residues O in O the O FOC B-site confirms O the O importance O of O the O iron B-site coordinating I-site residues I-site for O the O ferroxidase B-protein_type activity O of O the O EncFtnsH B-protein protein O . O Phylogenetic B-evidence tree I-evidence of O ferritin B-protein_type family O proteins O . O The O tree O was O built O using O the O Neighbor B-experimental_method - I-experimental_method Joining I-experimental_method method I-experimental_method based O on O step B-experimental_method - I-experimental_method wise I-experimental_method amino I-experimental_method acid I-experimental_method sequence I-experimental_method alignment I-experimental_method of O the O four B-structure_element - I-structure_element helical I-structure_element bundle I-structure_element portions O of O ferritin B-protein_type family O proteins O ( O Supplementary O file O 1 O ). O The O evolutionary B-evidence distances I-evidence were O computed O using O the O p B-experimental_method - I-experimental_method distance I-experimental_method method I-experimental_method and O are O in O the O units O of O the O number O of O amino O acid O differences O per O site O . O Our O study O reports O on O a O new O class O of O ferritin B-protein_type - O like O proteins O ( O EncFtn B-protein ), O which O are O associated O with O bacterial B-taxonomy_domain encapsulin B-protein nanocompartments B-complex_assembly ( O Enc B-protein ). O By O studying O the O EncFtn B-protein from O R B-species . I-species rubrum I-species we O demonstrate O that O iron B-chemical binding O results O in O assembly O of O EncFtn B-protein decamers B-oligomeric_state , O which O display O a O unique O annular O architecture O . O Despite O a O radically O different O quaternary O structure O to O the O classical B-protein_state ferritins B-protein_type , O the O four B-structure_element - I-structure_element helical I-structure_element bundle I-structure_element scaffold I-structure_element and O FOC B-site of O EncFtnsH B-protein are O strikingly O similar O to O ferritin B-protein_type ( O Figure O 6A O ). O A O sequence B-experimental_method - I-experimental_method based I-experimental_method phylogenetic I-experimental_method tree I-experimental_method for O proteins O in O the O ferritin B-protein_type family O was O constructed O ; O in O addition O to O the O classical B-protein_state ferritins B-protein_type , O bacterioferritins B-protein_type and O Dps B-protein_type proteins O , O our O analysis O included O the O encapsulin B-protein_type - I-protein_type associated I-protein_type ferritin I-protein_type - I-protein_type like I-protein_type proteins I-protein_type ( O EncFtns B-protein_type ) O and O a O group O related O to O these O , O but O lacking O the O encapsulin B-protein sequence O ( O Non B-protein_type - I-protein_type EncFtn I-protein_type ). O The O analysis O revealed O that O the O EncFtn B-protein and O Non B-protein_type - I-protein_type EncFtn I-protein_type proteins O form O groups O distinct O from O the O other O clearly O delineated O groups O of O ferritins B-protein_type , O and O represent O outliers O in O the O tree O ( O Figure O 13 O ). O While O it O is O difficult O to O infer O ancestral O lineages O in O protein O families O , O the O similarity O seen O in O the O active B-site site I-site scaffold I-site of O these O proteins O highlights O a O shared O evolutionary O relationship O between O EncFtn B-protein_type proteins O and O other O members O of O the O ferritin B-protein_type superfamily O that O has O been O noted O in O previous O studies O (; O ). O From O this O analysis O , O we O propose O that O the O four B-structure_element - I-structure_element helical I-structure_element fold I-structure_element of O the O classical B-protein_state ferritins B-protein_type may O have O arisen O through O gene O duplication O of O an O ancestor O of O EncFtn B-protein . O This O gene O duplication O would O result O in O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O one O EncFtn B-protein monomer B-oligomeric_state being O linked O to O the O N O - O terminus O of O another O and O thus O stabilizing O the O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element fold I-structure_element within O a O single O polypeptide O chain O ( O Figure O 6B O ). O Linking O the O protein O together O in O this O way O relaxes O the O requirement O for O the O maintenance O of O a O symmetrical O FOC B-site and O thus O provides O a O path O to O the O diversity O in O active B-site - I-site site I-site residues I-site seen O across O the O ferritin B-protein_type family O ( O Figure O 6A O , O residues O Glu95 B-residue_name_number , O Gln128 B-residue_name_number and O Glu131 B-residue_name_number in O PmFtn B-protein , O Supplementary O file O 1 O ). O Relationship O between O ferritin B-protein_type structure B-evidence and O activity O The O quaternary O arrangement O of O classical B-protein_state ferritins B-protein_type into O an O octahedral B-protein_state nanocage B-complex_assembly and O Dps B-protein into O a O dodecamer B-oligomeric_state is O absolutely O required O for O their O function O as O iron B-chemical storage O compartments O . O The O oxidation O and O mineralization O of O iron B-chemical must O be O spatially O separated O from O the O host O cytosol O to O prevent O the O formation O of O damaging O hydroxyl O radicals O in O the O Fenton O and O Haber O - O Weiss O reactions O . O This O is O achieved O in O all O ferritins B-protein_type by O confining O the O oxidation O of O iron B-chemical to O the O interior O of O the O protein O complex O , O thus O achieving O sequestration O of O the O Fe3 B-chemical + I-chemical mineralization O product O . O A O structural B-experimental_method alignment I-experimental_method of O the O FOC B-site of O EncFtn B-protein with O the O classical B-protein_state ferritin B-protein_type PmFtn B-protein shows O that O the O central B-structure_element ring I-structure_element of O EncFtn B-protein corresponds O to O the O external O surface O of O ferritin B-protein_type , O while O the O outer O circumference O of O EncFtn B-protein is O congruent O with O the O inner O mineralization B-site surface I-site of O ferritin B-protein_type ( O Figure O 6 O — O figure O supplement O 1A O ). O This O overlay B-experimental_method highlights O the O fact O that O the O ferroxidase B-site center I-site of O EncFtn B-protein faces O in O the O opposite O direction O relative O to O the O classical B-protein_state ferritins B-protein_type and O is O essentially O inside O out O regarding O iron B-chemical storage O space O ( O Figure O 6 O — O figure O supplement O 1B O , O boxed O region O ). O Analysis O of O each O of O the O single O mutations B-experimental_method ( O E32A B-mutant , O E62A B-mutant and O H65A B-mutant ) O made O in O the O FOC B-site highlights O the O importance O of O the O iron B-site - I-site coordinating I-site residues I-site in O the O catalytic O activity O of O EncFtn B-protein . O Furthermore O , O the O position O of O the O calcium B-chemical ion O coordinated B-bond_interaction by I-bond_interaction Glu31 B-residue_name_number and O Glu34 B-residue_name_number seen O in O the O EncFtnsH B-protein structure B-evidence suggests O an O entry B-site site I-site to O channel O metal O ions O into O the O FOC B-site ; O we O propose O that O this O site O binds O hydrated O iron B-chemical ions O in O vivo O and O acts O as O a O selectivity O filter O and O gate O for O the O FOC B-site . O The O constellation O of O charged O residues O on O the O outer O circumference O of O EncFtn B-protein ( O His57 B-residue_name_number , O Glu61 B-residue_name_number and O Glu64 B-residue_name_number ) O could O function O in O the O same O way O as O the O residues O lining O the O mineralization B-site surface I-site within O the O classical B-protein_state ferritin B-protein_type nanocage B-complex_assembly , O and O given O their O proximity O to O the O FOC B-site these O sites O may O be O the O exit B-site portal I-site and O mineralization B-site site I-site . O The O absolute O requirement O for O the O spatial O separation O of O oxidation O and O mineralization O in O ferritins B-protein_type suggests O that O the O EncFtn B-protein_type family O proteins O are O not O capable O of O storing O iron B-chemical minerals O due O to O the O absence B-protein_state of I-protein_state an O enclosed O compartment O in O their O structure O ( O Figure O 6 O — O figure O supplement O 1B O ). O Our O biochemical B-experimental_method characterization I-experimental_method of O EncFtn B-protein supports O this O hypothesis O , O indicating O that O while O this O protein O is O capable O of O oxidizing O iron B-chemical , O it O does O not O accrue O mineralized O iron B-chemical in O an O analogous O manner O to O classical B-protein_state ferritins B-protein_type . O While O EncFtn B-protein does O not O store O iron B-chemical itself O , O its O association O with O the O encapsulin B-protein nanocage B-complex_assembly suggests O that O mineralization O occurs O within O the O cavity B-site of O the O encapsulin B-protein shell B-structure_element . O Our O ferroxidase B-experimental_method assay I-experimental_method data O on O the O recombinant O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartments B-complex_assembly , O which O accrue O over O 4100 O iron B-chemical ions O per O complex O and O form O regular O nanoparticles B-complex_assembly , O are O consistent O with O the O encapsulin B-protein protein O acting O as O the O store O for O iron B-chemical oxidized O by O the O EncFtn B-protein enzyme O . O TEM B-experimental_method analysis O of O the O reaction O products O shows O the O production O of O homogeneous O iron B-chemical nanoparticles O only O in O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly ( O Figure O 8 O — O figure O supplement O 1 O ). O Model O of O iron B-chemical oxidation O in O encapsulin B-protein nanocompartments B-complex_assembly . O ( O A O ) O Model O of O EncFtnsH B-protein docking B-experimental_method to O the O encapsulin B-protein shell B-structure_element . O A O single O pentamer B-oligomeric_state of O the O icosahedral B-protein_state T B-species . I-species maritima I-species encapsulin B-protein structure B-evidence ( O PDBID O : O 3DKT O ) O is O shown O as O a O blue O surface O with O the O encapsulin B-protein localization B-structure_element sequence I-structure_element of O EncFtn B-protein shown O as O a O purple O surface O . O The O C O - O terminal O regions O of O the O EncFtn B-protein subunits B-structure_element correspond O to O the O position O of O the O localization B-structure_element sequences I-structure_element seen O in O 3DKT O . O Alignment B-experimental_method of O EncFtnsH B-protein with O 3DKT O positions O the O central B-site channel I-site directly O above O the O pore B-site in O the O 3DKT O pentamer B-oligomeric_state axis O ( O shown O as O a O grey O pentagon O ). O ( O B O ) O Surface O view O of O EncFtn B-protein within O the O encapsulin B-protein nanocompartment B-complex_assembly ( O grey O and O blue O respectively O ). O The O lumen O of O the O encapsulin B-protein nanocompartment B-complex_assembly is O considerably O larger O than O the O interior O of O ferritin B-protein_type ( O shown O in O orange O behind O the O encapsulin B-protein for O reference O ) O and O thus O allows O the O storage O of O significantly O more O iron B-chemical . O The O proposed O pathway O for O iron B-chemical movement O through O the O encapsulin B-protein shell B-structure_element and O EncFtn B-protein FOC B-site is O shown O with O arrows O . O ( O C O ) O Model O ofiron O oxidation O within O an O encapsulin B-protein nanocompartment B-complex_assembly . O As O EncFtn B-protein is O unable O to O mineralize O iron B-chemical on O its O surface O directly O , O Fe2 B-chemical + I-chemical must O pass O through O the O encapsulin B-protein shell B-structure_element to O access O the O first O metal B-site binding I-site site I-site within O the O central B-site channel I-site of O EncFtnsH B-protein ( O entry B-site site I-site ) O prior O to O oxidation O within O the O FOC B-site and O release O as O Fe3 B-chemical + I-chemical to O the O outer O surface O of O the O protein O where O it O can O be O mineralized O within O the O lumen O of O the O encapsulin B-protein cage O . O Docking B-experimental_method the O decamer B-oligomeric_state structure B-evidence of O EncFtnsH B-protein into O the O pentamer B-oligomeric_state of O the O T B-species . I-species maritima I-species encapsulin B-protein Tmari_0786 B-gene ( O PDB O ID O : O 3DKT O ) O shows O that O the O position O of O the O C B-structure_element - I-structure_element terminal I-structure_element extensions I-structure_element of O our O EncFtnsH B-protein structure B-evidence are O consistent O with O the O localization B-structure_element sequences I-structure_element seen O bound B-protein_state to I-protein_state the O encapsulin B-protein protein O ( O Figure O 14A O ). O Thus O , O it O appears O that O the O EncFtn B-protein decamer B-oligomeric_state is O the O physiological O state O of O this O protein O . O This O arrangement O positions O the O central B-structure_element ring I-structure_element of O EncFtn B-protein directly O above O the O pore B-site at O the O five O - O fold O symmetry O axis O of O the O encapsulin B-protein shell B-structure_element and O highlights O a O potential O route O for O the O entry O of O iron B-chemical into O the O encapsulin B-protein and O towards O the O active B-site site I-site of O EncFtn B-protein . O A O comparison O of O the O encapsulin B-protein nanocompartment B-complex_assembly and O the O ferritin B-protein_type nanocage B-complex_assembly highlights O the O size O differential O between O the O two O complexes O ( O Figure O 14B O ) O that O allows O the O encapsulin B-protein to O store O significantly O more O iron B-chemical . O The O presence B-protein_state of I-protein_state five O FOCs B-site per O EncFtnsH B-protein decamer B-oligomeric_state and O the O fact O that O the O icosahedral B-protein_state encapsulin B-protein nanocage B-complex_assembly can O hold O up O to O twelve O of O decameric B-oligomeric_state EncFtn B-protein between O each O of O the O internal O five O - O fold O vertices O means O that O they O can O achieve O a O high O rate O of O iron B-chemical mineralization O across O the O entire O nanocompartment B-complex_assembly . O This O arrangement O of O multiple O reaction O centers O in O a O single O protein O assembly O is O reminiscent O of O classical B-protein_state ferritins B-protein_type , O which O has O 24 O FOCs B-site distributed O around O the O nanocage B-complex_assembly . O Our O structural B-evidence data I-evidence , O coupled O with O biochemical B-experimental_method and I-experimental_method ICP I-experimental_method - I-experimental_method MS I-experimental_method analysis O , O suggest O a O model O for O the O activity O of O the O encapsulin B-protein iron B-complex_assembly - I-complex_assembly megastore I-complex_assembly ( O Figure O 14C O ). O The O crystal B-evidence structure I-evidence of O the O T B-species . I-species maritima I-species encapsulin B-protein shell B-structure_element protein O has O a O negatively B-site charged I-site pore I-site positioned O to O allow O the O passage O of O Fe2 B-chemical + I-chemical into O the O encapsulin B-protein and O directs O the O metal O towards O the O central O , O negatively B-site charged I-site hole I-site of O the O EncFtn B-protein ring B-structure_element ( O Figure O 4 O — O figure O supplement O 1 O ). O The O five O metal B-site - I-site binding I-site sites I-site on O the O interior O of O the O ring B-structure_element ( O Glu31 B-site / I-site 34 I-site - I-site sites I-site ) O may O select O for O the O Fe2 B-chemical + I-chemical ion O and O direct O it O towards O their O cognate O FOCs B-site . O We O propose O that O the O oxidation O of O Fe2 B-chemical + I-chemical to O Fe3 B-chemical + I-chemical occurs O within O the O FOC B-site according O to O the O model O postulated O by O in O which O the O FOC B-site acts O as O a O substrate B-site site I-site through O which O iron B-chemical passes O and O is O released O on O to O weakly B-site coordinating I-site sites I-site at O the O outer O circumference O of O the O protein O ( O His57 B-residue_name_number , O Glu61 B-residue_name_number and O Glu64 B-residue_name_number ), O where O it O is O able O to O form O ferrihydrite B-chemical minerals O which O can O be O safely O deposited O within O the O lumen O of O the O encapsulin B-protein nanocompartment B-complex_assembly ( O Figure O 14 O ). O Here O we O describe O for O the O first O time O the O structure B-evidence and O biochemistry O of O a O new O class O of O encapsulin B-protein_type - I-protein_type associated I-protein_type ferritin I-protein_type - I-protein_type like I-protein_type protein I-protein_type and O demonstrate O that O it O has O an O absolute O requirement O for O compartmentalization O within O an O encapsulin B-protein nanocage B-complex_assembly to O act O as O an O iron B-chemical store O . O Further O work O on O the O EncFtn B-complex_assembly - I-complex_assembly Enc I-complex_assembly nanocompartment B-complex_assembly will O establish O the O structural O basis O for O the O movement O of O iron B-chemical through O the O encapsulin B-protein shell B-structure_element , O the O mechanism O of O iron B-chemical oxidation O by O the O EncFtn B-protein FOC B-site and O its O subsequent O storage O in O the O lumen O of O the O encapsulin B-protein nanocompartment B-complex_assembly . O