PMC 20201220 pmc.key 5014086 CC BY no 2 2 10.1016/j.str.2016.06.020 5014086 27524201 S0969-2126(16)30167-8 1599 9 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1605 surname:Zebisch;given-names:Matthias surname:Jackson;given-names:Verity A. surname:Zhao;given-names:Yuguang surname:Jones;given-names:E. Yvonne Published: August 11, 2016 TITLE front 24 2016 0 Structure of the Dual-Mode Wnt Regulator Kremen1 and Insight into Ternary Complex Formation with LRP6 and Dickkopf 0.99651647 evidence cleaner0 2023-09-19T09:56:35Z DUMMY: Structure protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.998052 protein cleaner0 2023-09-18T15:04:18Z PR: Kremen1 0.9978811 protein cleaner0 2023-09-18T15:04:27Z PR: LRP6 0.99473995 protein_type cleaner0 2023-09-18T15:10:24Z MESH: Dickkopf ABSTRACT abstract_title_1 115 Summary ABSTRACT abstract 123 Kremen 1 and 2 have been identified as co-receptors for Dickkopf (Dkk) proteins, hallmark secreted antagonists of canonical Wnt signaling. We present here three crystal structures of the ectodomain of human Kremen1 (KRM1ECD) at resolutions between 1.9 and 3.2 Å. KRM1ECD emerges as a rigid molecule with tight interactions stabilizing a triangular arrangement of its Kringle, WSC, and CUB structural domains. The structures reveal an unpredicted homology of the WSC domain to hepatocyte growth factor. We further report the general architecture of the ternary complex formed by the Wnt co-receptor Lrp5/6, Dkk, and Krm, determined from a low-resolution complex crystal structure between β-propeller/EGF repeats (PE) 3 and 4 of the Wnt co-receptor LRP6 (LRP6PE3PE4), the cysteine-rich domain 2 (CRD2) of DKK1, and KRM1ECD. DKK1CRD2 is sandwiched between LRP6PE3 and KRM1Kringle-WSC. Modeling studies supported by surface plasmon resonance suggest a direct interaction site between Krm1CUB and Lrp6PE2. 0.99095875 protein_type cleaner0 2023-09-18T15:12:16Z MESH: Kremen 1 and 2 0.92292756 protein_type cleaner0 2023-09-18T15:04:40Z MESH: co-receptors 0.9927476 protein_type cleaner0 2023-09-18T15:10:24Z MESH: Dickkopf 0.5698846 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein_type MESH: cleaner0 2023-09-18T15:16:31Z Wnt 0.9986756 evidence cleaner0 2023-09-18T15:08:21Z DUMMY: crystal structures 0.9993445 structure_element cleaner0 2023-09-18T15:05:47Z SO: ectodomain 0.99843925 species cleaner0 2023-09-18T15:05:25Z MESH: human 0.9983398 protein cleaner0 2023-09-18T15:04:18Z PR: Kremen1 protein PR: cleaner0 2023-09-18T15:06:10Z KRM1 structure_element SO: cleaner0 2023-09-18T15:06:25Z ECD protein PR: cleaner0 2023-09-18T15:06:40Z KRM1 structure_element SO: cleaner0 2023-09-18T15:06:49Z ECD 0.7506454 protein_state cleaner0 2023-09-19T09:59:26Z DUMMY: triangular arrangement 0.9995679 structure_element cleaner0 2023-09-18T15:07:03Z SO: Kringle 0.9994825 structure_element cleaner0 2023-09-18T15:07:08Z SO: WSC structure_element SO: cleaner0 2023-09-18T15:07:23Z CUB 0.99839205 evidence cleaner0 2023-09-19T09:56:39Z DUMMY: structures 0.9995127 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.84306806 protein_type cleaner0 2023-09-19T09:54:50Z MESH: hepatocyte growth factor protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:17:09Z co-receptor 0.9976937 protein_type cleaner0 2023-09-19T08:37:55Z MESH: Lrp5/6 0.9320832 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.7082609 protein_type cleaner0 2023-09-18T15:12:24Z MESH: Krm 0.96125305 evidence cleaner0 2023-09-18T15:08:17Z DUMMY: crystal structure structure_element SO: cleaner0 2023-09-18T15:11:48Z β-propeller/EGF repeats (PE) 3 and 4 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:17:09Z co-receptor 0.99893945 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 protein PR: cleaner0 2023-09-18T15:10:58Z LRP6 structure_element SO: cleaner0 2023-09-18T15:11:33Z PE3PE4 0.99921113 structure_element cleaner0 2023-09-18T15:05:11Z SO: cysteine-rich domain 2 0.99950767 structure_element cleaner0 2023-09-18T15:05:15Z SO: CRD2 0.9980861 protein cleaner0 2023-09-19T08:56:11Z PR: DKK1 protein PR: cleaner0 2023-09-18T15:09:14Z KRM1 structure_element SO: cleaner0 2023-09-18T15:09:26Z ECD protein PR: cleaner0 2023-09-18T15:09:41Z DKK1 structure_element SO: cleaner0 2023-09-18T15:09:51Z CRD2 protein PR: cleaner0 2023-09-18T15:12:42Z LRP6 structure_element SO: cleaner0 2023-09-18T15:12:52Z PE3 protein PR: cleaner0 2023-09-19T10:02:17Z KRM1 structure_element SO: cleaner0 2023-09-19T10:02:42Z Kringle-WSC 0.5141169 experimental_method cleaner0 2023-09-19T10:03:07Z MESH: Modeling 0.9983921 experimental_method cleaner0 2023-09-19T09:04:37Z MESH: surface plasmon resonance 0.8810712 site cleaner0 2023-09-19T10:03:49Z SO: interaction site protein PR: cleaner0 2023-09-18T15:08:46Z Krm1 structure_element SO: cleaner0 2023-09-18T15:08:58Z CUB protein PR: cleaner0 2023-09-18T15:13:25Z Lrp6 structure_element SO: cleaner0 2023-09-18T15:13:34Z PE2 ABSTRACT abstract_title_1 1127 Graphical Abstract ABSTRACT abstract_title_1 1146 Highlights ABSTRACT abstract 1157 The structure of the KREMEN 1 ectodomain is solved from three crystal forms 0.99753004 evidence cleaner0 2023-09-18T15:13:54Z DUMMY: structure 0.9986896 protein cleaner0 2023-09-18T15:13:51Z PR: KREMEN 1 0.9994282 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.9849808 experimental_method cleaner0 2023-09-19T10:03:11Z MESH: solved 0.99651587 evidence cleaner0 2023-09-19T09:56:45Z DUMMY: crystal forms ABSTRACT abstract 1233 Kringle, WSC, and CUB subdomains interact tightly to form a single structural unit 0.99951434 structure_element cleaner0 2023-09-18T15:07:04Z SO: Kringle 0.99952793 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.9995388 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB ABSTRACT abstract 1316 The interface to DKKs is formed from the Kringle and WSC domains 0.9988967 site cleaner0 2023-09-19T10:03:53Z SO: interface 0.35081285 protein_type cleaner0 2023-09-18T15:14:00Z MESH: DKKs 0.9995615 structure_element cleaner0 2023-09-18T15:07:04Z SO: Kringle 0.99953294 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC ABSTRACT abstract 1381 The CUB domain is found to interact directly with LRP6PE1PE2 0.9994356 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB protein PR: cleaner0 2023-09-18T15:14:18Z LRP6 structure_element SO: cleaner0 2023-09-18T15:14:27Z PE1PE2 ABSTRACT abstract 1442 Zebisch et al. describe the ectodomain structure of KREMEN 1, a receptor for Wnt antagonists of the DKK family. Apo structures and a complex with functional fragments of DKK1 and LRP6 shed light on the function of this dual-mode regulator of Wnt signaling. 0.99949515 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.9973246 evidence cleaner0 2023-09-18T15:14:31Z DUMMY: structure 0.9991677 protein cleaner0 2023-09-18T15:14:34Z PR: KREMEN 1 0.6478 protein_type cleaner0 2023-09-18T15:14:37Z MESH: receptor protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:15:03Z DKK 0.99933225 protein_state cleaner0 2023-09-18T15:15:08Z DUMMY: Apo 0.9979297 evidence cleaner0 2023-09-18T15:15:10Z DUMMY: structures 0.98702407 protein_state cleaner0 2023-09-18T15:15:14Z DUMMY: complex with protein_state DUMMY: cleaner0 2023-09-18T15:15:48Z functional fragments 0.9988538 protein cleaner0 2023-09-18T15:15:52Z PR: DKK1 0.9990638 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt INTRO title_1 1700 Introduction INTRO paragraph 1713 Signaling by Wnt morphogens is renowned for its fundamental roles in embryonic development, tissue homeostasis, and stem cell maintenance. Due to these functions, generation, delivery, and interpretation of Wnt signals are all heavily regulated in the animal body. Vertebrate Dickkopf proteins (Dkk1, 2, and 4) are one of many secreted antagonists of Wnt and function by blocking access to the Wnt co-receptor LRP5/6. Kremen proteins (Krm1 and Krm2) have been identified as additional high-affinity transmembrane receptors for Dkk. Krm and Dkk synergize in Wnt inhibition during Xenopus embryogenesis to regulate anterior-posterior patterning. Mechanistically it is thought that, in the presence of Dkk, Krm forms a ternary complex with Lrp6, which is then rapidly endocytosed. This amplifies the intrinsic Wnt antagonistic activity of Dkk by efficiently depleting the cell surface of the Wnt co-receptor. In accordance with this, Krm1−/− and Krm2−/− double knockout mice show a high bone mass phenotype typical of increased Wnt signaling, as well as growth of ectopic forelimb digits. Growth of ectopic digits is further enhanced upon additional loss of dkk expression. The Wnt antagonistic activity of Krm1 is also linked to its importance for correct thymus epithelium formation in mice. The importance of intact KRM1 for normal human development and health is highlighted by the recent finding that a homozygous mutation in the ectodomain of KRM1 leads to severe ectodermal dysplasia including oligodontia. Interestingly, the Wnt antagonistic activity of Krm is context dependent, and Krm proteins are actually dual-mode Wnt regulators. In the absence of Dkk, Krm1 and 2 change their function from inhibition to enhancement of Lrp6-mediated signaling. By direct binding to Lrp6 via the ectodomains, Krm proteins promote Lrp6 cell-surface localization and hence increase receptor availability. Further increasing the complexity of Krm functionality, it was recently found that Krm1 (but not Krm2) can also act independently of LRP5/6 and Wnt as a dependence receptor, triggering apoptosis unless bound to Dkk. 0.7128909 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt 0.44490612 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt 0.99849033 taxonomy_domain cleaner0 2023-09-18T15:17:44Z DUMMY: Vertebrate protein_type MESH: cleaner0 2023-09-18T15:10:24Z Dickkopf 0.9958334 protein_type cleaner0 2023-09-19T08:38:20Z MESH: Dkk1 0.8677284 protein_type cleaner0 2023-09-19T08:38:27Z MESH: 2 0.94611067 protein_type cleaner0 2023-09-19T08:38:33Z MESH: 4 0.87121487 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:17:09Z co-receptor 0.99744755 protein cleaner0 2023-09-19T09:54:57Z PR: LRP5/6 protein_type MESH: cleaner0 2023-09-19T08:39:52Z Kremen 0.9968003 protein_type cleaner0 2023-09-19T08:38:47Z MESH: Krm1 0.9968977 protein_type cleaner0 2023-09-19T08:38:53Z MESH: Krm2 0.8356215 protein_type cleaner0 2023-09-19T08:36:33Z MESH: transmembrane receptors 0.9972887 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.99526924 protein_type cleaner0 2023-09-19T09:53:34Z MESH: Krm 0.9274017 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.9939586 taxonomy_domain cleaner0 2023-09-18T15:17:49Z DUMMY: Xenopus 0.9987738 protein_state cleaner0 2023-09-19T08:34:48Z DUMMY: presence of 0.9968412 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.71053296 protein_type cleaner0 2023-09-19T09:53:37Z MESH: Krm protein_state DUMMY: cleaner0 2023-09-18T15:15:14Z complex with 0.99414045 protein_type cleaner0 2023-09-19T08:39:02Z MESH: Lrp6 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.99530375 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:17:09Z co-receptor protein_type MESH: cleaner0 2023-09-19T08:39:11Z Krm1 protein_type MESH: cleaner0 2023-09-19T08:39:17Z Krm2 experimental_method MESH: cleaner0 2023-09-19T08:35:46Z double knockout 0.9889488 taxonomy_domain cleaner0 2023-09-19T08:36:13Z DUMMY: mice protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.97543895 protein_type cleaner0 2023-09-19T08:39:26Z MESH: dkk protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.9871243 protein_type cleaner0 2023-09-19T08:39:33Z MESH: Krm1 0.9975727 taxonomy_domain cleaner0 2023-09-19T08:36:13Z DUMMY: mice 0.9984781 protein_state cleaner0 2023-09-19T09:59:31Z DUMMY: intact 0.97736895 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9952508 species cleaner0 2023-09-18T15:05:25Z MESH: human 0.9992774 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.9889864 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.99635315 protein_type cleaner0 2023-09-19T09:53:41Z MESH: Krm protein_type MESH: cleaner0 2023-09-19T08:40:14Z Krm 0.5892922 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt 0.9989779 protein_state cleaner0 2023-09-19T09:24:47Z DUMMY: absence of 0.9983632 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.9964774 protein_type cleaner0 2023-09-19T08:40:38Z MESH: Krm1 0.95039356 protein_type cleaner0 2023-09-19T08:40:46Z MESH: 2 0.997929 protein_type cleaner0 2023-09-19T08:41:23Z MESH: Lrp6 0.99880445 protein_type cleaner0 2023-09-19T08:41:16Z MESH: Lrp6 0.99921465 structure_element cleaner0 2023-09-19T09:57:56Z SO: ectodomains protein_type MESH: cleaner0 2023-09-19T08:40:29Z Krm 0.9982597 protein_type cleaner0 2023-09-19T08:40:56Z MESH: Lrp6 0.99672997 protein_type cleaner0 2023-09-19T09:53:45Z MESH: Krm 0.9892842 protein_type cleaner0 2023-09-19T08:41:04Z MESH: Krm1 0.98860824 protein_type cleaner0 2023-09-19T08:41:10Z MESH: Krm2 0.9977235 protein cleaner0 2023-09-19T09:55:01Z PR: LRP5/6 0.5520213 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt 0.99863183 protein_state cleaner0 2023-09-19T09:59:36Z DUMMY: bound to 0.9985933 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk INTRO paragraph 3834 Structurally, Krm1 and 2 are type I transmembrane proteins with a 40 kDa ectodomain and a flexible cytoplasmic tail consisting of 60–75 residues. The ectodomain consists of three similarly sized structural domains of around 10 kDa each: the N-terminal Kringle domain (KR) is followed by a WSC domain of unknown fold. The third structural domain is a CUB domain. An approximately 70-residue linker connects the CUB domain to the transmembrane span. An intact KR-WSC-CUB domain triplet and membrane attachment is required for Wnt antagonism. The transmembrane span and cytoplasmic tail can be replaced with a GPI linker without impact on Wnt antagonism. protein_type MESH: cleaner0 2023-09-19T08:42:04Z Krm1 protein_type MESH: cleaner0 2023-09-19T08:42:15Z 2 0.9981333 protein_type cleaner0 2023-09-19T09:53:48Z MESH: type I transmembrane proteins 0.99945766 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.9392079 protein_state cleaner0 2023-09-19T09:59:42Z DUMMY: flexible 0.9981252 structure_element cleaner0 2023-09-19T08:42:20Z SO: cytoplasmic tail 0.8183996 residue_range cleaner0 2023-09-19T08:42:32Z DUMMY: 60 0.6206278 residue_range cleaner0 2023-09-19T08:42:34Z DUMMY: 75 0.99932384 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain structure_element SO: cleaner0 2023-09-18T15:07:04Z Kringle 0.9994307 structure_element cleaner0 2023-09-18T15:18:39Z SO: KR 0.9988023 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC structure_element SO: cleaner0 2023-09-18T15:18:34Z CUB 0.6716569 residue_range cleaner0 2023-09-19T10:08:16Z DUMMY: approximately 70-residue 0.98141634 structure_element cleaner0 2023-09-19T08:44:20Z SO: linker 0.99934775 structure_element cleaner0 2023-09-18T15:18:33Z SO: CUB 0.9992559 structure_element cleaner0 2023-09-19T08:44:30Z SO: transmembrane span 0.9983392 protein_state cleaner0 2023-09-19T09:59:46Z DUMMY: intact structure_element SO: cleaner0 2023-09-19T08:43:37Z KR-WSC-CUB protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.999244 structure_element cleaner0 2023-09-19T08:44:30Z SO: transmembrane span 0.9991549 structure_element cleaner0 2023-09-19T08:43:12Z SO: cytoplasmic tail structure_element SO: cleaner0 2023-09-19T08:44:08Z GPI structure_element SO: cleaner0 2023-09-19T08:44:20Z linker protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt INTRO paragraph 4490 We sought to provide structural insights into the multi-functionality of this cell-surface receptor. The structures presented here reveal the unknown fold of the WSC domain and the tight interactions of all three domains. We further succeeded in determination of a low-resolution LRP6PE3PE4-DKK1CRD2-KRM1ECD complex, defining the architecture of the Wnt inhibitory complex that leads to Lrp6 cell-surface depletion. 0.9981673 evidence cleaner0 2023-09-19T08:44:35Z DUMMY: structures 0.9994917 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.99919 complex_assembly cleaner0 2023-09-19T08:45:00Z GO: LRP6PE3PE4-DKK1CRD2-KRM1ECD 0.5890333 protein_type cleaner0 2023-09-18T15:16:32Z MESH: Wnt 0.6935159 complex_assembly cleaner0 2023-09-19T10:08:21Z GO: inhibitory complex 0.99836403 protein cleaner0 2023-09-18T15:04:28Z PR: Lrp6 RESULTS title_1 4907 Results RESULTS paragraph 4915 The recombinant production of the extracellular domain of Krm for structural studies proved challenging (see Experimental Procedures). We succeeded in purifying KRM1ECD complexes with DKK1fl, DKK1Linker-CRD2, and DKK1CRD2 that were monodisperse and stable in gel filtration, hence indicating at least micromolar affinity (data not shown). Several crystal forms were obtained from these complexes, however, crystals always contained only KRM1 protein. 0.99909973 structure_element cleaner0 2023-09-19T08:45:10Z SO: extracellular domain 0.97918665 protein_type cleaner0 2023-09-19T09:53:54Z MESH: Krm experimental_method MESH: cleaner0 2023-09-19T08:45:21Z structural studies protein PR: cleaner0 2023-09-19T08:46:05Z KRM1 structure_element SO: cleaner0 2023-09-19T08:46:16Z ECD 0.72899675 protein_state cleaner0 2023-09-19T08:45:34Z DUMMY: complexes with 0.85313314 protein cleaner0 2023-09-19T08:46:23Z PR: DKK1fl protein PR: cleaner0 2023-09-19T08:46:42Z DKK1 structure_element SO: cleaner0 2023-09-19T08:47:00Z Linker-CRD2 protein PR: cleaner0 2023-09-19T08:47:15Z DKK1 structure_element SO: cleaner0 2023-09-19T08:47:24Z CRD2 0.96971107 experimental_method cleaner0 2023-09-19T08:47:29Z MESH: gel filtration 0.99780023 evidence cleaner0 2023-09-19T08:47:34Z DUMMY: crystal forms 0.9982065 evidence cleaner0 2023-09-19T08:47:36Z DUMMY: crystals 0.99675816 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 RESULTS paragraph 5366 We solved the structure of KRM1ECD in three crystal forms at 1.9, 2.8, and 3.2 Å resolution (Table 1). The high-resolution structure is a near full-length model (Figure 1). The small, flexible, and charged 98AEHED102 loop could only be modeled in a slightly lower resolution structure and in crystal form III. The KR, WSC, and CUB are arranged in a roughly triangular fashion with tight interactions between all three domains. The KR domain, which bears two of the four glycosylation sites, contains the canonical three disulfide bridges (C32-C114, C55-C95, C84-C109) and, like other Kringle domains, is low in secondary structure elements. The structurally most similar Kringle domain is that of human plasminogen (PDB: 1PKR) with an root-mean-square deviation (RMSD) of 1.7 Å for 73 aligned Cα (Figure 1B). The KRM1 structure reveals the fold of the WSC domain for the first time. The structure is best described as a sandwich of a β1-β5-β3-β4-β2 antiparallel β sheet and a single α helix. The structure is also rich in loops and is stabilized by four disulfide bridges (C122-C186, C147-C167, C151-C169, C190-C198). Using the PDBeFold server, we detected a surprising yet significant homology to PAN module domains. The closest structural relative is hepatocyte growth factor (HGF, PDB: 1GP9), which superposes with an RMSD of 2.3 Å for 58 aligned Cα (Figure 1B). The CUB domain bears two glycosylation sites. Although present, the quality of the electron density around N217 did not allow modeling of the sugar moiety. In crystal form I, a calcium ion is present at the canonical position coordinated by the carboxylates of D263, D266 (bidentate), and D306, as well as the carbonyl of N309 and a water molecule. The coordination sphere deviates significantly from perfectly octahedral (not shown). This might result in the site having a low affinity and may explain why calcium is not present in the two low-resolution crystal forms. Loss of calcium has led to loop rearrangements and partial disorder in these crystal forms. The closest structural relative is the CUB_C domain of Tsg-6 (PDB: 2WNO), which superposes with KRMCUB with an RMSD of 1.6 Å for 104 Cα (Figure 1B). 0.99417144 experimental_method cleaner0 2023-09-19T08:47:44Z MESH: solved 0.9750115 evidence cleaner0 2023-09-19T08:47:47Z DUMMY: structure protein PR: cleaner0 2023-09-19T08:48:04Z KRM1 structure_element SO: cleaner0 2023-09-19T08:48:15Z ECD 0.99771154 evidence cleaner0 2023-09-19T08:48:23Z DUMMY: structure 0.8854561 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.6456017 protein_state cleaner0 2023-09-19T08:48:33Z DUMMY: small 0.7668342 protein_state cleaner0 2023-09-19T08:48:35Z DUMMY: flexible protein_state DUMMY: cleaner0 2023-09-19T08:48:44Z charged 0.7967241 structure_element cleaner0 2023-09-19T08:48:47Z SO: 98AEHED102 loop 0.9976132 evidence cleaner0 2023-09-19T08:48:50Z DUMMY: structure 0.99952567 structure_element cleaner0 2023-09-18T15:18:39Z SO: KR 0.9994319 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.99950206 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB 0.99954283 structure_element cleaner0 2023-09-18T15:18:39Z SO: KR 0.97424126 site cleaner0 2023-09-19T08:48:55Z SO: glycosylation sites 0.9827687 ptm cleaner0 2023-09-19T08:48:58Z MESH: disulfide bridges 0.81650156 residue_name_number cleaner0 2023-09-19T10:13:48Z DUMMY: C32 0.90148216 residue_name_number cleaner0 2023-09-19T10:13:50Z DUMMY: C114 0.6435744 residue_name_number cleaner0 2023-09-19T10:13:53Z DUMMY: C55 0.75450325 residue_name_number cleaner0 2023-09-19T10:13:55Z DUMMY: C95 0.6541933 residue_name_number cleaner0 2023-09-19T10:13:57Z DUMMY: C84 0.8610776 residue_name_number cleaner0 2023-09-19T10:14:00Z DUMMY: C109 structure_element SO: cleaner0 2023-09-18T15:07:04Z Kringle structure_element SO: cleaner0 2023-09-18T15:07:04Z Kringle 0.99850476 species cleaner0 2023-09-18T15:05:25Z MESH: human 0.9979559 protein cleaner0 2023-09-19T09:56:05Z PR: plasminogen 0.9984431 evidence cleaner0 2023-09-19T08:51:04Z DUMMY: root-mean-square deviation 0.9980584 evidence cleaner0 2023-09-19T08:51:08Z DUMMY: RMSD 0.8692057 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.99708325 evidence cleaner0 2023-09-19T08:51:18Z DUMMY: structure 0.9993562 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.992714 evidence cleaner0 2023-09-19T09:56:55Z DUMMY: structure 0.73130274 structure_element cleaner0 2023-09-19T08:51:25Z SO: sandwich 0.9923544 structure_element cleaner0 2023-09-19T08:51:22Z SO: β1-β5-β3-β4-β2 antiparallel β sheet 0.9976212 structure_element cleaner0 2023-09-19T08:51:30Z SO: α helix 0.9763921 evidence cleaner0 2023-09-19T09:56:58Z DUMMY: structure 0.9804582 structure_element cleaner0 2023-09-19T08:51:38Z SO: loops 0.9856801 ptm cleaner0 2023-09-19T10:08:32Z MESH: disulfide bridges 0.72613335 residue_name_number cleaner0 2023-09-19T10:14:03Z DUMMY: C122 0.94427705 residue_name_number cleaner0 2023-09-19T10:14:05Z DUMMY: C186 0.5842389 residue_name_number cleaner0 2023-09-19T10:14:08Z DUMMY: C147 0.8603606 residue_name_number cleaner0 2023-09-19T10:14:10Z DUMMY: C167 0.67103654 residue_name_number cleaner0 2023-09-19T10:14:12Z DUMMY: C151 0.9187694 residue_name_number cleaner0 2023-09-19T10:14:14Z DUMMY: C169 0.93349916 residue_name_number cleaner0 2023-09-19T10:14:16Z DUMMY: C190 0.9895691 residue_name_number cleaner0 2023-09-19T10:14:19Z DUMMY: C198 0.9920827 experimental_method cleaner0 2023-09-19T08:51:47Z MESH: PDBeFold server 0.9095351 structure_element cleaner0 2023-09-19T09:58:04Z SO: PAN module domains 0.99497193 protein_type cleaner0 2023-09-19T09:56:16Z MESH: hepatocyte growth factor 0.9981103 protein_type cleaner0 2023-09-19T09:56:24Z MESH: HGF 0.9525247 experimental_method cleaner0 2023-09-19T10:03:16Z MESH: superposes 0.9979018 evidence cleaner0 2023-09-19T08:51:09Z DUMMY: RMSD 0.99952483 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB 0.99711406 site cleaner0 2023-09-19T08:51:54Z SO: glycosylation sites 0.9984067 evidence cleaner0 2023-09-19T08:52:12Z DUMMY: electron density 0.99945 residue_name_number cleaner0 2023-09-19T08:52:20Z DUMMY: N217 evidence DUMMY: cleaner0 2023-09-19T10:05:00Z crystal form I 0.998784 chemical cleaner0 2023-09-19T08:52:01Z CHEBI: calcium bond_interaction MESH: cleaner0 2023-09-19T10:04:19Z coordinated by 0.9993892 residue_name_number cleaner0 2023-09-19T08:52:24Z DUMMY: D263 0.99938715 residue_name_number cleaner0 2023-09-19T08:52:27Z DUMMY: D266 0.99941325 residue_name_number cleaner0 2023-09-19T08:52:32Z DUMMY: D306 0.9994622 residue_name_number cleaner0 2023-09-19T09:14:57Z DUMMY: N309 0.9988845 chemical cleaner0 2023-09-19T08:52:06Z CHEBI: water 0.9685152 site cleaner0 2023-09-19T10:04:02Z SO: coordination sphere 0.9983772 chemical cleaner0 2023-09-19T08:52:02Z CHEBI: calcium evidence DUMMY: cleaner0 2023-09-19T10:05:50Z crystal forms protein_state DUMMY: cleaner0 2023-09-19T10:06:03Z Loss of 0.99770206 chemical cleaner0 2023-09-19T08:52:02Z CHEBI: calcium 0.98493505 structure_element cleaner0 2023-09-19T09:58:11Z SO: loop evidence DUMMY: cleaner0 2023-09-19T10:05:38Z crystal forms structure_element SO: cleaner0 2023-09-19T08:53:11Z CUB_C 0.99908274 protein cleaner0 2023-09-19T08:53:15Z PR: Tsg-6 0.9811162 experimental_method cleaner0 2023-09-19T10:03:19Z MESH: superposes protein PR: cleaner0 2023-09-19T08:53:33Z KRM structure_element SO: cleaner0 2023-09-19T08:53:41Z CUB 0.9975447 evidence cleaner0 2023-09-19T08:51:09Z DUMMY: RMSD RESULTS paragraph 7578 A superposition of the three KRM1 structures reveals no major structural differences (Figure 1C) as anticipated from the plethora of interactions between the three domains. Minor differences are caused by the collapse of the Ca2+ binding site in crystal forms II and III and loop flexibility in the KR domain. The F207S mutation recently found to cause ectodermal dysplasia in Palestinian families maps to the hydrophobic core of the protein at the interface of the three subdomains (Figure 1A). Such a mutation is bound to severely destabilize the protein structure of KRM1, leading to disturbance of its Wnt antagonistic, Wnt stimulatory, and Wnt independent activity. 0.9984787 experimental_method cleaner0 2023-09-19T08:53:58Z MESH: superposition 0.9964317 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9969331 evidence cleaner0 2023-09-19T09:57:03Z DUMMY: structures 0.99897766 site cleaner0 2023-09-19T10:04:45Z SO: Ca2+ binding site 0.98170817 evidence cleaner0 2023-09-19T08:54:20Z DUMMY: crystal forms II and III 0.9801446 structure_element cleaner0 2023-09-19T09:58:17Z SO: loop 0.9993906 structure_element cleaner0 2023-09-18T15:18:39Z SO: KR 0.9988738 mutant cleaner0 2023-09-19T08:54:11Z MESH: F207S 0.53296876 site cleaner0 2023-09-19T08:54:24Z SO: hydrophobic core 0.998882 site cleaner0 2023-09-19T08:54:26Z SO: interface protein_state DUMMY: cleaner0 2023-09-19T09:59:37Z bound to 0.9980704 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt RESULTS title_2 8251 Low-Resolution Insight into Ternary Complex Formation RESULTS paragraph 8305 Co-crystallization of LRP6PE3PE4 with DKK1CRD2, and LRP6PE1 with an N-terminal peptide of DKK1 has provided valuable structural insight into direct Wnt inhibition by Dkk ligands. One face of the rather flat DKK1CRD2 fragment binds to the third β propeller of LRP6. Mutational analyses further implied that the LRP6PE3-averted face of DKK1CRD2 bears the Krm binding site, hence suggesting how Dkk can recruit both receptors into a ternary complex. 0.9989608 experimental_method cleaner0 2023-09-19T08:54:37Z MESH: Co-crystallization protein PR: cleaner0 2023-09-19T08:55:01Z LRP6 structure_element SO: cleaner0 2023-09-19T08:55:12Z PE3PE4 protein PR: cleaner0 2023-09-19T08:55:27Z DKK1 structure_element SO: cleaner0 2023-09-19T08:55:37Z CRD2 protein PR: cleaner0 2023-09-19T08:55:52Z LRP6 structure_element SO: cleaner0 2023-09-19T08:56:03Z PE1 0.9981754 protein cleaner0 2023-09-19T08:56:11Z PR: DKK1 protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.5106511 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.9107751 protein_state cleaner0 2023-09-19T09:59:50Z DUMMY: flat protein PR: cleaner0 2023-09-19T08:56:40Z DKK1 structure_element SO: cleaner0 2023-09-19T08:56:50Z CRD2 protein_state DUMMY: cleaner0 2023-09-19T10:00:11Z binds to 0.99904746 structure_element cleaner0 2023-09-19T08:56:21Z SO: third β propeller 0.99905545 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.99858415 experimental_method cleaner0 2023-09-19T08:56:24Z MESH: Mutational analyses protein PR: cleaner0 2023-09-19T08:57:26Z LRP6 structure_element SO: cleaner0 2023-09-19T08:57:36Z PE3 protein PR: cleaner0 2023-09-19T08:57:04Z DKK1 structure_element SO: cleaner0 2023-09-19T08:57:14Z CRD2 0.9990976 site cleaner0 2023-09-19T08:59:34Z SO: Krm binding site 0.9959565 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein_type MESH: cleaner0 2023-09-19T08:59:53Z receptors RESULTS paragraph 8755 To obtain direct insight into ternary complex formation by Lrp5/6, Dkk, and Krm, we subjected an LRP6PE3PE4-DKK1fl-KRM1ECD complex to crystallization trials. Diffraction data collected from the resulting crystals were highly anisotropic with diffraction extending in the best directions to 3.5 Å and 3.7 Å but only to 6.4 Å in the third direction. Despite the lack of high-resolution diffraction, the general architecture of the ternary complex is revealed (Figure 2A). DKK1CRD2 binds to the top face of the LRP6 PE3 β propeller as described earlier for the binary complex. KRM1ECD does indeed bind on the opposite side of DKK1CRD2 with only its KR and WSC domains engaged in binding (Figure 2A). Although present in the complex subjected to crystallization, we observe no density that could correspond to CRD1 or the domain linker (L). We confirm that the CRD2 of DKK1 is required and sufficient for binding to KRM1: In surface plasmon resonance (SPR), we measured low micromolar affinity between full-length DKK1 and immobilized KRM1ECD (Figure 2B). A SUMO fusion of DKK1L-CRD2 displayed a similar (slightly higher) affinity. In contrast, a SUMO fusion of DKK1CRD1-L did not display binding for concentrations tested up to 325 μM (Figure 2B). 0.9977992 protein_type cleaner0 2023-09-19T09:00:59Z MESH: Lrp5/6 0.9974843 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.99199754 protein_type cleaner0 2023-09-19T09:01:06Z MESH: Krm 0.99846774 complex_assembly cleaner0 2023-09-19T09:00:46Z GO: LRP6PE3PE4-DKK1fl-KRM1ECD 0.99831676 experimental_method cleaner0 2023-09-19T09:01:09Z MESH: crystallization trials 0.9906544 evidence cleaner0 2023-09-19T09:01:13Z DUMMY: Diffraction data 0.9968412 evidence cleaner0 2023-09-19T09:01:15Z DUMMY: crystals 0.6915508 evidence cleaner0 2023-09-19T09:01:19Z DUMMY: diffraction protein PR: cleaner0 2023-09-19T09:01:39Z DKK1 structure_element SO: cleaner0 2023-09-19T09:01:49Z CRD2 protein_state DUMMY: cleaner0 2023-09-19T10:00:12Z binds to 0.9993006 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 structure_element SO: cleaner0 2023-09-19T09:18:50Z PE3 structure_element SO: cleaner0 2023-09-19T09:57:24Z β propeller protein PR: cleaner0 2023-09-19T09:02:28Z KRM1 structure_element SO: cleaner0 2023-09-19T09:02:38Z ECD protein_state DUMMY: cleaner0 2023-09-19T10:00:33Z bind on protein PR: cleaner0 2023-09-19T09:02:01Z DKK1 structure_element SO: cleaner0 2023-09-19T09:02:13Z CRD2 0.9995098 structure_element cleaner0 2023-09-18T15:18:40Z SO: KR 0.9993789 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.9972345 experimental_method cleaner0 2023-09-19T10:03:24Z MESH: crystallization 0.9782202 evidence cleaner0 2023-09-19T09:57:08Z DUMMY: density 0.9987436 structure_element cleaner0 2023-09-19T09:58:29Z SO: CRD1 0.7814616 structure_element cleaner0 2023-09-19T09:03:02Z SO: domain linker 0.9993906 structure_element cleaner0 2023-09-19T09:03:09Z SO: L 0.99893695 structure_element cleaner0 2023-09-18T15:05:16Z SO: CRD2 0.9989029 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9977888 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9989211 experimental_method cleaner0 2023-09-19T09:04:37Z MESH: surface plasmon resonance 0.9985241 experimental_method cleaner0 2023-09-19T09:04:40Z MESH: SPR 0.9858543 evidence cleaner0 2023-09-19T09:04:29Z DUMMY: affinity 0.99905944 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.99898297 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 protein PR: cleaner0 2023-09-19T09:03:59Z KRM1 structure_element SO: cleaner0 2023-09-19T09:04:09Z ECD 0.9979876 experimental_method cleaner0 2023-09-19T09:04:13Z MESH: SUMO fusion structure_element SO: cleaner0 2023-09-19T09:03:44Z DKK1L-CRD2 0.98279107 evidence cleaner0 2023-09-19T09:04:31Z DUMMY: affinity 0.9980215 experimental_method cleaner0 2023-09-19T09:04:13Z MESH: SUMO fusion 0.9986412 structure_element cleaner0 2023-09-19T09:05:18Z SO: DKK1CRD1-L RESULTS paragraph 10014 Overall, the DKK1-KRM1 interface is characterized by a large number of polar interactions but only few hydrophobic contacts (Figure 2C). The crystal structure gives an explanation for DKK1 loss-of-binding mutations identified previously: R191 of DKK1 forms a double salt bridge to D125 and E162 of KRM1 (Figure 2C). A charge reversal as in the mouse Dkk1 (mDkk1) R197E variant would severely disrupt the binding. Similarly, the K226 side chain of DKK1, which points to a small hydrophobic pocket on the surface of KRM1 formed by Y108, W94, and W106, forms salt bridges with the side chains of KRM1 D88 and D90. Again, a charge reversal as shown before for mDkk1 K232E would be incompatible with binding. The side chain of DKK1 S192 was also predicted to be involved in Krm binding. Indeed, we found (Figure 2C) that the side chain of D201 of KRM1 forms two hydrogen bonds to the side-chain hydroxyl and the backbone amide of S192 (mouse, S198). Additional polar interactions are formed between the N140, S163, and Y165 side chains of KRM1 and DKK1 backbone carbonyls of W206, L190, and C189, respectively. The carbonyl of DKK1 R224 is hydrogen bonded to Y105 and W106 of KRM1. We suspect that the Dkk charge reversal mutations performed in the murine background and shown to diminish Krm binding K211E and R203E (mouse K217E and R209E) do so likely indirectly by disruption of the Dkk fold. We further validated the DKK1 binding site on KRM1 by introducing glycosylation sites at the KR (90DVS92→NVS) and WSC (189VCF191→NCS) domains pointing toward DKK (Figures 2A and 2D). Introduction of N-linked glycans in protein-protein-binding sites is an established way of disrupting protein-binding interfaces. Both ectodomain mutants were secreted comparably with the wild-type, indicating correct folding, but failed to achieve any detectable binding in SPR using full-length DKK1 as analyte. In contrast, a mutant carrying an additional N-glycan outside the interface at the CUB domain (309NQA311→NQS), was wild-type-like in DKK1 binding (Figure 2D). 0.9988619 site cleaner0 2023-09-19T09:05:43Z SO: DKK1-KRM1 interface 0.9965975 bond_interaction cleaner0 2023-09-19T09:05:48Z MESH: polar interactions 0.99685144 bond_interaction cleaner0 2023-09-19T09:05:51Z MESH: hydrophobic contacts 0.99868906 evidence cleaner0 2023-09-18T15:08:17Z DUMMY: crystal structure 0.9990559 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9994848 residue_name_number cleaner0 2023-09-19T09:08:19Z DUMMY: R191 0.9990158 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.99034667 bond_interaction cleaner0 2023-09-19T09:05:55Z MESH: salt bridge 0.9994804 residue_name_number cleaner0 2023-09-19T09:08:23Z DUMMY: D125 0.9994967 residue_name_number cleaner0 2023-09-19T09:08:27Z DUMMY: E162 0.5185777 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 experimental_method MESH: cleaner0 2023-09-19T09:11:06Z charge reversal 0.9976808 taxonomy_domain cleaner0 2023-09-19T09:08:08Z DUMMY: mouse 0.9989874 protein cleaner0 2023-09-19T09:56:31Z PR: Dkk1 0.9891629 protein cleaner0 2023-09-19T09:07:14Z PR: mDkk1 0.99904364 mutant cleaner0 2023-09-19T09:07:25Z MESH: R197E 0.9994855 residue_name_number cleaner0 2023-09-19T09:08:32Z DUMMY: K226 0.998976 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.7484227 site cleaner0 2023-09-19T09:06:18Z SO: hydrophobic pocket 0.88917637 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9995097 residue_name_number cleaner0 2023-09-19T09:08:37Z DUMMY: Y108 0.99953055 residue_name_number cleaner0 2023-09-19T09:08:53Z DUMMY: W94 0.99950445 residue_name_number cleaner0 2023-09-19T09:08:57Z DUMMY: W106 0.9966936 bond_interaction cleaner0 2023-09-19T09:05:59Z MESH: salt bridges 0.9668133 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9995011 residue_name_number cleaner0 2023-09-19T09:09:01Z DUMMY: D88 0.99948114 residue_name_number cleaner0 2023-09-19T09:09:05Z DUMMY: D90 experimental_method MESH: cleaner0 2023-09-19T09:11:12Z charge reversal 0.96642536 protein cleaner0 2023-09-19T09:07:14Z PR: mDkk1 0.9990295 mutant cleaner0 2023-09-19T09:07:29Z MESH: K232E 0.9990246 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.99949574 residue_name_number cleaner0 2023-09-19T09:09:11Z DUMMY: S192 0.7990252 protein_type cleaner0 2023-09-19T09:06:54Z MESH: Krm 0.99949014 residue_name_number cleaner0 2023-09-19T09:09:16Z DUMMY: D201 0.92195415 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9971021 bond_interaction cleaner0 2023-09-19T09:06:03Z MESH: hydrogen bonds 0.9994716 residue_name_number cleaner0 2023-09-19T09:09:11Z DUMMY: S192 0.9979194 taxonomy_domain cleaner0 2023-09-19T09:08:08Z DUMMY: mouse 0.99947363 residue_name_number cleaner0 2023-09-19T09:09:28Z DUMMY: S198 0.99713284 bond_interaction cleaner0 2023-09-19T09:05:48Z MESH: polar interactions 0.9994918 residue_name_number cleaner0 2023-09-19T09:09:33Z DUMMY: N140 0.9995009 residue_name_number cleaner0 2023-09-19T09:09:38Z DUMMY: S163 0.9995003 residue_name_number cleaner0 2023-09-19T09:09:43Z DUMMY: Y165 0.9794397 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.9987478 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9995042 residue_name_number cleaner0 2023-09-19T09:09:49Z DUMMY: W206 0.99952114 residue_name_number cleaner0 2023-09-19T09:09:53Z DUMMY: L190 0.99949884 residue_name_number cleaner0 2023-09-19T09:09:57Z DUMMY: C189 0.9989812 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9995389 residue_name_number cleaner0 2023-09-19T09:10:02Z DUMMY: R224 0.9967333 bond_interaction cleaner0 2023-09-19T09:07:42Z MESH: hydrogen bonded 0.9995384 residue_name_number cleaner0 2023-09-19T09:10:06Z DUMMY: Y105 0.999521 residue_name_number cleaner0 2023-09-19T09:08:58Z DUMMY: W106 0.99098295 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.97223186 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.9541311 experimental_method cleaner0 2023-09-19T10:03:28Z MESH: charge reversal mutations 0.9982382 taxonomy_domain cleaner0 2023-09-19T09:08:14Z DUMMY: murine protein_type MESH: cleaner0 2023-09-19T09:10:24Z Krm 0.9989784 mutant cleaner0 2023-09-19T09:10:29Z MESH: K211E 0.9990165 mutant cleaner0 2023-09-19T09:10:33Z MESH: R203E 0.9978951 taxonomy_domain cleaner0 2023-09-19T09:08:08Z DUMMY: mouse 0.99902844 mutant cleaner0 2023-09-19T09:10:37Z MESH: K217E 0.9990754 mutant cleaner0 2023-09-19T09:10:41Z MESH: R209E 0.99816555 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.99893934 site cleaner0 2023-09-19T09:06:29Z SO: DKK1 binding site 0.9929836 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.4963542 experimental_method cleaner0 2023-09-19T10:03:32Z MESH: introducing 0.9917952 site cleaner0 2023-09-19T08:51:54Z SO: glycosylation sites 0.9976114 structure_element cleaner0 2023-09-18T15:18:40Z SO: KR 0.6751963 mutant cleaner0 2023-09-19T09:07:36Z MESH: 90DVS92→NVS 0.9923799 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.36564493 mutant cleaner0 2023-09-19T09:11:29Z MESH: 189VCF191→NCS 0.99895453 protein cleaner0 2023-09-18T15:08:02Z PR: DKK 0.67046195 ptm cleaner0 2023-09-19T09:11:42Z MESH: N-linked glycans 0.9990034 site cleaner0 2023-09-19T09:06:33Z SO: protein-protein-binding sites 0.9990411 site cleaner0 2023-09-19T09:06:39Z SO: protein-binding interfaces 0.88388306 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.80331635 protein_state cleaner0 2023-09-19T10:00:57Z DUMMY: mutants 0.99901456 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type 0.99868995 experimental_method cleaner0 2023-09-19T09:04:41Z MESH: SPR 0.998916 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.9990551 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.98682505 protein_state cleaner0 2023-09-19T09:12:34Z DUMMY: mutant ptm MESH: cleaner0 2023-09-19T09:12:08Z N-glycan 0.9977586 site cleaner0 2023-09-19T09:06:42Z SO: interface 0.9992186 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB 0.99892753 mutant cleaner0 2023-09-19T09:12:18Z MESH: 309NQA311→NQS 0.9991409 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type 0.9986671 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 RESULTS title_2 12076 Identification of a Direct LRP6-KRM1 Binding Site 0.9978304 site cleaner0 2023-09-19T09:12:46Z SO: LRP6-KRM1 Binding Site RESULTS paragraph 12126 The LRP6PE3PE4-DKK1CRD2-KRM1ECD complex structure reveals no direct interactions between KRM1 and LRP6. We constructed in silico a ternary complex with a close to full-length LRP6 ectodomain (PE1PE2PE3PE4 horse shoe) similar to but without refinement against electron microscopy (EM) or small-angle X-ray scattering data. An auxiliary PE3PE4 fragment was superimposed via PE4 onto PE3 of the crystal structure, and the LRP6PE1PE2 structure was superimposed via PE2 onto PE3 of this auxiliary fragment (Figure 3A). 0.999238 complex_assembly cleaner0 2023-09-19T08:45:01Z GO: LRP6PE3PE4-DKK1CRD2-KRM1ECD 0.96343386 evidence cleaner0 2023-09-19T09:57:31Z DUMMY: structure 0.9925793 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.99859744 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 protein_state DUMMY: cleaner0 2023-09-18T15:15:14Z complex with 0.9976246 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.999175 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.99937844 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain structure_element SO: cleaner0 2023-09-19T09:13:50Z PE1PE2PE3PE4 structure_element SO: cleaner0 2023-09-19T09:14:01Z horse shoe 0.99863327 experimental_method cleaner0 2023-09-19T09:13:15Z MESH: electron microscopy 0.9984401 experimental_method cleaner0 2023-09-19T09:13:18Z MESH: EM 0.99649286 experimental_method cleaner0 2023-09-19T09:13:23Z MESH: small-angle X-ray scattering 0.4334478 structure_element cleaner0 2023-09-19T09:13:09Z SO: PE3PE4 0.99877995 experimental_method cleaner0 2023-09-19T09:13:28Z MESH: superimposed 0.99630725 structure_element cleaner0 2023-09-19T09:18:45Z SO: PE4 0.99660873 structure_element cleaner0 2023-09-19T09:18:50Z SO: PE3 0.99758327 evidence cleaner0 2023-09-18T15:08:17Z DUMMY: crystal structure protein PR: cleaner0 2023-09-19T09:14:17Z LRP6 structure_element SO: cleaner0 2023-09-19T09:14:30Z PE1PE2 0.9973882 evidence cleaner0 2023-09-19T09:13:34Z DUMMY: structure 0.9988292 experimental_method cleaner0 2023-09-19T09:13:28Z MESH: superimposed 0.99678135 structure_element cleaner0 2023-09-19T09:25:11Z SO: PE2 0.99711955 structure_element cleaner0 2023-09-19T09:18:50Z SO: PE3 RESULTS paragraph 12642 For this crude approximation of a true ternary complex, we noted very close proximity between the Ca2+-binding region of KRM1 and the top face of the PE2 β propeller of LRP6. The solvent-exposed residues R307, I308, and N309 of the central Ca2+-binding β connection loop of KRM1 would be almost ideally positioned for binding to this face, which is commonly used as a binding site on β propellers. Peptides containing arginine/lysine, isoleucine, and asparagine (consensus sequence N-X-I-(G)-R/K) are also employed by DKK1 and SOST to bind to LRP6 (albeit to propeller 1; Figure 3B). To support the hypothesis that KRM1CUB binds to LRP6PE2, we used SPR and compared binding of the wild-type and the GlycoCUB mutant of KRM1ECD (bearing an N-glycosylation site at N309) with a purified LRP6PE1PE2 fragment. Indeed, we found that in the absence of Dkk, KRM1ECD bound with considerable affinity to LRP6PE1PE2 (Figure 3C). In contrast, no saturable binding was observed between KRM1 and LRP6PE3PE4. Introduction of an N-glycosylation site at N309 in KRM1ECD abolished LRP6PE1PE2 binding (Figure 3C), while binding to DKK1 was unaffected (Figure 2D). We conclude that the predicted binding site between KRM1CUB and LRP6PE2 is a strong candidate for mediating the direct Lrp6-Krm interaction, which is thought to increase Wnt responsiveness by stabilizing Lrp6 at the cell surface. Further experiments are required to pinpoint the exact binding site. Although LRP6PE1 appears somewhat out of reach in the modeled ternary complex, it cannot be excluded as the Krm binding site in the ternary complex and LRP6-Krm binary complex. The presence of DKK may govern which propeller (PE1 versus PE2) of LRP6 is available for Krm binding. 0.99889165 site cleaner0 2023-09-19T09:14:38Z SO: Ca2+-binding region 0.70204115 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 structure_element SO: cleaner0 2023-09-19T09:25:10Z PE2 structure_element SO: cleaner0 2023-09-19T09:25:23Z β propeller 0.99911326 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 protein_state DUMMY: cleaner0 2023-09-19T10:04:32Z solvent-exposed 0.9994591 residue_name_number cleaner0 2023-09-19T09:14:49Z DUMMY: R307 0.99941707 residue_name_number cleaner0 2023-09-19T09:14:53Z DUMMY: I308 0.99950254 residue_name_number cleaner0 2023-09-19T09:14:56Z DUMMY: N309 structure_element SO: cleaner0 2023-09-19T09:15:38Z Ca2+-binding β connection loop 0.8115768 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 0.998543 site cleaner0 2023-09-19T09:15:48Z SO: binding site 0.99863666 structure_element cleaner0 2023-09-19T09:15:45Z SO: β propellers 0.99799347 residue_name cleaner0 2023-09-19T09:15:50Z SO: arginine 0.997482 residue_name cleaner0 2023-09-19T09:15:52Z SO: lysine 0.99793506 residue_name cleaner0 2023-09-19T09:15:54Z SO: isoleucine 0.99770665 residue_name cleaner0 2023-09-19T09:15:56Z SO: asparagine 0.9350921 structure_element cleaner0 2023-09-19T10:07:14Z SO: N-X-I-(G)-R/K 0.99911493 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.999201 protein cleaner0 2023-09-19T09:16:15Z PR: SOST 0.99911827 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.9990943 structure_element cleaner0 2023-09-19T09:58:40Z SO: propeller 1 protein PR: cleaner0 2023-09-19T09:25:38Z KRM1 structure_element SO: cleaner0 2023-09-19T09:25:48Z CUB protein_state DUMMY: cleaner0 2023-09-19T10:00:12Z binds to protein PR: cleaner0 2023-09-19T09:26:02Z LRP6 structure_element SO: cleaner0 2023-09-19T09:26:14Z PE2 0.99864656 experimental_method cleaner0 2023-09-19T09:04:41Z MESH: SPR 0.99910635 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type 0.9700352 protein_state cleaner0 2023-09-19T09:27:01Z DUMMY: GlycoCUB mutant protein PR: cleaner0 2023-09-19T09:26:33Z KRM1 structure_element SO: cleaner0 2023-09-19T09:26:50Z ECD 0.9965527 site cleaner0 2023-09-19T09:16:02Z SO: N-glycosylation site 0.9995345 residue_name_number cleaner0 2023-09-19T09:14:57Z DUMMY: N309 protein PR: cleaner0 2023-09-19T09:27:18Z LRP6 structure_element SO: cleaner0 2023-09-19T09:27:28Z PE1PE2 0.9990541 protein_state cleaner0 2023-09-19T09:24:46Z DUMMY: absence of 0.9986665 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein PR: cleaner0 2023-09-19T09:27:42Z KRM1 structure_element SO: cleaner0 2023-09-19T09:27:53Z ECD 0.9928445 protein_state cleaner0 2023-09-19T10:01:29Z DUMMY: bound 0.9828691 protein_state cleaner0 2023-09-19T10:01:32Z DUMMY: to protein PR: cleaner0 2023-09-19T09:28:11Z LRP6 structure_element SO: cleaner0 2023-09-19T09:28:21Z PE1PE2 0.9926576 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 protein PR: cleaner0 2023-09-19T09:28:36Z LRP6 structure_element SO: cleaner0 2023-09-19T09:28:47Z PE3PE4 0.78763753 experimental_method cleaner0 2023-09-19T10:03:39Z MESH: Introduction of 0.997533 site cleaner0 2023-09-19T09:24:25Z SO: N-glycosylation site 0.99951124 residue_name_number cleaner0 2023-09-19T09:14:57Z DUMMY: N309 protein PR: cleaner0 2023-09-19T09:29:03Z KRM1 structure_element SO: cleaner0 2023-09-19T09:29:13Z ECD protein PR: cleaner0 2023-09-19T09:29:54Z LRP6 structure_element SO: cleaner0 2023-09-19T09:30:05Z PE1PE2 0.9990681 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.99861795 site cleaner0 2023-09-19T10:06:41Z SO: binding site protein PR: cleaner0 2023-09-19T09:29:27Z KRM1 structure_element SO: cleaner0 2023-09-19T09:29:37Z CUB protein PR: cleaner0 2023-09-19T09:30:19Z LRP6 structure_element SO: cleaner0 2023-09-19T09:30:28Z PE2 0.972133 complex_assembly cleaner0 2023-09-19T09:23:58Z GO: Lrp6-Krm protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.9983664 protein cleaner0 2023-09-18T15:04:28Z PR: Lrp6 site SO: cleaner0 2023-09-19T10:07:56Z binding site protein PR: cleaner0 2023-09-19T09:30:44Z LRP6 structure_element SO: cleaner0 2023-09-19T09:30:55Z PE1 0.9989984 site cleaner0 2023-09-19T10:08:07Z SO: Krm binding site 0.9991382 complex_assembly cleaner0 2023-09-19T09:31:01Z GO: LRP6-Krm 0.99640095 protein_state cleaner0 2023-09-19T08:34:49Z DUMMY: presence of 0.998844 protein cleaner0 2023-09-18T15:08:02Z PR: DKK 0.9993789 structure_element cleaner0 2023-09-19T09:58:43Z SO: propeller 0.99949026 structure_element cleaner0 2023-09-19T09:31:09Z SO: PE1 0.99948514 structure_element cleaner0 2023-09-19T09:25:11Z SO: PE2 0.99907756 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.66727495 protein_type cleaner0 2023-09-19T09:58:53Z MESH: Krm RESULTS paragraph 14374 Apparent binding across the proposed KRM1CUB-LRP6PE2 interface is expected to be higher once Krm is also cross-linked to LRP6PE3 via DKK1CRD2 (Figure 3D). Low-resolution negative-stain EM and small-angle X-ray scattering studies of LRP6PE1PE2PE3PE4, in isolation and in complex with Dkk1, plus negative-stain EM of full-length LRP6 ectodomain, have indicated curved, platform-like conformations but also potential flexibility between PE2 and PE3. It is therefore possible that the interplay of Krm and Dkk binding can promote changes in LRP6 ectodomain conformation with functional consequences; however, such ideas await investigation. 0.9990089 site cleaner0 2023-09-19T10:08:10Z SO: KRM1CUB-LRP6PE2 interface 0.9994892 protein_type cleaner0 2023-09-19T09:59:04Z MESH: Krm protein PR: cleaner0 2023-09-19T09:32:33Z LRP6 structure_element SO: cleaner0 2023-09-19T09:32:43Z PE3 protein PR: cleaner0 2023-09-19T09:32:57Z DKK1 structure_element SO: cleaner0 2023-09-19T09:33:06Z CRD2 0.9989036 experimental_method cleaner0 2023-09-19T09:32:16Z MESH: negative-stain EM 0.9989684 experimental_method cleaner0 2023-09-19T09:13:24Z MESH: small-angle X-ray scattering protein PR: cleaner0 2023-09-19T09:33:25Z LRP6 structure_element SO: cleaner0 2023-09-19T09:33:35Z PE1PE2PE3PE4 0.9033568 protein_state cleaner0 2023-09-19T09:31:44Z DUMMY: in isolation 0.99816304 protein_state cleaner0 2023-09-19T09:31:38Z DUMMY: in complex with 0.9985501 protein_type cleaner0 2023-09-19T09:33:12Z MESH: Dkk1 0.99890447 experimental_method cleaner0 2023-09-19T09:32:16Z MESH: negative-stain EM 0.9991421 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.999263 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.99935347 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.99760216 protein_state cleaner0 2023-09-19T10:01:44Z DUMMY: curved 0.9706499 protein_state cleaner0 2023-09-19T10:01:49Z DUMMY: platform-like 0.99944097 structure_element cleaner0 2023-09-19T09:25:11Z SO: PE2 0.9994288 structure_element cleaner0 2023-09-19T09:18:50Z SO: PE3 0.9995103 protein_type cleaner0 2023-09-19T09:31:59Z MESH: Krm 0.5479226 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.9992786 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.9993906 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain RESULTS paragraph 15012 Taken together, the structural and biophysical studies we report here extend our mechanistic understanding of Wnt signal regulation. We describe the ectodomain structure of the dual Wnt regulator Krm1, providing an explanation for the detrimental effect on health and development of a homozygous KRM1 mutation. We also reveal the interaction mode of Krm-Dkk and the architecture of the ternary complex formed by Lrp5/6, Dkk, and Krm. Furthermore, the ternary crystal structure has guided in silico and biophysical analyses to suggest a direct LRP6-KRM1 interaction site. Our findings provide a solid foundation for additional studies to probe how ternary complex formation triggers internalization, whereas Krm binding in the absence of Dkk stabilizes the Wnt co-receptor at the cell surface. 0.9987791 experimental_method cleaner0 2023-09-19T09:33:43Z MESH: structural and biophysical studies protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.99944466 structure_element cleaner0 2023-09-18T15:05:48Z SO: ectodomain 0.98785317 evidence cleaner0 2023-09-19T09:57:37Z DUMMY: structure protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.99765694 protein_type cleaner0 2023-09-19T09:33:57Z MESH: Krm1 0.9876721 protein cleaner0 2023-09-18T15:06:10Z PR: KRM1 complex_assembly GO: cleaner0 2023-09-19T09:34:21Z Krm-Dkk 0.9881404 protein_type cleaner0 2023-09-19T09:34:07Z MESH: Lrp5/6 0.9984548 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk 0.9982216 protein_type cleaner0 2023-09-19T09:34:29Z MESH: Krm 0.9973328 evidence cleaner0 2023-09-18T15:08:17Z DUMMY: crystal structure 0.9021877 experimental_method cleaner0 2023-09-19T09:33:45Z MESH: in silico and biophysical analyses 0.97991484 site cleaner0 2023-09-19T09:34:38Z SO: LRP6-KRM1 interaction site 0.833017 protein_type cleaner0 2023-09-19T09:34:54Z MESH: Krm 0.9991188 protein_state cleaner0 2023-09-19T09:24:47Z DUMMY: absence of 0.9983999 protein_type cleaner0 2023-09-18T15:10:08Z MESH: Dkk protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt protein_type MESH: cleaner0 2023-09-18T15:17:09Z co-receptor METHODS title_1 15806 Experimental Procedures METHODS title_2 15830 Large-Scale Mammalian Expression and Protein Purification METHODS paragraph 15888 KrmECD fragments were cloned into pHLsec or variants thereof. Full ectodomain variants (e.g., KRM1 isoform 3, P30-T377) were well secreted into the conditioned medium (CM) of HEK293T cells, but exhibited extensive O-glycosylation (as judged from smeary bands in western blot), which would be detrimental to crystallization. Fragments truncated to the KR-WSC-CUB core gave sharp bands but were barely secreted. We therefore engineered an A23-G373 (isoform 1 numbering used throughout the article) full ectodomain construct (KRM1ECD-TEV) with a C-terminal His10 tag that contained a TEV protease cleavage site after E324. The expected sequence of the secreted protein is ETG-23APSPGLGPGPE31 … 320AVKEE324-GSENLYFQGGS-325LPQ … VPG373-THHHHHHHHHH (the isoform-2-specific PG insertion and the TEV site are underlined). This construct was well secreted and could be processed using TEV protease. However, 80%–90% of the protein eluted as aggregates from a size-exclusion column even before TEV treatment. The same applied to analog constructs for Krm1 from zebrafish, frog, and mouse. No monomeric protein at all could be obtained for several Krm2 constructs from multiple species. A KRM1ECD-TEV expressing stable GntI-deficient HEK293S cell line was generated by excision of an EcoRI-XhoI fragment, sub-cloning into pNeo-Sec-1, and selection of neomycin-resistant cells. The stable cell line showed expression levels superior to transiently transfected cells (not shown). METHODS paragraph 17365 Human LRP6PE1PE2, LRP6PE3PE4, and full-length DKK1 were produced in a similar way as described. Shorter constructs of DKK1 lacking the N-terminal flexible region and CRD1 were not secreted from HEK cells. However, using the approach of an N-terminal fusion to a modified SUMO protein as described earlier, we succeeded in secretory expression of a SUMO-DKK1Linker-CRD2 construct encompassing residues S141-H266. A variant of this containing a TEV cleavage site just before T181, SUMO-DKK1Linker-TEV-CRD2, was also well expressed and allowed removal of the flexible linker region. METHODS paragraph 17945 To obtain complexes of KRM1ECD-TEV, we (co-)transfected the stable cell line with DKK and LRP6PE3PE4 constructs described earlier. Binary and ternary KRM1ECD-DKK1fl and KRM1ECD-DKK1fl-LRP6PE3PE4 complexes were stable in gel-filtration eluting as distinct monodisperse peaks. METHODS title_2 18220 Crystallization and Data Collection METHODS paragraph 18256 All samples subjected to crystallization were purified from CM by affinity and size-exclusion chromatography. After treatment with TEV protease and endoglycosidase F1 overnight using mass equivalents of 1%, samples were subjected to size-exclusion chromatography in 10 mM HEPES/NaOH (pH 7.5), 150 mM NaCl. The crystals giving rise to the 1.9 Å dataset for KRM1 in crystal form I were obtained from a KRM1ECD-DKK1Linker-CRD2 complex concentrated to 12 mg/mL. Out of this complex, KRM1ECD crystallized alone in 2.0 M ammonium sulfate, 5% (v/v) iso-propanol. For cryoprotection, crystals were transferred to mother liquor mixed 1:1 with 3.4 M sodium malonate (pH 7.0). The slightly less well-ordered crystal of crystal form I and crystals of form II were obtained from a KRM1ECD-DKK1CRD2 complex using the SUMO-DKK1Linker-TEV-CRD2 construct and releasing SUMO and the DKK linker region by TEV and 3C protease treatment. Crystals of form I (2.1 Å) appeared from protein at 12 mg/mL in 1.0 M (NH4)H2PO4, 0.100 M sodium citrate (pH 5.6) and were cryoprotected by transfer to 2.9 M sodium malonate (pH 5.0). Crystals of form II grew from protein concentrated to 17 mg/mL in 1.0 M MgSO4, 0.1 M trisodium citrate (final pH 5.6). For cryoprotection, crystals were transferred to mother liquor mixed 1:3 with 3.0 M ammonium sulfate, 18% glycerol. Crystal form III appeared after 11 months in a dried-out drop of condition H5 of the Morpheus screen. The protein concentration had been 9 mg/mL. For cryoprotection, fresh liquid from Morpheus/H5 was added. The ternary complex structure was obtained from an LRP6PE3PE4-DKK1fl-KRM1ECD complex at 9 mg/mL that grew in condition E10 of the PACTpremier screen (pH approximately 6.8) over the course of 2–11 months. For cryoprotection, 10% PEG200 was added. By mistake, the crystals were incubated for 1 hr with 1 mM platinum compound in this cryosolution before cryocooling. METHODS title_2 20188 Structure Determination METHODS paragraph 20212 Diffraction data were collected at DIAMOND synchrotron light source at the beamlines detailed in Table 1. The structure was initially solved from crystal form III by molecular replacement (MR) with PHASER, placing models for the CUB domain (PDB: 2WNO, CUB_C domain of Tsg-6, 37% sequence identity), and the KR domain (PDB: 1PKR, Kringle 1 of plasminogen; 39% sequence identity). Traceable density for the WSC domain became immediately evident. The KRM1 structure was then built and refined by cycling between the various crystal forms. METHODS paragraph 20748 For the ternary complex, we obtained only a low-resolution, highly anisotropic dataset extending to Bragg spacings of 3.5 Å, 6.4 Å, and 3.7 Å along the three principle directions (<I/σI> = 2). All data to 3.5 Å were used during structure determination by MR. LRP6PE3PE4 (PDB: 4A0P) and KRM1ECD (both stripped of glycosylation sites) could be placed independently by PHASER, giving Z scores of >10 and log likelihood gains (LLG) of >200. The combined LLG was 673, increasing to 901 after rigid-body refinement. Strong electron density became apparent at glycosylation sites and close to methionines (see platinum soak above), further supporting the MR solution. Additional strong density was evident between LRP6 and KRM1, suggesting the presence of DKK1. A model of the DKK1CRD2 (PDB: 3S2K and 3S8V) could then be placed with PHASER by testing all rotation function peaks. This increased the LLG from 901 to 973 indicating a correct solution. The individually placed LRP6 and DKK models were then replaced with chains B and C from the LRP6-DKK complex in PDB: 3S2K. The structure was subjected to rigid-body refinement using single structural domains as individually positioned bodies. METHODS paragraph 21945 We then performed restrained refinement of the coordinates against the ellipsoidally truncated and anisotropically scaled diffraction data as obtained from the diffraction anisotropy server at UCLA. The resolution cutoffs were 3.5 Å, 6.4 Å, and 3.7 Å. Strong geometric restraints generated by PROSMART from the available high-resolution reference structures were used during refinement. No manual model building was attempted. Restrained refinement was followed by ten cycles of structure idealization. The final model had Rwork/Rfree errors of 32.5%/36.1% against the anisotropy-corrected data and 32.1%/35.5% against the unmodified but ellipsoidally truncated diffraction data. METHODS title_2 22631 Surface Plasmon Resonance METHODS paragraph 22657 Equilibrium experiments were performed as described before with the addition of 2 mM CaCl2 for experiments investigating the direct LRP6PE1PE2-KRM1ECD interaction. AUTH_CONT title_1 22822 Author Contributions AUTH_CONT paragraph 22843 M.Z. and V.A.J. performed experiments with support from Y.Z., who generated the stable cell line. M.Z. and E.Y.J. designed the research. M.Z. wrote the paper with input from all other authors. REF title 23036 References 862 873 surname:Ahn;given-names:V.E. surname:Chu;given-names:M.L. surname:Choi;given-names:H.J. surname:Tran;given-names:D. surname:Abo;given-names:A. surname:Weis;given-names:W.I. 22000856 REF Dev. Cell ref 21 2011 23047 Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6 683 686 surname:Bafico;given-names:A. surname:Liu;given-names:G. surname:Yaniv;given-names:A. surname:Gazit;given-names:A. surname:Aaronson;given-names:S.A. 11433302 REF Nat. Cell Biol. ref 3 2001 23122 Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow e22 surname:Bao;given-names:J. surname:Zheng;given-names:J.J. surname:Wu;given-names:D. REF Sci. Signal. ref 5 2012 23218 The structural basis of DKK-mediated inhibition of Wnt/LRP signaling 1433 1442 surname:Bourhis;given-names:E. surname:Wang;given-names:W. surname:Tam;given-names:C. surname:Hwang;given-names:J. surname:Zhang;given-names:Y. surname:Spittler;given-names:D. surname:Huang;given-names:O.W. surname:Gong;given-names:Y. surname:Estevez;given-names:A. surname:Zilberleyb;given-names:I. 21944579 REF Structure ref 19 2011 23287 Wnt antagonists bind through a short peptide to the first beta-propeller domain of LRP5/6 28708 surname:Briggs;given-names:D.C. surname:Birchenough;given-names:H.L. surname:Ali;given-names:T. surname:Rugg;given-names:M.S. surname:Waltho;given-names:J.P. surname:Ievoli;given-names:E. surname:Jowitt;given-names:T.A. surname:Enghild;given-names:J.J. surname:Richter;given-names:R.P. surname:Salustri;given-names:A. 26468290 REF J. Biol. Chem. ref 290 2015 23377 Metal ion-dependent heavy chain transfer activity of Tsg-6 mediates assembly of the cumulus-oocyte matrix 323 332 surname:Causeret;given-names:F. surname:Sumia;given-names:I. surname:Pierani;given-names:A. 26206087 REF Cell Death Differ. ref 23 2015 23483 Kremen1 and Dickkopf1 control cell survival in a Wnt-independent manner surname:Chang;given-names:T.H. surname:Hsieh;given-names:F.L. surname:Zebisch;given-names:M. surname:Harlos;given-names:K. surname:Elegheert;given-names:J. surname:Jones;given-names:E.Y. REF Elife ref 4 2015 23555 Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan 23364 23370 surname:Chen;given-names:L. surname:Wang;given-names:K. surname:Shao;given-names:Y. surname:Huang;given-names:J. surname:Li;given-names:X. surname:Shan;given-names:J. surname:Wu;given-names:D. surname:Zheng;given-names:J.J. 18524778 REF J. Biol. Chem. ref 283 2008 23667 Structural insight into the mechanisms of Wnt signaling antagonism by Dkk 848 861 surname:Chen;given-names:S. surname:Bubeck;given-names:D. surname:Macdonald;given-names:B.T. surname:Liang;given-names:W.X. surname:Mao;given-names:J.H. surname:Malinauskas;given-names:T. surname:Llorca;given-names:O. surname:Aricescu;given-names:A.R. surname:Siebold;given-names:C. surname:He;given-names:X. 22000855 REF Dev. Cell ref 21 2011 23741 Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling 1204 1210 surname:Cheng;given-names:Z. surname:Biechele;given-names:T. surname:Wei;given-names:Z. surname:Morrone;given-names:S. surname:Moon;given-names:R.T. surname:Wang;given-names:L. surname:Xu;given-names:W. 21984209 REF Nat. Struct. Mol. Biol. ref 18 2011 23830 Crystal structures of the extracellular domain of LRP6 and its complex with DKK1 1192 1205 surname:Clevers;given-names:H. surname:Nusse;given-names:R. 22682243 REF Cell ref 149 2012 23911 Wnt/beta-catenin signaling and disease e10 surname:Cselenyi;given-names:C.S. surname:Lee;given-names:E. REF Sci. Signal. ref 1 2008 23950 Context-dependent activation or inhibition of Wnt-beta-catenin signaling by Kremen 5587 5596 surname:Davidson;given-names:G. surname:Mao;given-names:B. surname:del Barco Barrantes;given-names:I. surname:Niehrs;given-names:C. 12421700 REF Development ref 129 2002 24033 Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning 4875 4882 surname:Ellwanger;given-names:K. surname:Saito;given-names:H. surname:Clement-Lacroix;given-names:P. surname:Maltry;given-names:N. surname:Niedermeyer;given-names:J. surname:Lee;given-names:W.K. surname:Baron;given-names:R. surname:Rawadi;given-names:G. surname:Westphal;given-names:H. surname:Niehrs;given-names:C. 18505822 REF Mol. Cell. Biol. ref 28 2008 24116 Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density 185 193 surname:Gaboriaud;given-names:C. surname:Gregory-Pauron;given-names:L. surname:Teillet;given-names:F. surname:Thielens;given-names:N.M. surname:Bally;given-names:I. surname:Arlaud;given-names:G.J. 21954942 REF Biochem. J. ref 439 2011 24207 Structure and properties of the Ca(2+)-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions 4255 4263 surname:Hassler;given-names:C. surname:Cruciat;given-names:C.M. surname:Huang;given-names:Y.L. surname:Kuriyama;given-names:S. surname:Mayor;given-names:R. surname:Niehrs;given-names:C. 17978005 REF Development ref 134 2007 24342 Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling a007922 surname:Holstein;given-names:T.W. 22751150 REF Cold Spring Harb. Perspect. Biol. ref 4 2012 24440 The evolution of the Wnt pathway surname:Issa;given-names:Y.A. surname:Kamal;given-names:L. surname:Rayyan;given-names:A.A. surname:Dweik;given-names:D. surname:Pierce;given-names:S. surname:Lee;given-names:M.K. surname:King;given-names:M.C. surname:Walsh;given-names:T. surname:Kanaan;given-names:M. REF Eur. J. Hum. Genet. ref 2016 24473 Mutation of KREMEN1, a modulator of Wnt signaling, is responsible for ectodermal dysplasia including oligodontia in Palestinian families 187 192 surname:Kakugawa;given-names:S. surname:Langton;given-names:P.F. surname:Zebisch;given-names:M. surname:Howell;given-names:S.A. surname:Chang;given-names:T.H. surname:Liu;given-names:Y. surname:Feizi;given-names:T. surname:Bineva;given-names:G. surname:O'Reilly;given-names:N. surname:Snijders;given-names:A.P. 25731175 REF Nature ref 519 2015 24610 Notum deacylates Wnt proteins to suppress signalling activity 77 84 surname:Malinauskas;given-names:T. surname:Jones;given-names:E.Y. 25460271 REF Curr. Opin. Struct. Biol. ref 29C 2014 24672 Extracellular modulators of Wnt signalling 179 183 surname:Mao;given-names:B. surname:Niehrs;given-names:C. 12527209 REF Gene ref 302 2003 24715 Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling 321 325 surname:Mao;given-names:B. surname:Wu;given-names:W. surname:Li;given-names:Y. surname:Hoppe;given-names:D. surname:Stannek;given-names:P. surname:Glinka;given-names:A. surname:Niehrs;given-names:C. 11357136 REF Nature ref 411 2001 24778 LDL-receptor-related protein 6 is a receptor for Dickkopf proteins 664 667 surname:Mao;given-names:B. surname:Wu;given-names:W. surname:Davidson;given-names:G. surname:Marhold;given-names:J. surname:Li;given-names:M. surname:Mechler;given-names:B.M. surname:Delius;given-names:H. surname:Hoppe;given-names:D. surname:Stannek;given-names:P. surname:Walter;given-names:C. 12050670 REF Nature ref 417 2002 24845 Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling 658 674 surname:McCoy;given-names:A.J. surname:Grosse-Kunstleve;given-names:R.W. surname:Adams;given-names:P.D. surname:Winn;given-names:M.D. surname:Storoni;given-names:L.C. surname:Read;given-names:R.J. 19461840 REF J. Appl. Crystallogr. ref 40 2007 24926 Phaser crystallographic software 63 72 surname:Nakamura;given-names:T. surname:Aoki;given-names:S. surname:Kitajima;given-names:K. surname:Takahashi;given-names:T. surname:Matsumoto;given-names:K. surname:Nakamura;given-names:T. 11267660 REF Biochim. Biophys. Acta ref 1518 2001 24959 Molecular cloning and characterization of Kremen, a novel kringle-containing transmembrane protein 391 408 surname:Nakamura;given-names:T. surname:Nakamura;given-names:T. surname:Matsumoto;given-names:K. 18088386 REF J. Cell Mol. Med. ref 12 2008 25058 The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology 767 779 surname:Niehrs;given-names:C. 23151663 REF Nat. Rev. Mol. Cell Biol. ref 13 2012 25173 The complex world of WNT receptor signalling 299 319 surname:Osada;given-names:M. surname:Ito;given-names:E. surname:Fermin;given-names:H.A. surname:Vazquez-Cintron;given-names:E. surname:Venkatesh;given-names:T. surname:Friedel;given-names:R.H. surname:Pezzano;given-names:M. 17162372 REF Clin. Dev. Immunol. ref 13 2006 25218 The Wnt signaling antagonist Kremen1 is required for development of thymic architecture 1586 1595 surname:Peroutka;given-names:R.J. surname:Elshourbagy;given-names:N. surname:Piech;given-names:T. surname:Butt;given-names:T.R. 18539905 REF Protein Sci. ref 17 2008 25306 Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2 783 788 surname:Romero;given-names:A. surname:Romao;given-names:M.J. surname:Varela;given-names:P.F. surname:Kolln;given-names:I. surname:Dias;given-names:J.M. surname:Carvalho;given-names:A.L. surname:Sanz;given-names:L. surname:Topfer-Petersen;given-names:E. surname:Calvete;given-names:J.J. 9334740 REF Nat. Struct. Biol. ref 4 1997 25410 The crystal structures of two spermadhesins reveal the CUB domain fold e10309 surname:Schulze;given-names:J. surname:Seitz;given-names:S. surname:Saito;given-names:H. surname:Schneebauer;given-names:M. surname:Marshall;given-names:R.P. surname:Baranowsky;given-names:A. surname:Busse;given-names:B. surname:Schilling;given-names:A.F. surname:Friedrich;given-names:F.W. surname:Albers;given-names:J. 20436912 REF PLoS One ref 5 2010 25481 Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2 115 127 surname:Seiradake;given-names:E. surname:Zhao;given-names:Y. surname:Lu;given-names:W. surname:Aricescu;given-names:A.R. surname:Jones;given-names:E.Y. 25502196 REF Methods Mol. Biol. ref 1261 2015 25564 Production of cell surface and secreted glycoproteins in mammalian cells 951 961 surname:Semenov;given-names:M.V. surname:Tamai;given-names:K. surname:Brott;given-names:B.K. surname:Kuhl;given-names:M. surname:Sokol;given-names:S. surname:He;given-names:X. 11448771 REF Curr. Biol. ref 11 2001 25637 Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6 8060 8065 surname:Strong;given-names:M. surname:Sawaya;given-names:M.R. surname:Wang;given-names:S. surname:Phillips;given-names:M. surname:Cascio;given-names:D. surname:Eisenberg;given-names:D. 16690741 REF Proc. Natl. Acad. Sci. USA ref 103 2006 25697 Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis 63 67 surname:Tordai;given-names:H. surname:Banyai;given-names:L. surname:Patthy;given-names:L. 10561497 REF FEBS Lett. ref 461 1999 25820 The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins 13804 13809 surname:Verna;given-names:J. surname:Lodder;given-names:A. surname:Lee;given-names:K. surname:Vagts;given-names:A. surname:Ballester;given-names:R. 9391108 REF Proc. Natl. Acad. Sci. USA ref 94 1997 26029 A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae 23371 23375 surname:Wang;given-names:K. surname:Zhang;given-names:Y. surname:Li;given-names:X. surname:Chen;given-names:L. surname:Wang;given-names:H. surname:Wu;given-names:J. surname:Zheng;given-names:J. surname:Wu;given-names:D. 18502762 REF J. Biol. Chem. ref 283 2008 26151 Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in dkk-mediated Wnt antagonism 283 288 surname:Watanabe;given-names:K. surname:Chirgadze;given-names:D.Y. surname:Lietha;given-names:D. surname:de;given-names:J.H. surname:Blundell;given-names:T.L. surname:Gherardi;given-names:E. 12051906 REF J. Mol. Biol. ref 319 2002 26272 A new crystal form of the NK1 splice variant of HGF/SF demonstrates extensive hinge movement and suggests that the NK1 dimer originates by domain swapping 157 166 surname:Wu;given-names:T.P. surname:Padmanabhan;given-names:K.P. surname:Tulinsky;given-names:A. 8054447 REF Blood Coagul. Fibrinolysis ref 5 1994 26427 The structure of recombinant plasminogen kringle 1 and the fibrin binding site 288 306 surname:Zebisch;given-names:M. surname:Krauss;given-names:M. surname:Schäfer;given-names:P. surname:Sträter;given-names:N. 22100451 REF J. Mol. Biol. ref 415 2012 26506 Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1 2787 surname:Zebisch;given-names:M. surname:Xu;given-names:Y. surname:Krastev;given-names:C. surname:Macdonald;given-names:B.T. surname:Chen;given-names:M. surname:Gilbert;given-names:R.J. surname:He;given-names:X. surname:Jones;given-names:E.Y. 24225776 REF Nat. Commun. ref 4 2013 26614 Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin KEYWORD title_1 26731 Accession Numbers KEYWORD paragraph 26749 Coordinates and structure factors have been deposited in the PDB with succession numbers PDB: 5FWS, 5FWT, 5FWU, 5FWV, and 5FWW. SUPPL title_1 26877 Supplemental Information SUPPL footnote 26902 Supplemental Information includes one figure and can be found with this article online at http://dx.doi.org/10.1016/j.str.2016.06.020. gr1.jpg fig1 FIG fig_caption 27037 Structure of Unliganded KRM1ECD 0.99732375 evidence cleaner0 2023-09-19T09:57:41Z DUMMY: Structure 0.9991748 protein_state cleaner0 2023-09-19T09:42:59Z DUMMY: Unliganded protein PR: cleaner0 2023-09-19T09:43:13Z KRM1 structure_element SO: cleaner0 2023-09-19T09:43:23Z ECD gr1.jpg fig1 FIG fig_caption 27069 (A) The KRM1ECD fold (crystal form I) colored blue to red from the N to C terminus. Cysteines as ball and sticks, glycosylation sites as sticks. The bound calcium is shown as a gray sphere. The site of the F207S mutation associated with ectodermal dysplasia in humans is shown as mesh. protein PR: cleaner0 2023-09-19T09:43:40Z KRM1 structure_element SO: cleaner0 2023-09-19T09:43:49Z ECD evidence DUMMY: cleaner0 2023-09-19T09:43:59Z crystal form I 0.9921405 residue_name cleaner0 2023-09-19T09:44:02Z SO: Cysteines 0.9977498 site cleaner0 2023-09-19T08:51:54Z SO: glycosylation sites 0.9988972 chemical cleaner0 2023-09-19T08:52:02Z CHEBI: calcium 0.9986633 mutant cleaner0 2023-09-19T08:54:12Z MESH: F207S 0.99778545 species cleaner0 2023-09-19T09:44:11Z MESH: humans gr1.jpg fig1 FIG fig_caption 27356 (B) Superposition of the three KRM1ECD subdomains (solid) with their next structurally characterized homologs (half transparent). 0.99862194 experimental_method cleaner0 2023-09-19T08:53:58Z MESH: Superposition protein PR: cleaner0 2023-09-19T09:44:31Z KRM1 structure_element SO: cleaner0 2023-09-19T09:44:47Z ECD gr1.jpg fig1 FIG fig_caption 27486 (C) Superposition of KRM1ECD from the three crystal forms. Alignment scores for each pairing are indicated on the dashed triangle. 0.9977836 experimental_method cleaner0 2023-09-19T08:53:58Z MESH: Superposition protein PR: cleaner0 2023-09-19T09:45:03Z KRM1 structure_element SO: cleaner0 2023-09-19T09:45:14Z ECD evidence DUMMY: cleaner0 2023-09-19T09:45:30Z crystal forms 0.9983538 evidence cleaner0 2023-09-19T09:45:32Z DUMMY: Alignment scores gr2.jpg fig2 FIG fig_caption 27617 Insight into Ternary Complex Formation gr2.jpg fig2 FIG fig_caption 27656 (A) The structure of the ternary LRP6PE3PE4-DKK1CRD2-KRM1ECD complex. DKK1 (orange) is sandwiched between the PE3 module of LRP6 (blue) and the KR-WSC domain pair of KRM1 (green). Colored symbols indicate introduced N-glycan attachment sites (see D). 0.9669953 evidence cleaner0 2023-09-19T09:45:40Z DUMMY: structure 0.99905986 complex_assembly cleaner0 2023-09-19T08:45:01Z GO: LRP6PE3PE4-DKK1CRD2-KRM1ECD 0.99864715 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 structure_element SO: cleaner0 2023-09-19T09:18:50Z PE3 0.9989537 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 structure_element SO: cleaner0 2023-09-19T09:46:15Z KR-WSC 0.8255878 protein cleaner0 2023-09-18T15:06:11Z PR: KRM1 site SO: cleaner0 2023-09-19T09:46:51Z N-glycan attachment sites gr2.jpg fig2 FIG fig_caption 27907 (B) SPR data comparing binding of full-length DKK1 and SUMO fusions of DKK1 truncations for binding to immobilized wild-type KRM1ECD. 0.99875593 experimental_method cleaner0 2023-09-19T09:04:41Z MESH: SPR 0.999115 protein_state cleaner0 2023-09-19T08:48:26Z DUMMY: full-length 0.9985942 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9968902 experimental_method cleaner0 2023-09-19T10:03:44Z MESH: SUMO fusions 0.9980323 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9991273 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type protein PR: cleaner0 2023-09-19T09:47:07Z KRM1 structure_element SO: cleaner0 2023-09-19T09:47:17Z ECD gr2.jpg fig2 FIG fig_caption 28041 (C) Close-up view of the DKK1CRD2-KRM1ECD interface. Residues involved in interface formation are shown as sticks; those mentioned in the text are labeled. Salt bridges are in pink and hydrogen bonds in black. Model bias cannot be excluded as single atoms and bonds are not resolved at 6.4–3.5 Å. See also Figure S1. 0.9989432 site cleaner0 2023-09-19T09:47:22Z SO: DKK1CRD2-KRM1ECD interface 0.9983902 site cleaner0 2023-09-19T09:47:24Z SO: interface 0.9784039 bond_interaction cleaner0 2023-09-19T09:06:00Z MESH: Salt bridges 0.9909836 bond_interaction cleaner0 2023-09-19T09:06:04Z MESH: hydrogen bonds gr2.jpg fig2 FIG fig_caption 28364 (D) SPR binding data comparing DKK1 analyte binding with wild-type KRM1ECD and three variants bearing engineered glycosylation sites on the KR and WSC domains (green and blue pointing to DKK1) and on the CUB domain (orange). See also symbols in (A). 0.9901149 experimental_method cleaner0 2023-09-19T09:04:41Z MESH: SPR 0.97566277 evidence cleaner0 2023-09-19T09:47:35Z DUMMY: binding data 0.99840933 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9990173 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type protein PR: cleaner0 2023-09-19T09:47:52Z KRM1 structure_element SO: cleaner0 2023-09-19T09:48:05Z ECD 0.5362611 protein_state cleaner0 2023-09-19T09:48:16Z DUMMY: engineered 0.96274155 site cleaner0 2023-09-19T08:51:54Z SO: glycosylation sites 0.9995296 structure_element cleaner0 2023-09-18T15:18:40Z SO: KR 0.9994419 structure_element cleaner0 2023-09-18T15:07:09Z SO: WSC 0.9988524 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9995295 structure_element cleaner0 2023-09-18T15:18:34Z SO: CUB gr3.jpg fig3 FIG fig_caption 28614 LRP6-KRM1 Direct Interaction and Summary complex_assembly GO: cleaner0 2023-09-19T09:48:37Z LRP6-KRM1 gr3.jpg fig3 FIG fig_caption 28655 (A) In a construction of a ternary complex with all four β propellers of LRP6 intact, the CUB domain points via its Ca2+-binding region toward the top face of the second β propeller. protein_state DUMMY: cleaner0 2023-09-18T15:15:14Z complex with 0.9945204 structure_element cleaner0 2023-09-19T09:59:08Z SO: β propellers 0.9993331 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 0.99916625 protein_state cleaner0 2023-09-19T10:01:54Z DUMMY: intact structure_element SO: cleaner0 2023-09-18T15:18:34Z CUB 0.9988576 site cleaner0 2023-09-19T09:48:54Z SO: Ca2+-binding region 0.7878209 structure_element cleaner0 2023-09-19T09:59:12Z SO: second β propeller gr3.jpg fig3 FIG fig_caption 28844 (B) Close-up view of the potential interaction site. In addition, LRP6PE2 has been superimposed with DKK1 (yellow) and SOST (pink) peptide complexes of LRP6PE1. 0.9988657 site cleaner0 2023-09-19T09:48:59Z SO: interaction site protein PR: cleaner0 2023-09-19T09:49:12Z LRP6 structure_element SO: cleaner0 2023-09-19T09:49:23Z PE2 0.9987097 experimental_method cleaner0 2023-09-19T09:13:28Z MESH: superimposed 0.9986634 protein cleaner0 2023-09-19T08:56:12Z PR: DKK1 0.9988487 protein cleaner0 2023-09-19T09:16:16Z PR: SOST protein PR: cleaner0 2023-09-19T09:49:36Z LRP6 structure_element SO: cleaner0 2023-09-19T09:49:45Z PE1 gr3.jpg fig3 FIG fig_caption 29005 (C) SPR measurements comparing LRP6PE1PE2 binding with wild-type KRM1ECD and the GlycoCUB mutant bearing an N-glycan at N309. 0.7926361 experimental_method cleaner0 2023-09-19T09:49:59Z MESH: SPR measurements protein PR: cleaner0 2023-09-19T09:50:12Z LRP6 structure_element SO: cleaner0 2023-09-19T09:50:22Z PE1PE2 0.9989366 protein_state cleaner0 2023-09-19T09:12:22Z DUMMY: wild-type protein PR: cleaner0 2023-09-19T09:50:35Z KRM1 structure_element SO: cleaner0 2023-09-19T09:50:45Z ECD protein_state DUMMY: cleaner0 2023-09-19T10:06:53Z GlycoCUB mutant ptm MESH: cleaner0 2023-09-19T09:51:21Z N-glycan 0.99950445 residue_name_number cleaner0 2023-09-19T09:14:57Z DUMMY: N309 gr3.jpg fig3 FIG fig_caption 29131 (D) Schematic representation of structural and biophysical findings and their implications for Wnt-dependent (left, middle) and independent (right) signaling. Conformational differences in the depictions of LRP6 are included purely for ease of representation. protein_type MESH: cleaner0 2023-09-18T15:16:32Z Wnt 0.9989386 protein cleaner0 2023-09-18T15:04:28Z PR: LRP6 tbl1.xml tbl1 TABLE table_caption 29391 Diffraction and Refinement Statistics 0.9977757 evidence cleaner0 2023-09-19T09:57:47Z DUMMY: Diffraction and Refinement Statistics tbl1.xml tbl1 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table xmlns:xlink="http://www.w3.org/1999/xlink" frame="hsides" rules="groups"><thead><tr><th/><th>KRM1<sub>ECD</sub></th><th>KRM1<sub>ECD</sub></th><th>KRM1<sub>ECD</sub></th><th>KRM1<sub>ECD</sub></th><th>LRP6<sub>PE3PE4</sub>-DKK<sub>CRD2</sub>-KRM1<sub>ECD</sub></th></tr></thead><tbody><tr><td>Crystal form</td><td>I</td><td>I</td><td>II</td><td>III</td><td>I</td></tr><tr><td>X-ray source</td><td>Diamond i04</td><td>Diamond i03</td><td>Diamond i03</td><td>Diamond i04</td><td>Diamond i04</td></tr><tr><td>Wavelength (Å)</td><td>0.9793</td><td>0.9700</td><td>0.9700</td><td>0.9795</td><td>0.9795</td></tr><tr><td>Space group</td><td><italic>P</italic>3<sub>1</sub>21</td><td><italic>P</italic>3<sub>1</sub>21</td><td><italic>P</italic>4<sub>3</sub></td><td><italic>P</italic>4<sub>1</sub>2<sub>1</sub>2</td><td><italic>C</italic>222<sub>1</sub></td></tr><tr><td>Unit cell a/α (Å/°)</td><td>50.9/90</td><td>50.5/90</td><td>65.8/90</td><td>67.8/90</td><td>86.9/90</td></tr><tr><td>b/β (Å/°)</td><td>50.9/90</td><td>50.5/90</td><td>65.8/90</td><td>67.8/90</td><td>100.1/90</td></tr><tr><td>c/γ (Å/°)</td><td>188.4/120</td><td>187.4/120</td><td>75.0/90</td><td>198.2/90</td><td>270.7/90</td></tr><tr><td>Wilson B factor (Å<sup>2</sup>)</td><td>31</td><td>41</td><td>76</td><td>77</td><td>NA</td></tr><tr><td>Resolution range (Å)</td><td>47.10–1.90 (1.95–1.90)</td><td>62.47–2.10 (2.16–2.10)</td><td>75.00–2.80 (2.99–2.80)</td><td>67.80–3.20 (3.42–3.20)</td><td>67.68–3.50 (7.16–6.40, 3.92–3.50)</td></tr><tr><td>Unique reflections</td><td>23,300 (1,524)</td><td>17,089 (1,428)</td><td>7,964 (1,448)</td><td>8,171 (1,343)</td><td>8,070 (723, 645)</td></tr><tr><td>Average multiplicity</td><td>9.1 (9.2)</td><td>5.2 (5.3)</td><td>3.7 (3.7)</td><td>22.7 (12.6)</td><td>3.8 (3.5, 4.4)</td></tr><tr><td>Completeness (%)</td><td>99.8 (98.5)</td><td>100 (100)</td><td>99.8 (100)</td><td>98.8 (93.4)</td><td>51.6 (98.5, 14.1)</td></tr><tr><td>&lt;<italic>I</italic>/<italic>σI</italic>&gt;</td><td>11.4 (1.7)</td><td>12.0 (1.7)</td><td>14.9 (1.5)</td><td>13.1 (1.9)</td><td>4.6 (4.1, 2.2)</td></tr><tr><td><italic>R</italic><sub>merge</sub> (%)</td><td>14.8 (158.3)</td><td>9.3 (98.0)</td><td>6.2 (98.9)</td><td>29.8 (142.2)</td><td>44.9 (40.5, 114.2)</td></tr><tr><td><italic>R</italic><sub>pim</sub> (%)</td><td>15.7 (55.3)</td><td>10.3 (109.0)</td><td>3.7 (53.8)</td><td>6.3 (40.0)</td><td>24.7 (23.9, 59.9)</td></tr><tr><td colspan="6"><hr/></td></tr><tr><td colspan="6"><bold>Refinement</bold></td></tr><tr><td colspan="6"><hr/></td></tr><tr><td><italic>R</italic><sub>work</sub> (%)</td><td>17.9</td><td>18.4</td><td>21.6</td><td>20.2</td><td>32.1</td></tr><tr><td><italic>R</italic><sub>free</sub> (%)</td><td>22.7</td><td>23.2</td><td>30.7</td><td>27.1</td><td>35.5</td></tr><tr><td colspan="6"><hr/></td></tr><tr><td colspan="6"><bold>No. of Non-Hydrogen Atoms</bold></td></tr><tr><td colspan="6"><hr/></td></tr><tr><td>Protein</td><td>2,260</td><td>2,301</td><td>2,102</td><td>2,305</td><td>7,730</td></tr><tr><td>N-glycans</td><td>42</td><td>42</td><td>28</td><td>28</td><td>0</td></tr><tr><td>Water</td><td>79</td><td>54</td><td>0</td><td>2</td><td>0</td></tr><tr><td>Ligands</td><td>6</td><td>6</td><td>2</td><td>5</td><td>0</td></tr><tr><td colspan="6"><hr/></td></tr><tr><td colspan="6"><bold>Average B factor (Å<sup>2</sup>)</bold></td></tr><tr><td colspan="6"><hr/></td></tr><tr><td>Protein</td><td>63</td><td>65</td><td>108</td><td>84</td><td>–</td></tr><tr><td>N-glycans</td><td>35</td><td>46</td><td>102</td><td>18</td><td>–</td></tr><tr><td>Water</td><td>68</td><td>85</td><td>–</td><td>75</td><td>–</td></tr><tr><td>Ligands</td><td>36</td><td>47</td><td>91</td><td>75</td><td>66</td></tr><tr><td colspan="6"><hr/></td></tr><tr><td colspan="6"><bold>RMSD from Ideality</bold></td></tr><tr><td colspan="6"><hr/></td></tr><tr><td>Bond lengths (Å)</td><td>0.020</td><td>0.016</td><td>0.019</td><td>0.016</td><td>0.004</td></tr><tr><td>Bond angles (°)</td><td>2.050</td><td>1.748</td><td>1.952</td><td>1.796</td><td>0.770</td></tr><tr><td colspan="6"><hr/></td></tr><tr><td colspan="6"><bold>Ramachandran Plot</bold></td></tr><tr><td colspan="6"><hr/></td></tr><tr><td>Favored (%)</td><td>96.8</td><td>95.5</td><td>96.9</td><td>94.9</td><td>92.3</td></tr><tr><td>Allowed (%)</td><td>99.7</td><td>100.0</td><td>100.0</td><td>99.7</td><td>99.8</td></tr><tr><td>Number of outliers</td><td>1</td><td>0</td><td>0</td><td>1</td><td>2</td></tr><tr><td>PDB code</td><td><ext-link ext-link-type="uri" xlink:href="pdb:5FWS" id="intref0085">5FWS</ext-link></td><td><ext-link ext-link-type="uri" xlink:href="pdb:5FWT" id="intref0090">5FWT</ext-link></td><td><ext-link ext-link-type="uri" xlink:href="pdb:5FWU" id="intref0095">5FWU</ext-link></td><td><ext-link ext-link-type="uri" xlink:href="pdb:5FWV" id="intref0100">5FWV</ext-link></td><td><ext-link ext-link-type="uri" xlink:href="pdb:5FWW" id="intref0105">5FWW</ext-link></td></tr></tbody></table> 29429 KRM1ECD KRM1ECD KRM1ECD KRM1ECD LRP6PE3PE4-DKKCRD2-KRM1ECD Crystal form I I II III I X-ray source Diamond i04 Diamond i03 Diamond i03 Diamond i04 Diamond i04 Wavelength (Å) 0.9793 0.9700 0.9700 0.9795 0.9795 Space group P3121 P3121 P43 P41212 C2221 Unit cell a/α (Å/°) 50.9/90 50.5/90 65.8/90 67.8/90 86.9/90 b/β (Å/°) 50.9/90 50.5/90 65.8/90 67.8/90 100.1/90 c/γ (Å/°) 188.4/120 187.4/120 75.0/90 198.2/90 270.7/90 Wilson B factor (Å2) 31 41 76 77 NA Resolution range (Å) 47.10–1.90 (1.95–1.90) 62.47–2.10 (2.16–2.10) 75.00–2.80 (2.99–2.80) 67.80–3.20 (3.42–3.20) 67.68–3.50 (7.16–6.40, 3.92–3.50) Unique reflections 23,300 (1,524) 17,089 (1,428) 7,964 (1,448) 8,171 (1,343) 8,070 (723, 645) Average multiplicity 9.1 (9.2) 5.2 (5.3) 3.7 (3.7) 22.7 (12.6) 3.8 (3.5, 4.4) Completeness (%) 99.8 (98.5) 100 (100) 99.8 (100) 98.8 (93.4) 51.6 (98.5, 14.1) <I/σI> 11.4 (1.7) 12.0 (1.7) 14.9 (1.5) 13.1 (1.9) 4.6 (4.1, 2.2) Rmerge (%) 14.8 (158.3) 9.3 (98.0) 6.2 (98.9) 29.8 (142.2) 44.9 (40.5, 114.2) Rpim (%) 15.7 (55.3) 10.3 (109.0) 3.7 (53.8) 6.3 (40.0) 24.7 (23.9, 59.9) Refinement Rwork (%) 17.9 18.4 21.6 20.2 32.1 Rfree (%) 22.7 23.2 30.7 27.1 35.5 No. of Non-Hydrogen Atoms Protein 2,260 2,301 2,102 2,305 7,730 N-glycans 42 42 28 28 0 Water 79 54 0 2 0 Ligands 6 6 2 5 0 Average B factor (Å2) Protein 63 65 108 84 – N-glycans 35 46 102 18 – Water 68 85 – 75 – Ligands 36 47 91 75 66 RMSD from Ideality Bond lengths (Å) 0.020 0.016 0.019 0.016 0.004 Bond angles (°) 2.050 1.748 1.952 1.796 0.770 Ramachandran Plot Favored (%) 96.8 95.5 96.9 94.9 92.3 Allowed (%) 99.7 100.0 100.0 99.7 99.8 Number of outliers 1 0 0 1 2 PDB code 5FWS 5FWT 5FWU 5FWV 5FWW protein PR: cleaner0 2023-09-19T09:51:42Z KRM1 structure_element SO: cleaner0 2023-09-19T09:51:53Z ECD protein PR: cleaner0 2023-09-19T09:52:10Z KRM1 structure_element SO: cleaner0 2023-09-19T09:52:20Z ECD protein PR: cleaner0 2023-09-19T09:52:35Z KRM1 structure_element SO: cleaner0 2023-09-19T09:52:45Z ECD protein PR: cleaner0 2023-09-19T09:52:57Z KRM1 structure_element SO: cleaner0 2023-09-19T09:53:06Z ECD 0.98330337 complex_assembly cleaner0 2023-09-19T10:08:25Z GO: LRP6PE3PE4-DKKCRD2-KRM1ECD chemical CHEBI: cleaner0 2023-09-19T08:52:06Z Water chemical CHEBI: cleaner0 2023-09-19T08:52:06Z Water evidence DUMMY: cleaner0 2023-09-19T08:51:09Z RMSD tbl1.xml tbl1 TABLE table_footnote 31236 Values in parentheses refer to the highest-resolution shell. An additional shell given for the ternary complex corresponds to the last shell with near-complete diffraction data. NA, not announced. 0.7761474 evidence cleaner0 2023-09-19T09:57:51Z DUMMY: diffraction data