PMC 20201216 pmc.key 4806292 CC BY no 2 2 10.1038/srep23641 srep23641 4806292 27009356 23641 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ surname:Klima;given-names:Martin surname:Tóth;given-names:Dániel J. surname:Humpolickova;given-names:Jana surname:Nencka;given-names:Radim surname:Veverka;given-names:Vaclav surname:Balla;given-names:Tamas surname:Boura;given-names:Evzen surname:Hexnerova;given-names:Rozalie surname:Baumlova;given-names:Adriana surname:Chalupska;given-names:Dominika surname:Tykvart;given-names:Jan surname:Rezabkova;given-names:Lenka surname:Sengupta;given-names:Nivedita surname:Man;given-names:Petr surname:Dubankova;given-names:Anna TITLE front 6 2016 0 Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein 0.99856466 experimental_method cleaner0 2023-09-21T13:55:08Z MESH: in vitro reconstitution 0.9986492 species cleaner0 2023-09-21T13:55:05Z MESH: human 0.990704 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.9947903 protein cleaner0 2023-09-21T13:55:19Z PR: ACBD3 ABSTRACT abstract 121 Phosphatidylinositol 4-kinase beta (PI4KB) is one of four human PI4K enzymes that generate phosphatidylinositol 4-phosphate (PI4P), a minor but essential regulatory lipid found in all eukaryotic cells. To convert their lipid substrates, PI4Ks must be recruited to the correct membrane compartment. PI4KB is critical for the maintenance of the Golgi and trans Golgi network (TGN) PI4P pools, however, the actual targeting mechanism of PI4KB to the Golgi and TGN membranes is unknown. Here, we present an NMR structure of the complex of PI4KB and its interacting partner, Golgi adaptor protein acyl-coenzyme A binding domain containing protein 3 (ACBD3). We show that ACBD3 is capable of recruiting PI4KB to membranes both in vitro and in vivo, and that membrane recruitment of PI4KB by ACBD3 increases its enzymatic activity and that the ACBD3:PI4KB complex formation is essential for proper function of the Golgi. 0.9951973 protein cleaner0 2023-09-21T13:55:27Z PR: Phosphatidylinositol 4-kinase beta 0.99757165 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99863964 species cleaner0 2023-09-21T13:55:05Z MESH: human 0.99822444 protein_type cleaner0 2023-09-21T13:55:37Z MESH: PI4K 0.99892217 chemical cleaner0 2023-09-21T13:55:47Z CHEBI: phosphatidylinositol 4-phosphate 0.99903166 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9924697 taxonomy_domain cleaner0 2023-09-21T17:19:54Z DUMMY: eukaryotic 0.9989231 protein_type cleaner0 2023-09-21T13:55:42Z MESH: PI4Ks 0.9871787 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99880505 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9945003 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99744546 experimental_method cleaner0 2023-09-21T13:56:21Z MESH: NMR 0.9976865 evidence cleaner0 2023-09-21T13:56:26Z DUMMY: structure 0.99748504 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.89974385 protein_type cleaner0 2023-09-21T17:18:10Z MESH: Golgi adaptor protein 0.9647868 protein cleaner0 2023-09-21T13:56:03Z PR: acyl-coenzyme A binding domain containing protein 3 0.998719 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99585414 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9966311 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.9964915 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99765295 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 evidence DUMMY: cleaner0 2023-09-21T15:44:10Z enzymatic activity 0.99838036 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB INTRO paragraph 1035 Phosphatidylinositol 4-kinase beta (PI4KB, also known as PI4K IIIβ) is a soluble cytosolic protein yet its function is to phosphorylate membrane lipids. It is one of four human PI4K enzymes that phosphorylate phosphatidylinositol (PI) to generate phosphatidylinositol 4-phosphate (PI4P). PI4P is an essential lipid found in various membrane compartments including the Golgi and trans-Golgi network (TGN), the plasma membrane and the endocytic compartments. In these locations, PI4P plays an important role in cell signaling and lipid transport, and serves as a precursor for higher phosphoinositides or as a docking site for clathrin adaptor or lipid transfer proteins. A wide range of positive-sense single-stranded RNA viruses (+RNA viruses), including many that are important human pathogens, hijack human PI4KA or PI4KB enzymes to generate specific PI4P-enriched organelles called membranous webs or replication factories. These structures are essential for effective viral replication. Recently, highly specific PI4KB inhibitors were developed as potential antivirals. 0.9937843 protein cleaner0 2023-09-21T13:55:27Z PR: Phosphatidylinositol 4-kinase beta 0.9973278 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.9963335 protein cleaner0 2023-09-21T13:56:41Z PR: PI4K IIIβ 0.99854964 species cleaner0 2023-09-21T13:55:05Z MESH: human 0.9986753 protein_type cleaner0 2023-09-21T13:55:37Z MESH: PI4K 0.9987841 chemical cleaner0 2023-09-21T13:56:47Z CHEBI: phosphatidylinositol 0.9988022 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.9988311 chemical cleaner0 2023-09-21T13:55:48Z CHEBI: phosphatidylinositol 4-phosphate 0.9987827 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9987464 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.99876595 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.99704933 chemical cleaner0 2023-09-21T17:18:20Z CHEBI: phosphoinositides protein_type MESH: cleaner0 2023-09-21T13:58:00Z clathrin 0.75636566 taxonomy_domain cleaner0 2023-09-21T17:17:57Z DUMMY: positive-sense single-stranded RNA viruses 0.8899067 taxonomy_domain cleaner0 2023-09-21T17:17:50Z DUMMY: +RNA viruses 0.9986437 species cleaner0 2023-09-21T13:55:05Z MESH: human 0.9986339 species cleaner0 2023-09-21T13:55:05Z MESH: human 0.991351 protein cleaner0 2023-09-21T13:58:30Z PR: PI4KA 0.9915263 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99670714 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P evidence DUMMY: cleaner0 2023-09-21T14:16:05Z structures 0.9973713 taxonomy_domain cleaner0 2023-09-21T13:57:20Z DUMMY: viral 0.94735247 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB INTRO paragraph 2112 PI4K kinases must be recruited to the correct membrane type to fulfill their enzymatic functions. Type II PI4Ks (PI4K2A and PI4K2B) are heavily palmitoylated and thus behave as membrane proteins. In contrast, type III PI4Ks (PI4KA and PI4KB) are soluble cytosolic proteins that are recruited to appropriate membranes indirectly via protein-protein interactions. The recruitment of PI4KA to the plasma membrane by EFR3 and TTC7 is relatively well understood even at the structural level, but, the actual molecular mechanism of PI4KB recruitment to the Golgi is still poorly understood. protein_type MESH: cleaner0 2023-09-21T13:55:37Z PI4K protein_type MESH: cleaner0 2023-09-21T13:59:37Z kinases protein_type MESH: cleaner0 2023-09-21T13:58:25Z Type II PI4Ks 0.9979887 protein cleaner0 2023-09-21T13:58:06Z PR: PI4K2A 0.99793905 protein cleaner0 2023-09-21T13:58:10Z PR: PI4K2B 0.99160933 protein_state cleaner0 2023-09-21T17:20:38Z DUMMY: heavily palmitoylated protein PR: cleaner0 2023-09-21T18:50:50Z membrane proteins protein_type MESH: cleaner0 2023-09-21T13:59:08Z type III PI4Ks 0.9966485 protein cleaner0 2023-09-21T13:58:30Z PR: PI4KA 0.99594134 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.9957268 protein cleaner0 2023-09-21T13:58:30Z PR: PI4KA 0.99851316 protein cleaner0 2023-09-21T13:58:39Z PR: EFR3 0.9985258 protein cleaner0 2023-09-21T13:58:43Z PR: TTC7 0.9931477 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB INTRO paragraph 2697 Acyl-coenzyme A binding domain containing protein 3 (ACBD3, also known as GCP60 and PAP7) is a Golgi resident protein. Its membrane localization is mediated by the interaction with the Golgi integral protein golgin B1/giantin. ACBD3 functions as an adaptor protein and signaling hub across cellular signaling pathways. ACBD3 can interact with a number of proteins including golgin A3/golgin-160 to regulate apoptosis, Numb proteins to control asymmetric cell division and neuronal differentiation, metal transporter DMT1 and monomeric G protein Dexras1 to maintain iron homeostasis, and the lipid kinase PI4KB to regulate lipid homeostasis. ACBD3 has been also implicated in the pathology of neurodegenerative diseases such as Huntington’s disease due to its interactions with a polyglutamine repeat-containing mutant huntingtin and the striatal-selective monomeric G protein Rhes/Dexras2. ACBD3 is a binding partner of viral non-structural 3A proteins and a host factor of several picornaviruses including poliovirus, coxsackievirus B3, and Aichi virus. 0.997024 protein cleaner0 2023-09-21T13:56:04Z PR: Acyl-coenzyme A binding domain containing protein 3 0.998771 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99883205 protein cleaner0 2023-09-21T14:00:26Z PR: GCP60 0.998755 protein cleaner0 2023-09-21T14:00:30Z PR: PAP7 0.9971978 protein cleaner0 2023-09-21T14:00:36Z PR: golgin B1 0.99844754 protein cleaner0 2023-09-21T14:00:41Z PR: giantin 0.99773693 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9977296 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99771476 protein cleaner0 2023-09-21T14:01:06Z PR: golgin A3 0.99874544 protein cleaner0 2023-09-21T14:01:10Z PR: golgin-160 0.8595108 protein_type cleaner0 2023-09-21T14:01:32Z MESH: Numb proteins 0.9956681 protein_type cleaner0 2023-09-21T14:01:16Z MESH: metal transporter 0.99869007 protein cleaner0 2023-09-21T14:01:19Z PR: DMT1 oligomeric_state DUMMY: cleaner0 2023-09-21T14:01:50Z monomeric 0.9980881 protein_type cleaner0 2023-09-21T14:01:24Z MESH: G protein 0.9987012 protein cleaner0 2023-09-21T14:01:28Z PR: Dexras1 0.82419854 chemical cleaner0 2023-09-21T14:01:43Z CHEBI: iron 0.99800915 protein_type cleaner0 2023-09-21T14:01:37Z MESH: lipid kinase 0.99757916 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.99777836 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.7060604 structure_element cleaner0 2023-09-21T14:02:16Z SO: polyglutamine repeat 0.9988851 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant 0.99929535 protein cleaner0 2023-09-21T14:01:55Z PR: huntingtin 0.662374 oligomeric_state cleaner0 2023-09-21T14:01:50Z DUMMY: monomeric 0.9979733 protein_type cleaner0 2023-09-21T14:01:24Z MESH: G protein 0.9988242 protein cleaner0 2023-09-21T14:02:24Z PR: Rhes 0.99851507 protein cleaner0 2023-09-21T14:02:29Z PR: Dexras2 0.9976471 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9963929 taxonomy_domain cleaner0 2023-09-21T13:57:20Z DUMMY: viral protein_type MESH: cleaner0 2023-09-21T14:02:53Z non-structural 3A proteins 0.991055 taxonomy_domain cleaner0 2023-09-21T14:03:03Z DUMMY: picornaviruses 0.99691606 taxonomy_domain cleaner0 2023-09-21T14:03:21Z DUMMY: poliovirus 0.9906332 taxonomy_domain cleaner0 2023-09-21T14:03:30Z DUMMY: coxsackievirus B3 0.99357474 taxonomy_domain cleaner0 2023-09-21T14:03:38Z DUMMY: Aichi virus INTRO paragraph 3754 We present a biochemical and structural characterization of the molecular complex composed of the ACBD3 protein and the PI4KB enzyme. We show that ACBD3 can recruit PI4KB to model membranes as well as redirect PI4KB to cellular membranes where it is not naturally found. Our data also show that ACBD3 regulates the enzymatic activity of PI4KB kinase through membrane recruitment rather than allostery. 0.9988179 experimental_method cleaner0 2023-09-21T14:03:42Z MESH: biochemical and structural characterization 0.96733886 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99693966 protein cleaner0 2023-09-21T13:55:13Z PR: PI4KB 0.9779124 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.997336 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9974227 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.6768161 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 evidence DUMMY: cleaner0 2023-09-21T15:44:10Z enzymatic activity protein PR: cleaner0 2023-09-21T13:55:14Z PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase RESULTS title_1 4156 Results RESULTS title_2 4164 ACBD3 and PI4KB interact with 1:1 stoichiometry with submicromolar affinity 0.5437083 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.72903913 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB RESULTS paragraph 4240 In order to verify the interactions between ACBD3 and PI4KB we expressed and purified both proteins. To increase yields of bacterial expression the intrinsically disordered region of PI4KB (residues 423–522) was removed (Fig. 1A). This internal deletion does not significantly affect the kinase activity(SI Fig. 1A) or interaction with ACBD3 (SI Fig. 1B,C). In an in vitro binding assay, ACBD3 co-purified with the NiNTA-immobilized N-terminal His6GB1-tagged PI4KB (Fig. 1B, left panel), suggesting a direct interaction. Using a mammalian two-hybrid assay Greninger and colleagues localized this interaction to the Q domain of ACBD3 (named according to its high content of glutamine residues) and the N-terminal region of PI4KB preceding its helical domain. We expressed the Q domain of ACBD3 (residues 241–308) and the N-terminal region of PI4KB (residues 1–68) in E. coli and using purified recombinant proteins, we confirmed that these two domains are sufficient to maintain the interaction (Fig. 1B, middle and right panel). 0.9975923 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9972367 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.96697855 experimental_method cleaner0 2023-09-21T14:04:37Z MESH: expressed and purified experimental_method MESH: cleaner0 2023-09-21T14:04:34Z bacterial expression structure_element SO: cleaner0 2023-09-21T14:04:55Z intrinsically disordered region 0.9978126 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9976416 residue_range cleaner0 2023-09-21T14:05:39Z DUMMY: 423–522 0.9977412 experimental_method cleaner0 2023-09-21T14:05:37Z MESH: removed 0.7555272 experimental_method cleaner0 2023-09-21T14:05:34Z MESH: deletion protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.99782014 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99887764 experimental_method cleaner0 2023-09-21T14:05:01Z MESH: in vitro binding assay 0.9975879 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 experimental_method MESH: cleaner0 2023-09-21T14:05:30Z co-purified with the NiNTA-immobilized 0.7604731 protein_state cleaner0 2023-09-21T14:05:16Z DUMMY: His6GB1-tagged 0.997761 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9989556 experimental_method cleaner0 2023-09-21T14:05:05Z MESH: mammalian two-hybrid assay evidence DUMMY: cleaner0 2023-09-21T16:06:50Z localized 0.96972895 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.99847716 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99634355 residue_name cleaner0 2023-09-21T14:08:45Z SO: glutamine structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.99838805 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9992541 structure_element cleaner0 2023-09-21T14:05:58Z SO: helical domain 0.9902597 experimental_method cleaner0 2023-09-21T14:05:54Z MESH: expressed 0.8818047 structure_element cleaner0 2023-09-21T14:06:06Z SO: Q domain 0.9983418 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99775714 residue_range cleaner0 2023-09-21T14:05:42Z DUMMY: 241–308 structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.99809617 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9972978 residue_range cleaner0 2023-09-21T14:05:51Z DUMMY: 1–68 0.9982603 species cleaner0 2023-09-21T14:05:46Z MESH: E. coli RESULTS paragraph 5275 Because it has been reported that ACBD3 can dimerize in a mammalian two-hybrid assay, we were interested in determining the stoichiometry of the ACBD3:PI4KB protein complex. The sedimentation coefficients of ACBD3 and PI4KB alone, or ACBD3:PI4KB complex were determined by analytical ultracentrifugation and found to be 3.1 S, 4.1 S, and 5.1 S. These values correspond to molecular weights of approximately 55 kDa, 80 kDa, and 130 kDa, respectively. This result suggests that both proteins are monomeric and the stoichiometry of the ACBD3: PI4KB protein complex is 1:1 (Fig. 1C, left panel). Similar results were obtained for the complex of the Q domain of ACBD3 and the N-terminal region of PI4KB (Fig. 1C, right panel). We also determined the strength of the interaction between recombinant full length ACBD3 and PI4KB using surface plasmon resonance (SPR). SPR measurements revealed a strong interaction with a Kd value of 320 +/−130 nM (Fig. 1D, SI Fig. 1D). We concluded that ACBD3 and PI4KB interact directly through the Q domain of ACBD3 and the N-terminal region of PI4KB forming a 1:1 complex with a dissociation constant in the submicromolar range. 0.99530846 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9589814 oligomeric_state cleaner0 2023-09-21T14:06:56Z DUMMY: dimerize 0.99886334 experimental_method cleaner0 2023-09-21T14:05:05Z MESH: mammalian two-hybrid assay 0.9991631 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB 0.9983687 evidence cleaner0 2023-09-21T14:06:20Z DUMMY: sedimentation coefficients 0.9965487 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9935821 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_state DUMMY: cleaner0 2023-09-21T14:06:41Z alone 0.999072 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB 0.9988844 experimental_method cleaner0 2023-09-21T14:06:46Z MESH: analytical ultracentrifugation evidence DUMMY: cleaner0 2023-09-21T14:08:09Z molecular weights 0.99865687 oligomeric_state cleaner0 2023-09-21T14:01:50Z DUMMY: monomeric 0.9990074 complex_assembly cleaner0 2023-09-21T14:07:34Z GO: ACBD3: PI4KB structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99795413 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.99746394 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9987138 protein_state cleaner0 2023-09-21T14:07:39Z DUMMY: full length 0.99723214 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99603987 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9989314 experimental_method cleaner0 2023-09-21T14:07:05Z MESH: surface plasmon resonance 0.9986051 experimental_method cleaner0 2023-09-21T14:07:09Z MESH: SPR 0.9988464 experimental_method cleaner0 2023-09-21T14:07:09Z MESH: SPR 0.99872977 evidence cleaner0 2023-09-21T14:07:52Z DUMMY: Kd 0.99619055 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99455845 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99691415 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.99657923 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9985013 evidence cleaner0 2023-09-21T14:08:50Z DUMMY: dissociation constant RESULTS title_2 6446 Structural analysis of the ACBD3:PI4KB complex 0.9987158 experimental_method cleaner0 2023-09-21T14:09:02Z MESH: Structural analysis 0.9992986 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB RESULTS paragraph 6493 Full length ACBD3 and PI4KB both contain large intrinsically disordered regions that impede crystallization. We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of the complex to determine which parts of the complex are well folded (SI Fig. 2). However, we were unable to obtain crystals even when using significantly truncated constructs that included only the ACBD3 Q domain and the N-terminal region of PI4KB. 0.9989967 protein_state cleaner0 2023-09-21T14:07:40Z DUMMY: Full length 0.9978492 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9978822 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T14:09:37Z intrinsically disordered regions 0.9989658 experimental_method cleaner0 2023-09-21T14:09:43Z MESH: hydrogen-deuterium exchange mass spectrometry 0.9989092 experimental_method cleaner0 2023-09-21T14:09:48Z MESH: HDX-MS protein_state DUMMY: cleaner0 2023-09-21T14:10:09Z well folded 0.9973455 evidence cleaner0 2023-09-21T14:10:37Z DUMMY: crystals protein_state DUMMY: cleaner0 2023-09-21T14:10:31Z truncated 0.99859995 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.9982198 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB RESULTS paragraph 6926 For this reason, we produced an isotopically labeled ACBD3 Q domain and isotopically labeled ACBD3 Q domain:PI4KB N-terminal region protein complex and used NMR spectroscopy for structural characterization. As the N-terminal region protein complex was prepared by co-expression of both proteins, the samples consisted of an equimolar mixture of two uniformly 15N/13C labelled molecules. Comprehensive backbone and side-chain resonance assignments for the free ACBD3 Q domain and the complex, as illustrated by the 2D 15N/1H HSQC spectra (SI Figs 3 and 4), were obtained using a standard combination of triple-resonance experiments, as described previously. Backbone amide signals (15N and 1H) for the free ACBD3 Q domain were nearly completely assigned apart from the first four N-terminal residues (Met1-Lys4) and Gln44. Over 93% of non-exchangeable side-chain signals were assigned for the free ACBD3 Q domain. Apart from the four N-terminal residues, the side-chain assignments were missing for Gln (Hg3), Gln (Ha/Hb/Hg), Gln44 (Ha/Hb/Hg) and Gln48 (Hg) mainly due to extensive overlaps within the spectral regions populated by highly abundant glutamine side-chain resonances. The protein complex yielded relatively well resolved spectra (SI Fig. 4) that resulted in assignment of backbone amide signals for all residues apart from Gln (ACBD3) and Ala2 (PI4KB). Assignments obtained for non-exchangeable side-chain signals were over 99% complete. The essentially complete 15N, 13C and 1H resonance assignments allowed automated assignment of the NOEs identified in the 3D 15N/1H NOESY-HSQC and 13C/1H HMQC-NOESY spectra that were subsequently used in structural calculation. Structural statistics for the final water-refined sets of structures are shown in SI Table 1. 0.8772636 protein_state cleaner0 2023-09-21T14:10:45Z DUMMY: isotopically labeled 0.9981755 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9734254 protein_state cleaner0 2023-09-21T14:10:45Z DUMMY: isotopically labeled 0.9956441 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9879413 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region experimental_method MESH: cleaner0 2023-09-21T14:11:28Z NMR spectroscopy structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.9971308 experimental_method cleaner0 2023-09-21T14:11:02Z MESH: co-expression 0.99493366 chemical cleaner0 2023-09-21T14:12:01Z CHEBI: 15N 0.9964359 chemical cleaner0 2023-09-21T14:12:05Z CHEBI: 13C protein_state DUMMY: cleaner0 2023-09-21T14:12:45Z labelled 0.9989409 protein_state cleaner0 2023-09-21T14:12:16Z DUMMY: free 0.9986345 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain experimental_method MESH: cleaner0 2023-09-21T14:15:09Z 2D 15N/1H HSQC 0.99490064 evidence cleaner0 2023-09-21T14:11:14Z DUMMY: spectra experimental_method MESH: cleaner0 2023-09-21T14:11:53Z triple-resonance experiments 0.99697316 chemical cleaner0 2023-09-21T14:12:01Z CHEBI: 15N 0.97899354 chemical cleaner0 2023-09-21T14:12:10Z CHEBI: 1H 0.9988808 protein_state cleaner0 2023-09-21T14:12:16Z DUMMY: free 0.9985446 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain residue_range DUMMY: cleaner0 2023-09-21T14:13:11Z Met1-Lys4 0.9995875 residue_name_number cleaner0 2023-09-21T14:13:15Z DUMMY: Gln44 0.99882644 protein_state cleaner0 2023-09-21T14:12:16Z DUMMY: free 0.9986002 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9974669 residue_name cleaner0 2023-09-21T14:15:33Z SO: Gln 0.99632865 residue_name cleaner0 2023-09-21T14:15:41Z SO: Gln 0.9996074 residue_name_number cleaner0 2023-09-21T14:13:16Z DUMMY: Gln44 0.9996132 residue_name_number cleaner0 2023-09-21T14:14:29Z DUMMY: Gln48 0.9880802 residue_name cleaner0 2023-09-21T14:13:29Z SO: glutamine 0.907675 evidence cleaner0 2023-09-21T14:11:15Z DUMMY: spectra 0.99920267 residue_name cleaner0 2023-09-21T14:15:49Z SO: Gln 0.9972893 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99957603 residue_name_number cleaner0 2023-09-21T14:14:47Z DUMMY: Ala2 0.9949039 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.907263 chemical cleaner0 2023-09-21T14:12:01Z CHEBI: 15N 0.95269054 chemical cleaner0 2023-09-21T14:12:06Z CHEBI: 13C chemical CHEBI: cleaner0 2023-09-21T14:12:10Z 1H 0.9967265 evidence cleaner0 2023-09-21T14:16:33Z DUMMY: NOEs experimental_method MESH: cleaner0 2023-09-21T14:15:21Z 3D 15N/1H NOESY-HSQC 0.9968702 experimental_method cleaner0 2023-09-21T14:15:58Z MESH: 13C/1H HMQC-NOESY 0.98942995 evidence cleaner0 2023-09-21T14:11:15Z DUMMY: spectra experimental_method MESH: cleaner0 2023-09-21T14:16:25Z structural calculation 0.7945851 evidence cleaner0 2023-09-21T14:16:10Z DUMMY: Structural statistics 0.94309074 evidence cleaner0 2023-09-21T14:16:05Z DUMMY: structures RESULTS paragraph 8698 This structure revealed that the Q domain forms a two helix hairpin. The first helix bends sharply over the second helix and creates a fold resembling a three helix bundle that serves as a nest for one helix of the PI4KB N-terminus (residues 44–64, from this point on referred to as the kinase helix) (Fig. 2A). Preceding the kinase helix are three ordered residues (Val42, Ile43, and Asp44) that also contribute to the interaction (Fig. 2B). The remaining part of the PI4KB N-termini, however, is disordered (SI Fig. 5). Almost all of the PI4KB:ACBD3 interactions are hydrophobic with the exception of hydrogen bonds between the side chains of ACBD3 Tyr261 and PI4KB His63, and between the sidechain of ACBD3 Tyr288 and the PI4KB backbone (Asp44) (Fig. 2B). Interestingly, we noted that the PI4KB helix is amphipathic and its hydrophobic surface leans on the Q domain (Fig. 2C). 0.998018 evidence cleaner0 2023-09-21T13:56:26Z DUMMY: structure 0.99866307 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.9987442 structure_element cleaner0 2023-09-21T14:25:10Z SO: two helix hairpin structure_element SO: cleaner0 2023-09-21T14:25:28Z helix structure_element SO: cleaner0 2023-09-21T14:25:28Z helix 0.98671126 structure_element cleaner0 2023-09-21T14:26:21Z SO: three helix bundle 0.972546 structure_element cleaner0 2023-09-21T14:25:28Z SO: helix 0.99828124 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9977347 residue_range cleaner0 2023-09-21T14:26:47Z DUMMY: 44–64 0.9990201 structure_element cleaner0 2023-09-21T14:25:41Z SO: kinase helix 0.9991654 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.99960405 residue_name_number cleaner0 2023-09-21T14:26:34Z DUMMY: Val42 0.9996008 residue_name_number cleaner0 2023-09-21T14:26:39Z DUMMY: Ile43 0.99959177 residue_name_number cleaner0 2023-09-21T14:26:43Z DUMMY: Asp44 0.9983835 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99630404 complex_assembly cleaner0 2023-09-21T14:27:13Z GO: PI4KB:ACBD3 bond_interaction MESH: cleaner0 2023-09-21T14:27:37Z interactions are hydrophobic 0.9969462 bond_interaction cleaner0 2023-09-21T14:27:40Z MESH: hydrogen bonds 0.9955851 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99958163 residue_name_number cleaner0 2023-09-21T14:27:46Z DUMMY: Tyr261 0.994023 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9995528 residue_name_number cleaner0 2023-09-21T14:27:50Z DUMMY: His63 0.9955701 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99957126 residue_name_number cleaner0 2023-09-21T14:27:56Z DUMMY: Tyr288 0.9939761 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99950206 residue_name_number cleaner0 2023-09-21T14:26:44Z DUMMY: Asp44 0.99854785 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9942094 structure_element cleaner0 2023-09-21T14:25:28Z SO: helix 0.99885774 protein_state cleaner0 2023-09-21T14:28:08Z DUMMY: amphipathic 0.991676 site cleaner0 2023-09-21T14:28:10Z SO: hydrophobic surface 0.9984603 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain RESULTS paragraph 9580 To corroborate the structural data, we introduced a number of point mutations and validated their effect on complex formation using an in vitro pull-down assay (Fig. 2D). Wild type ACBD3 protein co-purified together with the NiNTA-immobilized His6-tagged wild type PI4KB as well as with the PI4KB V42A and V47A mutants, but not with mutants within the imminent binding interface (I43A, V55A, L56A). As predicted, wild type PI4KB interacted with the ACBD3 Y266A mutant and slightly with the Y285A mutant, but not with the F258A, H284A, and Y288A mutants (Fig. 2D). 0.8155627 evidence cleaner0 2023-09-21T14:28:16Z DUMMY: structural data 0.74476194 experimental_method cleaner0 2023-09-21T14:28:20Z MESH: introduced 0.96569216 experimental_method cleaner0 2023-09-21T14:28:25Z MESH: point mutations 0.99896044 experimental_method cleaner0 2023-09-21T14:28:38Z MESH: in vitro pull-down assay 0.99917686 protein_state cleaner0 2023-09-21T14:28:33Z DUMMY: Wild type 0.9988563 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99860805 experimental_method cleaner0 2023-09-21T16:15:16Z MESH: co-purified 0.88533324 protein_state cleaner0 2023-09-21T14:28:28Z DUMMY: His6-tagged 0.9991353 protein_state cleaner0 2023-09-21T14:28:33Z DUMMY: wild type 0.99864405 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.567764 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99877995 mutant cleaner0 2023-09-21T14:29:05Z MESH: V42A 0.9988329 mutant cleaner0 2023-09-21T14:29:09Z MESH: V47A 0.9898858 protein_state cleaner0 2023-09-21T14:28:43Z DUMMY: mutants 0.8356905 protein_state cleaner0 2023-09-21T14:28:43Z DUMMY: mutants 0.9989662 site cleaner0 2023-09-21T14:28:47Z SO: binding interface 0.99909496 mutant cleaner0 2023-09-21T14:28:53Z MESH: I43A 0.9991035 mutant cleaner0 2023-09-21T14:28:57Z MESH: V55A 0.9991026 mutant cleaner0 2023-09-21T14:29:00Z MESH: L56A 0.9991299 protein_state cleaner0 2023-09-21T14:28:33Z DUMMY: wild type 0.99872416 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99819034 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9990381 mutant cleaner0 2023-09-21T14:29:13Z MESH: Y266A 0.9991756 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant 0.99897647 mutant cleaner0 2023-09-21T14:29:18Z MESH: Y285A 0.99898046 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant 0.9989837 mutant cleaner0 2023-09-21T14:29:22Z MESH: F258A 0.9990701 mutant cleaner0 2023-09-21T14:29:26Z MESH: H284A 0.9990722 mutant cleaner0 2023-09-21T14:29:30Z MESH: Y288A 0.99653506 protein_state cleaner0 2023-09-21T14:28:43Z DUMMY: mutants RESULTS title_2 10144 ACBD3 efficiently recruits the PI4KB enzyme to membranes 0.9836066 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9976108 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB RESULTS paragraph 10201 We next sought to determine if the ACBD3:PI4KB interaction drives membrane localization of the PI4KB enzyme. To do this, we first established an in vitro membrane recruitment system using Giant Unilamellar Vesicles (GUVs) containing the PI4KB substrate – the PI lipid. We observed that PI4KB kinase was not membrane localized when added to the GUVs at 600 nM concentration, whereas non-covalent tethering of ACBD3 to the surface of the GUVs, using the His6 tag on ACBD3 and the DGS-NTA (Ni) lipid, led to efficient PI4KB membrane localization (Fig. 3A). 0.9657908 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB 0.99302506 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.92459184 experimental_method cleaner0 2023-09-21T16:15:24Z MESH: in vitro membrane recruitment system 0.68418074 experimental_method cleaner0 2023-09-21T14:30:16Z MESH: Giant Unilamellar Vesicles 0.94216317 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.9453402 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99724686 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.85144496 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.92744774 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase evidence DUMMY: cleaner0 2023-09-21T16:06:50Z localized 0.8916426 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.9378905 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.8917614 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.99308914 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 chemical CHEBI: cleaner0 2023-09-21T15:35:53Z DGS-NTA (Ni) lipid 0.9881649 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB RESULTS paragraph 10759 We hypothesized that if ACBD3 is one of the main Golgi localization signals for PI4KB, overexpression of the Q domain should decrease the amount of the endogenous kinase on the Golgi. Indeed, we observed loss for endogenous PI4KB signal on the Golgi in cells overexpressing the GFP – Q domain construct (Fig. 3B upper panel). We attribute the loss of signal to the immunostaining protocol-the kinase that is not bound to Golgi is lost during the permeabilization step and hence the “disappearance” of the signal because overexpression of GFP alone or a non-binding Q domain mutant has no effect on the localization of the endogenous PI4KB (Fig. 3B). Given this result, overexpression of the Q domain should also interfere with the PI4KB dependent Golgi functions. Ceramide transport and accumulation in Golgi is a well-known PI4KB dependent process. We have used fluorescently labeled ceramide and analyzed its trafficking in non-transfected cells and cell overexpressing the Q domain. As expected, the Golgi accumulation of ceramide was not observed in cells expressing the wt Q domain while cells expressing RFP or the mutant Q domain accumulated ceramide normally (Fig. 3C) suggesting that ACBD3:PI4KB complex formation is crucial for the normal function of Golgi. 0.99088585 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 evidence DUMMY: cleaner0 2023-09-21T15:36:14Z localization signals 0.9955029 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9706322 experimental_method cleaner0 2023-09-21T15:35:07Z MESH: overexpression structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.4662246 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase 0.9956189 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB experimental_method MESH: cleaner0 2023-09-21T15:36:55Z overexpressing experimental_method MESH: cleaner0 2023-09-21T15:34:35Z GFP structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain evidence DUMMY: cleaner0 2023-09-21T15:37:30Z signal protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase evidence DUMMY: cleaner0 2023-09-21T15:37:39Z signal 0.97432536 experimental_method cleaner0 2023-09-21T15:35:06Z MESH: overexpression 0.85783386 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.99746233 protein_state cleaner0 2023-09-21T15:34:59Z DUMMY: non-binding 0.9050826 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.737417 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant evidence DUMMY: cleaner0 2023-09-21T15:36:44Z localization 0.9970674 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9735685 experimental_method cleaner0 2023-09-21T15:35:07Z MESH: overexpression structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99336 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9975262 chemical cleaner0 2023-09-21T15:37:51Z CHEBI: Ceramide 0.52904665 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.81602323 protein_state cleaner0 2023-09-21T15:37:56Z DUMMY: fluorescently labeled 0.998357 chemical cleaner0 2023-09-21T15:37:51Z CHEBI: ceramide experimental_method MESH: cleaner0 2023-09-21T18:50:57Z overexpressing structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.998293 chemical cleaner0 2023-09-21T15:37:50Z CHEBI: ceramide experimental_method MESH: cleaner0 2023-09-21T15:37:01Z expressing 0.99926823 protein_state cleaner0 2023-09-21T15:35:24Z DUMMY: wt structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9462286 experimental_method cleaner0 2023-09-21T17:18:32Z MESH: RFP 0.99905616 protein_state cleaner0 2023-09-21T15:38:01Z DUMMY: mutant structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9983005 chemical cleaner0 2023-09-21T15:37:51Z CHEBI: ceramide 0.9988522 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB RESULTS paragraph 12033 We further analyzed the function of ACBD3:PI4KB interaction in membrane recruitment of PI4KB in living cells using fluorescently tagged proteins. We used the rapamycin-inducible heteromerization of FKBP12 (FK506 binding protein 12) and FRB (fragment of mTOR that binds rapamycin) system. We fused the FRB to residues 34–63 of the mitochondrial localization signal from mitochondrial A-kinase anchor protein 1 (AKAP1) and CFP. The ACBD3 Q domain was then fused to FKBP12 and mRFP (Fig. 3D). We analyzed localization of the ACBD3 Q domain and GFP – PI4KB before and after the addition of rapamycin. As a control we used H284A mutant of the ACBD3 Q domain that does not significantly bind PI4KB kinase. In every case the ACDB3 Q domain was rapidly (within 5 minutes) recruited to the mitochondrial membrane upon addition of rapamycin, but only the wild-type protein effectively directed the kinase to the mitochondria (Fig. 3E, Movie 1 and 2). Notably, we observed that when the GFP-PI4KB kinase is co-expressed with the wild-type ACDB3 Q domain it loses its typical Golgi localization (Fig. 3E upper panel). However, PI4KB retains it Golgi localization when co-expressed with the non-interacting Q domain mutant (Fig. 3E lower panel). complex_assembly GO: cleaner0 2023-09-21T13:56:16Z ACBD3:PI4KB 0.9982387 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.8698001 protein_state cleaner0 2023-09-21T15:38:22Z DUMMY: fluorescently tagged chemical CHEBI: cleaner0 2023-09-21T15:38:54Z rapamycin 0.9948037 protein cleaner0 2023-09-21T15:38:29Z PR: FKBP12 0.9974186 protein cleaner0 2023-09-21T15:38:32Z PR: FK506 binding protein 12 0.9983734 structure_element cleaner0 2023-09-21T15:39:24Z SO: FRB 0.7756287 structure_element cleaner0 2023-09-21T17:21:55Z SO: fragment 0.625771 protein cleaner0 2023-09-21T17:16:35Z PR: mTOR 0.91103303 chemical cleaner0 2023-09-21T17:18:35Z CHEBI: rapamycin 0.9740873 experimental_method cleaner0 2023-09-21T16:15:28Z MESH: fused 0.9993131 structure_element cleaner0 2023-09-21T15:39:25Z SO: FRB 0.99688023 residue_range cleaner0 2023-09-21T15:40:52Z DUMMY: 34–63 0.9819549 structure_element cleaner0 2023-09-21T15:41:06Z SO: mitochondrial localization signal 0.99811494 protein cleaner0 2023-09-21T15:39:34Z PR: mitochondrial A-kinase anchor protein 1 0.99871266 protein cleaner0 2023-09-21T15:39:36Z PR: AKAP1 0.9799698 experimental_method cleaner0 2023-09-21T15:41:30Z MESH: CFP 0.9986621 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.7519767 experimental_method cleaner0 2023-09-21T16:15:31Z MESH: fused to 0.99450976 protein cleaner0 2023-09-21T15:38:29Z PR: FKBP12 0.87324154 experimental_method cleaner0 2023-09-21T15:41:40Z MESH: mRFP evidence DUMMY: cleaner0 2023-09-21T15:42:37Z localization 0.9983039 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain experimental_method MESH: cleaner0 2023-09-21T15:39:53Z GFP 0.9916577 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99863094 chemical cleaner0 2023-09-21T17:18:39Z CHEBI: rapamycin 0.9991696 mutant cleaner0 2023-09-21T14:29:27Z MESH: H284A 0.9991002 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant 0.9988128 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9980052 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.99884975 protein cleaner0 2023-09-21T17:16:40Z PR: ACDB3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9987233 chemical cleaner0 2023-09-21T17:18:41Z CHEBI: rapamycin 0.99918526 protein_state cleaner0 2023-09-21T15:40:10Z DUMMY: wild-type protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase experimental_method MESH: cleaner0 2023-09-21T15:42:01Z GFP 0.99811006 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.99843067 experimental_method cleaner0 2023-09-21T16:15:37Z MESH: co-expressed 0.99917096 protein_state cleaner0 2023-09-21T15:40:09Z DUMMY: wild-type 0.998809 protein cleaner0 2023-09-21T17:16:55Z PR: ACDB3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain evidence DUMMY: cleaner0 2023-09-21T15:41:56Z localization 0.99822885 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB evidence DUMMY: cleaner0 2023-09-21T15:42:25Z localization 0.99858737 experimental_method cleaner0 2023-09-21T16:15:40Z MESH: co-expressed 0.99868804 protein_state cleaner0 2023-09-21T15:40:13Z DUMMY: non-interacting structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99899536 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant RESULTS title_2 13272 ACBD3 increases PI4KB enzymatic activity by recruiting PI4KB to close vicinity of its substrate 0.9679194 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9972357 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB evidence DUMMY: cleaner0 2023-09-21T15:44:10Z enzymatic activity 0.99780947 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB RESULTS paragraph 13368 To test whether ACBD3 can stimulate PI4KB kinase enzymatic activity we performed a standard luminescent kinase assay using PI-containing micelles as the substrate. We observed no effect on the kinase activity of PI4KB (Fig. 4A) suggesting that ACBD3 does not directly affect the enzyme (e.g. induction of a conformation change). However, in vivo ACBD3 is located at the Golgi membranes, whereas in this experiment, ACBD3 was located in the solution and PI is provided as micelles. We therefore designed a more physiologically relevant experiment. For this, we again turned to the GUV system with ACBD3 localized to the GUV membrane. The GUVs contained 10% PI to serve as a substrate for PI4KB kinase. The buffer also contained CFP-SidC, which binds to PI4P with nanomolar affinity. This enabled visualization of the kinase reaction using a confocal microscope. We compared the efficiency of the phosphorylation reaction of the kinase alone with that of kinase recruited to the surface of the GUVs by ACBD3. Reaction was also performed in the absence of ATP as a negative control (Fig. 4B). These experiments showed that PI4KB enzymatic activity increases when ACBD3 is membrane localized (Fig. 4C, SI Fig. 6). We conclude that enzyme activation proceeds through a membrane recruitment mechanism. 0.76173043 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9859126 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase evidence DUMMY: cleaner0 2023-09-21T15:44:10Z enzymatic activity 0.9988365 experimental_method cleaner0 2023-09-21T15:43:00Z MESH: luminescent kinase assay 0.9984434 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.997044 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.78130734 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.8759795 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9745813 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9988223 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.620573 experimental_method cleaner0 2023-09-21T16:15:46Z MESH: GUV 0.9652853 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 evidence DUMMY: cleaner0 2023-09-21T16:06:50Z localized 0.9513302 experimental_method cleaner0 2023-09-21T15:43:29Z MESH: GUV 0.9741795 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.9987618 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.99452776 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase experimental_method MESH: cleaner0 2023-09-21T15:42:06Z CFP protein PR: cleaner0 2023-09-21T15:43:18Z SidC 0.99893934 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase experimental_method MESH: cleaner0 2023-09-21T15:43:41Z confocal microscope 0.98986673 ptm cleaner0 2023-09-21T15:44:26Z MESH: phosphorylation protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.94844615 protein_state cleaner0 2023-09-21T17:20:45Z DUMMY: alone protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.91498756 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.97361845 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9978117 protein_state cleaner0 2023-09-21T15:44:32Z DUMMY: absence of 0.9976972 chemical cleaner0 2023-09-21T15:44:28Z CHEBI: ATP 0.9935861 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB evidence DUMMY: cleaner0 2023-09-21T15:44:11Z enzymatic activity 0.97472304 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 DISCUSS title_1 14664 Discussion DISCUSS paragraph 14675 Membrane recruitment of PI4KB enzyme is crucial to ensure its proper function at the Golgi and TGN. However, the molecular mechanism and structural basis for PI4KB interaction with the membrane is poorly understood. In principle, any of the binding partners of PI4KB could play a role in membrane recruitment. To date, several PI4KB interacting proteins have been reported, including the small GTPases Rab11 and Arf1, the Golgi resident acyl-CoA binding domain containing 3 (ACBD3) protein, neuronal calcium sensor-1 (NCS-1 also known as frequenin in yeast) and the 14-3-3 proteins. 0.9349319 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9901046 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9934269 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.90053684 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99780643 protein_type cleaner0 2023-09-21T15:44:56Z MESH: small GTPases 0.9977786 protein cleaner0 2023-09-21T15:45:11Z PR: Rab11 0.99702436 protein cleaner0 2023-09-21T15:45:06Z PR: Arf1 0.9960869 protein cleaner0 2023-09-21T15:45:02Z PR: acyl-CoA binding domain containing 3 0.99874747 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9988655 protein cleaner0 2023-09-21T15:44:49Z PR: neuronal calcium sensor-1 0.9990631 protein cleaner0 2023-09-21T15:44:53Z PR: NCS-1 0.9992748 protein cleaner0 2023-09-21T15:45:19Z PR: frequenin 0.9982541 taxonomy_domain cleaner0 2023-09-21T15:45:23Z DUMMY: yeast 0.99290615 protein_type cleaner0 2023-09-21T15:44:58Z MESH: 14-3-3 proteins DISCUSS paragraph 15258 The monomeric G protein Rab11 binds mammalian PI4KB through the helical domain of the kinase. Although Rab11 does not appear to be required for recruitment of PI4KB to the Golgi, PI4KB is required for Golgi recruitment of Rab11. Arf1, the other small GTP binding protein, is known to influence the activity and localization of PI4KB, but it does not appear to interact directly with PI4KB (our unpublished data). The yeast homologue of NCS1 called frequenin has been shown to interact with Pik1p, the yeast orthologue of PI4KB and regulate its activity and perhaps its membrane association, but the role of NCS-1 in PI4KB recruitment in mammalian cells is unclear. NCS-1 is an N-terminally myristoylated protein that participates in exocytosis. It is expressed only in certain cell types, suggesting that if it contributes to PI4KB membrane recruitment, it does so in a tissues specific manner. The interaction of PI4KB with 14-3-3 proteins, promoted by phosphorylation of PI4KB by protein kinase D, influences the activity of PI4KB by stabilizing its active conformation. However, 14-3-3 proteins do not appear to interfere with membrane recruitment of this kinase. ACBD3 is a Golgi resident protein, conserved among vertebrates (SI Fig. 7), that interacts directly with PI4KB (see also SI Fig. 8 and SI Discussion), and whose genetic inactivation interferes with the Golgi localization of the kinase. For these reasons we focused on the interaction of the PI4KB enzyme with the Golgi resident ACBD3 protein in this study. 0.9973226 oligomeric_state cleaner0 2023-09-21T14:01:50Z DUMMY: monomeric 0.99831736 protein_type cleaner0 2023-09-21T14:01:24Z MESH: G protein 0.9986952 protein cleaner0 2023-09-21T15:45:12Z PR: Rab11 0.9975291 taxonomy_domain cleaner0 2023-09-21T15:45:49Z DUMMY: mammalian 0.99633443 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9992804 structure_element cleaner0 2023-09-21T14:05:58Z SO: helical domain 0.6194707 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase 0.998541 protein cleaner0 2023-09-21T15:45:12Z PR: Rab11 0.9969856 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99455863 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99857783 protein cleaner0 2023-09-21T15:45:12Z PR: Rab11 0.9985788 protein cleaner0 2023-09-21T15:45:16Z PR: Arf1 0.9982178 protein_type cleaner0 2023-09-21T17:18:14Z MESH: small GTP binding protein 0.993529 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99687237 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9987747 taxonomy_domain cleaner0 2023-09-21T15:45:23Z DUMMY: yeast 0.9989171 protein cleaner0 2023-09-21T17:17:00Z PR: NCS1 0.99911326 protein cleaner0 2023-09-21T15:45:19Z PR: frequenin 0.9988953 protein cleaner0 2023-09-21T17:17:11Z PR: Pik1p 0.998703 taxonomy_domain cleaner0 2023-09-21T15:45:23Z DUMMY: yeast 0.99758863 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9989962 protein cleaner0 2023-09-21T15:44:53Z PR: NCS-1 0.98210216 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9980958 taxonomy_domain cleaner0 2023-09-21T15:45:49Z DUMMY: mammalian 0.9989071 protein cleaner0 2023-09-21T15:44:53Z PR: NCS-1 0.9986507 protein_state cleaner0 2023-09-21T15:44:42Z DUMMY: myristoylated 0.99392974 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.996521 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9959679 protein_type cleaner0 2023-09-21T15:46:13Z MESH: 14-3-3 proteins 0.995439 ptm cleaner0 2023-09-21T15:46:01Z MESH: phosphorylation 0.9972128 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9695225 protein cleaner0 2023-09-21T15:45:58Z PR: protein kinase D 0.9972064 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9991762 protein_state cleaner0 2023-09-21T15:46:23Z DUMMY: active 0.9901423 protein_type cleaner0 2023-09-21T15:46:13Z MESH: 14-3-3 proteins protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.99812955 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9987072 protein_state cleaner0 2023-09-21T15:46:20Z DUMMY: conserved 0.99761343 taxonomy_domain cleaner0 2023-09-21T15:46:05Z DUMMY: vertebrates 0.99740285 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.9963967 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9986663 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 DISCUSS paragraph 16782 Here we present the mechanism for membrane recruitment of PI4KB by the Golgi resident ACBD3 protein. We show that these proteins interact directly with a Kd value in the submicromolar range. The interaction is sufficient to recruit PI4KB to model membranes in vitro as well as to the mitochondria where PI4KB is never naturally found. To understand this process at the atomic level we solved the solution structure of ACBD3:PI4KB sub complex (Fig. 1A) and found that the PI4KB N-terminal region contains a short amphipatic helix (residues 44–64) that binds the ACBD3 Q domain. The Q domain adopts a helical hairpin fold that is further stabilized upon binding the kinase helix (Fig. 2A). Our data strongly suggest that formation of the complex does not directly influence the catalytic abilities of the kinase but experiments with model membranes revealed that ACBD3 enhances catalytic activity of the kinase by a recruitment based mechanism; it recruits the kinase to the membrane and thus increases the local concentration of the substrate in the vicinity of the kinase. Based on our and previously published structures we built a pseudoatomic model of PI4KB multi-protein assembly on the membrane (Fig. 5) that illustrates how the enzyme is recruited and positioned towards its lipidic substrate and how it in turn recruits Rab11. 0.99697816 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99789846 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9969676 evidence cleaner0 2023-09-21T14:07:52Z DUMMY: Kd 0.997609 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9940112 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9409877 experimental_method cleaner0 2023-09-21T16:15:59Z MESH: solved 0.9969622 evidence cleaner0 2023-09-21T15:46:55Z DUMMY: solution structure 0.9991818 complex_assembly cleaner0 2023-09-21T13:56:16Z GO: ACBD3:PI4KB 0.9979705 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.9991947 structure_element cleaner0 2023-09-21T15:47:13Z SO: short amphipatic helix 0.9977932 residue_range cleaner0 2023-09-21T17:22:21Z DUMMY: 44–64 0.99847037 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99783504 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.9982753 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.9989195 structure_element cleaner0 2023-09-21T15:47:05Z SO: helical hairpin fold 0.99544346 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.8986097 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase 0.99350256 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.6993691 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase protein_type MESH: cleaner0 2023-09-21T14:04:05Z kinase 0.50072247 protein_type cleaner0 2023-09-21T14:04:05Z MESH: kinase 0.9984107 evidence cleaner0 2023-09-21T14:16:05Z DUMMY: structures 0.99831754 evidence cleaner0 2023-09-21T15:47:26Z DUMMY: pseudoatomic model 0.99829084 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9989454 protein cleaner0 2023-09-21T15:45:12Z PR: Rab11 DISCUSS paragraph 18118 +RNA viruses replicate at specific PI4P-enriched membranous compartments. These are called replication factories (because they enhance viral replication) or membranous webs (because of their appearance under the electron microscope). To generate replication factories, viruses hijack several host factors including the PI4K kinases to secure high content of the PI4P lipid. Non-structural 3A proteins from many picornaviruses from the Enterovirus (e.g. poliovirus, coxsackievirus-B3, rhinovirus-14) and Kobuvirus (e.g. Aichi virus-1) genera directly interact with ACBD3. Our data suggest that they could do this via 3A:ACBD3:PI4KB complex formation. The structure of the ACBD3 Q domain and the kinase helix described here provides a novel opportunity for further research on the role of ACBD3, PI4KB, and the ACBD3:PI4KB interaction in picornaviral replication. This could eventually have implications for therapeutic intervention to combat picornaviruses-mediated diseases ranging from polio to the common cold. 0.9262333 taxonomy_domain cleaner0 2023-09-21T15:47:42Z DUMMY: +RNA viruses 0.99769825 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9953243 taxonomy_domain cleaner0 2023-09-21T13:57:20Z DUMMY: viral 0.99788505 taxonomy_domain cleaner0 2023-09-21T15:48:00Z DUMMY: viruses protein_type MESH: cleaner0 2023-09-21T13:55:38Z PI4K protein_type MESH: cleaner0 2023-09-21T13:59:38Z kinases 0.9990773 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.699083 chemical cleaner0 2023-09-21T17:18:55Z CHEBI: lipid protein_type MESH: cleaner0 2023-09-21T17:21:20Z Non-structural 3A proteins 0.99718 taxonomy_domain cleaner0 2023-09-21T14:03:03Z DUMMY: picornaviruses 0.9856564 taxonomy_domain cleaner0 2023-09-21T15:48:11Z DUMMY: Enterovirus 0.99433774 species cleaner0 2023-09-21T15:48:42Z MESH: poliovirus species MESH: cleaner0 2023-09-21T15:49:06Z coxsackievirus-B3 species MESH: cleaner0 2023-09-21T15:49:20Z rhinovirus-14 0.7567454 taxonomy_domain cleaner0 2023-09-21T15:49:24Z DUMMY: Kobuvirus 0.9271165 species cleaner0 2023-09-21T15:49:26Z MESH: Aichi virus-1 0.99703985 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.99915993 complex_assembly cleaner0 2023-09-21T15:49:48Z GO: 3A:ACBD3:PI4KB 0.99662316 evidence cleaner0 2023-09-21T13:56:26Z DUMMY: structure 0.99881554 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9772059 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.99930453 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.9953868 protein cleaner0 2023-09-21T13:55:20Z PR: ACBD3 0.9890894 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.99866444 complex_assembly cleaner0 2023-09-21T13:56:17Z GO: ACBD3:PI4KB 0.9974644 taxonomy_domain cleaner0 2023-09-21T15:50:11Z DUMMY: picornaviral 0.9958832 taxonomy_domain cleaner0 2023-09-21T14:03:03Z DUMMY: picornaviruses METHODS title_1 19131 Materials and Methods METHODS title_2 19153 Plasmid construction, protein expression, and purification METHODS paragraph 19212 All proteins used in this study were recombinant and were expressed in E. coli using previously developed protocols. Briefly, full-length human ACBD3 (UniProtKB entry Q9H3P7) and PI4KB (UniProtKB entry Q9UBF8, isoform 1) lipid kinase and their deletion mutants were cloned into a previously modified pRSFD vector (Novagen) that already contained an N-terminal 6xHis tag followed by a GB1 solubility tag and TEV protease cleavage site. Mutations were generated using the Phusion Site-Directed Mutagenesis Kit (Thermo Scientific). The plasmids used are listed in the SI (SI Table 2). The proteins were expressed in E. coli BL21 Star cells as previously described. Upon overnight expression in autoinduction media bacterial cells were harvested and lysed in lysis buffer (50 mM Tris pH 8, 300 mM NaCl, 3 mM β-mercaptoethanol, 20 mM imidazole, 10% glycerol). The lysate was incubated with the Ni-NTA resin (Macherey-Nagel) and then extensively washed with the lysis buffer. The protein was eluted with the lysis buffer supplemented with 300 mM imidazole. When appropriate, tags were removed with TEV protease, and the protein was further purified using the size exclusion chromatography on Superdex 75 or Superdex 200 columns (GE Healthcare) in SEC buffer (10 mM Tris pH 8, 200 mM NaCl, 3 mM β-ME). Proteins were concentrated to 1–5 mg/ml (measured spectroscopically) and stored at −80 °C until needed. METHODS title_2 20638 In vitro pull-downs METHODS paragraph 20658 Ni-NTA sepharose beads (Macherey-Nagel) were mixed with both binding partners (one of which was tagged with an N-terminal 6xHis tag) at a final concentration of 1 μM in a final volume of 200 μL binding buffer (30 mM Tris pH 8, 200 mM NaCl, 10 mM imidazole, and 1 mM TCEP). After 30 min incubation at 4 °C the beads were washed twice with 200 μL of the binding buffer, and total protein was directly eluted with the Laemmli sample buffer and analyzed by SDS-PAGE. METHODS title_2 21143 SPR (Surface plasmon resonance) and AUC (Analytical ultracentrifugation) METHODS paragraph 21216 PI4KB was chip-immobilized as detailed in the SI. Afterwards, the ACBD3 protein was injected in a series of concentrations for 3 min and then dissociation was monitored for another 5 min. The data were fit to a single-exponential model. Rate constants of association and dissociation were obtained by fitting the observed change in resonance signal using the following equations: METHODS paragraph 21600 where c is the protein concentration, t is time, kon is the association rate constant, koff is the dissociation rate constant, D1 and D2 are the linear drift terms, and Ras, Rdis, R0, R1, and Rmax are corresponding changes in the relative response signal. METHODS paragraph 21856 AUC was used to perform sedimentation velocity experiments using a ProteomeLab XL-I Beckman Coulter analytical ultracentrifuge equipped with an AN50Ti rotor. All measurements were performed in 10 mM Tris pH 8, 200 mM NaCl, and 3 mM β-mercaptoethanol at 20 °C and 48000 rpm. All data were collected using an absorbance (230 nm and 280 nm) optical system. Data analysis was performed with the SEDFIT package and data were analyzed using a sedimentation coefficient distribution model c(s). METHODS title_2 22360 In vitro kinase assay METHODS paragraph 22382 In vitro kinase activity was measured using a bioluminescent ADP-Glo assay (Promega) as described previously. Briefly, reactions were carried out in a total volume of 5 μL in 384-well plates by diluting the indicated amounts of the PI4KB enzyme and/or ACBD3 protein into the kinase buffer (20 mM Tris pH 7.5, 5 mM MgCl2, 0.2% Triton-X100, 0.1 mg/mL BSA, 2 mM DTT, 50 μM phosphatidylinositol). Reaction was initiated by adding ATP to a final concentration of 100 μM. Samples were incubated for 60 min at 25 °C and the amount of hydrolyzed ATP was measured according to the manufacturer’s protocol using a TECAN infinite M 1000 plate reader. METHODS title_2 23046 NMR spectroscopy METHODS paragraph 23063 NMR spectra were acquired at 25 °C on a 600 MHz and 850 MHz Bruker Avance spectrometers, both of which were equipped with a triple-resonance (15N/13C/1H) cryoprobe. The sample volume was 0.35 mL, with a 280 μM concentration for the free Q domain and a 470 μM concentration for the ACBD3:PI4KB complex in the NMR buffer (25 mM sodium phosphate pH 6.5, 100 mM NaCl, 1 mM TCEP, 0.01% NaN3), 5% D2O/95% H2O. A series of double- and triple-resonance spectra were recorded to determine essentially complete sequence-specific resonance backbone and side-chain assignments. Constraints for 1H-1H distance required to calculate the structure of free Q domain and ACBD3:PI4KB complex were derived from 3D 15N/1H NOESY-HSQC and 13C/1H NOESY-HMQC, which were acquired using a NOE mixing time of 100 ms. METHODS paragraph 23877 The families of converged structures for the ACBD3:PI4KB complex and free Q domain were calculated using standard software as detailed in the SI. The structures with the lowest total energy were selected and validated. The statistics for the resulting structures are summarized in SI Table 1. METHODS title_2 24170 Protein labeling with fluorescent dyes METHODS paragraph 24209 PI4KB was labeled on native cysteine residues. Briefly, pure recombinant protein was incubated overnight at 4 °C with a 3x molar excess of Alexa 488 C5 maleimide (Life Technologies). The reaction was quenched by adding 10 mM β-mercaptoethanol (βME) and the protein was repurified by size exclusion chromatography. METHODS title_2 24530 Giant Unilamellar Vesicle Preparation and Imaging METHODS paragraph 24580 Giant Unilamellar Vesicles (GUVs) composed of POPC (54.9 mol %), POPS (10 mol %), cholesterol (20 mol %), PI (10 mol %), DGS-NTA(Ni) [1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt) ] (5 mol %) (Avanti Polar lipids), and ATTO647N-DOPE (0.1 mol %) (ATTO-TEC GmbH) were prepared by electroformation as described previously, please see SI. METHODS title_2 24979 Live Cell Imaging METHODS paragraph 24997 COS-7 cells were plated onto 29-mm-diameter poly-L-Lysine coated glass bottom dishes (In Vitro Scientific) at 100,000 cells/well density and transfected using the Lipofectamine2000 reagent (Invitrogen) with plasmid DNAs (0.5–1 mg/well) according to manufacturer’s instructions. The plasmids are described in SI Table 2. 24 hr post transfection, COS-7 cells were washed with a modified Krebs-Ringer solution (10 mM Na-HEPES pH 7.4, 120 mM NaCl, 4.7 mM KCl, 2 mM CaCl2, 0.7 mM MgSO4, 10 mM glucose) in the same dish and were imaged using an LSM 710 confocal microscope (Carl Zeiss MicroImaging) with a 63 × 1.4-numerical-aperture planapochromatic objective. For ceramide uptake experiments, COS-7 cells were loaded with 0.05 μM BODIPY® FL C5-Ceramide (Molecular Probes, ThermoFisher Scientific) complexed with BSA in modified Krebs-Ringer solution at room temperature for 20 min. Cells were then washed three times and imaged using the above mentioned settings. METHODS title_2 25988 Immunofluorescent imaging METHODS paragraph 26014 COS-7 cells were plated onto 25-mm-diameter poly-L-Lysine coated circular glass coverslips in six-well plates (100,000 cells/well), and transfected using the Lipofectamine2000 reagent (Invitrogen) with plasmid DNAs (0.5–1 mg/well) according to manufacturer’s instructions. Twenty four hours post transfection, cells were washed with PBS, fixed with 4% paraformaldehyde, stained with mouse anti-PI4KB primary antibody (BD Transduction Laboratories, 1:500 dilution) and then after washing with PBS stained with Alexa Fluor 647 conjugated donkey anti-mouse secondary antibody (Molecular Probes, ThermoFisher Scientific, 1:500 dilution). Cover slips were mounted and observed with the above mentioned microscopy settings. METHODS title_2 26738 HD exchange METHODS paragraph 26750 Hydrogen/deuterium exchange was performed as previously described with the following modifications. The exchange was done in 10 mM Tris-HCl pD 8.0, 200 mM NaCl at 20 °C. Protein concentration during the exchange was 1 μM. Aliquots (50 μL) were removed after 10, 20, 60, 120, 600, 1800, and 3600 s and the exchange was quenched by the addition of 50 μL of 0.25 M glycine-HCl pH 2.3 and rapid freezing in liquid nitrogen. METHODS paragraph 27188 Prior to the analysis each sample was quickly thawed and injected onto an immobilized rhizopuspepsin column (bed volume 66 μL). Digestion was driven by a flow of 0.4% formic acid in water at a flow rate of 100 μL/min (LC-20AD pump, Shimadzu). The resulting peptides were trapped and desalted online on a peptide microtrap (Optimize Technologies). After a desalting step (3 min), peptides were separated using a linear gradient of 10–25% buffer B for 2 min, followed by a quick jump to 99% buffer B (buffer A = 0.4% formic acid/2% acetonitrile in water; buffer B = 95% acetonitrile/0.4% formic acid in water). The outlet of the LC system was interfaced to an electrospray ionization source of a Fourier transform ion cyclotron resonance mass spectrometer (12 T SolariX XR, Bruker Daltonics). Exchange was followed on 32 peptides from PI4KB (N) and 26 peptides from ACBD3(Q), covering in both cases 100% of the protein sequence. Peptides were identified by LC-MS/MS and MASCOT search against a database containing the sequences of the studied proteins. Data from H/D exchange were analyzed by program DeutEx written in the laboratory (unpublished). METHODS title_1 28355 Additional Information METHODS paragraph 28378 Accession codes: The structures and assigned chemical shifts for the free Q domain and the ACBD3:PI4KB complex were deposited in PDB database under accession codes 2N72 and 2N73, and BMRB database under accession codes 25790 and 25791. METHODS paragraph 28614 How to cite this article: Klima, M. et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 6, 23641; doi: 10.1038/srep23641 (2016). SUPPL title_1 28830 Supplementary Material 136 145 surname:Boura;given-names:E. surname:Nencka;given-names:R. 10.1016/j.yexcr.2015.03.028 26183104 REF Exp Cell Res ref 337 2015 28853 Phosphatidylinositol 4-kinases: Function, structure, and inhibition 294 304 surname:Clayton;given-names:E. L. surname:Minogue;given-names:S. surname:Waugh;given-names:M. G. 10.1016/j.plipres.2013.04.002 23608234 REF Prog Lipid Res ref 52 2013 28921 Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks 1019 1137 surname:Balla;given-names:T. 10.1152/physrev.00028.2012 23899561 REF Physiological Reviews ref 93 2013 29029 Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation 293 302 surname:Altan-Bonnet;given-names:N. surname:Balla;given-names:T. 10.1016/j.tibs.2012.03.004 22633842 REF Trends Biochem Sci ref 37 2012 29097 Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms 3767 3793 surname:Mejdrova;given-names:I. 10.1021/acs.jmedchem.5b00499 25897704 REF J Med Chem ref 58 2015 29188 Highly Selective Phosphatidylinositol 4-Kinase IIIbeta Inhibitors and Structural Insight into Their Mode of Action 3714 3718 surname:Keaney;given-names:E. P. 10.1016/j.bmcl.2014.07.015 25065492 REF Bioorg Med Chem Lett ref 24 2014 29303 2-Alkyloxazoles as potent and selective PI4KIIIbeta inhibitors demonstrating inhibition of HCV replication 1085 1092 surname:Baumlova;given-names:A. 10.15252/embr.201438841 25168678 REF EMBO Rep ref 15 2014 29410 The crystal structure of the phosphatidylinositol 4-kinase IIalpha 19 29 surname:Wu;given-names:X. 10.1016/j.devcel.2013.11.012 24360784 REF Dev Cell ref 28 2014 29477 Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex surname:Chung;given-names:J. surname:Nakatsu;given-names:F. surname:Baskin;given-names:J. M. surname:De Camilli;given-names:P. 10.15252/embr.201439151 REF EMBO Rep ref 2015 29587 Plasticity of PI4KIIIalpha interactions at the plasma membrane 218 234 surname:Fan;given-names:J. surname:Liu;given-names:J. surname:Culty;given-names:M. surname:Papadopoulos;given-names:V. 10.1016/j.plipres.2009.12.003 20043945 REF Prog Lipid Res ref 49 2010 29650 Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule 45298 45306 surname:Sohda;given-names:M. 10.1074/jbc.M108961200 11590181 REF J Biol Chem ref 276 2001 29747 Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin 27924 27931 surname:Sbodio;given-names:J. I. surname:Hicks;given-names:S. W. surname:Simon;given-names:D. surname:Machamer;given-names:C. E. 10.1074/jbc.M603276200 16870622 REF J Biol Chem ref 281 2006 29874 GCP60 preferentially interacts with a caspase-generated golgin-160 fragment 163 178 surname:Zhou;given-names:Y. 10.1016/j.cell.2007.02.037 17418793 REF Cell ref 129 2007 29950 The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis 431 440 surname:Cheah;given-names:J. H. 10.1016/j.neuron.2006.07.011 16908409 REF Neuron ref 51 2006 30057 NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1 3605 3616 surname:Greninger;given-names:A. L. surname:Knudsen;given-names:G. M. surname:Betegon;given-names:M. surname:Burlingame;given-names:A. L. surname:Derisi;given-names:J. L. 10.1128/JVI.06778-11 22258260 REF J Virol ref 86 2012 30155 The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIbeta 754 766 surname:Sasaki;given-names:J. surname:Ishikawa;given-names:K. surname:Arita;given-names:M. surname:Taniguchi;given-names:K. 10.1038/emboj.2011.429 22124328 REF EMBO J ref 31 2012 30263 ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites 890 897 surname:Sbodio;given-names:J. I. surname:Paul;given-names:B. D. surname:Machamer;given-names:C. E. surname:Snyder;given-names:S. H. 10.1016/j.celrep.2013.08.001 24012756 REF Cell Rep ref 4 2013 30337 Golgi protein ACBD3 mediates neurotoxicity associated with Huntington’s disease 1035 1038 surname:Burke;given-names:J. E. 10.1126/science.1253397 24876499 REF Science ref 344 2014 30419 Structures of PI4KIIIbeta complexes show simultaneous recruitment of Rab11 and its effectors surname:Fowler;given-names:M. L. 10.1002/pro.2879 REF Protein Sci ref 2016 30512 Using hydrogen deuterium exchange mass spectrometry to engineer optimized constructs for crystallization of protein complexes: Case study of PI4KIIIbeta with Rab11 e00098 00013 surname:Greninger;given-names:A. L. surname:Knudsen;given-names:G. M. surname:Betegon;given-names:M. surname:Burlingame;given-names:A. L. surname:DeRisi;given-names:J. L. 10.1128/mBio.00098-13 REF M Bio ref 4 2013 30676 ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding 463103 surname:Rozycki;given-names:B. surname:Boura;given-names:E. 10.1088/0953-8984/26/46/463103 25335513 REF J Phys Condens Matter ref 26 2014 30797 Large, dynamic, multi-protein complexes: a challenge for structural biology 36369 36377 surname:Toth;given-names:B. 10.1074/jbc.M604935200 17003043 REF J Biol Chem ref 281 2006 30873 Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi 727 730 surname:Hammond;given-names:G. R. V. 10.1126/science.1222483 22722250 REF Science ref 337 2012 30991 PI4P and PI(4,5)P-2 Are Essential But Independent Lipid Determinants of Membrane Identity 377 382 surname:Varnai;given-names:P. surname:Thyagarajan;given-names:B. surname:Rohacs;given-names:T. surname:Balla;given-names:T. 10.1083/jcb.200607116 17088424 REF J Cell Biol ref 175 2006 31081 Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells 97 102 surname:Tai;given-names:A. W. surname:Bojjireddy;given-names:N. surname:Balla;given-names:T. 10.1016/j.ab.2011.05.046 21704602 REF Anal Biochem ref 417 2011 31231 A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases 4021 4033 surname:Dolinsky;given-names:S. 10.1128/IAI.01685-14 25024371 REF Infect Immun ref 82 2014 31302 The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions 2038 2047 surname:de Graaf;given-names:P. 10.1091/mbc.E03-12-0862 14767056 REF Mol Biol Cell ref 15 2004 31492 Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex 30949 30959 surname:Strahl;given-names:T. 10.1074/jbc.M705499200 17720810 REF Journal of Biological Chemistry ref 282 2007 31597 Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1) 3909 3922 surname:Taverna;given-names:E. 12244129 REF J Cell Sci ref 115 2002 31699 Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis 3613 3621 surname:Hausser;given-names:A. 10.1242/jcs.03104 16912074 REF J Cell Sci ref 119 2006 31864 Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity 6586 6598 surname:Ishikawa-Sasaki;given-names:K. surname:Sasaki;given-names:J. surname:Taniguchi;given-names:K. 10.1128/JVI.00208-14 24672044 REF J Virol ref 88 2014 32019 A complex comprising phosphatidylinositol 4-kinase III beta, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex 451 461 surname:Rezabkova;given-names:L. 10.1016/j.jsb.2010.03.009 20347994 REF J Struct Biol ref 170 2010 32227 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) 1901 1906 surname:Boura;given-names:E. surname:Hurley;given-names:J. H. 10.1073/pnas.1117597109 22232651 REF Proc Natl Acad Sci USA ref 109 2012 32342 Structural basis for membrane targeting by the MVB12-associated beta-prism domain of the human ESCRT-I MVB12 subunit 1351 1357 surname:Boura;given-names:E. surname:Rezabkova;given-names:L. surname:Brynda;given-names:J. surname:Obsilova;given-names:V. surname:Obsil;given-names:T. 10.1107/S0907444910042228 21123876 REF Acta Crystallogr D Biol Crystallogr ref 66 2010 32459 Structure of the human FOXO4-DBD-DNA complex at 1.9 A resolution reveals new details of FOXO binding to the DNA 1606 1619 surname:Schuck;given-names:P. 10.1016/S0006-3495(00)76713-0 10692345 REF Biophys J ref 78 2000 32571 Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling 1555 1563 surname:Klima;given-names:M. 10.1107/S1399004715009505 26143926 REF Acta Crystallogr D Biol Crystallogr ref 71 2015 32689 The high-resolution crystal structure of phosphatidylinositol 4-kinase IIbeta and the crystal structure of phosphatidylinositol 4-kinase IIalpha containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design 225 226 surname:Renshaw;given-names:P. S. 10.1023/B:JNMR.0000048852.40853.5c 15557808 REF J Biomol NMR ref 30 2004 32932 Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6 3 surname:Veverka;given-names:V. 10.1007/s10858-005-4324-1 16456707 REF J Biomol NMR ref 36 2006 33094 NMR assignment of the mTOR domain responsible for rapamycin binding 28144 28151 surname:Boura;given-names:E. surname:Ivanov;given-names:V. surname:Carlson;given-names:L. A. surname:Mizuuchi;given-names:K. surname:Hurley;given-names:J. H. 10.1074/jbc.M112.378646 22718754 REF J Biol Chem ref 287 2012 33162 Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers 1194 1199 surname:Kadek;given-names:A. 10.1016/j.febslet.2015.03.029 25862501 REF FEBS Lett ref 589 2015 33293 Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase 845 858 surname:Kelley;given-names:L. A. surname:Mezulis;given-names:S. surname:Yates;given-names:C. M. surname:Wass;given-names:M. N. surname:Sternberg;given-names:M. J. 10.1038/nprot.2015.053 25950237 REF Nat Protoc ref 10 2015 33401 The Phyre2 web portal for protein modeling, prediction and analysis SUPPL footnote 33469 The authors declare no competing financial interests. SUPPL footnote 33523 Author Contributions M.K. and A.D. carried out DNA cloning, M.K., A.B., D.C. and E.B. carried out protein expression and purification, M.K. performed pull-down assays, L.R. carried out analytical ultracentrifugation, M.K. and J.T. performed S.P.R. experiments, R.H. and V.V. carried out NMR experiments, structure refinement, and deposition, A.B. and P.M. performed HDX/MS experiments, D.C. carried out in vitro kinase assay, E.B. performed protein labeling, E.B. and J.H. carried out GUV preparation and imaging, D.T. and N.S. performed some of the cloning and the cell-based experiments, E.B. supervised the project, E.B., M.K., M.N., V.V. and T.B. wrote the manuscript, all authors contributed to data analysis and commented on the manuscript. srep23641-f1.jpg f1 FIG fig_title_caption 34270 Biochemical characterization of the ACBD3:PI4KB complex. experimental_method MESH: cleaner0 2023-09-21T15:58:09Z Biochemical characterization 0.99930733 complex_assembly cleaner0 2023-09-21T13:56:17Z GO: ACBD3:PI4KB srep23641-f1.jpg f1 FIG fig_caption 34327 (A) Schematic representation of the ACBD3 and PI4KB constructs used for the experiments. ACBD3 contains the acyl-CoA binding domain (ACBD), charged amino acids region (CAR), glutamine rich region (Q), and Golgi dynamics domain (GOLD). PI4KB is composed of the N-terminal region, helical domain, and kinase domain which can be divided into N- and C-terminal lobes. (B) In vitro pull-down assay. Pull-down assays were performed using NiNTA-immobilized N-terminal His6GB1-tagged proteins as indicated and untagged full-length PI4KB or ACBD3. The inputs and bound proteins were analyzed on SDS gels stained with Coomassie Blue. The asterisks mark the bands corresponding to specific interactions. Cropped gels ran the same experimental conditions are shown. Please, see SI Fig. 9 for original full-length gels. (C) Analytical Ultracentrifugation. AUC analysis of the ACBD3:PI4KB full-length complex at the concentration of 5 μM (both proteins, left panel) and ACBD3 Q domain: PI4KB N terminal region complex at the concentration of 35 μM (both proteins, right panel). (D) Surface plasmon resonance. SPR analysis of the PI4KB binding to immobilized ACBD3. Sensorgrams for four concentrations of PI4KB are shown. 0.9837076 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.9824111 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9892352 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.99932593 structure_element cleaner0 2023-09-21T15:58:22Z SO: acyl-CoA binding domain 0.9990073 structure_element cleaner0 2023-09-21T15:58:27Z SO: ACBD 0.99922806 structure_element cleaner0 2023-09-21T15:58:30Z SO: charged amino acids region 0.99890053 structure_element cleaner0 2023-09-21T15:58:33Z SO: CAR 0.9991708 structure_element cleaner0 2023-09-21T15:58:36Z SO: glutamine rich region 0.9982855 structure_element cleaner0 2023-09-21T15:58:39Z SO: Q 0.9983718 structure_element cleaner0 2023-09-21T15:58:42Z SO: Golgi dynamics domain 0.5671665 structure_element cleaner0 2023-09-21T15:58:44Z SO: GOLD 0.9927367 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9365082 structure_element cleaner0 2023-09-21T14:08:36Z SO: N-terminal region 0.999196 structure_element cleaner0 2023-09-21T14:05:58Z SO: helical domain 0.9976603 structure_element cleaner0 2023-09-21T15:58:55Z SO: kinase domain 0.9992599 structure_element cleaner0 2023-09-21T15:59:01Z SO: N- and C-terminal lobes 0.9987996 experimental_method cleaner0 2023-09-21T15:59:04Z MESH: In vitro pull-down assay 0.9987951 experimental_method cleaner0 2023-09-21T15:59:07Z MESH: Pull-down assays protein_state DUMMY: cleaner0 2023-09-21T14:05:17Z His6GB1-tagged 0.99788755 protein_state cleaner0 2023-09-21T15:59:24Z DUMMY: untagged 0.99872446 protein_state cleaner0 2023-09-21T15:59:29Z DUMMY: full-length 0.99147826 protein cleaner0 2023-09-21T13:55:14Z PR: PI4KB 0.9904885 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 experimental_method MESH: cleaner0 2023-09-21T15:59:40Z SDS gels protein_state DUMMY: cleaner0 2023-09-21T15:59:29Z full-length 0.998891 experimental_method cleaner0 2023-09-21T14:06:47Z MESH: Analytical Ultracentrifugation 0.99885726 experimental_method cleaner0 2023-09-21T15:59:55Z MESH: AUC 0.99909 complex_assembly cleaner0 2023-09-21T13:56:17Z GO: ACBD3:PI4KB 0.9988608 protein_state cleaner0 2023-09-21T15:59:29Z DUMMY: full-length complex_assembly GO: cleaner0 2023-09-21T16:00:25Z ACBD3 Q domain: PI4KB N terminal region 0.9989316 experimental_method cleaner0 2023-09-21T14:07:05Z MESH: Surface plasmon resonance 0.9987471 experimental_method cleaner0 2023-09-21T14:07:09Z MESH: SPR 0.976262 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9877444 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.9959259 evidence cleaner0 2023-09-21T17:19:59Z DUMMY: Sensorgrams 0.9866572 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB srep23641-f2.jpg f2 FIG fig_title_caption 35540 Structural analysis of the ACBD3:PI4KB complex. 0.9987992 experimental_method cleaner0 2023-09-21T14:09:03Z MESH: Structural analysis 0.99931234 complex_assembly cleaner0 2023-09-21T13:56:17Z GO: ACBD3:PI4KB srep23641-f2.jpg f2 FIG fig_caption 35588 (A) Overall structure of the ACBD3 Q domain by itself and in complex with the PI4KB N-terminal region. Superposition of the 30 converged structures obtained for the Q domain (top) and the 45 converged structures obtained for the complex (bottom), with only the folded part of PI4KB shown (see SI Fig. 2 for the complete view). (B) Detailed view of the complex. The interaction is facilitated by only two hydrogen bonds (ACBD3 Tyr261: PI4KB His63 and ACBD3 Tyr288: PI4KB Asp44), while the hydrophobic surface of the kinase helix nests in the ACBD3 Q domain. ACBD3 is shown in magenta and PI4KB in orange. (C) Top view of the kinase helix. The kinase helix is amphipathic and its hydrophobic surface overlaps with the ACBD3 binding surface (shown in magenta). Strong and weak hydrophobes are in green and cyan respectively, basic residues in blue, acidic residues in red and nonpolar hydrophilic residues in orange. (D) Pull-down assay with a NiNTA-immobilized N-terminally His6GB1-tagged PI4KB kinase and untagged ACBD3 protein. Wild type proteins and selected point mutants of both PI4KB and ACBD3 were used. Inputs and bound proteins were analyzed on SDS gels and stained with Coomassie Blue. Cropped gels ran the same experimental conditions are shown. Please, see SI Fig. 9 for original full-length gels. 0.9923936 evidence cleaner0 2023-09-21T13:56:27Z DUMMY: structure 0.99770784 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T16:01:12Z Q domain 0.99532396 protein_state cleaner0 2023-09-21T16:01:17Z DUMMY: in complex with 0.99770725 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T14:08:36Z N-terminal region 0.9973687 experimental_method cleaner0 2023-09-21T16:01:21Z MESH: Superposition 0.9934255 evidence cleaner0 2023-09-21T14:16:05Z DUMMY: structures structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9925177 evidence cleaner0 2023-09-21T14:16:05Z DUMMY: structures 0.99811447 protein_state cleaner0 2023-09-21T16:01:36Z DUMMY: folded 0.9967109 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9962181 bond_interaction cleaner0 2023-09-21T14:27:41Z MESH: hydrogen bonds 0.98855525 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.999493 residue_name_number cleaner0 2023-09-21T14:27:47Z DUMMY: Tyr261 0.9286537 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.99953556 residue_name_number cleaner0 2023-09-21T14:27:51Z DUMMY: His63 0.98912746 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.999522 residue_name_number cleaner0 2023-09-21T14:27:56Z DUMMY: Tyr288 0.9669321 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.999519 residue_name_number cleaner0 2023-09-21T14:26:44Z DUMMY: Asp44 0.9975177 site cleaner0 2023-09-21T16:01:55Z SO: hydrophobic surface 0.9984232 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.99794155 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.82236755 structure_element cleaner0 2023-09-21T14:06:07Z SO: Q domain 0.996438 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.9959174 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9985876 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.99863935 structure_element cleaner0 2023-09-21T14:25:42Z SO: kinase helix 0.99851996 protein_state cleaner0 2023-09-21T16:02:46Z DUMMY: amphipathic 0.9925715 site cleaner0 2023-09-21T17:22:28Z SO: hydrophobic surface protein PR: cleaner0 2023-09-21T13:55:21Z ACBD3 site SO: cleaner0 2023-09-21T16:02:32Z binding surface 0.9989218 experimental_method cleaner0 2023-09-21T16:02:55Z MESH: Pull-down assay 0.9885085 protein_state cleaner0 2023-09-21T14:05:17Z DUMMY: His6GB1-tagged 0.99595636 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.7328439 protein_type cleaner0 2023-09-21T14:04:06Z MESH: kinase 0.9987753 protein_state cleaner0 2023-09-21T15:59:24Z DUMMY: untagged 0.99684554 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.99896216 protein_state cleaner0 2023-09-21T14:28:33Z DUMMY: Wild type protein_state DUMMY: cleaner0 2023-09-21T14:28:43Z mutants 0.9959991 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9965552 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 protein_state DUMMY: cleaner0 2023-09-21T15:59:29Z full-length srep23641-f3.jpg f3 FIG fig_title_caption 36896 ACBD3 is sufficient to recruit the PI4KB kinase to membranes. 0.99931324 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.9856178 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.93480384 protein_type cleaner0 2023-09-21T14:04:06Z MESH: kinase srep23641-f3.jpg f3 FIG fig_caption 36958 (A) GUVs recruitment assay. Top – Virtually no membrane bound kinase was observed when 600 nM PI4KB was added to the GUVs. Bottom – in the presence of 600 nM GUV tethered ACBD3 a significant signal of the kinase is detected on the surface of GUVs. (B) Golgi displacement experiment. Upper panel: ACBD3 Q domain fused to GFP was overexpressed and the endogenous PI4KB was immunostained. Middle panel: The same experiment performed with GFP alone. Lower panel: The same experiment performed with mutant Q domain (F258A, H284A, Y288A) that does not bind the PI4KB. (C) ACBD3 Q domain overexpression inhibits ceramide transport to Golgi – COS-7 cells transfected with wild-type ACBD3 Q domain-FKBP-mRFP were loaded with 0.05 μM Bodipy FL-Ceramide for 20 min, then washed and depicted after 20 min. Middle panel – The same experiment performed with mRFP-FKBP alone. Lower panel – The same experiment performed with mutant Q domain (F258A, H284A, Y288A) that does not bind the PI4KB. (D) Scheme of the mitochondria recruitment experiment. – The AKAP1-FRB-CFP construct is localized at the outer mitochondrial membrane, while the GFP-PI4KB and Q domain-FKBP-mRFP constructs are localized in the cytoplasm where they can form a complex. Upon addition of rapamycin the Q domain-FKBP-mRFP construct translocates to the mitochondria and takes GFP-PI4KB with it. (E) Mitochondria recruitment experiment. Left – cells transfected with AKAP1-FRB-CFP, GFP-PI4KB and wild-type Q domain-FKBP-mRFP constructs before and five minutes after addition of rapamycin. Right – The same experiment performed using the H264A Q domain mutant. 0.99864453 experimental_method cleaner0 2023-09-21T16:03:09Z MESH: GUVs recruitment assay protein_type MESH: cleaner0 2023-09-21T14:04:06Z kinase 0.98904616 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9874412 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.9984759 protein_state cleaner0 2023-09-21T17:21:38Z DUMMY: presence of 0.99656856 protein_state cleaner0 2023-09-21T16:03:14Z DUMMY: GUV tethered 0.9975406 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 protein_type MESH: cleaner0 2023-09-21T14:04:06Z kinase 0.97932154 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs experimental_method MESH: cleaner0 2023-09-21T16:06:28Z Golgi displacement experiment 0.9971322 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.8565935 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.96451247 experimental_method cleaner0 2023-09-21T16:16:04Z MESH: overexpressed 0.9945162 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB experimental_method MESH: cleaner0 2023-09-21T17:22:45Z immunostained 0.59919435 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.9985802 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99897516 mutant cleaner0 2023-09-21T14:29:23Z MESH: F258A 0.99902797 mutant cleaner0 2023-09-21T14:29:27Z MESH: H284A 0.9989827 mutant cleaner0 2023-09-21T14:29:31Z MESH: Y288A 0.9736907 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.9967982 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain experimental_method MESH: cleaner0 2023-09-21T15:35:07Z overexpression 0.9939361 chemical cleaner0 2023-09-21T15:37:51Z CHEBI: ceramide 0.9991541 protein_state cleaner0 2023-09-21T15:40:10Z DUMMY: wild-type 0.9963934 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 structure_element SO: cleaner0 2023-09-21T16:11:32Z Q domain protein PR: cleaner0 2023-09-21T16:12:59Z FKBP experimental_method MESH: cleaner0 2023-09-21T16:13:04Z mRFP 0.9988073 chemical cleaner0 2023-09-21T16:04:08Z CHEBI: Bodipy FL-Ceramide 0.36923945 experimental_method cleaner0 2023-09-21T15:42:11Z MESH: mRFP 0.36112654 protein cleaner0 2023-09-21T17:20:26Z PR: FKBP 0.99891675 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.9990508 mutant cleaner0 2023-09-21T14:29:23Z MESH: F258A 0.9990989 mutant cleaner0 2023-09-21T14:29:27Z MESH: H284A 0.9990723 mutant cleaner0 2023-09-21T14:29:31Z MESH: Y288A 0.9702159 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB experimental_method MESH: cleaner0 2023-09-21T16:06:17Z mitochondria recruitment experiment protein PR: cleaner0 2023-09-21T15:39:37Z AKAP1 structure_element SO: cleaner0 2023-09-21T15:39:25Z FRB experimental_method MESH: cleaner0 2023-09-21T15:42:06Z CFP evidence DUMMY: cleaner0 2023-09-21T16:06:50Z localized 0.9486687 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.9425337 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB structure_element SO: cleaner0 2023-09-21T16:11:32Z Q domain protein PR: cleaner0 2023-09-21T16:13:17Z FKBP experimental_method MESH: cleaner0 2023-09-21T16:13:22Z mRFP evidence DUMMY: cleaner0 2023-09-21T16:06:51Z localized 0.99834764 chemical cleaner0 2023-09-21T17:19:00Z CHEBI: rapamycin structure_element SO: cleaner0 2023-09-21T16:11:32Z Q domain protein PR: cleaner0 2023-09-21T16:13:37Z FKBP experimental_method MESH: cleaner0 2023-09-21T16:13:42Z mRFP 0.8083837 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.96769565 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB experimental_method MESH: cleaner0 2023-09-21T16:06:09Z Mitochondria recruitment experiment 0.6767725 protein cleaner0 2023-09-21T15:39:37Z PR: AKAP1 0.7690477 structure_element cleaner0 2023-09-21T15:39:25Z SO: FRB 0.7230714 experimental_method cleaner0 2023-09-21T15:42:06Z MESH: CFP 0.9112718 experimental_method cleaner0 2023-09-21T15:42:01Z MESH: GFP 0.9882803 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.999196 protein_state cleaner0 2023-09-21T15:40:10Z DUMMY: wild-type structure_element SO: cleaner0 2023-09-21T16:11:32Z Q domain protein PR: cleaner0 2023-09-21T16:13:56Z FKBP experimental_method MESH: cleaner0 2023-09-21T16:14:00Z mRFP 0.99757487 chemical cleaner0 2023-09-21T17:19:03Z CHEBI: rapamycin 0.9991098 mutant cleaner0 2023-09-21T17:22:33Z MESH: H264A structure_element SO: cleaner0 2023-09-21T14:06:07Z Q domain 0.99871373 protein_state cleaner0 2023-09-21T15:38:02Z DUMMY: mutant srep23641-f4.jpg f4 FIG fig_title_caption 38600 ACBD3 indirectly increases the activity of PI4KB. 0.890726 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.98279417 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB srep23641-f4.jpg f4 FIG fig_caption 38650 (A) Micelles-based kinase assay – PI in TX100 micelles was used in a luminescent kinase assay and the production of PI4P was measured. Bar graph presents the mean values of PI4P generated in the presence of the proteins as indicated, normalized to the amount of PI4P generated by PI4KB alone. Error bars are standard errors of the mean (SEM) based on three independent experiments. (B) GUV-based phosphorylation assay – GUVs containing 10% PI were used as a substrate and the production of PI4P was measured using the CFP-SidC biosensor. (C)–Quantification of the GUV phosphorylation assay – Mean membrane fluorescence intensity of the PI4P reporter (SidC-label) under different protein/ATP conditions. The mean membrane intensity value is relative to the background signal and the difference between the membrane and background signal in the reference system lacking ATP. The error bars stand for SEM based on three independent experiments (also SI Fig. 6). 0.9988993 experimental_method cleaner0 2023-09-21T16:07:44Z MESH: Micelles-based kinase assay 0.9988913 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.99885136 experimental_method cleaner0 2023-09-21T16:07:52Z MESH: luminescent kinase assay 0.99833053 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9985476 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.9986746 protein_state cleaner0 2023-09-21T17:21:43Z DUMMY: presence of 0.998285 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.74601656 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB evidence DUMMY: cleaner0 2023-09-21T16:08:07Z standard errors of the mean evidence DUMMY: cleaner0 2023-09-21T16:08:15Z SEM 0.9987768 experimental_method cleaner0 2023-09-21T16:08:55Z MESH: GUV-based phosphorylation assay 0.9809858 experimental_method cleaner0 2023-09-21T14:30:28Z MESH: GUVs 0.9986119 chemical cleaner0 2023-09-21T13:56:53Z CHEBI: PI 0.9982035 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P experimental_method MESH: cleaner0 2023-09-21T16:15:02Z CFP-SidC biosensor 0.9985351 experimental_method cleaner0 2023-09-21T16:08:58Z MESH: GUV phosphorylation assay 0.9952724 evidence cleaner0 2023-09-21T16:08:48Z DUMMY: Mean membrane fluorescence intensity 0.8592599 chemical cleaner0 2023-09-21T13:55:52Z CHEBI: PI4P 0.7605363 protein cleaner0 2023-09-21T17:19:48Z PR: SidC 0.9984658 chemical cleaner0 2023-09-21T16:09:05Z CHEBI: ATP 0.99452186 evidence cleaner0 2023-09-21T16:08:24Z DUMMY: mean membrane intensity 0.9986265 chemical cleaner0 2023-09-21T16:09:03Z CHEBI: ATP evidence DUMMY: cleaner0 2023-09-21T16:08:20Z SEM srep23641-f5.jpg f5 FIG fig_title_caption 39617 Pseudoatomic model of the PI4KB multiprotein complex assembly. 0.99787694 evidence cleaner0 2023-09-21T16:09:15Z DUMMY: Pseudoatomic model 0.98096645 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB srep23641-f5.jpg f5 FIG fig_caption 39680 PI4KB in orange, Rab11 in purple, ACBD3 in blue. The model is based on our NMR structure and a previously published crystal structure of PI4KB:Rab11 complex (PDB code 4D0L), ACBD and GOLD domain were homology modeled based on high sequence identity structures produced by the Phyre2 web server. The GOLD domain is tethered to the membrane by GolginB1 (also known as Giantin) which is not shown for clarity. Intrinsically disordered linkers are modeled in an arbitrary but physically plausible conformation. 0.983354 protein cleaner0 2023-09-21T13:55:15Z PR: PI4KB 0.99587905 protein cleaner0 2023-09-21T15:45:12Z PR: Rab11 0.95930064 protein cleaner0 2023-09-21T13:55:21Z PR: ACBD3 0.9983437 experimental_method cleaner0 2023-09-21T13:56:22Z MESH: NMR 0.9978787 evidence cleaner0 2023-09-21T13:56:27Z DUMMY: structure 0.9986111 evidence cleaner0 2023-09-21T16:09:28Z DUMMY: crystal structure 0.9991608 complex_assembly cleaner0 2023-09-21T16:09:37Z GO: PI4KB:Rab11 0.9990484 structure_element cleaner0 2023-09-21T17:22:04Z SO: ACBD 0.9989673 structure_element cleaner0 2023-09-21T17:22:13Z SO: GOLD 0.9982494 experimental_method cleaner0 2023-09-21T16:09:21Z MESH: homology modeled 0.9897456 evidence cleaner0 2023-09-21T14:16:05Z DUMMY: structures 0.9969298 experimental_method cleaner0 2023-09-21T16:09:39Z MESH: Phyre2 0.9989318 structure_element cleaner0 2023-09-21T17:22:16Z SO: GOLD 0.9989569 protein cleaner0 2023-09-21T17:17:19Z PR: GolginB1 0.9990276 protein cleaner0 2023-09-21T14:00:41Z PR: Giantin structure_element SO: cleaner0 2023-09-21T16:09:58Z Intrinsically disordered linkers