N B-chemical - I-chemical acylhydrazone I-chemical inhibitors O of O influenza B-taxonomy_domain virus B-taxonomy_domain PA B-protein endonuclease B-protein_type with O versatile O metal O binding O modes O Influenza B-taxonomy_domain virus B-taxonomy_domain PA B-protein endonuclease B-protein_type has O recently O emerged O as O an O attractive O target O for O the O development O of O novel O antiviral O therapeutics O . O This O is O an O enzyme O with O divalent O metal O ion O ( O s O ) O ( O Mg2 B-chemical + I-chemical or O Mn2 B-chemical +) I-chemical in O its O catalytic B-site site I-site : O chelation B-bond_interaction of O these O metal O cofactors O is O an O attractive O strategy O to O inhibit O enzymatic O activity O . O Here O we O report O the O activity O of O a O series O of O N B-chemical - I-chemical acylhydrazones I-chemical in O an O enzymatic B-experimental_method assay I-experimental_method with O PA B-protein - O Nter B-structure_element endonuclease B-protein_type , O as O well O as O in O cell B-experimental_method - I-experimental_method based I-experimental_method influenza I-experimental_method vRNP I-experimental_method reconstitution I-experimental_method and O virus B-experimental_method yield I-experimental_method assays I-experimental_method . O Several O N B-chemical - I-chemical acylhydrazones I-chemical were O found O to O have O promising O anti O - O influenza B-taxonomy_domain activity O in O the O low O micromolar O concentration O range O and O good O selectivity O . O Computational B-experimental_method docking I-experimental_method studies I-experimental_method are O carried O on O to O investigate O the O key O features O that O determine O inhibition O of O the O endonuclease B-protein_type enzyme O by O N B-chemical - I-chemical acylhydrazones I-chemical . O Moreover O , O we O here O describe O the O crystal B-evidence structure I-evidence of O PA B-protein - O Nter B-structure_element in B-protein_state complex I-protein_state with I-protein_state one O of O the O most O active O inhibitors O , O revealing O its O interactions O within O the O protein O ’ O s O active B-site site I-site . O Influenza B-taxonomy_domain virus B-taxonomy_domain is O an O enveloped B-taxonomy_domain virus I-taxonomy_domain with O a O segmented O negative B-chemical - I-chemical oriented I-chemical single I-chemical - I-chemical stranded I-chemical RNA I-chemical genome O , O belonging O to O the O Orthomyxoviridae B-taxonomy_domain . O Seasonal O influenza B-taxonomy_domain A I-taxonomy_domain and O B B-taxonomy_domain viruses B-taxonomy_domain affect O each O year O approximately O 5 O – O 10 O % O of O the O adult O and O 20 O – O 30 O % O of O the O paediatric O population O , O and O there O is O a O permanent O risk O of O sudden O influenza B-taxonomy_domain pandemics O , O such O as O the O notorious O ‘ O Spanish O flu O ’ O in O 1918 O and O the O swine O - O origin O H1N1 B-species pandemic O in O 2009 O . O Two O classes O of O anti O - O influenza B-taxonomy_domain virus B-taxonomy_domain drugs O are O available O , O acting O on O the O viral B-taxonomy_domain M2 B-protein_type ion I-protein_type - I-protein_type channel I-protein_type ( O amantadine B-chemical and O rimantadine B-chemical ) O or O on O the O viral B-taxonomy_domain neuraminidase B-protein_type ( O zanamivir B-chemical and O oseltamivir B-chemical ). O The O M2 B-protein_type inhibitors O have O limited O clinical O utility O due O to O their O central O nervous O system O side O effects O and O widespread O resistance O , O as O in O the O case O of O the O 2009 O pandemic O H1N1 B-species virus B-taxonomy_domain ; O resistance O is O also O a O growing O concern O for O oseltamivir B-chemical . O The O influenza B-taxonomy_domain virus B-taxonomy_domain polymerase B-protein_type complex O is O composed O of O three O subunits O : O PB1 B-protein , O PB2 B-protein and O PA B-protein . O The O PA B-protein subunit B-structure_element performs O the O ‘ O cap O - O snatching O ’ O endonuclease B-protein_type reaction O , O the O PB2 B-protein subunit B-structure_element is O responsible O for O initial O binding O of O the O capped B-chemical RNAs I-chemical , O while O the O actual O RNA B-chemical synthesis O is O performed O by O the O PB1 B-protein protein O . O Given O its O crucial O role O in O the O viral B-taxonomy_domain life O cycle O , O the O influenza B-taxonomy_domain virus B-taxonomy_domain polymerase B-protein_type is O widely O recognized O as O a O superior O target O for O antiviral O drug O development O and O , O in O particular O , O inhibition O of O the O PA B-protein endonuclease B-protein_type has O deserved O much O attention O in O recent O years O . O The O endonuclease B-protein_type catalytic B-site site I-site resides O in O the O N B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element of O PA B-protein ( O PA B-protein - O Nter B-structure_element ; O residues O 1 B-residue_range ~ I-residue_range 195 I-residue_range ). O It O comprises O a O histidine B-residue_name ( O His41 B-residue_name_number ) O and O a O cluster O of O three O strictly B-protein_state conserved I-protein_state acidic B-protein_state residues O ( O Glu80 B-residue_name_number , O Asp108 B-residue_name_number , O Glu119 B-residue_name_number ), O which O coordinate B-bond_interaction ( O together O with O Ile120 B-residue_name_number ) O one O , O two O , O or O three O manganese B-chemical or O magnesium B-chemical ions O . O Since O the O intracellular O concentration O of O Mg2 B-chemical + I-chemical is O at O least O 1000 O - O fold O higher O than O that O of O Mn2 B-chemical +, I-chemical magnesium B-chemical may O be O more O biologically O relevant O . O A O controversy O about O number O and O type O of O metal O ions O exists O also O for O the O active B-site site I-site of O HIV B-species - I-species 1 I-species integrase B-protein_type . O HIV B-species - I-species 1 I-species integrase B-protein_type inhibitors O are O a O paradigm O for O the O innovative O drug O concept O that O is O based O on O coordination O with O the O metal B-chemical cofactor O ( O s O ) O of O viral B-taxonomy_domain enzymes O : O similarly O , O several O PA B-protein - O binding O agents O with O metal O - O chelating O properties O have O been O identified O as O influenza B-taxonomy_domain endonuclease B-protein_type inhibitors O ( O Fig O . O 1 O ), O including O 2 B-chemical , I-chemical 4 I-chemical - I-chemical dioxobutanoic I-chemical acid I-chemical derivatives O , O flutimide B-chemical and O its O derivatives O , O 2 B-chemical - I-chemical hydroxyphenyl I-chemical amide I-chemical derivatives O , O as O well O as O tetramic B-chemical acids I-chemical , O 5 B-chemical - I-chemical hydroxypyrimidin I-chemical - I-chemical 4 I-chemical - I-chemical one I-chemical derivatives O , O marchantins B-chemical and O green B-taxonomy_domain tea I-taxonomy_domain catechins B-chemical , O like O epigallocatechin B-chemical - I-chemical 3 I-chemical - I-chemical gallate I-chemical ( O EGCG B-chemical , O Fig O . O 1 O ). O In O recent O years O , O we O focused O our O research O on O chemical O scaffolds O that O are O able O to O chelate O metal O ions O of O PA B-protein - O Nter B-structure_element , O resulting O in O inhibition O of O influenza B-taxonomy_domain virus B-taxonomy_domain replication O . O N B-chemical - I-chemical acylhydrazones I-chemical represent O an O appealing O class O of O chelating O ligands O with O a O broad O spectrum B-evidence of O biological O activities O , O such O as O activity O against O HIV B-taxonomy_domain , O hepatitis B-taxonomy_domain A I-taxonomy_domain , O vaccinia B-taxonomy_domain and O influenza B-taxonomy_domain virus B-taxonomy_domain . O In O the O present O work O , O we O report O the O biological O activity O of O a O series O of O N B-chemical - I-chemical acylhydrazones I-chemical ( O Fig O . O 2 O ), O as O determined O in O an O enzymatic B-experimental_method assay I-experimental_method with O PA B-protein - O Nter B-structure_element endonuclease B-protein_type as O well O as O in O cell B-experimental_method - I-experimental_method based I-experimental_method influenza I-experimental_method viral I-experimental_method ribonucleoprotein I-experimental_method ( I-experimental_method vRNP I-experimental_method ) I-experimental_method reconstitution I-experimental_method and O virus B-experimental_method yield I-experimental_method assays I-experimental_method . O Several O N B-chemical - I-chemical acylhydrazones I-chemical were O found O to O have O promising O anti O - O influenza B-taxonomy_domain activity O with O 50 B-evidence % I-evidence effective I-evidence concentration I-evidence values O ( O EC50 B-evidence ) O in O the O range O of O 3 O – O 20 O μM O and O good O selectivity O ( O Table O 1 O and O Fig O . O 3 O ). O Computational B-experimental_method docking I-experimental_method studies I-experimental_method of O two O candidate O ligands O in O the O PA B-protein - O Nter B-structure_element active B-site site I-site gave O information O about O the O features O that O could O determine O inhibition O of O endonuclease B-protein_type activity O . O Moreover O , O we O describe O the O X B-evidence - I-evidence ray I-evidence crystal I-evidence structure I-evidence of O PA B-protein - O Nter B-structure_element in B-protein_state complex I-protein_state with I-protein_state one O of O the O most O active O inhibitors O . O N B-chemical - I-chemical acylhydrazones I-chemical 1 B-chemical – I-chemical 27 I-chemical ( O Fig O . O 2 O ) O were O prepared O in O high O yields O by O following O literature O methods O ( O Fig O . O 2A O ); O they O were O characterized O by O spectroscopic O tools O , O mass B-experimental_method spectrometry I-experimental_method and O elemental B-experimental_method analysis I-experimental_method . O Even O if O isomerism O around O the O C O = O N O bond O is O possible O , O 1 B-chemical – I-chemical 27 I-chemical are O present O in O the O E O form O in O solution O , O as O evidenced O by O the O chemical O shift O values O of O the O HC O = O N O and O NH O protons O in O the O 1H B-experimental_method - I-experimental_method NMR I-experimental_method spectrum B-evidence . O Exceptions O are O represented O by O the O alkyl O - O derivatives O 3 B-chemical and O 4 B-chemical ( O 2 O : O 1 O and O 5 O : O 3 O E O : O Z O ratio O , O respectively O ). O If O R O ’ O ( O Fig O . O 2A O ) O is O a O 2 O - O hydroxy O substituted O phenyl O ring O , O the O corresponding O acylhydrazones B-chemical can O coordinate B-bond_interaction one O or O , O depending O on O denticity O , O two O metal O centers O ( O modes O A O and O B O in O Fig O . O 4 O ). O Starting O from O N B-chemical ’-( I-chemical 2 I-chemical , I-chemical 3 I-chemical - I-chemical dihydroxybenzylidene I-chemical )- I-chemical semicarbazide I-chemical ( O 1 B-chemical ) O and O its O methoxy O - O analogue O ( O 2 B-chemical ), O we O modified O the O acylhydrazonic O substituent O R O ” O ( O 3 B-chemical – I-chemical 8 I-chemical , O 18 B-chemical , O 19 B-chemical , O Fig O . O 2A O ). O In O 18 B-chemical and O 19 B-chemical , O also O the O gallic B-chemical moiety O can O be O involved O in O the O chelation B-bond_interaction of O the O metal O cofactors O ( O mode O C O , O Fig O . O 4 O ). O In O order O to O investigate O the O role O of O hydroxyl O substituents O 9 B-chemical – I-chemical 11 I-chemical , O 13 B-chemical – I-chemical 17 I-chemical , O 20 B-chemical – I-chemical 23 I-chemical and O 27 B-chemical were O also O synthesized O . O Compound O 12 B-chemical was O synthesized O in O order O to O confirm O the O crucial O influence O of O the O gallic B-chemical moiety O . O Finally O , O 26 B-chemical was O here O considered O , O because O it O is O an O inhibitor O of O HIV B-taxonomy_domain RNase B-protein H I-protein , O another O enzyme O with O two O magnesium B-chemical ions O in O its O active B-site site I-site . O Since O the O inhibitory O activity O of O the O N B-chemical - I-chemical acylhydrazones I-chemical could O be O related O to O chelation B-bond_interaction of O the O divalent O metal B-chemical cofactor O ( O s O ) O in O the O influenza B-taxonomy_domain PA B-protein - O Nter B-structure_element active B-site site I-site , O we O investigated O the O coordination O properties O of O one O model O ligand O ( O i O . O e O . O 19 B-chemical , O H2L B-chemical ) O towards O Mg2 B-chemical +. I-chemical Different O reaction O conditions O were O used O ( O 1 O : O 1 O and O 1 O : O 2 O metal O to O ligand O ratio O , O up O to O 4 O equivalents O of O triethylamine B-chemical ), O but O in O any O case O the O same O chemical O species O Mg B-chemical ( I-chemical HL I-chemical ) I-chemical 2 I-chemical ∙ I-chemical 4H2O I-chemical was O recovered O and O conveniently O characterized O . O The O use O of O a O coordinating O solvent O as O d6 B-chemical - I-chemical DMSO I-chemical causes O partial O decoordination O of O the O ligand O , O but O the O 1H B-experimental_method - I-experimental_method NMR I-experimental_method spectrum B-evidence in O MeOD O , O instead O , O shows O only O the O signals O attributable O to O the O complex O . O In O the O 13C B-experimental_method - I-experimental_method NMR I-experimental_method spectrum B-evidence , O the O signal O of O the O C O = O O O quaternary O carbon O is O practically O unaffected O by O complexation O , O suggesting O that O the O C O = O O O group O is O weakly O involved O in O the O coordination O to O the O metal O ion O . O This O is O confirmed O , O in O the O IR B-experimental_method spectrum B-evidence , O by O the O shift O of O about O 20 O cm O − O 1 O of O the O C O = O O O absorption O , O while O a O shift O of O 30 O – O 50 O cm O − O 1 O is O expected O when O the O carbonylic O oxygen O is O tightly O bound O to O the O metal O ion O . O ESI B-experimental_method - I-experimental_method mass I-experimental_method spectra B-evidence and O elemental B-experimental_method analysis I-experimental_method confirmed O the O formula O Mg B-chemical ( I-chemical HL I-chemical ) I-chemical 2 I-chemical ∙ I-chemical 4H2O I-chemical . O The O interaction O between O the O N B-chemical - I-chemical acylhydrazone I-chemical ligands O and O the O magnesium B-chemical cation O was O investigated O also O by O means O of O UV B-experimental_method - I-experimental_method visible I-experimental_method spectroscopy I-experimental_method ( O UV B-experimental_method - I-experimental_method visible I-experimental_method titrations I-experimental_method of O 23 B-chemical and O 19 B-chemical with O increasing B-experimental_method amount I-experimental_method of O Mg B-chemical ( I-chemical CH3COO I-chemical ) I-chemical 2 I-chemical are O shown O in O Figure O S1 O ). O The O spectrum B-evidence of O 19 B-chemical includes O a O band O at O 313 O nm O assignable O to O n O - O π O * O transitions O of O the O C O = O N O and O C O = O O O groups O . O By O adding O increasing O equivalents O of O Mg B-chemical ( I-chemical CH3COO I-chemical ) I-chemical 2 I-chemical , O the O absorption O around O 400 O nm O increases O , O and O a O new O band O appears O with O a O maximum O at O 397 O nm O . O When O the O same O experiment O was O performed O with O 23 B-chemical , O a O different O behavior O was O observed O . O Increasing O concentration O of O Mg2 B-chemical +, I-chemical in O fact O , O caused O a O diminution O in O the O maximum O absorption O , O an O isosbestic O point O is O visible O at O about O 345 O nm O , O but O a O new O band O at O 400 O nm O does O not O appear O . O Ligands O 19 B-chemical and O 23 B-chemical coordinate B-bond_interaction the O Mg2 B-chemical + I-chemical ions O in O different O ways O : O 19 B-chemical chelates O the O metal O ion O by O using O the O deprotonated O salicyl O oxygen O and O the O iminic O nitrogen O , O while O for O 23 B-chemical , O the O gallic O moiety O is O supposed O to O be O involved O ( O Fig O . O 4A O , O B O versus O C O ), O leading O to O different O , O less O extensive O , O modifications O of O the O UV B-experimental_method spectrum B-evidence . O Inhibition O of O the O PA B-protein - O Nter B-structure_element enzyme O All O the O compounds O were O tested O for O their O ability O to O inhibit O the O influenza B-taxonomy_domain endonuclease B-protein_type in O an O enzymatic B-experimental_method plasmid I-experimental_method - I-experimental_method based I-experimental_method assay I-experimental_method with O recombinant O PA B-protein - O Nter B-structure_element , O as O well O as O in O cell B-experimental_method - I-experimental_method based I-experimental_method influenza I-experimental_method methods I-experimental_method ( O i O . O e O . O virus B-experimental_method yield I-experimental_method and I-experimental_method vRNP I-experimental_method reconstitution I-experimental_method assays I-experimental_method ). O The O results O are O shown O in O Table O 1 O and O summarized O in O Fig O . O 3 O to O visualize O the O structure O - O activity O relationships O ; O Figure O S2 O shows O the O dose B-evidence - I-evidence response I-evidence curves I-evidence for O three O representative O compounds O ( O i O . O e O . O 10 B-chemical , O 13 B-chemical and O 23 B-chemical ) O in O either O the O PA B-experimental_method - I-experimental_method enzyme I-experimental_method or I-experimental_method vRNP I-experimental_method reconstitution I-experimental_method assay I-experimental_method . O The O moderate O activity O ( O IC50 B-evidence = O 24 O μM O ) O of O N B-chemical ’- I-chemical 2 I-chemical , I-chemical 3 I-chemical - I-chemical dihydroxybenzylidene I-chemical semicarbazide I-chemical ( O 1 B-chemical ) O was O completely O lost O when O the O NH2 O moiety O was O replaced O by O a O hydrophobic O heptyl O chain O ( O 3 B-chemical ), O but O it O is O less O affected O when O a O phenyl O or O a O 2 O - O hydroxyphenyl O is O present O ( O 5 B-chemical and O 7 B-chemical , O IC50 B-evidence = O 84 O and O 54 O μM O , O respectively O ). O When O the O hydroxyl O in O position O 3 O on O R1 O ( O 2 B-chemical , I-chemical 3 I-chemical - I-chemical dihydroxybenzylidene I-chemical ) O was O replaced O by O a O methoxy O group O ( O 2 B-chemical - I-chemical hydroxy I-chemical - I-chemical 3 I-chemical - I-chemical methoxybenzylidene I-chemical ), O the O activity O disappeared O ( O compounds O 2 B-chemical , O 4 B-chemical , O 6 B-chemical and O 8 B-chemical ). O The O activity O is O unaffected O ( O IC50 B-evidence values O ranging O from O 45 O to O 75 O μM O ) O when O going O from O two O hydroxyls O in O R1 O ( O 7 B-chemical ) O to O compounds O with O three O hydroxyls O ( O i O . O e O . O 9 B-chemical , O 10 B-chemical and O 11 B-chemical ). O Similarly O , O 11 B-chemical ( O R1 O = O 3 O , O 4 O , O 5 O - O trihydroxyphenyl O , O R2 O = O 2 O - O hydroxyphenyl O ) O had O comparable O activity O as O 27 B-chemical ( O R1 O = O 3 O , O 4 O , O 5 O - O trihydroxyphenyl O , O R2 O = O NH2 O ). O Within O the O series O carrying O a O 2 O - O hydroxyphenyl O R2 O group O , O the O activity O of O 11 B-chemical is O particularly O intriguing O . O 11 B-chemical does O not O have O the O possibility O to O chelate O in O a O tridentate O ONO O fashion O ( O mode O A O in O Fig O . O 4 O ), O but O it O can O coordinate B-bond_interaction two O cations O by O means O of O its O three O OH O groups O in O R1 O ( O mode O C O , O Fig O . O 4 O ). O Note O that O a O similar O chelating O mode O was O observed O in O a O crystal B-evidence structure I-evidence , O solved O by O Cusack O and O coworkers O , O of O PA B-protein - O Nter B-structure_element endonuclease B-protein_type in B-protein_state complex I-protein_state with I-protein_state the O inhibitor O EGCG B-chemical . O The O PA B-protein - O Nter B-structure_element inhibitory O activity O strongly O depends O on O the O number O and O position O of O hydroxyl O substituents O in O R1 O and O R2 O : O this O is O clearly O highlighted O by O the O data O obtained O with O compounds O 13 B-chemical – I-chemical 23 I-chemical , O in O which O R2 O is O a O 3 O , O 4 O , O 5 O - O trihydroxyphenyl O ( O gallic O ) O group O , O the O most O active O scaffold O in O our O series O . O The O analogue O carrying O an O unsubstituted O aromatic O ring O as O R1 O ( O compound O 13 B-chemical ) O had O moderate O activity O ( O IC50 B-evidence = O 69 O μM O ). O When O one O OH O was O added O at O position O 2 O of O the O R1 O ring O ( O 14 B-chemical ), O the O activity O was O lost O . O Adding O a O second O OH O substituent O at O position O 5 O resulted O in O strong O activity O ( O compound O 15 B-chemical , O IC50 B-evidence = O 9 O μM O ); O medium O activity O for O a O 3 O - O OH O ( O 18 B-chemical ; O IC50 B-evidence = O 83 O μM O ), O and O marginal O activity O when O the O second O OH O is O at O position O 4 O ( O 17 B-chemical , O IC50 B-evidence ≥ O 370 O μM O ). O The O addition O of O a O 3 O - O methoxy O group O ( O 19 B-chemical ) O abolished O all O inhibitory O activity O . O This O cannot O be O related O to O variations O in O the O chelating O features O displayed O by O the O R1 O moiety O , O since O compounds O 14 B-chemical – I-chemical 19 I-chemical all O have O , O in O theory O , O the O capacity O to O chelate O one O metal O ion O through O the O ortho O - O OH O and O iminic O nitrogen O ( O mode O A O in O Fig O . O 4 O ). O Moreover O , O compound O 18 B-chemical can O , O in O principle O , O chelate O the O two O M2 B-chemical + I-chemical ions O in O the O active B-site site I-site according O to O mode O B O ( O Fig O . O 4 O ), O yet O it O ( O IC50 B-evidence = O 83 O μM O ) O has O nine O - O fold O lower O activity O than O 15 B-chemical , O that O does O not O possess O this O two O - O metal O chelating O feature O . O Therefore O , O we O hypothesized O that O the O inhibitory O activity O of O the O series O containing O the O gallic O moiety O is O determined O by O : O ( O i O ) O the O capacity O of O the O moiety O R2 O to O chelate O two O metal O ions O in O the O active B-site site I-site of O the O enzyme O , O according O to O mode O C O ( O Fig O . O 4 O ); O and O ( O ii O ) O the O presence O and O position O of O one O or O more O hydroxyl O substituents O in O R1 O , O which O may O possibly O result O in O ligand O - O protein O interactions O ( O e O . O g O . O through O hydrogen B-bond_interaction bonds I-bond_interaction ). O This O assumption O was O supported O by O molecular B-experimental_method docking I-experimental_method calculations I-experimental_method and O X B-experimental_method - I-experimental_method ray I-experimental_method analysis I-experimental_method of O inhibitor O 23 B-chemical in B-protein_state complex I-protein_state with I-protein_state PA B-protein - O Nter B-structure_element ( O vide O infra O ). O Substitution O of O the O 5 O - O hydroxyl O in O 15 B-chemical by O a O methoxy O group O ( O 16 B-chemical ) O causes O a O dramatic O drop O in O activity O ( O IC50 B-evidence = O 9 O and O 454 O μM O for O 15 B-chemical and O 16 B-chemical , O respectively O ). O In O particular O , O all O the O compounds O with O a O trihydroxylated O phenyl O group O as O R1 O ( O i O . O e O . O 20 B-chemical , O 21 B-chemical , O 22 B-chemical and O 23 B-chemical ) O were O able O to O inhibit O PA B-protein - O Nter B-structure_element quite O potently O . O The O lowest O IC50 B-evidence values O were O obtained O for O 21 B-chemical and O 23 B-chemical ( O IC50 B-evidence = O 13 O and O 7 O μM O , O respectively O ), O which O both O have O one O of O their O three O hydroxyl O groups O at O position O 5 O . O The O most O active O compound O in O this O series O was O 23 B-chemical , O which O lacks O the O hydroxyl O group O at O position O 2 O of O R1 O , O further O confirming O that O this O function O is O undesirable O or O even O detrimental O for O inhibitory O activity O against O PA B-protein - O Nter B-structure_element , O as O already O noticed O above O for O 14 B-chemical . O Consistent O with O a O crucial O role O of O the O R2 O gallic O moiety O in O metal O chelation B-bond_interaction , O the O strong O activity O of O 15 B-chemical was O completely O lost O in O its O 3 O , O 4 O , O 5 O - O trimethoxy O analogue O 12 B-chemical . O On O the O other O hand O , O the O R2 O gallic O containing O compounds O displayed O moderate O activity O ( O IC50 B-evidence values O around O 40 O μM O ) O when O R1 O was O absent O ( O i O . O e O . O the O 3 B-chemical , I-chemical 4 I-chemical , I-chemical 5 I-chemical - I-chemical trihydroxybenzohydrazide I-chemical 28 B-chemical , O Fig O . O 2 O ), O or O composed O of O an O extended O ring O system O ( O 26 B-chemical ) O or O a O pyrrole O ring O ( O 25 B-chemical ). O Still O lower O activity O was O seen O with O the O pyridine O analogue O 24 B-chemical . O Evidently O , O the O 3 O , O 4 O , O 5 O - O trihydroxybenzyl O moiety O at O R2 O is O fundamental O but O not O sufficient O to O ensure O potent O PA B-protein - O Nter B-structure_element endonuclease B-protein_type inhibition O , O since O the O interactions O of O R1 O with O the O amino O acid O side O chains O of O the O protein O appear O crucial O in O modulating O activity O . O Inhibition O of O vRNP B-complex_assembly activity O or O virus B-taxonomy_domain replication O in O cells O To O determine O the O anti O - O influenza B-taxonomy_domain virus B-taxonomy_domain activity O of O compounds O 1 B-chemical – I-chemical 28 I-chemical in O cell O culture O , O we O performed O an O influenza B-experimental_method vRNP I-experimental_method reconstitution I-experimental_method assay I-experimental_method in O human B-species embryonic O kidney O 293 O T O ( O HEK293T O ) O cells O , O then O subjected O the O active O compounds O ( O i O . O e O . O EC50 B-evidence < O 100 O μM O ) O to O a O virus B-experimental_method yield I-experimental_method assay I-experimental_method in O influenza B-taxonomy_domain virus B-taxonomy_domain - O infected O Madin O - O Darby O canine O kidney O ( O MDCK O ) O cells O ( O Table O 1 O and O Fig O . O 3 O ). O For O some O N B-chemical - I-chemical acylhydrazone I-chemical compounds O , O we O observed O quite O potent O and O selective O activity O in O the O vRNP B-experimental_method reconstitution I-experimental_method assay I-experimental_method . O This O indicates O that O they O are O able O to O inhibit O viral B-taxonomy_domain RNA B-chemical synthesis O and O suggests O that O they O could O be O classified O as O original O PA B-protein inhibitors O . O Values O for O EC50 B-evidence ( O vRNP B-complex_assembly ) O or O EC90 B-evidence ( O virus B-taxonomy_domain yield O ) O in O the O range O of O 0 O . O 4 O – O 18 O μM O were O obtained O for O compounds O 15 B-chemical and O 20 B-chemical – I-chemical 23 I-chemical , O which O all O carry O a O 3 O , O 4 O , O 5 O - O trihydroxyphenyl O as O R2 O , O and O possess O either O two O ( O 15 B-chemical ) O or O three O ( O 20 B-chemical – O 23 B-chemical ) O hydroxyl O substituents O in O the O R1 O moiety O . O As O in O the O enzymatic B-experimental_method PA I-experimental_method - I-experimental_method Nter I-experimental_method assays I-experimental_method , O the O compounds O having O R2 O as O a O gallic O moiety O ( O Fig O . O 3 O : O 21 B-chemical , O 22 B-chemical and O 23 B-chemical ) O showed O slightly O higher O activity O than O the O compounds O carrying O a O 2 O - O hydroxyl O R2 O group O ( O 9 B-chemical , O 10 B-chemical and O 11 B-chemical ); O 10 B-chemical and O 22 B-chemical have O substantially O the O same O EC50 B-evidence in O the O vRNP B-experimental_method reconstitution I-experimental_method assay I-experimental_method in O HEK293T O cells O . O The O hydrazide B-chemical 28 B-chemical displayed O weak O ( O virus B-taxonomy_domain yield O ) O to O moderate O ( O vRNP B-experimental_method reconstitution I-experimental_method ) O activity O , O albeit O less O than O the O most O active O molecules O in O the O 3 O , O 4 O , O 5 O - O trihydroxyphenyl O series O ( O i O . O e O . O 18 B-chemical and O 21 B-chemical – I-chemical 23 I-chemical ). O Even O if O there O are O no O data O indicating O that O the O compounds O reported O in O the O paper O are O subject O to O hydrolysis O , O the O activity O of O 28 B-chemical could O raise O the O concern O that O for O some O N B-chemical - I-chemical acylhydrazones I-chemical the O antiviral O activity O in O cell O culture O may O be O related O to O their O intracellular O hydrolysis O . O However O , O this O is O unlikely O , O since O the O antiviral O potency O showed O large O differences O ( O i O . O e O . O EC50 B-evidence values O between O 0 O . O 42 O and O 29 O μM O ) O for O compounds O with O the O same O R2 O but O different O R1 O groups O , O meaning O that O R1 O does O play O a O role O in O modulating O the O antiviral O effect O . O Most O compounds O carrying O as O R1 O a O 2 B-chemical , I-chemical 3 I-chemical - I-chemical dihydroxybenzylidene I-chemical ( O i O . O e O . O 3 B-chemical , O 5 B-chemical and O 7 B-chemical ) O or O 2 B-chemical - I-chemical hydroxy I-chemical - I-chemical 3 I-chemical - I-chemical methoxybenzylidene I-chemical moiety O ( O i O . O e O . O 4 B-chemical , O 6 B-chemical and O 8 B-chemical ) O showed O relatively O high O cytotoxicity O in O the O vRNP B-experimental_method assay I-experimental_method , O with O CC50 B-evidence values O below O 50 O μM O and O a O selectivity B-evidence index I-evidence ( O ratio O of O CC50 B-evidence to O EC50 B-evidence ) O below O 8 O . O Two O notable O exceptions O are O 18 B-chemical and O 19 B-chemical ( O containing O a O 2 B-chemical , I-chemical 3 I-chemical - I-chemical dihydroxybenzylidene I-chemical or O 2 B-chemical - I-chemical hydroxy I-chemical - I-chemical 3 I-chemical - I-chemical methoxybenzylidene I-chemical R1 O , O respectively O ) O which O were O not O cytotoxic O at O 200 O μM O and O displayed O favorable O antiviral O selectivity O . O Some O N B-chemical - I-chemical acylhydrazone I-chemical compounds O were O devoid O of O activity O in O the O enzymatic B-experimental_method assay I-experimental_method , O yet O showed O good O to O moderate O efficacy O in O cell O culture O ( O e O . O g O . O 14 B-chemical and O 19 B-chemical , O having O EC50 B-evidence values O of O 2 O . O 2 O and O 7 O . O 1 O μM O , O respectively O ). O For O most O of O the O active O compounds O ( O i O . O e O . O 9 B-chemical , O 11 B-chemical , O 13 B-chemical , O 15 B-chemical – I-chemical 21 I-chemical , O 23 B-chemical , O 24 B-chemical and O 26 B-chemical ) O a O fair O correlation O was O seen O for O the O two O cell B-experimental_method - I-experimental_method based I-experimental_method assays I-experimental_method , O since O the O EC50 B-evidence values O obtained O in O the O vRNP B-experimental_method assay I-experimental_method were O maximum O 5 O - O fold O different O from O the O EC90 B-evidence values O in O the O virus B-experimental_method yield I-experimental_method assay I-experimental_method . O On O the O other O hand O , O this O difference O was O 8 O - O fold O or O more O for O 7 B-chemical , O 10 B-chemical , O 14 B-chemical , O 22 B-chemical , O 25 B-chemical and O 28 B-chemical . O Some O N B-chemical - I-chemical acylhydrazone I-chemical compounds O showed O good O to O moderate O efficacy O in O the O vRNP B-experimental_method assay I-experimental_method ( O e O . O g O . O 14 B-chemical and O 19 B-chemical , O having O EC50 B-evidence values O of O 2 O . O 3 O and O 5 O . O 7 O μM O , O respectively O ), O yet O were O devoid O of O activity O in O the O enzymatic B-experimental_method assay I-experimental_method . O This O observation O suggests O that O they O may O inhibit O the O viral B-taxonomy_domain polymerase B-protein_type in O an O endonuclease B-protein_type - O independent O manner O . O To O achieve O a O clear O insight O into O the O antiviral O profile O of O the O N B-chemical - I-chemical acylhydrazones I-chemical , O specific O mechanistic O experiments O are O currently O ongoing O in O our O laboratory O , O in O which O we O are O analyzing O in O full O depth O their O effects O on O virus B-taxonomy_domain entry O , O polymerase B-protein_type - O dependent O RNA B-chemical synthesis O or O the O late O stage O ( O maturation O and O release O ) O of O the O virus B-taxonomy_domain replication O cycle O . O Docking B-experimental_method studies I-experimental_method In O order O to O explore O the O possible O binding O mode O of O the O synthesized O compounds O , O docking B-experimental_method simulations I-experimental_method by O GOLD B-experimental_method program I-experimental_method were O performed O by O using O the O structural O coordinates O ( O PDB O code O 4AWM O ) O for O the O PA B-protein - O Nter B-structure_element endonuclease B-protein_type in B-protein_state complex I-protein_state with I-protein_state EGCG B-chemical . O Considering O that O the O position O of O the O side O - O chains O of O some O residues O changes O depending O on O which O pocket O the O ligand O is O occupying O , O we O superimposed B-experimental_method some O X B-evidence - I-evidence ray I-evidence structures I-evidence of O complexes O between O PA B-protein - O Nter B-structure_element endonuclease B-protein_type and O known O active O ligands O . O It O was O observed O that O the O side O - O chain O of O amino O acid O Tyr24 B-residue_name_number shows O greater O movement O than O the O other O residues O and O for O this O reason O we O considered O it O as O a O flexible B-protein_state residue O during O the O docking B-experimental_method procedure I-experimental_method . O First O , O test B-experimental_method docking I-experimental_method calculations I-experimental_method , O using O EGCG B-chemical , O L B-chemical - I-chemical 742 I-chemical , I-chemical 001 I-chemical and O 2 B-chemical -( I-chemical 4 I-chemical -( I-chemical 1H I-chemical - I-chemical tetrazol I-chemical - I-chemical 5 I-chemical - I-chemical yl I-chemical ) I-chemical phenyl I-chemical )- I-chemical 5 I-chemical - I-chemical hydroxypyrimidin I-chemical - I-chemical 4 I-chemical ( I-chemical 3H I-chemical )- I-chemical one I-chemical ( O Fig O . O 1 O ), O were O carried O out O to O compare O experimental O and O predicted O binding O modes O and O validate O docking B-experimental_method procedure I-experimental_method . O Their O best O docking O poses O agreed O well O with O the O experimental O binding O modes O ( O rmsd B-evidence values O of O 0 O . O 8 O , O 1 O . O 2 O and O 0 O . O 7 O , O respectively O ). O Next O , O docking B-experimental_method of O several O N B-chemical - I-chemical acylhydrazones I-chemical was O performed O and O this O generated O a O number O of O possible O binding O conformations O , O highlighting O that O the O active B-site site I-site cavity I-site of O the O PA B-protein endonuclease B-protein_type is O quite O spacious O , O as O already O demonstrated O by O crystallographic B-experimental_method studies I-experimental_method , O and O confirming O the O ability O of O this O scaffold O to O chelate O the O two O M2 B-chemical + I-chemical ions O in O different O ways O ( O Mode O A O - O C O in O Fig O . O 4 O ). O Figure O 5 O displays O the O first O ( O panel O A O ) O and O second O ( O panel O B O ) O GOLD B-experimental_method cluster I-experimental_method docked I-experimental_method solutions O for O compound O 23 B-chemical . O These O two O complex O structures B-evidence represent O the O largest O clusters O with O similar O fitness O values O ( O 59 O . O 20 O and O 58 O . O 65 O , O respectively O ). O In O both O cases O , O 23 B-chemical appears O able O to O coordinate B-bond_interaction the O two O M2 B-chemical + I-chemical ions O in O the O active B-site site I-site through O the O three O contiguous O OH O groups O ( O Fig O . O 5 O ). O In O addition O , O 23 B-chemical was O predicted O to O form O two O hydrogen B-bond_interaction bonding I-bond_interaction interactions I-bond_interaction , O i O . O e O . O with O the O catalytic B-protein_state Lys134 B-residue_name_number on O the O one O side O and O Glu26 B-residue_name_number on O the O other O side O . O Furthermore O , O in O these O two O different O binding O modes O , O 23 B-chemical forms O π B-bond_interaction – I-bond_interaction π I-bond_interaction interactions I-bond_interaction with O the O aromatic O ring O of O Tyr24 B-residue_name_number , O in O a O fashion O similar O to O that O described O for O other O endonuclease B-protein_type inhibitors O , O i O . O e O . O EGCG B-chemical and O L B-chemical - I-chemical 742 I-chemical , I-chemical 001 I-chemical . O The O best O docked O conformation O for O compound O 15 B-chemical ( O Fig O . O 6 O , O fitness B-evidence value I-evidence 68 O . O 56 O ), O which O has O an O activity O slightly O lower O than O 23 O , O reveals O a O different O role O for O the O gallic O moiety O . O The O ligand O seems O to O form O two O hydrogen B-bond_interaction bonding I-bond_interaction interactions I-bond_interaction with O Tyr130 B-residue_name_number as O well O as O a O cation B-bond_interaction – I-bond_interaction π I-bond_interaction interaction I-bond_interaction with O Lys134 B-residue_name_number . O Tyr130 B-residue_name_number lies O in O a O pocket B-site that O also O contains O Arg124 B-residue_name_number , O a O residue O that O was O proposed O to O have O a O crucial O role O in O binding O of O the O RNA B-chemical substrate O . O Compound O 15 B-chemical appears O further O stabilized O by O hydrogen B-bond_interaction bonding I-bond_interaction interactions I-bond_interaction between O two O hydroxyl O groups O and O Arg82 B-residue_name_number and O Asp108 B-residue_name_number . O In O this O case O , O chelation B-bond_interaction of O the O two O M2 B-chemical + I-chemical ions O is O carried O out O by O involving O the O imine O group O ( O mode O A O in O Fig O . O 4 O ). O It O is O important O to O highlight O that O compounds O 23 B-chemical and O 15 B-chemical , O although O in O different O ways O , O both O are O able O to O chelate O the O metal O cofactors O and O to O establish O interactions O with O highly B-protein_state conserved I-protein_state aminoacids O ( O Tyr24 B-residue_name_number , O Glu26 B-residue_name_number , O Arg124 B-residue_name_number , O Tyr130 B-residue_name_number and O Lys134 B-residue_name_number ) O that O are O very O important O for O both O endonuclease B-protein_type activity O and O transcription O in O vitro O . O The O crucial O role O of O such O interactions O is O underlined O by O the O differences O in O activity O between O 15 B-chemical ( O IC50 B-evidence = O 9 O . O 0 O μM O ) O and O 19 B-chemical (> O 500 O μM O ): O their O coordinating O features O are O similar O , O since O both O coordinate B-bond_interaction to O the O divalent O metal O ion O through O the O phenolic O oxygen O , O the O iminic O nitrogen O and O the O carbonylic O oxygen O ( O mode O A O in O Fig O . O 4 O ), O but O the O biological O activity O could O be O related O to O their O different O ability O to O engage O interactions O with O the O protein O environment O . O Crystallographic B-experimental_method Studies I-experimental_method Attempts O were O made O to O co B-experimental_method - I-experimental_method crystallize I-experimental_method PA B-protein - O Nter B-structure_element with O 15 B-chemical , O 20 B-chemical , O 21 B-chemical and O 23 B-chemical in O one O to O four O molar O excess O . O While O crystals B-evidence appeared O and O diffracted O well O , O upon O data O processing O , O no O or O very O little O electron B-evidence density I-evidence for O the O inhibitors O was O observed O . O Attempts O to O soak O apo B-protein_state crystals B-evidence in O crystallization O solution O containing O 5 O mM O inhibitor O overnight O also O did O not O result O in O substantial O electron B-evidence density I-evidence for O the O inhibitor O . O As O a O last O resort O , O dry O powder O of O the O inhibitor O was O sprinkled O over O the O crystallization O drop O containing O apo B-protein_state crystals B-evidence and O left O over O night O . O This O experiment O was O successful O for O compound O 23 B-chemical , O the O crystals B-evidence diffracted O to O 2 O . O 15 O Å O and O diffraction O data O were O collected O ( O PDB O ID O 5EGA O ). O The O refined O structure B-evidence shows O unambiguous O electron B-evidence density I-evidence for O the O inhibitor O ( O Table O S1 O and O Fig O . O 7 O ). O The O complex B-evidence structure I-evidence confirms O one O of O the O two O binding O modes O predicted O by O the O docking B-experimental_method simulations I-experimental_method ( O Fig O . O 5 O , O panel O B O ). O The O galloyl O moiety O chelates O the O manganese B-chemical ions O , O while O the O trihydroxyphenyl O group O stacks O against O the O Tyr24 B-residue_name_number side O chain O . O It O is O interesting O to O note O that O two O of O these O hydroxyl O groups O are O in O position O to O form O hydrogen B-bond_interaction bonds I-bond_interaction with O the O side O chain O of O Glu26 B-residue_name_number and O Lys34 B-residue_name_number ( O Fig O . O 7 O ). O These O interactions O suggest O that O other O functional O groups O , O e O . O g O . O halogens O , O could O be O used O in O place O of O the O hydroxyl O groups O for O better O interactions O with O Glu26 B-residue_name_number and O Lys34 B-residue_name_number side O chains O , O and O the O inhibitory O potency O of O these O compounds O could O be O further O improved O . O Chemical O structures O of O some O prototype O inhibitors O of O influenza B-taxonomy_domain virus B-taxonomy_domain endonuclease B-protein_type . O Inhibitor O activity O in O enzymatic B-experimental_method assays I-experimental_method ( O IC50 B-evidence , O μM O ) O as O reported O in O : O aref O ., O bref O ., O cref O ., O dref O .. O General O synthesis O for O N B-chemical - I-chemical acylhydrazones I-chemical 1 B-chemical – I-chemical 27 I-chemical and O hydrazides B-chemical 28 B-chemical and O 29 B-chemical ( O A O ). O Chemical O structures O of O compounds O 1 B-chemical – I-chemical 27 I-chemical ( O B O ). O Overview O of O the O structure O - O activity O relationship O for O compounds O 1 B-chemical – I-chemical 27 I-chemical . O Scheme O of O possible O binding O modes O of O the O studied O N B-chemical - I-chemical acylhydrazones I-chemical . O First O ( O A O ) O and O second O ( O B O ) O GOLD B-experimental_method cluster I-experimental_method docked I-experimental_method solutions O of O compound O 23 B-chemical ( O orange O and O cyan O , O respectively O ) O in B-protein_state complex I-protein_state with I-protein_state PA B-protein endonuclease B-protein_type . O Key O residues O of O the O pocket B-site are O presented O using O PyMOL O [ O http O :// O www O . O pymol O . O org O ] O and O LIGPLUS B-experimental_method [ O Laskowski O , O R O . O A O .; O Swindells O , O M O . O B O . O Journal O of O chemical O information O and O modeling O 2011 O , O 51 O , O 2778 O ]. O Hydrogen B-bond_interaction bonds I-bond_interaction are O illustrated O by O dotted O lines O , O while O the O divalent O metal O ions O are O shown O as O purple O spheres O . O Schematic O drawings O of O the O interactions O of O the O first O ( O C O ) O and O second O ( O D O ) O GOLD B-experimental_method cluster I-experimental_method docked I-experimental_method solutions O generated O using O LIGPLUS B-experimental_method . O Dashed O lines O are O hydrogen B-bond_interaction bonds I-bond_interaction and O ‘ O eyelashes O ’ O show O residues O involved O in O hydrophobic B-bond_interaction interactions I-bond_interaction . O ( O A O ) O Binding O mode O of O compound O 15 B-chemical ( O orange O ) O in B-protein_state complex I-protein_state with I-protein_state PA B-protein endonuclease B-protein_type . O Hydrogen B-bond_interaction bonds I-bond_interaction are O illustrated O by O dotted O lines O while O the O divalent O metal O ions O are O shown O as O purple O spheres O . O ( O B O ) O Schematic O drawing O of O the O interactions O of O compound O 15 B-chemical generated O using O LIGPLUS B-experimental_method . O Crystal B-evidence structure I-evidence of O PANΔLoop B-mutant in B-protein_state complex I-protein_state with I-protein_state compound O 23 B-chemical . O Active B-site site I-site residues O are O shown O in O sticks O with O green O carbons O , O manganese B-chemical atoms O are O shown O as O purple O spheres O and O water B-chemical molecules O as O red O spheres O . O Compound O 23 B-chemical is O shown O in O sticks O with O yellow O carbons O . O 2Fo B-evidence - I-evidence Fc I-evidence electron I-evidence density I-evidence map I-evidence contoured O at O 1σ O is O shown O as O blue O mesh O . O Hydrogen B-bond_interaction bonds I-bond_interaction and O metal B-bond_interaction coordination I-bond_interaction are O shown O with O dotted O lines O . O The O H B-bond_interaction - I-bond_interaction bond I-bond_interaction distances O from O the O side O chain O carboxyl O group O of O Glu26 B-residue_name_number to O p O - O OH O and O m O - O OH O of O the O trihydroxyphenyl O group O of O the O inhibitor O are O 2 O . O 7 O Å O and O 3 O . O 0 O Å O , O respectively O . O The O H B-bond_interaction - I-bond_interaction bond I-bond_interaction distance O from O the O side O chain O of O Lys34 B-residue_name_number to O p O - O OH O of O the O trihydroxyphenyl O group O is O 3 O . O 6 O Å O . O The O H B-bond_interaction - I-bond_interaction bond I-bond_interaction distance O to O the O water B-chemical molecule O from O m O - O OH O of O the O galloyl O moiety O is O 3 O . O 0 O Å O , O which O in O turn O is O H B-bond_interaction - I-bond_interaction bonded I-bond_interaction to O the O side O chain O of O Tyr130 B-residue_name_number with O a O distance O of O 2 O . O 7 O Å O . O Crystal B-evidence structure I-evidence has O been O deposited O in O the O RCSB O Protein O Data O Bank O with O PDB O ID O : O 5EGA O . O Inhibitory O activity O of O the O N B-chemical - I-chemical acylhydrazones I-chemical 1 B-chemical – I-chemical 27 I-chemical and O hydrazide B-chemical 28 B-chemical in O the O enzymatic B-experimental_method assay I-experimental_method with O influenza B-taxonomy_domain virus B-taxonomy_domain PA B-protein - O Nter B-structure_element endonuclease B-protein_type , O or O in O cellular B-experimental_method influenza I-experimental_method virus I-experimental_method assays I-experimental_method . O Compound B-experimental_method Enzyme I-experimental_method assay I-experimental_method with O PA B-protein - O Ntera O Virus B-experimental_method yield I-experimental_method assay I-experimental_method in O influenza B-taxonomy_domain virus B-taxonomy_domain - O infected O MDCK O cellsb O vRNP B-experimental_method reconstitution I-experimental_method assay I-experimental_method in O HEK293T O cellsc O Antiviral O activity O Cytotoxicity O SId O Activity O Cytotoxicity O IC50 B-evidence EC99 B-evidence EC90 B-evidence CC50 B-evidence EC50 B-evidence CC50 B-evidence ( O 1 O ) O 24 O NDf O ND O ND O 107 O > O 200 O ( O 2 O ) O > O 500 O ND O ND O ND O > O 100 O > O 200 O ( O 3 O ) O > O 500 O ND O ND O > O 200 O 5 O . O 9 O 48 O ( O 4 O ) O > O 500 O ND O ND O > O 200 O 6 O . O 3 O 33 O ( O 5 O ) O 67 O > O 25 O > O 25 O ≥ O 146 O 2 O . O 6 O 10 O ( O 6 O ) O > O 500 O > O 50 O > O 50 O > O 200 O 15 O 14 O ( O 7 O ) O 54 O 172 O 100 O > O 200 O > O 2 O . O 0 O 3 O . O 2 O 8 O . O 9 O ( O 8 O ) O > O 500 O > O 12 O . O 5 O > O 12 O . O 5 O > O 200 O 1 O . O 9 O 15 O ( O 9 O ) O 34 O 16 O 5 O . O 3 O > O 200 O > O 38 O 5 O . O 5 O > O 200 O ( O 10 O ) O 68 O 14 O 8 O . O 5 O 111 O > O 13 O 0 O . O 40 O 132 O ( O 11 O ) O 45 O 30 O 12 O > O 200 O > O 17 O 5 O . O 6 O > O 200 O ( O 12 O ) O > O 500 O > O 12 O . O 5 O > O 12 O . O 5 O > O 200 O 20 O 39 O ( O 13 O ) O 69 O 71 O 34 O > O 200 O > O 5 O . O 9 O 6 O . O 3 O > O 200 O ( O 14 O ) O > O 500 O 63 O 37 O > O 200 O > O 5 O . O 4 O 2 O . O 3 O > O 200 O ( O 15 O ) O 8 O . O 9 O 18 O 7 O . O 5 O ≥ O 172 O ≥ O 23 O 14 O > O 200 O ( O 16 O ) O 454 O 67 O 28 O > O 200 O > O 7 O . O 1 O 5 O . O 2 O > O 200 O ( O 17 O ) O 482 O 21 O 8 O . O 1 O > O 200 O > O 25 O 7 O . O 1 O > O 200 O ( O 18 O ) O 83 O 6 O . O 2 O 2 O . O 2 O > O 200 O > O 91 O 3 O . O 3 O > O 200 O ( O 19 O ) O > O 500 O 53 O 26 O > O 200 O > O 7 O . O 7 O 5 O . O 7 O > O 200 O ( O 20 O ) O 18 O 35 O 11 O > O 200 O > O 18 O 2 O . O 2 O > O 200 O ( O 21 O ) O 13 O 8 O . O 3 O 3 O . O 6 O > O 200 O > O 56 O 2 O . O 5 O > O 200 O ( O 22 O ) O 75 O 7 O . O 4 O 3 O . O 4 O > O 200 O > O 59 O 0 O . O 42 O > O 200 O ( O 23 O ) O 8 O . O 7 O 11 O 3 O . O 5 O > O 200 O > O 57 O 3 O . O 1 O > O 200 O ( O 24 O ) O 131 O 58 O 26 O > O 200 O > O 7 O . O 7 O 25 O > O 200 O ( O 25 O ) O 40 O 132 O 70 O > O 200 O > O 2 O . O 9 O 4 O . O 1 O > O 200 O ( O 26 O ) O 30 O 36 O 13 O > O 200 O > O 15 O 5 O . O 5 O > O 200 O ( O 27 O ) O 36 O ND O ND O ND O 21 O > O 200 O ( O 28 O ) O 40 O 158 O 85 O > O 200 O > O 2 O . O 4 O 7 O . O 2 O > O 200 O DPBAe O 5 O . O 3 O ND O ND O ND O ND O ND O Ribavirin O ND O 13 O 8 O . O 5 O > O 200 O > O 24 O 9 O . O 4 O > O 200 O aRecombinant O PA B-protein - O Nter B-structure_element was O incubated B-experimental_method with O the O ssDNA B-chemical plasmid O substrate O , O a O Mn2 B-chemical +- I-chemical containing O buffer O and O test O compounds O . O The O IC50 B-evidence represents O the O compound O concentration O ( O in O μM O ) O required O to O obtain O 50 O % O inhibition O of O cleavage O , O calculated O by O nonlinear B-experimental_method least I-experimental_method - I-experimental_method squares I-experimental_method regression I-experimental_method analysis I-experimental_method ( O using O GraphPad O Prism O software O ) O of O the O results O from O 2 O – O 4 O independent O experiments O . O bMDCK O cells O were O infected O with O influenza B-taxonomy_domain A I-taxonomy_domain virus B-taxonomy_domain ( O strain O A O / O PR O / O 8 O / O 34 O ) O and O incubated O with O the O compounds O during O 24 O h O . O The O virus B-taxonomy_domain yield O in O the O supernatant O was O assessed O by O real B-experimental_method - I-experimental_method time I-experimental_method qPCR I-experimental_method . O The O EC99 B-evidence and O EC90 B-evidence values O represent O the O compound O concentrations O ( O in O μM O ) O producing O a O 2 O - O log10 O or O 1 O - O log10 O reduction O in O virus B-taxonomy_domain titer O , O respectively O , O determined O in O 2 O – O 3 O independent O experiments O . O The O cytotoxicity O , O assessed O in O uninfected O MDCK O cells O , O was O expressed O as O the O CC50 B-evidence value O ( O 50 O % O cytotoxic O concentration O , O determined O with O the O MTS B-experimental_method cell I-experimental_method viability I-experimental_method assay I-experimental_method , O in O μM O ). O cHEK293T O cells O were O co B-experimental_method - I-experimental_method transfected I-experimental_method with O the O four O vRNP B-complex_assembly - O reconstituting O plasmids O and O the O luciferase O reporter O plasmid O in O the O presence B-protein_state of I-protein_state the O test O compounds O . O The O EC50 B-evidence represents O the O compound O concentration O ( O in O μM O ) O producing O 50 O % O reduction O in O vRNP B-complex_assembly - O driven O firefly O reporter O signal O , O estimated O at O 24 O h O after O transfection O . O The O EC50 B-evidence value O was O derived O from O data O from O 2 O – O 4 O independent O experiments O , O by O nonlinear B-experimental_method least I-experimental_method - I-experimental_method squares I-experimental_method regression I-experimental_method analysis I-experimental_method ( O using O GraphPad O Prism O software O ). O The O CC50 B-evidence ( O in O μM O ), O i O . O e O . O the O 50 O % O cytotoxic O concentration O , O was O determined O in O untransfected O HEK293T O cells O by O MTS B-experimental_method cell I-experimental_method viability I-experimental_method assay I-experimental_method . O dSI B-evidence , O selectivity B-evidence index I-evidence , O defined O as O the O ratio O between O the O CC50 B-evidence and O EC90 B-evidence . O eDPBA B-chemical , O 2 B-chemical , I-chemical 4 I-chemical - I-chemical dioxo I-chemical - I-chemical 4 I-chemical - I-chemical phenylbutanoic I-chemical acid I-chemical . O