--- task_categories: - image-feature-extraction --- # Google Image Malaysia Location Dedup Original dataset https://huggingface.co/datasets/malaysia-ai/crawl-google-image-malaysia-location Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/vlm/dedup-malaysia-location ## Dedup 50% similar [dedup-0.5.jsonl](dedup-0.5.jsonl), total deduped 227937 images, ``` {'filename': 'train-00812-of-01000.parquet', 'keyword': 'Taman Megah Jaya Ayer Tawar', 'no': 16, 'selected_indices': [2556, 2559, 2575, 2577, 2586, 2587, 2595]} ``` ## Dedup 60% similar [dedup-0.6.jsonl](dedup-0.6.jsonl), total deduped 487301 images, ``` {'filename': 'train-00404-of-01000.parquet', 'keyword': 'Kampung Tok Wan Nik Padang Besar', 'no': 92, 'selected_indices': [2100, 2102, 2103, 2104]} ``` - `filename` is the parquet file from the original repository. - `selected_indices` is the index of dataframe of that filename. ## Embedding We convert to embedding using https://huggingface.co/google/siglip-base-patch16-512, we use MosaicML for faster indexing, ```python from streaming import MDSWriter from streaming.base.format.mds.encodings import Encoding, _encodings from streaming import LocalDataset import streaming import numpy as np from tqdm import tqdm class Float32(Encoding): def encode(self, obj) -> bytes: return obj.tobytes() def decode(self, data: bytes): return np.frombuffer(data, np.float32) _encodings['float32'] = Float32 dataset = LocalDataset('embedding') ```