#!/usr/bin/env python3 # /// script # dependencies = [ # "trl>=0.12.0", # "peft>=0.7.0", # "transformers>=4.36.0", # "accelerate>=0.24.0", # "trackio", # For real-time monitoring # ] # /// """ Production-ready SFT training example with all best practices. This script demonstrates: - Trackio integration for real-time monitoring - LoRA/PEFT for efficient training - Proper Hub saving configuration - Train/eval split for monitoring - Checkpoint management - Optimized training parameters Usage with hf_jobs MCP tool: hf_jobs("uv", { "script": '''''', "flavor": "a10g-large", "timeout": "3h", "secrets": {"HF_TOKEN": "$HF_TOKEN"}, }) Or submit the script content directly inline without saving to a file. """ import trackio from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig # Initialize Trackio for real-time monitoring trackio.init( project="qwen-capybara-sft", space_id="username/trackio", # Creates Space if it doesn't exist config={ "model": "Qwen/Qwen2.5-0.5B", "dataset": "trl-lib/Capybara", "learning_rate": 2e-5, "num_epochs": 3, "peft_method": "LoRA", } ) # Load dataset print("📦 Loading dataset...") dataset = load_dataset("trl-lib/Capybara", split="train") print(f"✅ Dataset loaded: {len(dataset)} examples") # Create train/eval split print("🔀 Creating train/eval split...") dataset_split = dataset.train_test_split(test_size=0.1, seed=42) train_dataset = dataset_split["train"] eval_dataset = dataset_split["test"] print(f" Train: {len(train_dataset)} examples") print(f" Eval: {len(eval_dataset)} examples") # Training configuration config = SFTConfig( # CRITICAL: Hub settings output_dir="qwen-capybara-sft", push_to_hub=True, hub_model_id="username/qwen-capybara-sft", hub_strategy="every_save", # Push checkpoints # Training parameters num_train_epochs=3, per_device_train_batch_size=4, gradient_accumulation_steps=4, learning_rate=2e-5, # Logging & checkpointing logging_steps=10, save_strategy="steps", save_steps=100, save_total_limit=2, # Evaluation - IMPORTANT: Only enable if eval_dataset provided eval_strategy="steps", eval_steps=100, # Optimization warmup_ratio=0.1, lr_scheduler_type="cosine", # Monitoring report_to="trackio", # Integrate with Trackio ) # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], ) # Initialize and train print("🎯 Initializing trainer...") trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=train_dataset, eval_dataset=eval_dataset, # CRITICAL: Must provide eval_dataset when eval_strategy is enabled args=config, peft_config=peft_config, ) print("🚀 Starting training...") trainer.train() print("💾 Pushing to Hub...") trainer.push_to_hub() # Finish Trackio tracking trackio.finish() print("✅ Complete! Model at: https://huggingface.co/username/qwen-capybara-sft") print("📊 View metrics at: https://huggingface.co/spaces/username/trackio")