# Common Training Patterns This guide provides common training patterns and use cases for TRL on Hugging Face Jobs. ## Multi-GPU Training Automatic distributed training across multiple GPUs. TRL/Accelerate handles distribution automatically: ```python hf_jobs("uv", { "script": """ # Your training script here (same as single GPU) # No changes needed - Accelerate detects multiple GPUs """, "flavor": "a10g-largex2", # 2x A10G GPUs "timeout": "4h", "secrets": {"HF_TOKEN": "$HF_TOKEN"} }) ``` **Tips for multi-GPU:** - No code changes needed - Use `per_device_train_batch_size` (per GPU, not total) - Effective batch size = `per_device_train_batch_size` × `num_gpus` × `gradient_accumulation_steps` - Monitor GPU utilization to ensure both GPUs are being used ## DPO Training (Preference Learning) Train with preference data for alignment: ```python hf_jobs("uv", { "script": """ # /// script # dependencies = ["trl>=0.12.0", "trackio"] # /// from datasets import load_dataset from trl import DPOTrainer, DPOConfig import trackio trackio.init(project="dpo-training", space_id="username/trackio") dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") # Create train/eval split dataset_split = dataset.train_test_split(test_size=0.1, seed=42) config = DPOConfig( output_dir="dpo-model", push_to_hub=True, hub_model_id="username/dpo-model", num_train_epochs=1, beta=0.1, # KL penalty coefficient eval_strategy="steps", eval_steps=50, report_to="trackio", ) trainer = DPOTrainer( model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model as base train_dataset=dataset_split["train"], eval_dataset=dataset_split["test"], # IMPORTANT: Provide eval_dataset when eval_strategy is enabled args=config, ) trainer.train() trainer.push_to_hub() trackio.finish() """, "flavor": "a10g-large", "timeout": "3h", "secrets": {"HF_TOKEN": "$HF_TOKEN"} }) ``` **For DPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")` ## GRPO Training (Online RL) Group Relative Policy Optimization for online reinforcement learning: ```python hf_jobs("uv", { "script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py", "script_args": [ "--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct", "--dataset_name", "trl-lib/math_shepherd", "--output_dir", "grpo-model", "--push_to_hub", "--hub_model_id", "username/grpo-model" ], "flavor": "a10g-large", "timeout": "4h", "secrets": {"HF_TOKEN": "$HF_TOKEN"} }) ``` **For GRPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")` ## Pattern Selection Guide | Use Case | Pattern | Hardware | Time | |----------|---------|----------|------| | SFT training | `scripts/train_sft_example.py` | a10g-large | 2-6 hours | | Large dataset (>10K) | Multi-GPU | a10g-largex2 | 4-12 hours | | Preference learning | DPO Training | a10g-large | 2-4 hours | | Online RL | GRPO Training | a10g-large | 3-6 hours | ## Critical: Evaluation Dataset Requirements **⚠️ IMPORTANT**: If you set `eval_strategy="steps"` or `eval_strategy="epoch"`, you **MUST** provide an `eval_dataset` to the trainer, or the training will hang. ### ✅ CORRECT - With eval dataset: ```python dataset_split = dataset.train_test_split(test_size=0.1, seed=42) trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset_split["train"], eval_dataset=dataset_split["test"], # ← MUST provide when eval_strategy is enabled args=SFTConfig(eval_strategy="steps", ...), ) ``` ### ❌ WRONG - Will hang: ```python trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, # NO eval_dataset but eval_strategy="steps" ← WILL HANG args=SFTConfig(eval_strategy="steps", ...), ) ``` ### Option: Disable evaluation if no eval dataset ```python config = SFTConfig( eval_strategy="no", # ← Explicitly disable evaluation # ... other config ) trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, # No eval_dataset needed args=config, ) ``` ## Best Practices 1. **Use train/eval splits** - Create evaluation split for monitoring progress 2. **Enable Trackio** - Monitor progress in real-time 3. **Add 20-30% buffer to timeout** - Account for loading/saving overhead 4. **Test with TRL official scripts first** - Use maintained examples before custom code 5. **Always provide eval_dataset** - When using eval_strategy, or set to "no" 6. **Use multi-GPU for large models** - 7B+ models benefit significantly ## See Also - `scripts/train_sft_example.py` - Complete SFT template with Trackio and eval split - `scripts/train_dpo_example.py` - Complete DPO template - `scripts/train_grpo_example.py` - Complete GRPO template - `references/hardware_guide.md` - Detailed hardware specifications - `references/training_methods.md` - Overview of all TRL training methods - `references/troubleshooting.md` - Common issues and solutions