# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import csv import os import datasets _CITATION = """\ @inproceedings{bien-etal-2020-recipenlg, title = "{R}ecipe{NLG}: A Cooking Recipes Dataset for Semi-Structured Text Generation", author = "Bie{'n}, Micha{l} and Gilski, Micha{l} and Maciejewska, Martyna and Taisner, Wojciech and Wisniewski, Dawid and Lawrynowicz, Agnieszka", booktitle = "Proceedings of the 13th International Conference on Natural Language Generation", month = dec, year = "2020", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.inlg-1.4", pages = "22--28" } """ _DESCRIPTION = """\ The dataset contains 2231142 cooking recipes (>2 millions). It's processed in more careful way and provides more samples than any other dataset in the area. """ _HOMEPAGE = "https://recipenlg.cs.put.poznan.pl/" _FILENAME = "full_dataset.csv" class RecipeNlg(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") @property def manual_download_instructions(self): return """\ You need to go to https://recipenlg.cs.put.poznan.pl/, and manually download the dataset. Once it is completed, a file named dataset.zip will be appeared in your Downloads folder or whichever folder your browser chooses to save files to. You then have to unzip the file and move full_dataset.csv under . The can e.g. be "~/manual_data". recipe_nlg can then be loaded using the following command `datasets.load_dataset("recipe_nlg", data_dir="")`. """ def _info(self): features = datasets.Features( { "id": datasets.Value("int32"), "title": datasets.Value("string"), "ingredients": datasets.Sequence(datasets.Value("string")), "directions": datasets.Sequence(datasets.Value("string")), "link": datasets.Value("string"), "source": datasets.ClassLabel(names=["Gathered", "Recipes1M"]), "ner": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) if not os.path.exists(path_to_manual_file): raise FileNotFoundError( "{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('recipe_nlg', data_dir=...)` that includes file name {}. Manual download instructions: {}".format( path_to_manual_file, _FILENAME, self.manual_download_instructions, ) ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(path_to_manual_file, "full_dataset.csv"), "split": "train", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file) for idx, row in enumerate(csv_reader): if idx == 0: continue resp = { "id": row[0], "title": row[1], "ingredients": ast.literal_eval(row[2]), "directions": ast.literal_eval(row[3]), "link": row[4], "source": row[5], "ner": ast.literal_eval(row[6]), } yield idx, resp