import os import json import tqdm import functools import collections import multiprocessing from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel def extract_domains(filename): domains = set() with open(filename) as f: for line in f: line = json.loads(line.strip()) domains.add(line["domain"]) return filename, list(domains) def filter_valid(questions): answers = set() new_questions = [] for question in questions: if question["answer"] not in answers: new_questions.append(question) answers.add(question["answer"]) return new_questions def format_to_valid(questions): answers_txt = [e["answer"] for e in questions] questions_txt = [e["question"] for e in questions] vectorizer = TfidfVectorizer() vectorizer.fit(answers_txt + questions_txt) answer_vectors = vectorizer.transform(answers_txt) for i, question in enumerate(questions): similarities = linear_kernel(answer_vectors[[i]], answer_vectors).flatten() answer_scores = [(j, sim) for j, sim in enumerate(similarities) if sim != 1] answer_scores = sorted(answer_scores, key=lambda x: x[1], reverse=True) sorted_answers = [questions[j]["answer"] for j, _ in answer_scores if questions[j]["answer"] != question["answer"]] negative_answer = sorted_answers[0] assert question["answer"] not in sorted_answers question["candidates"] = [question["answer"]] + sorted_answers question["negative_example"] = negative_answer return questions def valid_train_split(filename, mapping=None): previous_domain = "" train = [] valid = [] domain_data = {"questions": [], "pages": set()} counter = 0 with open(filename) as f: for line_txt in f: counter += 1 line = json.loads(line_txt.strip()) domain = line["domain"] if domain != previous_domain and previous_domain != "": if len(mapping[previous_domain]) > 1: train.extend(domain_data["questions"]) elif len(valid) > 2000: train.extend(domain_data["questions"]) elif len(domain_data["pages"]) > 1: train.extend(domain_data["questions"]) elif len(domain_data["questions"]) < 15: train.extend(domain_data["questions"]) else: questions = filter_valid(domain_data["questions"]) if len(questions) < 15: train.extend(questions) else: questions = format_to_valid(questions) valid.extend(questions) domain_data = {"questions": [], "pages": set()} domain_data["questions"].append(line) domain_data["pages"].add(line["domain_index"]) previous_domain = domain train.extend(domain_data["questions"]) return train, valid, filename domain_count = collections.defaultdict(list) data = [f"data/{e}" for e in os.listdir("data") if e.endswith(".json")] # with multiprocessing.Pool(os.cpu_count()) as p: with multiprocessing.Pool(1) as p: for filename, domains in tqdm.tqdm(p.imap_unordered(extract_domains, data)): language = filename.split(".")[1] for domain in domains: domain_count[domain].append(language) with multiprocessing.Pool(os.cpu_count()) as p: fn = functools.partial(valid_train_split, mapping=domain_count) for train, valid, filename in tqdm.tqdm(p.imap_unordered(fn, data)): train_filename = filename.replace("data/", "data/train/") train = [json.dumps(e, ensure_ascii=False) for e in train] valid = [json.dumps(e, ensure_ascii=False) for e in valid] with open(train_filename, "w+") as f: train = "\n".join(train) f.write(train) valid_filename = filename.replace("data/", "data/valid/") with open(valid_filename, "w+") as f: valid = "\n".join(valid) f.write(valid)